xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision e12ff891366cf94db4bfe4c2c810b26a5531053d)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72 
73 #include "e1000_api.h"
74 
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 					      u8 *mc_addr_list,
86 					      u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91 					    bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93 					    bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95 				   u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97 			       u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99 				    u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104 					    u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113 					   u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129 					  u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131 					    u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133 					   u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135 					     u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137 						  u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139 					  u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141 						 u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153 	struct ich8_hsfsts {
154 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156 		u16 dael:1; /* bit 2 Direct Access error Log */
157 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159 		u16 reserved1:2; /* bit 13:6 Reserved */
160 		u16 reserved2:6; /* bit 13:6 Reserved */
161 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163 	} hsf_status;
164 	u16 regval;
165 };
166 
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170 	struct ich8_hsflctl {
171 		u16 flcgo:1;   /* 0 Flash Cycle Go */
172 		u16 flcycle:2;   /* 2:1 Flash Cycle */
173 		u16 reserved:5;   /* 7:3 Reserved  */
174 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175 		u16 flockdn:6;   /* 15:10 Reserved */
176 	} hsf_ctrl;
177 	u16 regval;
178 };
179 
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182 	struct ich8_flracc {
183 		u32 grra:8; /* 0:7 GbE region Read Access */
184 		u32 grwa:8; /* 8:15 GbE region Write Access */
185 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187 	} hsf_flregacc;
188 	u16 regval;
189 };
190 
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203 	u16 phy_reg = 0;
204 	u32 phy_id = 0;
205 	s32 ret_val = 0;
206 	u16 retry_count;
207 	u32 mac_reg = 0;
208 
209 	for (retry_count = 0; retry_count < 2; retry_count++) {
210 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211 		if (ret_val || (phy_reg == 0xFFFF))
212 			continue;
213 		phy_id = (u32)(phy_reg << 16);
214 
215 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216 		if (ret_val || (phy_reg == 0xFFFF)) {
217 			phy_id = 0;
218 			continue;
219 		}
220 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221 		break;
222 	}
223 
224 	if (hw->phy.id) {
225 		if  (hw->phy.id == phy_id)
226 			goto out;
227 	} else if (phy_id) {
228 		hw->phy.id = phy_id;
229 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230 		goto out;
231 	}
232 
233 	/* In case the PHY needs to be in mdio slow mode,
234 	 * set slow mode and try to get the PHY id again.
235 	 */
236 	if (hw->mac.type < e1000_pch_lpt) {
237 		hw->phy.ops.release(hw);
238 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239 		if (!ret_val)
240 			ret_val = e1000_get_phy_id(hw);
241 		hw->phy.ops.acquire(hw);
242 	}
243 
244 	if (ret_val)
245 		return FALSE;
246 out:
247 	if (hw->mac.type >= e1000_pch_lpt) {
248 		/* Only unforce SMBus if ME is not active */
249 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250 		    E1000_ICH_FWSM_FW_VALID)) {
251 			/* Unforce SMBus mode in PHY */
252 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 
256 			/* Unforce SMBus mode in MAC */
257 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260 		}
261 	}
262 
263 	return TRUE;
264 }
265 
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275 	u32 mac_reg;
276 
277 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 
279 	/* Set Phy Config Counter to 50msec */
280 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 
285 	/* Toggle LANPHYPC Value bit */
286 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290 	E1000_WRITE_FLUSH(hw);
291 	msec_delay(1);
292 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294 	E1000_WRITE_FLUSH(hw);
295 
296 	if (hw->mac.type < e1000_pch_lpt) {
297 		msec_delay(50);
298 	} else {
299 		u16 count = 20;
300 
301 		do {
302 			msec_delay(5);
303 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304 			   E1000_CTRL_EXT_LPCD) && count--);
305 
306 		msec_delay(30);
307 	}
308 }
309 
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320 	s32 ret_val;
321 
322 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 
324 	/* Gate automatic PHY configuration by hardware on managed and
325 	 * non-managed 82579 and newer adapters.
326 	 */
327 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328 
329 	/* It is not possible to be certain of the current state of ULP
330 	 * so forcibly disable it.
331 	 */
332 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333 	e1000_disable_ulp_lpt_lp(hw, TRUE);
334 
335 	ret_val = hw->phy.ops.acquire(hw);
336 	if (ret_val) {
337 		DEBUGOUT("Failed to initialize PHY flow\n");
338 		goto out;
339 	}
340 
341 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342 	 * inaccessible and resetting the PHY is not blocked, toggle the
343 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344 	 */
345 	switch (hw->mac.type) {
346 	case e1000_pch_lpt:
347 	case e1000_pch_spt:
348 	case e1000_pch_cnp:
349 		if (e1000_phy_is_accessible_pchlan(hw))
350 			break;
351 
352 		/* Before toggling LANPHYPC, see if PHY is accessible by
353 		 * forcing MAC to SMBus mode first.
354 		 */
355 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
356 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
357 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
358 
359 		/* Wait 50 milliseconds for MAC to finish any retries
360 		 * that it might be trying to perform from previous
361 		 * attempts to acknowledge any phy read requests.
362 		 */
363 		 msec_delay(50);
364 
365 		/* fall-through */
366 	case e1000_pch2lan:
367 		if (e1000_phy_is_accessible_pchlan(hw))
368 			break;
369 
370 		/* fall-through */
371 	case e1000_pchlan:
372 		if ((hw->mac.type == e1000_pchlan) &&
373 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
374 			break;
375 
376 		if (hw->phy.ops.check_reset_block(hw)) {
377 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
378 			ret_val = -E1000_ERR_PHY;
379 			break;
380 		}
381 
382 		/* Toggle LANPHYPC Value bit */
383 		e1000_toggle_lanphypc_pch_lpt(hw);
384 		if (hw->mac.type >= e1000_pch_lpt) {
385 			if (e1000_phy_is_accessible_pchlan(hw))
386 				break;
387 
388 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
389 			 * so ensure that the MAC is also out of SMBus mode
390 			 */
391 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
392 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
393 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
394 
395 			if (e1000_phy_is_accessible_pchlan(hw))
396 				break;
397 
398 			ret_val = -E1000_ERR_PHY;
399 		}
400 		break;
401 	default:
402 		break;
403 	}
404 
405 	hw->phy.ops.release(hw);
406 	if (!ret_val) {
407 
408 		/* Check to see if able to reset PHY.  Print error if not */
409 		if (hw->phy.ops.check_reset_block(hw)) {
410 			ERROR_REPORT("Reset blocked by ME\n");
411 			goto out;
412 		}
413 
414 		/* Reset the PHY before any access to it.  Doing so, ensures
415 		 * that the PHY is in a known good state before we read/write
416 		 * PHY registers.  The generic reset is sufficient here,
417 		 * because we haven't determined the PHY type yet.
418 		 */
419 		ret_val = e1000_phy_hw_reset_generic(hw);
420 		if (ret_val)
421 			goto out;
422 
423 		/* On a successful reset, possibly need to wait for the PHY
424 		 * to quiesce to an accessible state before returning control
425 		 * to the calling function.  If the PHY does not quiesce, then
426 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
427 		 *  the PHY is in.
428 		 */
429 		ret_val = hw->phy.ops.check_reset_block(hw);
430 		if (ret_val)
431 			ERROR_REPORT("ME blocked access to PHY after reset\n");
432 	}
433 
434 out:
435 	/* Ungate automatic PHY configuration on non-managed 82579 */
436 	if ((hw->mac.type == e1000_pch2lan) &&
437 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
438 		msec_delay(10);
439 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
440 	}
441 
442 	return ret_val;
443 }
444 
445 /**
446  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
447  *  @hw: pointer to the HW structure
448  *
449  *  Initialize family-specific PHY parameters and function pointers.
450  **/
451 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
452 {
453 	struct e1000_phy_info *phy = &hw->phy;
454 	s32 ret_val;
455 
456 	DEBUGFUNC("e1000_init_phy_params_pchlan");
457 
458 	phy->addr		= 1;
459 	phy->reset_delay_us	= 100;
460 
461 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
462 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
463 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
464 	phy->ops.set_page	= e1000_set_page_igp;
465 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
466 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
467 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
468 	phy->ops.release	= e1000_release_swflag_ich8lan;
469 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
470 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
471 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
472 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
473 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
474 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
475 	phy->ops.power_up	= e1000_power_up_phy_copper;
476 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
477 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
478 
479 	phy->id = e1000_phy_unknown;
480 
481 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
482 	if (ret_val)
483 		return ret_val;
484 
485 	if (phy->id == e1000_phy_unknown)
486 		switch (hw->mac.type) {
487 		default:
488 			ret_val = e1000_get_phy_id(hw);
489 			if (ret_val)
490 				return ret_val;
491 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
492 				break;
493 			/* fall-through */
494 		case e1000_pch2lan:
495 		case e1000_pch_lpt:
496 		case e1000_pch_spt:
497 		case e1000_pch_cnp:
498 			/* In case the PHY needs to be in mdio slow mode,
499 			 * set slow mode and try to get the PHY id again.
500 			 */
501 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
502 			if (ret_val)
503 				return ret_val;
504 			ret_val = e1000_get_phy_id(hw);
505 			if (ret_val)
506 				return ret_val;
507 			break;
508 		}
509 	phy->type = e1000_get_phy_type_from_id(phy->id);
510 
511 	switch (phy->type) {
512 	case e1000_phy_82577:
513 	case e1000_phy_82579:
514 	case e1000_phy_i217:
515 		phy->ops.check_polarity = e1000_check_polarity_82577;
516 		phy->ops.force_speed_duplex =
517 			e1000_phy_force_speed_duplex_82577;
518 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
519 		phy->ops.get_info = e1000_get_phy_info_82577;
520 		phy->ops.commit = e1000_phy_sw_reset_generic;
521 		break;
522 	case e1000_phy_82578:
523 		phy->ops.check_polarity = e1000_check_polarity_m88;
524 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
525 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
526 		phy->ops.get_info = e1000_get_phy_info_m88;
527 		break;
528 	default:
529 		ret_val = -E1000_ERR_PHY;
530 		break;
531 	}
532 
533 	return ret_val;
534 }
535 
536 /**
537  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
538  *  @hw: pointer to the HW structure
539  *
540  *  Initialize family-specific PHY parameters and function pointers.
541  **/
542 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
543 {
544 	struct e1000_phy_info *phy = &hw->phy;
545 	s32 ret_val;
546 	u16 i = 0;
547 
548 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
549 
550 	phy->addr		= 1;
551 	phy->reset_delay_us	= 100;
552 
553 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
554 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
555 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
556 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
557 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
558 	phy->ops.release	= e1000_release_swflag_ich8lan;
559 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
560 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
561 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
562 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
563 	phy->ops.power_up	= e1000_power_up_phy_copper;
564 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
565 
566 	/* We may need to do this twice - once for IGP and if that fails,
567 	 * we'll set BM func pointers and try again
568 	 */
569 	ret_val = e1000_determine_phy_address(hw);
570 	if (ret_val) {
571 		phy->ops.write_reg = e1000_write_phy_reg_bm;
572 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
573 		ret_val = e1000_determine_phy_address(hw);
574 		if (ret_val) {
575 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
576 			return ret_val;
577 		}
578 	}
579 
580 	phy->id = 0;
581 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
582 	       (i++ < 100)) {
583 		msec_delay(1);
584 		ret_val = e1000_get_phy_id(hw);
585 		if (ret_val)
586 			return ret_val;
587 	}
588 
589 	/* Verify phy id */
590 	switch (phy->id) {
591 	case IGP03E1000_E_PHY_ID:
592 		phy->type = e1000_phy_igp_3;
593 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
594 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
595 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
596 		phy->ops.get_info = e1000_get_phy_info_igp;
597 		phy->ops.check_polarity = e1000_check_polarity_igp;
598 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
599 		break;
600 	case IFE_E_PHY_ID:
601 	case IFE_PLUS_E_PHY_ID:
602 	case IFE_C_E_PHY_ID:
603 		phy->type = e1000_phy_ife;
604 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
605 		phy->ops.get_info = e1000_get_phy_info_ife;
606 		phy->ops.check_polarity = e1000_check_polarity_ife;
607 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
608 		break;
609 	case BME1000_E_PHY_ID:
610 		phy->type = e1000_phy_bm;
611 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
612 		phy->ops.read_reg = e1000_read_phy_reg_bm;
613 		phy->ops.write_reg = e1000_write_phy_reg_bm;
614 		phy->ops.commit = e1000_phy_sw_reset_generic;
615 		phy->ops.get_info = e1000_get_phy_info_m88;
616 		phy->ops.check_polarity = e1000_check_polarity_m88;
617 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
618 		break;
619 	default:
620 		return -E1000_ERR_PHY;
621 		break;
622 	}
623 
624 	return E1000_SUCCESS;
625 }
626 
627 /**
628  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
629  *  @hw: pointer to the HW structure
630  *
631  *  Initialize family-specific NVM parameters and function
632  *  pointers.
633  **/
634 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
635 {
636 	struct e1000_nvm_info *nvm = &hw->nvm;
637 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
638 	u32 gfpreg, sector_base_addr, sector_end_addr;
639 	u16 i;
640 	u32 nvm_size;
641 
642 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
643 
644 	nvm->type = e1000_nvm_flash_sw;
645 
646 	if (hw->mac.type >= e1000_pch_spt) {
647 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
648 		 * STRAP register. This is because in SPT the GbE Flash region
649 		 * is no longer accessed through the flash registers. Instead,
650 		 * the mechanism has changed, and the Flash region access
651 		 * registers are now implemented in GbE memory space.
652 		 */
653 		nvm->flash_base_addr = 0;
654 		nvm_size =
655 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
656 		    * NVM_SIZE_MULTIPLIER;
657 		nvm->flash_bank_size = nvm_size / 2;
658 		/* Adjust to word count */
659 		nvm->flash_bank_size /= sizeof(u16);
660 		/* Set the base address for flash register access */
661 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
662 	} else {
663 		/* Can't read flash registers if register set isn't mapped. */
664 		if (!hw->flash_address) {
665 			DEBUGOUT("ERROR: Flash registers not mapped\n");
666 			return -E1000_ERR_CONFIG;
667 		}
668 
669 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
670 
671 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
672 		 * Add 1 to sector_end_addr since this sector is included in
673 		 * the overall size.
674 		 */
675 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
676 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
677 
678 		/* flash_base_addr is byte-aligned */
679 		nvm->flash_base_addr = sector_base_addr
680 				       << FLASH_SECTOR_ADDR_SHIFT;
681 
682 		/* find total size of the NVM, then cut in half since the total
683 		 * size represents two separate NVM banks.
684 		 */
685 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
686 					<< FLASH_SECTOR_ADDR_SHIFT);
687 		nvm->flash_bank_size /= 2;
688 		/* Adjust to word count */
689 		nvm->flash_bank_size /= sizeof(u16);
690 	}
691 
692 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
693 
694 	/* Clear shadow ram */
695 	for (i = 0; i < nvm->word_size; i++) {
696 		dev_spec->shadow_ram[i].modified = FALSE;
697 		dev_spec->shadow_ram[i].value    = 0xFFFF;
698 	}
699 
700 	/* Function Pointers */
701 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
702 	nvm->ops.release	= e1000_release_nvm_ich8lan;
703 	if (hw->mac.type >= e1000_pch_spt) {
704 		nvm->ops.read	= e1000_read_nvm_spt;
705 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
706 	} else {
707 		nvm->ops.read	= e1000_read_nvm_ich8lan;
708 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
709 	}
710 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
711 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
712 	nvm->ops.write		= e1000_write_nvm_ich8lan;
713 
714 	return E1000_SUCCESS;
715 }
716 
717 /**
718  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
719  *  @hw: pointer to the HW structure
720  *
721  *  Initialize family-specific MAC parameters and function
722  *  pointers.
723  **/
724 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
725 {
726 	struct e1000_mac_info *mac = &hw->mac;
727 
728 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
729 
730 	/* Set media type function pointer */
731 	hw->phy.media_type = e1000_media_type_copper;
732 
733 	/* Set mta register count */
734 	mac->mta_reg_count = 32;
735 	/* Set rar entry count */
736 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
737 	if (mac->type == e1000_ich8lan)
738 		mac->rar_entry_count--;
739 	/* Set if part includes ASF firmware */
740 	mac->asf_firmware_present = TRUE;
741 	/* FWSM register */
742 	mac->has_fwsm = TRUE;
743 	/* ARC subsystem not supported */
744 	mac->arc_subsystem_valid = FALSE;
745 	/* Adaptive IFS supported */
746 	mac->adaptive_ifs = TRUE;
747 
748 	/* Function pointers */
749 
750 	/* bus type/speed/width */
751 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
752 	/* function id */
753 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
754 	/* reset */
755 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
756 	/* hw initialization */
757 	mac->ops.init_hw = e1000_init_hw_ich8lan;
758 	/* link setup */
759 	mac->ops.setup_link = e1000_setup_link_ich8lan;
760 	/* physical interface setup */
761 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
762 	/* check for link */
763 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
764 	/* link info */
765 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
766 	/* multicast address update */
767 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
768 	/* clear hardware counters */
769 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
770 
771 	/* LED and other operations */
772 	switch (mac->type) {
773 	case e1000_ich8lan:
774 	case e1000_ich9lan:
775 	case e1000_ich10lan:
776 		/* check management mode */
777 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
778 		/* ID LED init */
779 		mac->ops.id_led_init = e1000_id_led_init_generic;
780 		/* blink LED */
781 		mac->ops.blink_led = e1000_blink_led_generic;
782 		/* setup LED */
783 		mac->ops.setup_led = e1000_setup_led_generic;
784 		/* cleanup LED */
785 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
786 		/* turn on/off LED */
787 		mac->ops.led_on = e1000_led_on_ich8lan;
788 		mac->ops.led_off = e1000_led_off_ich8lan;
789 		break;
790 	case e1000_pch2lan:
791 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
792 		mac->ops.rar_set = e1000_rar_set_pch2lan;
793 		/* fall-through */
794 	case e1000_pch_lpt:
795 	case e1000_pch_spt:
796 	case e1000_pch_cnp:
797 		/* multicast address update for pch2 */
798 		mac->ops.update_mc_addr_list =
799 			e1000_update_mc_addr_list_pch2lan;
800 		/* fall-through */
801 	case e1000_pchlan:
802 		/* check management mode */
803 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
804 		/* ID LED init */
805 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
806 		/* setup LED */
807 		mac->ops.setup_led = e1000_setup_led_pchlan;
808 		/* cleanup LED */
809 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
810 		/* turn on/off LED */
811 		mac->ops.led_on = e1000_led_on_pchlan;
812 		mac->ops.led_off = e1000_led_off_pchlan;
813 		break;
814 	default:
815 		break;
816 	}
817 
818 	if (mac->type >= e1000_pch_lpt) {
819 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
820 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
821 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
822 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
823 	}
824 
825 	/* Enable PCS Lock-loss workaround for ICH8 */
826 	if (mac->type == e1000_ich8lan)
827 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
828 
829 	return E1000_SUCCESS;
830 }
831 
832 /**
833  *  __e1000_access_emi_reg_locked - Read/write EMI register
834  *  @hw: pointer to the HW structure
835  *  @addr: EMI address to program
836  *  @data: pointer to value to read/write from/to the EMI address
837  *  @read: boolean flag to indicate read or write
838  *
839  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
840  **/
841 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
842 					 u16 *data, bool read)
843 {
844 	s32 ret_val;
845 
846 	DEBUGFUNC("__e1000_access_emi_reg_locked");
847 
848 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
849 	if (ret_val)
850 		return ret_val;
851 
852 	if (read)
853 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
854 						      data);
855 	else
856 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
857 						       *data);
858 
859 	return ret_val;
860 }
861 
862 /**
863  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
864  *  @hw: pointer to the HW structure
865  *  @addr: EMI address to program
866  *  @data: value to be read from the EMI address
867  *
868  *  Assumes the SW/FW/HW Semaphore is already acquired.
869  **/
870 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
871 {
872 	DEBUGFUNC("e1000_read_emi_reg_locked");
873 
874 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
875 }
876 
877 /**
878  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
879  *  @hw: pointer to the HW structure
880  *  @addr: EMI address to program
881  *  @data: value to be written to the EMI address
882  *
883  *  Assumes the SW/FW/HW Semaphore is already acquired.
884  **/
885 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
886 {
887 	DEBUGFUNC("e1000_read_emi_reg_locked");
888 
889 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
890 }
891 
892 /**
893  *  e1000_set_eee_pchlan - Enable/disable EEE support
894  *  @hw: pointer to the HW structure
895  *
896  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
897  *  the link and the EEE capabilities of the link partner.  The LPI Control
898  *  register bits will remain set only if/when link is up.
899  *
900  *  EEE LPI must not be asserted earlier than one second after link is up.
901  *  On 82579, EEE LPI should not be enabled until such time otherwise there
902  *  can be link issues with some switches.  Other devices can have EEE LPI
903  *  enabled immediately upon link up since they have a timer in hardware which
904  *  prevents LPI from being asserted too early.
905  **/
906 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
907 {
908 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
909 	s32 ret_val;
910 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
911 
912 	DEBUGFUNC("e1000_set_eee_pchlan");
913 
914 	switch (hw->phy.type) {
915 	case e1000_phy_82579:
916 		lpa = I82579_EEE_LP_ABILITY;
917 		pcs_status = I82579_EEE_PCS_STATUS;
918 		adv_addr = I82579_EEE_ADVERTISEMENT;
919 		break;
920 	case e1000_phy_i217:
921 		lpa = I217_EEE_LP_ABILITY;
922 		pcs_status = I217_EEE_PCS_STATUS;
923 		adv_addr = I217_EEE_ADVERTISEMENT;
924 		break;
925 	default:
926 		return E1000_SUCCESS;
927 	}
928 
929 	ret_val = hw->phy.ops.acquire(hw);
930 	if (ret_val)
931 		return ret_val;
932 
933 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
934 	if (ret_val)
935 		goto release;
936 
937 	/* Clear bits that enable EEE in various speeds */
938 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
939 
940 	/* Enable EEE if not disabled by user */
941 	if (!dev_spec->eee_disable) {
942 		/* Save off link partner's EEE ability */
943 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
944 						    &dev_spec->eee_lp_ability);
945 		if (ret_val)
946 			goto release;
947 
948 		/* Read EEE advertisement */
949 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
950 		if (ret_val)
951 			goto release;
952 
953 		/* Enable EEE only for speeds in which the link partner is
954 		 * EEE capable and for which we advertise EEE.
955 		 */
956 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
957 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
958 
959 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
960 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
961 			if (data & NWAY_LPAR_100TX_FD_CAPS)
962 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
963 			else
964 				/* EEE is not supported in 100Half, so ignore
965 				 * partner's EEE in 100 ability if full-duplex
966 				 * is not advertised.
967 				 */
968 				dev_spec->eee_lp_ability &=
969 				    ~I82579_EEE_100_SUPPORTED;
970 		}
971 	}
972 
973 	if (hw->phy.type == e1000_phy_82579) {
974 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
975 						    &data);
976 		if (ret_val)
977 			goto release;
978 
979 		data &= ~I82579_LPI_100_PLL_SHUT;
980 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
981 						     data);
982 	}
983 
984 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
985 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
986 	if (ret_val)
987 		goto release;
988 
989 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
990 release:
991 	hw->phy.ops.release(hw);
992 
993 	return ret_val;
994 }
995 
996 /**
997  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
998  *  @hw:   pointer to the HW structure
999  *  @link: link up bool flag
1000  *
1001  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1002  *  preventing further DMA write requests.  Workaround the issue by disabling
1003  *  the de-assertion of the clock request when in 1Gpbs mode.
1004  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1005  *  speeds in order to avoid Tx hangs.
1006  **/
1007 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1008 {
1009 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1010 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1011 	s32 ret_val = E1000_SUCCESS;
1012 	u16 reg;
1013 
1014 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1015 		ret_val = hw->phy.ops.acquire(hw);
1016 		if (ret_val)
1017 			return ret_val;
1018 
1019 		ret_val =
1020 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1021 					       &reg);
1022 		if (ret_val)
1023 			goto release;
1024 
1025 		ret_val =
1026 		    e1000_write_kmrn_reg_locked(hw,
1027 						E1000_KMRNCTRLSTA_K1_CONFIG,
1028 						reg &
1029 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1030 		if (ret_val)
1031 			goto release;
1032 
1033 		usec_delay(10);
1034 
1035 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1036 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1037 
1038 		ret_val =
1039 		    e1000_write_kmrn_reg_locked(hw,
1040 						E1000_KMRNCTRLSTA_K1_CONFIG,
1041 						reg);
1042 release:
1043 		hw->phy.ops.release(hw);
1044 	} else {
1045 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1046 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1047 
1048 		if ((hw->phy.revision > 5) || !link ||
1049 		    ((status & E1000_STATUS_SPEED_100) &&
1050 		     (status & E1000_STATUS_FD)))
1051 			goto update_fextnvm6;
1052 
1053 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1054 		if (ret_val)
1055 			return ret_val;
1056 
1057 		/* Clear link status transmit timeout */
1058 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1059 
1060 		if (status & E1000_STATUS_SPEED_100) {
1061 			/* Set inband Tx timeout to 5x10us for 100Half */
1062 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1063 
1064 			/* Do not extend the K1 entry latency for 100Half */
1065 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1066 		} else {
1067 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1068 			reg |= 50 <<
1069 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1070 
1071 			/* Extend the K1 entry latency for 10 Mbps */
1072 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1073 		}
1074 
1075 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1076 		if (ret_val)
1077 			return ret_val;
1078 
1079 update_fextnvm6:
1080 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1081 	}
1082 
1083 	return ret_val;
1084 }
1085 
1086 static u64 e1000_ltr2ns(u16 ltr)
1087 {
1088 	u32 value, scale;
1089 
1090 	/* Determine the latency in nsec based on the LTR value & scale */
1091 	value = ltr & E1000_LTRV_VALUE_MASK;
1092 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1093 
1094 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1095 }
1096 
1097 /**
1098  *  e1000_platform_pm_pch_lpt - Set platform power management values
1099  *  @hw: pointer to the HW structure
1100  *  @link: bool indicating link status
1101  *
1102  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1103  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1104  *  when link is up (which must not exceed the maximum latency supported
1105  *  by the platform), otherwise specify there is no LTR requirement.
1106  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1107  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1108  *  Capability register set, on this device LTR is set by writing the
1109  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1110  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1111  *  message to the PMC.
1112  *
1113  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1114  *  high-water mark.
1115  **/
1116 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1117 {
1118 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1119 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1120 	u16 lat_enc = 0;	/* latency encoded */
1121 	s32 obff_hwm = 0;
1122 
1123 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1124 
1125 	if (link) {
1126 		u16 speed, duplex, scale = 0;
1127 		u16 max_snoop, max_nosnoop;
1128 		u16 max_ltr_enc;	/* max LTR latency encoded */
1129 		s64 lat_ns;
1130 		s64 value;
1131 		u32 rxa;
1132 
1133 		if (!hw->mac.max_frame_size) {
1134 			DEBUGOUT("max_frame_size not set.\n");
1135 			return -E1000_ERR_CONFIG;
1136 		}
1137 
1138 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1139 		if (!speed) {
1140 			DEBUGOUT("Speed not set.\n");
1141 			return -E1000_ERR_CONFIG;
1142 		}
1143 
1144 		/* Rx Packet Buffer Allocation size (KB) */
1145 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1146 
1147 		/* Determine the maximum latency tolerated by the device.
1148 		 *
1149 		 * Per the PCIe spec, the tolerated latencies are encoded as
1150 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1151 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1152 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1153 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1154 		 */
1155 		lat_ns = ((s64)rxa * 1024 -
1156 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1157 		if (lat_ns < 0)
1158 			lat_ns = 0;
1159 		else
1160 			lat_ns /= speed;
1161 		value = lat_ns;
1162 
1163 		while (value > E1000_LTRV_VALUE_MASK) {
1164 			scale++;
1165 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1166 		}
1167 		if (scale > E1000_LTRV_SCALE_MAX) {
1168 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1169 			return -E1000_ERR_CONFIG;
1170 		}
1171 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1172 
1173 		/* Determine the maximum latency tolerated by the platform */
1174 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1175 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1176 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1177 
1178 		if (lat_enc > max_ltr_enc) {
1179 			lat_enc = max_ltr_enc;
1180 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1181 		}
1182 
1183 		if (lat_ns) {
1184 			lat_ns *= speed * 1000;
1185 			lat_ns /= 8;
1186 			lat_ns /= 1000000000;
1187 			obff_hwm = (s32)(rxa - lat_ns);
1188 		}
1189 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1190 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1191 			return -E1000_ERR_CONFIG;
1192 		}
1193 	}
1194 
1195 	/* Set Snoop and No-Snoop latencies the same */
1196 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1197 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1198 
1199 	/* Set OBFF high water mark */
1200 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1201 	reg |= obff_hwm;
1202 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1203 
1204 	/* Enable OBFF */
1205 	reg = E1000_READ_REG(hw, E1000_SVCR);
1206 	reg |= E1000_SVCR_OFF_EN;
1207 	/* Always unblock interrupts to the CPU even when the system is
1208 	 * in OBFF mode. This ensures that small round-robin traffic
1209 	 * (like ping) does not get dropped or experience long latency.
1210 	 */
1211 	reg |= E1000_SVCR_OFF_MASKINT;
1212 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1213 
1214 	return E1000_SUCCESS;
1215 }
1216 
1217 /**
1218  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1219  *  @hw: pointer to the HW structure
1220  *  @itr: interrupt throttling rate
1221  *
1222  *  Configure OBFF with the updated interrupt rate.
1223  **/
1224 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1225 {
1226 	u32 svcr;
1227 	s32 timer;
1228 
1229 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1230 
1231 	/* Convert ITR value into microseconds for OBFF timer */
1232 	timer = itr & E1000_ITR_MASK;
1233 	timer = (timer * E1000_ITR_MULT) / 1000;
1234 
1235 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1236 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1237 		return -E1000_ERR_CONFIG;
1238 	}
1239 
1240 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1241 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1242 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1243 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1244 
1245 	return E1000_SUCCESS;
1246 }
1247 
1248 /**
1249  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1250  *  @hw: pointer to the HW structure
1251  *  @to_sx: boolean indicating a system power state transition to Sx
1252  *
1253  *  When link is down, configure ULP mode to significantly reduce the power
1254  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1255  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1256  *  system, configure the ULP mode by software.
1257  */
1258 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1259 {
1260 	u32 mac_reg;
1261 	s32 ret_val = E1000_SUCCESS;
1262 	u16 phy_reg;
1263 	u16 oem_reg = 0;
1264 
1265 	if ((hw->mac.type < e1000_pch_lpt) ||
1266 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1267 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1268 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1269 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1270 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1271 		return 0;
1272 
1273 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1274 		/* Request ME configure ULP mode in the PHY */
1275 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1276 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1277 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1278 
1279 		goto out;
1280 	}
1281 
1282 	if (!to_sx) {
1283 		int i = 0;
1284 
1285 		/* Poll up to 5 seconds for Cable Disconnected indication */
1286 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1287 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1288 			/* Bail if link is re-acquired */
1289 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1290 				return -E1000_ERR_PHY;
1291 
1292 			if (i++ == 100)
1293 				break;
1294 
1295 			msec_delay(50);
1296 		}
1297 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1298 			 (E1000_READ_REG(hw, E1000_FEXT) &
1299 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1300 			 i * 50);
1301 	}
1302 
1303 	ret_val = hw->phy.ops.acquire(hw);
1304 	if (ret_val)
1305 		goto out;
1306 
1307 	/* Force SMBus mode in PHY */
1308 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309 	if (ret_val)
1310 		goto release;
1311 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1312 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1313 
1314 	/* Force SMBus mode in MAC */
1315 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1316 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1317 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1318 
1319 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1320 	 * LPLU and disable Gig speed when entering ULP
1321 	 */
1322 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1323 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1324 						       &oem_reg);
1325 		if (ret_val)
1326 			goto release;
1327 
1328 		phy_reg = oem_reg;
1329 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1330 
1331 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1332 							phy_reg);
1333 
1334 		if (ret_val)
1335 			goto release;
1336 	}
1337 
1338 	/* Set Inband ULP Exit, Reset to SMBus mode and
1339 	 * Disable SMBus Release on PERST# in PHY
1340 	 */
1341 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1342 	if (ret_val)
1343 		goto release;
1344 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1345 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1346 	if (to_sx) {
1347 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1348 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1349 		else
1350 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1351 
1352 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1353 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1354 	} else {
1355 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1356 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1357 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1358 	}
1359 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1360 
1361 	/* Set Disable SMBus Release on PERST# in MAC */
1362 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1363 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1364 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1365 
1366 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1367 	phy_reg |= I218_ULP_CONFIG1_START;
1368 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369 
1370 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1371 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1372 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1373 							oem_reg);
1374 		if (ret_val)
1375 			goto release;
1376 	}
1377 
1378 release:
1379 	hw->phy.ops.release(hw);
1380 out:
1381 	if (ret_val)
1382 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1383 	else
1384 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1385 
1386 	return ret_val;
1387 }
1388 
1389 /**
1390  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1391  *  @hw: pointer to the HW structure
1392  *  @force: boolean indicating whether or not to force disabling ULP
1393  *
1394  *  Un-configure ULP mode when link is up, the system is transitioned from
1395  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1396  *  system, poll for an indication from ME that ULP has been un-configured.
1397  *  If not on an ME enabled system, un-configure the ULP mode by software.
1398  *
1399  *  During nominal operation, this function is called when link is acquired
1400  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1401  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1402  *  to forcibly disable ULP.
1403  */
1404 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1405 {
1406 	s32 ret_val = E1000_SUCCESS;
1407 	u32 mac_reg;
1408 	u16 phy_reg;
1409 	int i = 0;
1410 
1411 	if ((hw->mac.type < e1000_pch_lpt) ||
1412 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1413 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1414 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1415 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1416 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1417 		return 0;
1418 
1419 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1420 		if (force) {
1421 			/* Request ME un-configure ULP mode in the PHY */
1422 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1423 			mac_reg &= ~E1000_H2ME_ULP;
1424 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1425 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1426 		}
1427 
1428 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1429 		while (E1000_READ_REG(hw, E1000_FWSM) &
1430 		       E1000_FWSM_ULP_CFG_DONE) {
1431 			if (i++ == 30) {
1432 				ret_val = -E1000_ERR_PHY;
1433 				goto out;
1434 			}
1435 
1436 			msec_delay(10);
1437 		}
1438 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1439 
1440 		if (force) {
1441 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1442 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1443 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1444 		} else {
1445 			/* Clear H2ME.ULP after ME ULP configuration */
1446 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1447 			mac_reg &= ~E1000_H2ME_ULP;
1448 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1449 		}
1450 
1451 		goto out;
1452 	}
1453 
1454 	ret_val = hw->phy.ops.acquire(hw);
1455 	if (ret_val)
1456 		goto out;
1457 
1458 	if (force)
1459 		/* Toggle LANPHYPC Value bit */
1460 		e1000_toggle_lanphypc_pch_lpt(hw);
1461 
1462 	/* Unforce SMBus mode in PHY */
1463 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1464 	if (ret_val) {
1465 		/* The MAC might be in PCIe mode, so temporarily force to
1466 		 * SMBus mode in order to access the PHY.
1467 		 */
1468 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1469 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1470 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1471 
1472 		msec_delay(50);
1473 
1474 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1475 						       &phy_reg);
1476 		if (ret_val)
1477 			goto release;
1478 	}
1479 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1480 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1481 
1482 	/* Unforce SMBus mode in MAC */
1483 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1484 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1485 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1486 
1487 	/* When ULP mode was previously entered, K1 was disabled by the
1488 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1489 	 */
1490 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1491 	if (ret_val)
1492 		goto release;
1493 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1494 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1495 
1496 	/* Clear ULP enabled configuration */
1497 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1498 	if (ret_val)
1499 		goto release;
1500 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1501 		     I218_ULP_CONFIG1_STICKY_ULP |
1502 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1503 		     I218_ULP_CONFIG1_WOL_HOST |
1504 		     I218_ULP_CONFIG1_INBAND_EXIT |
1505 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1506 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1507 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1508 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1509 
1510 	/* Commit ULP changes by starting auto ULP configuration */
1511 	phy_reg |= I218_ULP_CONFIG1_START;
1512 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1513 
1514 	/* Clear Disable SMBus Release on PERST# in MAC */
1515 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1516 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1517 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1518 
1519 release:
1520 	hw->phy.ops.release(hw);
1521 	if (force) {
1522 		hw->phy.ops.reset(hw);
1523 		msec_delay(50);
1524 	}
1525 out:
1526 	if (ret_val)
1527 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1528 	else
1529 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1530 
1531 	return ret_val;
1532 }
1533 
1534 /**
1535  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1536  *  @hw: pointer to the HW structure
1537  *
1538  *  Checks to see of the link status of the hardware has changed.  If a
1539  *  change in link status has been detected, then we read the PHY registers
1540  *  to get the current speed/duplex if link exists.
1541  **/
1542 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1543 {
1544 	struct e1000_mac_info *mac = &hw->mac;
1545 	s32 ret_val, tipg_reg = 0;
1546 	u16 emi_addr, emi_val = 0;
1547 	bool link;
1548 	u16 phy_reg;
1549 
1550 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1551 
1552 	/* We only want to go out to the PHY registers to see if Auto-Neg
1553 	 * has completed and/or if our link status has changed.  The
1554 	 * get_link_status flag is set upon receiving a Link Status
1555 	 * Change or Rx Sequence Error interrupt.
1556 	 */
1557 	if (!mac->get_link_status)
1558 		return E1000_SUCCESS;
1559 
1560 	/* First we want to see if the MII Status Register reports
1561 	 * link.  If so, then we want to get the current speed/duplex
1562 	 * of the PHY.
1563 	 */
1564 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1565 	if (ret_val)
1566 		return ret_val;
1567 
1568 	if (hw->mac.type == e1000_pchlan) {
1569 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1570 		if (ret_val)
1571 			return ret_val;
1572 	}
1573 
1574 	/* When connected at 10Mbps half-duplex, some parts are excessively
1575 	 * aggressive resulting in many collisions. To avoid this, increase
1576 	 * the IPG and reduce Rx latency in the PHY.
1577 	 */
1578 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1579 		u16 speed, duplex;
1580 
1581 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1582 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1583 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1584 
1585 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1586 			tipg_reg |= 0xFF;
1587 			/* Reduce Rx latency in analog PHY */
1588 			emi_val = 0;
1589 		} else if (hw->mac.type >= e1000_pch_spt &&
1590 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1591 			tipg_reg |= 0xC;
1592 			emi_val = 1;
1593 		} else {
1594 			/* Roll back the default values */
1595 			tipg_reg |= 0x08;
1596 			emi_val = 1;
1597 		}
1598 
1599 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1600 
1601 		ret_val = hw->phy.ops.acquire(hw);
1602 		if (ret_val)
1603 			return ret_val;
1604 
1605 		if (hw->mac.type == e1000_pch2lan)
1606 			emi_addr = I82579_RX_CONFIG;
1607 		else
1608 			emi_addr = I217_RX_CONFIG;
1609 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1610 
1611 
1612 		if (hw->mac.type >= e1000_pch_lpt) {
1613 			u16 phy_reg;
1614 
1615 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1616 						    &phy_reg);
1617 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1618 			if (speed == SPEED_100 || speed == SPEED_10)
1619 				phy_reg |= 0x3E8;
1620 			else
1621 				phy_reg |= 0xFA;
1622 			hw->phy.ops.write_reg_locked(hw,
1623 						     I217_PLL_CLOCK_GATE_REG,
1624 						     phy_reg);
1625 
1626 			if (speed == SPEED_1000) {
1627 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1628 							    &phy_reg);
1629 
1630 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1631 
1632 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1633 							     phy_reg);
1634 				}
1635 		 }
1636 		hw->phy.ops.release(hw);
1637 
1638 		if (ret_val)
1639 			return ret_val;
1640 
1641 		if (hw->mac.type >= e1000_pch_spt) {
1642 			u16 data;
1643 			u16 ptr_gap;
1644 
1645 			if (speed == SPEED_1000) {
1646 				ret_val = hw->phy.ops.acquire(hw);
1647 				if (ret_val)
1648 					return ret_val;
1649 
1650 				ret_val = hw->phy.ops.read_reg_locked(hw,
1651 							      PHY_REG(776, 20),
1652 							      &data);
1653 				if (ret_val) {
1654 					hw->phy.ops.release(hw);
1655 					return ret_val;
1656 				}
1657 
1658 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1659 				if (ptr_gap < 0x18) {
1660 					data &= ~(0x3FF << 2);
1661 					data |= (0x18 << 2);
1662 					ret_val =
1663 						hw->phy.ops.write_reg_locked(hw,
1664 							PHY_REG(776, 20), data);
1665 				}
1666 				hw->phy.ops.release(hw);
1667 				if (ret_val)
1668 					return ret_val;
1669 			} else {
1670 				ret_val = hw->phy.ops.acquire(hw);
1671 				if (ret_val)
1672 					return ret_val;
1673 
1674 				ret_val = hw->phy.ops.write_reg_locked(hw,
1675 							     PHY_REG(776, 20),
1676 							     0xC023);
1677 				hw->phy.ops.release(hw);
1678 				if (ret_val)
1679 					return ret_val;
1680 
1681 			}
1682 		}
1683 	}
1684 
1685 	/* I217 Packet Loss issue:
1686 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1687 	 * on power up.
1688 	 * Set the Beacon Duration for I217 to 8 usec
1689 	 */
1690 	if (hw->mac.type >= e1000_pch_lpt) {
1691 		u32 mac_reg;
1692 
1693 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1694 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1695 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1696 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1697 	}
1698 
1699 	/* Work-around I218 hang issue */
1700 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1701 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1702 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1703 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1704 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1705 		if (ret_val)
1706 			return ret_val;
1707 	}
1708 	if (hw->mac.type >= e1000_pch_lpt) {
1709 		/* Set platform power management values for
1710 		 * Latency Tolerance Reporting (LTR)
1711 		 * Optimized Buffer Flush/Fill (OBFF)
1712 		 */
1713 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1714 		if (ret_val)
1715 			return ret_val;
1716 	}
1717 
1718 	/* Clear link partner's EEE ability */
1719 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1720 
1721 	if (hw->mac.type >= e1000_pch_lpt) {
1722 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1723 
1724 		if (hw->mac.type == e1000_pch_spt) {
1725 			/* FEXTNVM6 K1-off workaround - for SPT only */
1726 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1727 
1728 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1729 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1730 			else
1731 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1732 		}
1733 
1734 		if (hw->dev_spec.ich8lan.disable_k1_off == TRUE)
1735 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1736 
1737 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1738 	}
1739 
1740 	if (!link)
1741 		return E1000_SUCCESS; /* No link detected */
1742 
1743 	mac->get_link_status = FALSE;
1744 
1745 	switch (hw->mac.type) {
1746 	case e1000_pch2lan:
1747 		ret_val = e1000_k1_workaround_lv(hw);
1748 		if (ret_val)
1749 			return ret_val;
1750 		/* fall-thru */
1751 	case e1000_pchlan:
1752 		if (hw->phy.type == e1000_phy_82578) {
1753 			ret_val = e1000_link_stall_workaround_hv(hw);
1754 			if (ret_val)
1755 				return ret_val;
1756 		}
1757 
1758 		/* Workaround for PCHx parts in half-duplex:
1759 		 * Set the number of preambles removed from the packet
1760 		 * when it is passed from the PHY to the MAC to prevent
1761 		 * the MAC from misinterpreting the packet type.
1762 		 */
1763 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1764 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1765 
1766 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1767 		    E1000_STATUS_FD)
1768 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1769 
1770 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1771 		break;
1772 	default:
1773 		break;
1774 	}
1775 
1776 	/* Check if there was DownShift, must be checked
1777 	 * immediately after link-up
1778 	 */
1779 	e1000_check_downshift_generic(hw);
1780 
1781 	/* Enable/Disable EEE after link up */
1782 	if (hw->phy.type > e1000_phy_82579) {
1783 		ret_val = e1000_set_eee_pchlan(hw);
1784 		if (ret_val)
1785 			return ret_val;
1786 	}
1787 
1788 	/* If we are forcing speed/duplex, then we simply return since
1789 	 * we have already determined whether we have link or not.
1790 	 */
1791 	if (!mac->autoneg)
1792 		return -E1000_ERR_CONFIG;
1793 
1794 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1795 	 * of MAC speed/duplex configuration.  So we only need to
1796 	 * configure Collision Distance in the MAC.
1797 	 */
1798 	mac->ops.config_collision_dist(hw);
1799 
1800 	/* Configure Flow Control now that Auto-Neg has completed.
1801 	 * First, we need to restore the desired flow control
1802 	 * settings because we may have had to re-autoneg with a
1803 	 * different link partner.
1804 	 */
1805 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1806 	if (ret_val)
1807 		DEBUGOUT("Error configuring flow control\n");
1808 
1809 	return ret_val;
1810 }
1811 
1812 /**
1813  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1814  *  @hw: pointer to the HW structure
1815  *
1816  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1817  **/
1818 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1819 {
1820 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1821 
1822 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1823 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1824 	switch (hw->mac.type) {
1825 	case e1000_ich8lan:
1826 	case e1000_ich9lan:
1827 	case e1000_ich10lan:
1828 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1829 		break;
1830 	case e1000_pchlan:
1831 	case e1000_pch2lan:
1832 	case e1000_pch_lpt:
1833 	case e1000_pch_spt:
1834 	case e1000_pch_cnp:
1835 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1836 		break;
1837 	default:
1838 		break;
1839 	}
1840 }
1841 
1842 /**
1843  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1844  *  @hw: pointer to the HW structure
1845  *
1846  *  Acquires the mutex for performing NVM operations.
1847  **/
1848 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1849 {
1850 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1851 
1852 	ASSERT_CTX_LOCK_HELD(hw);
1853 
1854 	return E1000_SUCCESS;
1855 }
1856 
1857 /**
1858  *  e1000_release_nvm_ich8lan - Release NVM mutex
1859  *  @hw: pointer to the HW structure
1860  *
1861  *  Releases the mutex used while performing NVM operations.
1862  **/
1863 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1864 {
1865 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1866 
1867 	ASSERT_CTX_LOCK_HELD(hw);
1868 }
1869 
1870 /**
1871  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1872  *  @hw: pointer to the HW structure
1873  *
1874  *  Acquires the software control flag for performing PHY and select
1875  *  MAC CSR accesses.
1876  **/
1877 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1878 {
1879 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1880 	s32 ret_val = E1000_SUCCESS;
1881 
1882 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1883 
1884 	ASSERT_CTX_LOCK_HELD(hw);
1885 
1886 	while (timeout) {
1887 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1888 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1889 			break;
1890 
1891 		msec_delay_irq(1);
1892 		timeout--;
1893 	}
1894 
1895 	if (!timeout) {
1896 		DEBUGOUT("SW has already locked the resource.\n");
1897 		ret_val = -E1000_ERR_CONFIG;
1898 		goto out;
1899 	}
1900 
1901 	timeout = SW_FLAG_TIMEOUT;
1902 
1903 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1904 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1905 
1906 	while (timeout) {
1907 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1908 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1909 			break;
1910 
1911 		msec_delay_irq(1);
1912 		timeout--;
1913 	}
1914 
1915 	if (!timeout) {
1916 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1917 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1918 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1919 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1920 		ret_val = -E1000_ERR_CONFIG;
1921 		goto out;
1922 	}
1923 
1924 out:
1925 	return ret_val;
1926 }
1927 
1928 /**
1929  *  e1000_release_swflag_ich8lan - Release software control flag
1930  *  @hw: pointer to the HW structure
1931  *
1932  *  Releases the software control flag for performing PHY and select
1933  *  MAC CSR accesses.
1934  **/
1935 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1936 {
1937 	u32 extcnf_ctrl;
1938 
1939 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1940 
1941 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1942 
1943 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1944 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1945 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1946 	} else {
1947 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1948 	}
1949 }
1950 
1951 /**
1952  *  e1000_check_mng_mode_ich8lan - Checks management mode
1953  *  @hw: pointer to the HW structure
1954  *
1955  *  This checks if the adapter has any manageability enabled.
1956  *  This is a function pointer entry point only called by read/write
1957  *  routines for the PHY and NVM parts.
1958  **/
1959 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1960 {
1961 	u32 fwsm;
1962 
1963 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1964 
1965 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1966 
1967 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1968 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1969 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1970 }
1971 
1972 /**
1973  *  e1000_check_mng_mode_pchlan - Checks management mode
1974  *  @hw: pointer to the HW structure
1975  *
1976  *  This checks if the adapter has iAMT enabled.
1977  *  This is a function pointer entry point only called by read/write
1978  *  routines for the PHY and NVM parts.
1979  **/
1980 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1981 {
1982 	u32 fwsm;
1983 
1984 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1985 
1986 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1987 
1988 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1989 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1990 }
1991 
1992 /**
1993  *  e1000_rar_set_pch2lan - Set receive address register
1994  *  @hw: pointer to the HW structure
1995  *  @addr: pointer to the receive address
1996  *  @index: receive address array register
1997  *
1998  *  Sets the receive address array register at index to the address passed
1999  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2000  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2001  *  Use SHRA[0-3] in place of those reserved for ME.
2002  **/
2003 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2004 {
2005 	u32 rar_low, rar_high;
2006 
2007 	DEBUGFUNC("e1000_rar_set_pch2lan");
2008 
2009 	/* HW expects these in little endian so we reverse the byte order
2010 	 * from network order (big endian) to little endian
2011 	 */
2012 	rar_low = ((u32) addr[0] |
2013 		   ((u32) addr[1] << 8) |
2014 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2015 
2016 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2017 
2018 	/* If MAC address zero, no need to set the AV bit */
2019 	if (rar_low || rar_high)
2020 		rar_high |= E1000_RAH_AV;
2021 
2022 	if (index == 0) {
2023 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2024 		E1000_WRITE_FLUSH(hw);
2025 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2026 		E1000_WRITE_FLUSH(hw);
2027 		return E1000_SUCCESS;
2028 	}
2029 
2030 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2031 	 * next address into the SHRA register array.
2032 	 */
2033 	if (index < (u32) (hw->mac.rar_entry_count)) {
2034 		s32 ret_val;
2035 
2036 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2037 		if (ret_val)
2038 			goto out;
2039 
2040 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2041 		E1000_WRITE_FLUSH(hw);
2042 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2043 		E1000_WRITE_FLUSH(hw);
2044 
2045 		e1000_release_swflag_ich8lan(hw);
2046 
2047 		/* verify the register updates */
2048 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2049 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2050 			return E1000_SUCCESS;
2051 
2052 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2053 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2054 	}
2055 
2056 out:
2057 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2058 	return -E1000_ERR_CONFIG;
2059 }
2060 
2061 /**
2062  *  e1000_rar_set_pch_lpt - Set receive address registers
2063  *  @hw: pointer to the HW structure
2064  *  @addr: pointer to the receive address
2065  *  @index: receive address array register
2066  *
2067  *  Sets the receive address register array at index to the address passed
2068  *  in by addr. For LPT, RAR[0] is the base address register that is to
2069  *  contain the MAC address. SHRA[0-10] are the shared receive address
2070  *  registers that are shared between the Host and manageability engine (ME).
2071  **/
2072 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2073 {
2074 	u32 rar_low, rar_high;
2075 	u32 wlock_mac;
2076 
2077 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2078 
2079 	/* HW expects these in little endian so we reverse the byte order
2080 	 * from network order (big endian) to little endian
2081 	 */
2082 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2083 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2084 
2085 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2086 
2087 	/* If MAC address zero, no need to set the AV bit */
2088 	if (rar_low || rar_high)
2089 		rar_high |= E1000_RAH_AV;
2090 
2091 	if (index == 0) {
2092 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2093 		E1000_WRITE_FLUSH(hw);
2094 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2095 		E1000_WRITE_FLUSH(hw);
2096 		return E1000_SUCCESS;
2097 	}
2098 
2099 	/* The manageability engine (ME) can lock certain SHRAR registers that
2100 	 * it is using - those registers are unavailable for use.
2101 	 */
2102 	if (index < hw->mac.rar_entry_count) {
2103 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2104 			    E1000_FWSM_WLOCK_MAC_MASK;
2105 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2106 
2107 		/* Check if all SHRAR registers are locked */
2108 		if (wlock_mac == 1)
2109 			goto out;
2110 
2111 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2112 			s32 ret_val;
2113 
2114 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2115 
2116 			if (ret_val)
2117 				goto out;
2118 
2119 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2120 					rar_low);
2121 			E1000_WRITE_FLUSH(hw);
2122 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2123 					rar_high);
2124 			E1000_WRITE_FLUSH(hw);
2125 
2126 			e1000_release_swflag_ich8lan(hw);
2127 
2128 			/* verify the register updates */
2129 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2130 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2131 				return E1000_SUCCESS;
2132 		}
2133 	}
2134 
2135 out:
2136 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2137 	return -E1000_ERR_CONFIG;
2138 }
2139 
2140 /**
2141  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2142  *  @hw: pointer to the HW structure
2143  *  @mc_addr_list: array of multicast addresses to program
2144  *  @mc_addr_count: number of multicast addresses to program
2145  *
2146  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2147  *  The caller must have a packed mc_addr_list of multicast addresses.
2148  **/
2149 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2150 					      u8 *mc_addr_list,
2151 					      u32 mc_addr_count)
2152 {
2153 	u16 phy_reg = 0;
2154 	int i;
2155 	s32 ret_val;
2156 
2157 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2158 
2159 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2160 
2161 	ret_val = hw->phy.ops.acquire(hw);
2162 	if (ret_val)
2163 		return;
2164 
2165 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2166 	if (ret_val)
2167 		goto release;
2168 
2169 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2170 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2171 					   (u16)(hw->mac.mta_shadow[i] &
2172 						 0xFFFF));
2173 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2174 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2175 						 0xFFFF));
2176 	}
2177 
2178 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2179 
2180 release:
2181 	hw->phy.ops.release(hw);
2182 }
2183 
2184 /**
2185  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2186  *  @hw: pointer to the HW structure
2187  *
2188  *  Checks if firmware is blocking the reset of the PHY.
2189  *  This is a function pointer entry point only called by
2190  *  reset routines.
2191  **/
2192 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2193 {
2194 	u32 fwsm;
2195 	bool blocked = FALSE;
2196 	int i = 0;
2197 
2198 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2199 
2200 	do {
2201 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2202 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2203 			blocked = TRUE;
2204 			msec_delay(10);
2205 			continue;
2206 		}
2207 		blocked = FALSE;
2208 	} while (blocked && (i++ < 30));
2209 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2210 }
2211 
2212 /**
2213  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2214  *  @hw: pointer to the HW structure
2215  *
2216  *  Assumes semaphore already acquired.
2217  *
2218  **/
2219 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2220 {
2221 	u16 phy_data;
2222 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2223 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2224 		E1000_STRAP_SMT_FREQ_SHIFT;
2225 	s32 ret_val;
2226 
2227 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2228 
2229 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2230 	if (ret_val)
2231 		return ret_val;
2232 
2233 	phy_data &= ~HV_SMB_ADDR_MASK;
2234 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2235 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2236 
2237 	if (hw->phy.type == e1000_phy_i217) {
2238 		/* Restore SMBus frequency */
2239 		if (freq--) {
2240 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2241 			phy_data |= (freq & (1 << 0)) <<
2242 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2243 			phy_data |= (freq & (1 << 1)) <<
2244 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2245 		} else {
2246 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2247 		}
2248 	}
2249 
2250 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2251 }
2252 
2253 /**
2254  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2255  *  @hw:   pointer to the HW structure
2256  *
2257  *  SW should configure the LCD from the NVM extended configuration region
2258  *  as a workaround for certain parts.
2259  **/
2260 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2261 {
2262 	struct e1000_phy_info *phy = &hw->phy;
2263 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2264 	s32 ret_val = E1000_SUCCESS;
2265 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2266 
2267 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2268 
2269 	/* Initialize the PHY from the NVM on ICH platforms.  This
2270 	 * is needed due to an issue where the NVM configuration is
2271 	 * not properly autoloaded after power transitions.
2272 	 * Therefore, after each PHY reset, we will load the
2273 	 * configuration data out of the NVM manually.
2274 	 */
2275 	switch (hw->mac.type) {
2276 	case e1000_ich8lan:
2277 		if (phy->type != e1000_phy_igp_3)
2278 			return ret_val;
2279 
2280 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2281 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2282 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2283 			break;
2284 		}
2285 		/* Fall-thru */
2286 	case e1000_pchlan:
2287 	case e1000_pch2lan:
2288 	case e1000_pch_lpt:
2289 	case e1000_pch_spt:
2290 	case e1000_pch_cnp:
2291 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2292 		break;
2293 	default:
2294 		return ret_val;
2295 	}
2296 
2297 	ret_val = hw->phy.ops.acquire(hw);
2298 	if (ret_val)
2299 		return ret_val;
2300 
2301 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2302 	if (!(data & sw_cfg_mask))
2303 		goto release;
2304 
2305 	/* Make sure HW does not configure LCD from PHY
2306 	 * extended configuration before SW configuration
2307 	 */
2308 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2309 	if ((hw->mac.type < e1000_pch2lan) &&
2310 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2311 			goto release;
2312 
2313 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2314 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2315 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2316 	if (!cnf_size)
2317 		goto release;
2318 
2319 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2320 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2321 
2322 	if (((hw->mac.type == e1000_pchlan) &&
2323 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2324 	    (hw->mac.type > e1000_pchlan)) {
2325 		/* HW configures the SMBus address and LEDs when the
2326 		 * OEM and LCD Write Enable bits are set in the NVM.
2327 		 * When both NVM bits are cleared, SW will configure
2328 		 * them instead.
2329 		 */
2330 		ret_val = e1000_write_smbus_addr(hw);
2331 		if (ret_val)
2332 			goto release;
2333 
2334 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2335 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2336 							(u16)data);
2337 		if (ret_val)
2338 			goto release;
2339 	}
2340 
2341 	/* Configure LCD from extended configuration region. */
2342 
2343 	/* cnf_base_addr is in DWORD */
2344 	word_addr = (u16)(cnf_base_addr << 1);
2345 
2346 	for (i = 0; i < cnf_size; i++) {
2347 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2348 					   &reg_data);
2349 		if (ret_val)
2350 			goto release;
2351 
2352 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2353 					   1, &reg_addr);
2354 		if (ret_val)
2355 			goto release;
2356 
2357 		/* Save off the PHY page for future writes. */
2358 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2359 			phy_page = reg_data;
2360 			continue;
2361 		}
2362 
2363 		reg_addr &= PHY_REG_MASK;
2364 		reg_addr |= phy_page;
2365 
2366 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2367 						    reg_data);
2368 		if (ret_val)
2369 			goto release;
2370 	}
2371 
2372 release:
2373 	hw->phy.ops.release(hw);
2374 	return ret_val;
2375 }
2376 
2377 /**
2378  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2379  *  @hw:   pointer to the HW structure
2380  *  @link: link up bool flag
2381  *
2382  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2383  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2384  *  If link is down, the function will restore the default K1 setting located
2385  *  in the NVM.
2386  **/
2387 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2388 {
2389 	s32 ret_val = E1000_SUCCESS;
2390 	u16 status_reg = 0;
2391 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2392 
2393 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2394 
2395 	if (hw->mac.type != e1000_pchlan)
2396 		return E1000_SUCCESS;
2397 
2398 	/* Wrap the whole flow with the sw flag */
2399 	ret_val = hw->phy.ops.acquire(hw);
2400 	if (ret_val)
2401 		return ret_val;
2402 
2403 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2404 	if (link) {
2405 		if (hw->phy.type == e1000_phy_82578) {
2406 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2407 							      &status_reg);
2408 			if (ret_val)
2409 				goto release;
2410 
2411 			status_reg &= (BM_CS_STATUS_LINK_UP |
2412 				       BM_CS_STATUS_RESOLVED |
2413 				       BM_CS_STATUS_SPEED_MASK);
2414 
2415 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2416 					   BM_CS_STATUS_RESOLVED |
2417 					   BM_CS_STATUS_SPEED_1000))
2418 				k1_enable = FALSE;
2419 		}
2420 
2421 		if (hw->phy.type == e1000_phy_82577) {
2422 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2423 							      &status_reg);
2424 			if (ret_val)
2425 				goto release;
2426 
2427 			status_reg &= (HV_M_STATUS_LINK_UP |
2428 				       HV_M_STATUS_AUTONEG_COMPLETE |
2429 				       HV_M_STATUS_SPEED_MASK);
2430 
2431 			if (status_reg == (HV_M_STATUS_LINK_UP |
2432 					   HV_M_STATUS_AUTONEG_COMPLETE |
2433 					   HV_M_STATUS_SPEED_1000))
2434 				k1_enable = FALSE;
2435 		}
2436 
2437 		/* Link stall fix for link up */
2438 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2439 						       0x0100);
2440 		if (ret_val)
2441 			goto release;
2442 
2443 	} else {
2444 		/* Link stall fix for link down */
2445 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2446 						       0x4100);
2447 		if (ret_val)
2448 			goto release;
2449 	}
2450 
2451 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2452 
2453 release:
2454 	hw->phy.ops.release(hw);
2455 
2456 	return ret_val;
2457 }
2458 
2459 /**
2460  *  e1000_configure_k1_ich8lan - Configure K1 power state
2461  *  @hw: pointer to the HW structure
2462  *  @enable: K1 state to configure
2463  *
2464  *  Configure the K1 power state based on the provided parameter.
2465  *  Assumes semaphore already acquired.
2466  *
2467  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2468  **/
2469 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2470 {
2471 	s32 ret_val;
2472 	u32 ctrl_reg = 0;
2473 	u32 ctrl_ext = 0;
2474 	u32 reg = 0;
2475 	u16 kmrn_reg = 0;
2476 
2477 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2478 
2479 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2480 					     &kmrn_reg);
2481 	if (ret_val)
2482 		return ret_val;
2483 
2484 	if (k1_enable)
2485 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2486 	else
2487 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2488 
2489 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2490 					      kmrn_reg);
2491 	if (ret_val)
2492 		return ret_val;
2493 
2494 	usec_delay(20);
2495 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2496 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2497 
2498 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2499 	reg |= E1000_CTRL_FRCSPD;
2500 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2501 
2502 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2503 	E1000_WRITE_FLUSH(hw);
2504 	usec_delay(20);
2505 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2506 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2507 	E1000_WRITE_FLUSH(hw);
2508 	usec_delay(20);
2509 
2510 	return E1000_SUCCESS;
2511 }
2512 
2513 /**
2514  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2515  *  @hw:       pointer to the HW structure
2516  *  @d0_state: boolean if entering d0 or d3 device state
2517  *
2518  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2519  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2520  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2521  **/
2522 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2523 {
2524 	s32 ret_val = 0;
2525 	u32 mac_reg;
2526 	u16 oem_reg;
2527 
2528 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2529 
2530 	if (hw->mac.type < e1000_pchlan)
2531 		return ret_val;
2532 
2533 	ret_val = hw->phy.ops.acquire(hw);
2534 	if (ret_val)
2535 		return ret_val;
2536 
2537 	if (hw->mac.type == e1000_pchlan) {
2538 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2539 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2540 			goto release;
2541 	}
2542 
2543 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2544 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2545 		goto release;
2546 
2547 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2548 
2549 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2550 	if (ret_val)
2551 		goto release;
2552 
2553 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2554 
2555 	if (d0_state) {
2556 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2557 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2558 
2559 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2560 			oem_reg |= HV_OEM_BITS_LPLU;
2561 	} else {
2562 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2563 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2564 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2565 
2566 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2567 		    E1000_PHY_CTRL_NOND0A_LPLU))
2568 			oem_reg |= HV_OEM_BITS_LPLU;
2569 	}
2570 
2571 	/* Set Restart auto-neg to activate the bits */
2572 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2573 	    !hw->phy.ops.check_reset_block(hw))
2574 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2575 
2576 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2577 
2578 release:
2579 	hw->phy.ops.release(hw);
2580 
2581 	return ret_val;
2582 }
2583 
2584 
2585 /**
2586  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2587  *  @hw:   pointer to the HW structure
2588  **/
2589 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2590 {
2591 	s32 ret_val;
2592 	u16 data;
2593 
2594 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2595 
2596 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2597 	if (ret_val)
2598 		return ret_val;
2599 
2600 	data |= HV_KMRN_MDIO_SLOW;
2601 
2602 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2603 
2604 	return ret_val;
2605 }
2606 
2607 /**
2608  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2609  *  done after every PHY reset.
2610  **/
2611 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2612 {
2613 	s32 ret_val = E1000_SUCCESS;
2614 	u16 phy_data;
2615 
2616 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2617 
2618 	if (hw->mac.type != e1000_pchlan)
2619 		return E1000_SUCCESS;
2620 
2621 	/* Set MDIO slow mode before any other MDIO access */
2622 	if (hw->phy.type == e1000_phy_82577) {
2623 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2624 		if (ret_val)
2625 			return ret_val;
2626 	}
2627 
2628 	if (((hw->phy.type == e1000_phy_82577) &&
2629 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2630 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2631 		/* Disable generation of early preamble */
2632 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2633 		if (ret_val)
2634 			return ret_val;
2635 
2636 		/* Preamble tuning for SSC */
2637 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2638 						0xA204);
2639 		if (ret_val)
2640 			return ret_val;
2641 	}
2642 
2643 	if (hw->phy.type == e1000_phy_82578) {
2644 		/* Return registers to default by doing a soft reset then
2645 		 * writing 0x3140 to the control register.
2646 		 */
2647 		if (hw->phy.revision < 2) {
2648 			e1000_phy_sw_reset_generic(hw);
2649 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2650 							0x3140);
2651 			if (ret_val)
2652 				return ret_val;
2653 		}
2654 	}
2655 
2656 	/* Select page 0 */
2657 	ret_val = hw->phy.ops.acquire(hw);
2658 	if (ret_val)
2659 		return ret_val;
2660 
2661 	hw->phy.addr = 1;
2662 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2663 	hw->phy.ops.release(hw);
2664 	if (ret_val)
2665 		return ret_val;
2666 
2667 	/* Configure the K1 Si workaround during phy reset assuming there is
2668 	 * link so that it disables K1 if link is in 1Gbps.
2669 	 */
2670 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2671 	if (ret_val)
2672 		return ret_val;
2673 
2674 	/* Workaround for link disconnects on a busy hub in half duplex */
2675 	ret_val = hw->phy.ops.acquire(hw);
2676 	if (ret_val)
2677 		return ret_val;
2678 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2679 	if (ret_val)
2680 		goto release;
2681 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2682 					       phy_data & 0x00FF);
2683 	if (ret_val)
2684 		goto release;
2685 
2686 	/* set MSE higher to enable link to stay up when noise is high */
2687 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2688 release:
2689 	hw->phy.ops.release(hw);
2690 
2691 	return ret_val;
2692 }
2693 
2694 /**
2695  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2696  *  @hw:   pointer to the HW structure
2697  **/
2698 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2699 {
2700 	u32 mac_reg;
2701 	u16 i, phy_reg = 0;
2702 	s32 ret_val;
2703 
2704 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2705 
2706 	ret_val = hw->phy.ops.acquire(hw);
2707 	if (ret_val)
2708 		return;
2709 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2710 	if (ret_val)
2711 		goto release;
2712 
2713 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2714 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2715 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2716 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2717 					   (u16)(mac_reg & 0xFFFF));
2718 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2719 					   (u16)((mac_reg >> 16) & 0xFFFF));
2720 
2721 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2722 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2723 					   (u16)(mac_reg & 0xFFFF));
2724 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2725 					   (u16)((mac_reg & E1000_RAH_AV)
2726 						 >> 16));
2727 	}
2728 
2729 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2730 
2731 release:
2732 	hw->phy.ops.release(hw);
2733 }
2734 
2735 static u32 e1000_calc_rx_da_crc(u8 mac[])
2736 {
2737 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2738 	u32 i, j, mask, crc;
2739 
2740 	DEBUGFUNC("e1000_calc_rx_da_crc");
2741 
2742 	crc = 0xffffffff;
2743 	for (i = 0; i < 6; i++) {
2744 		crc = crc ^ mac[i];
2745 		for (j = 8; j > 0; j--) {
2746 			mask = (crc & 1) * (-1);
2747 			crc = (crc >> 1) ^ (poly & mask);
2748 		}
2749 	}
2750 	return ~crc;
2751 }
2752 
2753 /**
2754  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2755  *  with 82579 PHY
2756  *  @hw: pointer to the HW structure
2757  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2758  **/
2759 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2760 {
2761 	s32 ret_val = E1000_SUCCESS;
2762 	u16 phy_reg, data;
2763 	u32 mac_reg;
2764 	u16 i;
2765 
2766 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2767 
2768 	if (hw->mac.type < e1000_pch2lan)
2769 		return E1000_SUCCESS;
2770 
2771 	/* disable Rx path while enabling/disabling workaround */
2772 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2773 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2774 					phy_reg | (1 << 14));
2775 	if (ret_val)
2776 		return ret_val;
2777 
2778 	if (enable) {
2779 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2780 		 * SHRAL/H) and initial CRC values to the MAC
2781 		 */
2782 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2783 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2784 			u32 addr_high, addr_low;
2785 
2786 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2787 			if (!(addr_high & E1000_RAH_AV))
2788 				continue;
2789 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2790 			mac_addr[0] = (addr_low & 0xFF);
2791 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2792 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2793 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2794 			mac_addr[4] = (addr_high & 0xFF);
2795 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2796 
2797 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2798 					e1000_calc_rx_da_crc(mac_addr));
2799 		}
2800 
2801 		/* Write Rx addresses to the PHY */
2802 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2803 
2804 		/* Enable jumbo frame workaround in the MAC */
2805 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2806 		mac_reg &= ~(1 << 14);
2807 		mac_reg |= (7 << 15);
2808 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2809 
2810 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2811 		mac_reg |= E1000_RCTL_SECRC;
2812 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2813 
2814 		ret_val = e1000_read_kmrn_reg_generic(hw,
2815 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2816 						&data);
2817 		if (ret_val)
2818 			return ret_val;
2819 		ret_val = e1000_write_kmrn_reg_generic(hw,
2820 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2821 						data | (1 << 0));
2822 		if (ret_val)
2823 			return ret_val;
2824 		ret_val = e1000_read_kmrn_reg_generic(hw,
2825 						E1000_KMRNCTRLSTA_HD_CTRL,
2826 						&data);
2827 		if (ret_val)
2828 			return ret_val;
2829 		data &= ~(0xF << 8);
2830 		data |= (0xB << 8);
2831 		ret_val = e1000_write_kmrn_reg_generic(hw,
2832 						E1000_KMRNCTRLSTA_HD_CTRL,
2833 						data);
2834 		if (ret_val)
2835 			return ret_val;
2836 
2837 		/* Enable jumbo frame workaround in the PHY */
2838 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2839 		data &= ~(0x7F << 5);
2840 		data |= (0x37 << 5);
2841 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2842 		if (ret_val)
2843 			return ret_val;
2844 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2845 		data &= ~(1 << 13);
2846 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2847 		if (ret_val)
2848 			return ret_val;
2849 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2850 		data &= ~(0x3FF << 2);
2851 		data |= (E1000_TX_PTR_GAP << 2);
2852 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2853 		if (ret_val)
2854 			return ret_val;
2855 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2856 		if (ret_val)
2857 			return ret_val;
2858 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2859 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2860 						(1 << 10));
2861 		if (ret_val)
2862 			return ret_val;
2863 	} else {
2864 		/* Write MAC register values back to h/w defaults */
2865 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2866 		mac_reg &= ~(0xF << 14);
2867 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2868 
2869 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2870 		mac_reg &= ~E1000_RCTL_SECRC;
2871 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2872 
2873 		ret_val = e1000_read_kmrn_reg_generic(hw,
2874 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2875 						&data);
2876 		if (ret_val)
2877 			return ret_val;
2878 		ret_val = e1000_write_kmrn_reg_generic(hw,
2879 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2880 						data & ~(1 << 0));
2881 		if (ret_val)
2882 			return ret_val;
2883 		ret_val = e1000_read_kmrn_reg_generic(hw,
2884 						E1000_KMRNCTRLSTA_HD_CTRL,
2885 						&data);
2886 		if (ret_val)
2887 			return ret_val;
2888 		data &= ~(0xF << 8);
2889 		data |= (0xB << 8);
2890 		ret_val = e1000_write_kmrn_reg_generic(hw,
2891 						E1000_KMRNCTRLSTA_HD_CTRL,
2892 						data);
2893 		if (ret_val)
2894 			return ret_val;
2895 
2896 		/* Write PHY register values back to h/w defaults */
2897 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2898 		data &= ~(0x7F << 5);
2899 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2900 		if (ret_val)
2901 			return ret_val;
2902 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2903 		data |= (1 << 13);
2904 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2905 		if (ret_val)
2906 			return ret_val;
2907 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2908 		data &= ~(0x3FF << 2);
2909 		data |= (0x8 << 2);
2910 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2911 		if (ret_val)
2912 			return ret_val;
2913 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2914 		if (ret_val)
2915 			return ret_val;
2916 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2917 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2918 						~(1 << 10));
2919 		if (ret_val)
2920 			return ret_val;
2921 	}
2922 
2923 	/* re-enable Rx path after enabling/disabling workaround */
2924 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2925 				     ~(1 << 14));
2926 }
2927 
2928 /**
2929  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2930  *  done after every PHY reset.
2931  **/
2932 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2933 {
2934 	s32 ret_val = E1000_SUCCESS;
2935 
2936 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2937 
2938 	if (hw->mac.type != e1000_pch2lan)
2939 		return E1000_SUCCESS;
2940 
2941 	/* Set MDIO slow mode before any other MDIO access */
2942 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2943 	if (ret_val)
2944 		return ret_val;
2945 
2946 	ret_val = hw->phy.ops.acquire(hw);
2947 	if (ret_val)
2948 		return ret_val;
2949 	/* set MSE higher to enable link to stay up when noise is high */
2950 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2951 	if (ret_val)
2952 		goto release;
2953 	/* drop link after 5 times MSE threshold was reached */
2954 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2955 release:
2956 	hw->phy.ops.release(hw);
2957 
2958 	return ret_val;
2959 }
2960 
2961 /**
2962  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2963  *  @hw:   pointer to the HW structure
2964  *
2965  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2966  *  Disable K1 for 1000 and 100 speeds
2967  **/
2968 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2969 {
2970 	s32 ret_val = E1000_SUCCESS;
2971 	u16 status_reg = 0;
2972 
2973 	DEBUGFUNC("e1000_k1_workaround_lv");
2974 
2975 	if (hw->mac.type != e1000_pch2lan)
2976 		return E1000_SUCCESS;
2977 
2978 	/* Set K1 beacon duration based on 10Mbs speed */
2979 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2980 	if (ret_val)
2981 		return ret_val;
2982 
2983 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2984 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2985 		if (status_reg &
2986 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2987 			u16 pm_phy_reg;
2988 
2989 			/* LV 1G/100 Packet drop issue wa  */
2990 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2991 						       &pm_phy_reg);
2992 			if (ret_val)
2993 				return ret_val;
2994 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2995 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2996 							pm_phy_reg);
2997 			if (ret_val)
2998 				return ret_val;
2999 		} else {
3000 			u32 mac_reg;
3001 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3002 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3003 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3004 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3005 		}
3006 	}
3007 
3008 	return ret_val;
3009 }
3010 
3011 /**
3012  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3013  *  @hw:   pointer to the HW structure
3014  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3015  *
3016  *  Gate/ungate the automatic PHY configuration via hardware; perform
3017  *  the configuration via software instead.
3018  **/
3019 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3020 {
3021 	u32 extcnf_ctrl;
3022 
3023 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3024 
3025 	if (hw->mac.type < e1000_pch2lan)
3026 		return;
3027 
3028 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3029 
3030 	if (gate)
3031 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3032 	else
3033 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3034 
3035 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3036 }
3037 
3038 /**
3039  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3040  *  @hw: pointer to the HW structure
3041  *
3042  *  Check the appropriate indication the MAC has finished configuring the
3043  *  PHY after a software reset.
3044  **/
3045 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3046 {
3047 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3048 
3049 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3050 
3051 	/* Wait for basic configuration completes before proceeding */
3052 	do {
3053 		data = E1000_READ_REG(hw, E1000_STATUS);
3054 		data &= E1000_STATUS_LAN_INIT_DONE;
3055 		usec_delay(100);
3056 	} while ((!data) && --loop);
3057 
3058 	/* If basic configuration is incomplete before the above loop
3059 	 * count reaches 0, loading the configuration from NVM will
3060 	 * leave the PHY in a bad state possibly resulting in no link.
3061 	 */
3062 	if (loop == 0)
3063 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3064 
3065 	/* Clear the Init Done bit for the next init event */
3066 	data = E1000_READ_REG(hw, E1000_STATUS);
3067 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3068 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3069 }
3070 
3071 /**
3072  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3073  *  @hw: pointer to the HW structure
3074  **/
3075 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3076 {
3077 	s32 ret_val = E1000_SUCCESS;
3078 	u16 reg;
3079 
3080 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3081 
3082 	if (hw->phy.ops.check_reset_block(hw))
3083 		return E1000_SUCCESS;
3084 
3085 	/* Allow time for h/w to get to quiescent state after reset */
3086 	msec_delay(10);
3087 
3088 	/* Perform any necessary post-reset workarounds */
3089 	switch (hw->mac.type) {
3090 	case e1000_pchlan:
3091 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3092 		if (ret_val)
3093 			return ret_val;
3094 		break;
3095 	case e1000_pch2lan:
3096 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3097 		if (ret_val)
3098 			return ret_val;
3099 		break;
3100 	default:
3101 		break;
3102 	}
3103 
3104 	/* Clear the host wakeup bit after lcd reset */
3105 	if (hw->mac.type >= e1000_pchlan) {
3106 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3107 		reg &= ~BM_WUC_HOST_WU_BIT;
3108 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3109 	}
3110 
3111 	/* Configure the LCD with the extended configuration region in NVM */
3112 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3113 	if (ret_val)
3114 		return ret_val;
3115 
3116 	/* Configure the LCD with the OEM bits in NVM */
3117 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3118 
3119 	if (hw->mac.type == e1000_pch2lan) {
3120 		/* Ungate automatic PHY configuration on non-managed 82579 */
3121 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3122 		    E1000_ICH_FWSM_FW_VALID)) {
3123 			msec_delay(10);
3124 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3125 		}
3126 
3127 		/* Set EEE LPI Update Timer to 200usec */
3128 		ret_val = hw->phy.ops.acquire(hw);
3129 		if (ret_val)
3130 			return ret_val;
3131 		ret_val = e1000_write_emi_reg_locked(hw,
3132 						     I82579_LPI_UPDATE_TIMER,
3133 						     0x1387);
3134 		hw->phy.ops.release(hw);
3135 	}
3136 
3137 	return ret_val;
3138 }
3139 
3140 /**
3141  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3142  *  @hw: pointer to the HW structure
3143  *
3144  *  Resets the PHY
3145  *  This is a function pointer entry point called by drivers
3146  *  or other shared routines.
3147  **/
3148 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3149 {
3150 	s32 ret_val = E1000_SUCCESS;
3151 
3152 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3153 
3154 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3155 	if ((hw->mac.type == e1000_pch2lan) &&
3156 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3157 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3158 
3159 	ret_val = e1000_phy_hw_reset_generic(hw);
3160 	if (ret_val)
3161 		return ret_val;
3162 
3163 	return e1000_post_phy_reset_ich8lan(hw);
3164 }
3165 
3166 /**
3167  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3168  *  @hw: pointer to the HW structure
3169  *  @active: TRUE to enable LPLU, FALSE to disable
3170  *
3171  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3172  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3173  *  the phy speed. This function will manually set the LPLU bit and restart
3174  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3175  *  since it configures the same bit.
3176  **/
3177 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3178 {
3179 	s32 ret_val;
3180 	u16 oem_reg;
3181 
3182 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3183 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3184 	if (ret_val)
3185 		return ret_val;
3186 
3187 	if (active)
3188 		oem_reg |= HV_OEM_BITS_LPLU;
3189 	else
3190 		oem_reg &= ~HV_OEM_BITS_LPLU;
3191 
3192 	if (!hw->phy.ops.check_reset_block(hw))
3193 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3194 
3195 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3196 }
3197 
3198 /**
3199  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3200  *  @hw: pointer to the HW structure
3201  *  @active: TRUE to enable LPLU, FALSE to disable
3202  *
3203  *  Sets the LPLU D0 state according to the active flag.  When
3204  *  activating LPLU this function also disables smart speed
3205  *  and vice versa.  LPLU will not be activated unless the
3206  *  device autonegotiation advertisement meets standards of
3207  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3208  *  This is a function pointer entry point only called by
3209  *  PHY setup routines.
3210  **/
3211 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3212 {
3213 	struct e1000_phy_info *phy = &hw->phy;
3214 	u32 phy_ctrl;
3215 	s32 ret_val = E1000_SUCCESS;
3216 	u16 data;
3217 
3218 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3219 
3220 	if (phy->type == e1000_phy_ife)
3221 		return E1000_SUCCESS;
3222 
3223 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3224 
3225 	if (active) {
3226 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3227 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3228 
3229 		if (phy->type != e1000_phy_igp_3)
3230 			return E1000_SUCCESS;
3231 
3232 		/* Call gig speed drop workaround on LPLU before accessing
3233 		 * any PHY registers
3234 		 */
3235 		if (hw->mac.type == e1000_ich8lan)
3236 			e1000_gig_downshift_workaround_ich8lan(hw);
3237 
3238 		/* When LPLU is enabled, we should disable SmartSpeed */
3239 		ret_val = phy->ops.read_reg(hw,
3240 					    IGP01E1000_PHY_PORT_CONFIG,
3241 					    &data);
3242 		if (ret_val)
3243 			return ret_val;
3244 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3245 		ret_val = phy->ops.write_reg(hw,
3246 					     IGP01E1000_PHY_PORT_CONFIG,
3247 					     data);
3248 		if (ret_val)
3249 			return ret_val;
3250 	} else {
3251 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3252 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3253 
3254 		if (phy->type != e1000_phy_igp_3)
3255 			return E1000_SUCCESS;
3256 
3257 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3258 		 * during Dx states where the power conservation is most
3259 		 * important.  During driver activity we should enable
3260 		 * SmartSpeed, so performance is maintained.
3261 		 */
3262 		if (phy->smart_speed == e1000_smart_speed_on) {
3263 			ret_val = phy->ops.read_reg(hw,
3264 						    IGP01E1000_PHY_PORT_CONFIG,
3265 						    &data);
3266 			if (ret_val)
3267 				return ret_val;
3268 
3269 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3270 			ret_val = phy->ops.write_reg(hw,
3271 						     IGP01E1000_PHY_PORT_CONFIG,
3272 						     data);
3273 			if (ret_val)
3274 				return ret_val;
3275 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3276 			ret_val = phy->ops.read_reg(hw,
3277 						    IGP01E1000_PHY_PORT_CONFIG,
3278 						    &data);
3279 			if (ret_val)
3280 				return ret_val;
3281 
3282 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3283 			ret_val = phy->ops.write_reg(hw,
3284 						     IGP01E1000_PHY_PORT_CONFIG,
3285 						     data);
3286 			if (ret_val)
3287 				return ret_val;
3288 		}
3289 	}
3290 
3291 	return E1000_SUCCESS;
3292 }
3293 
3294 /**
3295  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3296  *  @hw: pointer to the HW structure
3297  *  @active: TRUE to enable LPLU, FALSE to disable
3298  *
3299  *  Sets the LPLU D3 state according to the active flag.  When
3300  *  activating LPLU this function also disables smart speed
3301  *  and vice versa.  LPLU will not be activated unless the
3302  *  device autonegotiation advertisement meets standards of
3303  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3304  *  This is a function pointer entry point only called by
3305  *  PHY setup routines.
3306  **/
3307 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3308 {
3309 	struct e1000_phy_info *phy = &hw->phy;
3310 	u32 phy_ctrl;
3311 	s32 ret_val = E1000_SUCCESS;
3312 	u16 data;
3313 
3314 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3315 
3316 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3317 
3318 	if (!active) {
3319 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3320 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3321 
3322 		if (phy->type != e1000_phy_igp_3)
3323 			return E1000_SUCCESS;
3324 
3325 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3326 		 * during Dx states where the power conservation is most
3327 		 * important.  During driver activity we should enable
3328 		 * SmartSpeed, so performance is maintained.
3329 		 */
3330 		if (phy->smart_speed == e1000_smart_speed_on) {
3331 			ret_val = phy->ops.read_reg(hw,
3332 						    IGP01E1000_PHY_PORT_CONFIG,
3333 						    &data);
3334 			if (ret_val)
3335 				return ret_val;
3336 
3337 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3338 			ret_val = phy->ops.write_reg(hw,
3339 						     IGP01E1000_PHY_PORT_CONFIG,
3340 						     data);
3341 			if (ret_val)
3342 				return ret_val;
3343 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3344 			ret_val = phy->ops.read_reg(hw,
3345 						    IGP01E1000_PHY_PORT_CONFIG,
3346 						    &data);
3347 			if (ret_val)
3348 				return ret_val;
3349 
3350 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3351 			ret_val = phy->ops.write_reg(hw,
3352 						     IGP01E1000_PHY_PORT_CONFIG,
3353 						     data);
3354 			if (ret_val)
3355 				return ret_val;
3356 		}
3357 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3358 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3359 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3360 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3361 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3362 
3363 		if (phy->type != e1000_phy_igp_3)
3364 			return E1000_SUCCESS;
3365 
3366 		/* Call gig speed drop workaround on LPLU before accessing
3367 		 * any PHY registers
3368 		 */
3369 		if (hw->mac.type == e1000_ich8lan)
3370 			e1000_gig_downshift_workaround_ich8lan(hw);
3371 
3372 		/* When LPLU is enabled, we should disable SmartSpeed */
3373 		ret_val = phy->ops.read_reg(hw,
3374 					    IGP01E1000_PHY_PORT_CONFIG,
3375 					    &data);
3376 		if (ret_val)
3377 			return ret_val;
3378 
3379 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3380 		ret_val = phy->ops.write_reg(hw,
3381 					     IGP01E1000_PHY_PORT_CONFIG,
3382 					     data);
3383 	}
3384 
3385 	return ret_val;
3386 }
3387 
3388 /**
3389  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3390  *  @hw: pointer to the HW structure
3391  *  @bank:  pointer to the variable that returns the active bank
3392  *
3393  *  Reads signature byte from the NVM using the flash access registers.
3394  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3395  **/
3396 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3397 {
3398 	u32 eecd;
3399 	struct e1000_nvm_info *nvm = &hw->nvm;
3400 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3401 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3402 	u32 nvm_dword = 0;
3403 	u8 sig_byte = 0;
3404 	s32 ret_val;
3405 
3406 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3407 
3408 	switch (hw->mac.type) {
3409 	case e1000_pch_spt:
3410 	case e1000_pch_cnp:
3411 		bank1_offset = nvm->flash_bank_size;
3412 		act_offset = E1000_ICH_NVM_SIG_WORD;
3413 
3414 		/* set bank to 0 in case flash read fails */
3415 		*bank = 0;
3416 
3417 		/* Check bank 0 */
3418 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3419 							 &nvm_dword);
3420 		if (ret_val)
3421 			return ret_val;
3422 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3423 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3424 		    E1000_ICH_NVM_SIG_VALUE) {
3425 			*bank = 0;
3426 			return E1000_SUCCESS;
3427 		}
3428 
3429 		/* Check bank 1 */
3430 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3431 							 bank1_offset,
3432 							 &nvm_dword);
3433 		if (ret_val)
3434 			return ret_val;
3435 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3436 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3437 		    E1000_ICH_NVM_SIG_VALUE) {
3438 			*bank = 1;
3439 			return E1000_SUCCESS;
3440 		}
3441 
3442 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3443 		return -E1000_ERR_NVM;
3444 	case e1000_ich8lan:
3445 	case e1000_ich9lan:
3446 		eecd = E1000_READ_REG(hw, E1000_EECD);
3447 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3448 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3449 			if (eecd & E1000_EECD_SEC1VAL)
3450 				*bank = 1;
3451 			else
3452 				*bank = 0;
3453 
3454 			return E1000_SUCCESS;
3455 		}
3456 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3457 		/* fall-thru */
3458 	default:
3459 		/* set bank to 0 in case flash read fails */
3460 		*bank = 0;
3461 
3462 		/* Check bank 0 */
3463 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3464 							&sig_byte);
3465 		if (ret_val)
3466 			return ret_val;
3467 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3468 		    E1000_ICH_NVM_SIG_VALUE) {
3469 			*bank = 0;
3470 			return E1000_SUCCESS;
3471 		}
3472 
3473 		/* Check bank 1 */
3474 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3475 							bank1_offset,
3476 							&sig_byte);
3477 		if (ret_val)
3478 			return ret_val;
3479 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3480 		    E1000_ICH_NVM_SIG_VALUE) {
3481 			*bank = 1;
3482 			return E1000_SUCCESS;
3483 		}
3484 
3485 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3486 		return -E1000_ERR_NVM;
3487 	}
3488 }
3489 
3490 /**
3491  *  e1000_read_nvm_spt - NVM access for SPT
3492  *  @hw: pointer to the HW structure
3493  *  @offset: The offset (in bytes) of the word(s) to read.
3494  *  @words: Size of data to read in words.
3495  *  @data: pointer to the word(s) to read at offset.
3496  *
3497  *  Reads a word(s) from the NVM
3498  **/
3499 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3500 			      u16 *data)
3501 {
3502 	struct e1000_nvm_info *nvm = &hw->nvm;
3503 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3504 	u32 act_offset;
3505 	s32 ret_val = E1000_SUCCESS;
3506 	u32 bank = 0;
3507 	u32 dword = 0;
3508 	u16 offset_to_read;
3509 	u16 i;
3510 
3511 	DEBUGFUNC("e1000_read_nvm_spt");
3512 
3513 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3514 	    (words == 0)) {
3515 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3516 		ret_val = -E1000_ERR_NVM;
3517 		goto out;
3518 	}
3519 
3520 	nvm->ops.acquire(hw);
3521 
3522 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3523 	if (ret_val != E1000_SUCCESS) {
3524 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3525 		bank = 0;
3526 	}
3527 
3528 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3529 	act_offset += offset;
3530 
3531 	ret_val = E1000_SUCCESS;
3532 
3533 	for (i = 0; i < words; i += 2) {
3534 		if (words - i == 1) {
3535 			if (dev_spec->shadow_ram[offset+i].modified) {
3536 				data[i] = dev_spec->shadow_ram[offset+i].value;
3537 			} else {
3538 				offset_to_read = act_offset + i -
3539 						 ((act_offset + i) % 2);
3540 				ret_val =
3541 				   e1000_read_flash_dword_ich8lan(hw,
3542 								 offset_to_read,
3543 								 &dword);
3544 				if (ret_val)
3545 					break;
3546 				if ((act_offset + i) % 2 == 0)
3547 					data[i] = (u16)(dword & 0xFFFF);
3548 				else
3549 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3550 			}
3551 		} else {
3552 			offset_to_read = act_offset + i;
3553 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3554 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3555 				ret_val =
3556 				   e1000_read_flash_dword_ich8lan(hw,
3557 								 offset_to_read,
3558 								 &dword);
3559 				if (ret_val)
3560 					break;
3561 			}
3562 			if (dev_spec->shadow_ram[offset+i].modified)
3563 				data[i] = dev_spec->shadow_ram[offset+i].value;
3564 			else
3565 				data[i] = (u16) (dword & 0xFFFF);
3566 			if (dev_spec->shadow_ram[offset+i].modified)
3567 				data[i+1] =
3568 				   dev_spec->shadow_ram[offset+i+1].value;
3569 			else
3570 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3571 		}
3572 	}
3573 
3574 	nvm->ops.release(hw);
3575 
3576 out:
3577 	if (ret_val)
3578 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3579 
3580 	return ret_val;
3581 }
3582 
3583 /**
3584  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3585  *  @hw: pointer to the HW structure
3586  *  @offset: The offset (in bytes) of the word(s) to read.
3587  *  @words: Size of data to read in words
3588  *  @data: Pointer to the word(s) to read at offset.
3589  *
3590  *  Reads a word(s) from the NVM using the flash access registers.
3591  **/
3592 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3593 				  u16 *data)
3594 {
3595 	struct e1000_nvm_info *nvm = &hw->nvm;
3596 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3597 	u32 act_offset;
3598 	s32 ret_val = E1000_SUCCESS;
3599 	u32 bank = 0;
3600 	u16 i, word;
3601 
3602 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3603 
3604 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3605 	    (words == 0)) {
3606 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3607 		ret_val = -E1000_ERR_NVM;
3608 		goto out;
3609 	}
3610 
3611 	nvm->ops.acquire(hw);
3612 
3613 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3614 	if (ret_val != E1000_SUCCESS) {
3615 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3616 		bank = 0;
3617 	}
3618 
3619 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3620 	act_offset += offset;
3621 
3622 	ret_val = E1000_SUCCESS;
3623 	for (i = 0; i < words; i++) {
3624 		if (dev_spec->shadow_ram[offset+i].modified) {
3625 			data[i] = dev_spec->shadow_ram[offset+i].value;
3626 		} else {
3627 			ret_val = e1000_read_flash_word_ich8lan(hw,
3628 								act_offset + i,
3629 								&word);
3630 			if (ret_val)
3631 				break;
3632 			data[i] = word;
3633 		}
3634 	}
3635 
3636 	nvm->ops.release(hw);
3637 
3638 out:
3639 	if (ret_val)
3640 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3641 
3642 	return ret_val;
3643 }
3644 
3645 /**
3646  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3647  *  @hw: pointer to the HW structure
3648  *
3649  *  This function does initial flash setup so that a new read/write/erase cycle
3650  *  can be started.
3651  **/
3652 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3653 {
3654 	union ich8_hws_flash_status hsfsts;
3655 	s32 ret_val = -E1000_ERR_NVM;
3656 
3657 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3658 
3659 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3660 
3661 	/* Check if the flash descriptor is valid */
3662 	if (!hsfsts.hsf_status.fldesvalid) {
3663 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3664 		return -E1000_ERR_NVM;
3665 	}
3666 
3667 	/* Clear FCERR and DAEL in hw status by writing 1 */
3668 	hsfsts.hsf_status.flcerr = 1;
3669 	hsfsts.hsf_status.dael = 1;
3670 	if (hw->mac.type >= e1000_pch_spt)
3671 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3672 				      hsfsts.regval & 0xFFFF);
3673 	else
3674 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3675 
3676 	/* Either we should have a hardware SPI cycle in progress
3677 	 * bit to check against, in order to start a new cycle or
3678 	 * FDONE bit should be changed in the hardware so that it
3679 	 * is 1 after hardware reset, which can then be used as an
3680 	 * indication whether a cycle is in progress or has been
3681 	 * completed.
3682 	 */
3683 
3684 	if (!hsfsts.hsf_status.flcinprog) {
3685 		/* There is no cycle running at present,
3686 		 * so we can start a cycle.
3687 		 * Begin by setting Flash Cycle Done.
3688 		 */
3689 		hsfsts.hsf_status.flcdone = 1;
3690 		if (hw->mac.type >= e1000_pch_spt)
3691 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3692 					      hsfsts.regval & 0xFFFF);
3693 		else
3694 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3695 						hsfsts.regval);
3696 		ret_val = E1000_SUCCESS;
3697 	} else {
3698 		s32 i;
3699 
3700 		/* Otherwise poll for sometime so the current
3701 		 * cycle has a chance to end before giving up.
3702 		 */
3703 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3704 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3705 							      ICH_FLASH_HSFSTS);
3706 			if (!hsfsts.hsf_status.flcinprog) {
3707 				ret_val = E1000_SUCCESS;
3708 				break;
3709 			}
3710 			usec_delay(1);
3711 		}
3712 		if (ret_val == E1000_SUCCESS) {
3713 			/* Successful in waiting for previous cycle to timeout,
3714 			 * now set the Flash Cycle Done.
3715 			 */
3716 			hsfsts.hsf_status.flcdone = 1;
3717 			if (hw->mac.type >= e1000_pch_spt)
3718 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3719 						      hsfsts.regval & 0xFFFF);
3720 			else
3721 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3722 							hsfsts.regval);
3723 		} else {
3724 			DEBUGOUT("Flash controller busy, cannot get access\n");
3725 		}
3726 	}
3727 
3728 	return ret_val;
3729 }
3730 
3731 /**
3732  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3733  *  @hw: pointer to the HW structure
3734  *  @timeout: maximum time to wait for completion
3735  *
3736  *  This function starts a flash cycle and waits for its completion.
3737  **/
3738 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3739 {
3740 	union ich8_hws_flash_ctrl hsflctl;
3741 	union ich8_hws_flash_status hsfsts;
3742 	u32 i = 0;
3743 
3744 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3745 
3746 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3747 	if (hw->mac.type >= e1000_pch_spt)
3748 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3749 	else
3750 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3751 	hsflctl.hsf_ctrl.flcgo = 1;
3752 
3753 	if (hw->mac.type >= e1000_pch_spt)
3754 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3755 				      hsflctl.regval << 16);
3756 	else
3757 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3758 
3759 	/* wait till FDONE bit is set to 1 */
3760 	do {
3761 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3762 		if (hsfsts.hsf_status.flcdone)
3763 			break;
3764 		usec_delay(1);
3765 	} while (i++ < timeout);
3766 
3767 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3768 		return E1000_SUCCESS;
3769 
3770 	return -E1000_ERR_NVM;
3771 }
3772 
3773 /**
3774  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3775  *  @hw: pointer to the HW structure
3776  *  @offset: offset to data location
3777  *  @data: pointer to the location for storing the data
3778  *
3779  *  Reads the flash dword at offset into data.  Offset is converted
3780  *  to bytes before read.
3781  **/
3782 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3783 					  u32 *data)
3784 {
3785 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3786 
3787 	if (!data)
3788 		return -E1000_ERR_NVM;
3789 
3790 	/* Must convert word offset into bytes. */
3791 	offset <<= 1;
3792 
3793 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3794 }
3795 
3796 /**
3797  *  e1000_read_flash_word_ich8lan - Read word from flash
3798  *  @hw: pointer to the HW structure
3799  *  @offset: offset to data location
3800  *  @data: pointer to the location for storing the data
3801  *
3802  *  Reads the flash word at offset into data.  Offset is converted
3803  *  to bytes before read.
3804  **/
3805 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3806 					 u16 *data)
3807 {
3808 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3809 
3810 	if (!data)
3811 		return -E1000_ERR_NVM;
3812 
3813 	/* Must convert offset into bytes. */
3814 	offset <<= 1;
3815 
3816 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3817 }
3818 
3819 /**
3820  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3821  *  @hw: pointer to the HW structure
3822  *  @offset: The offset of the byte to read.
3823  *  @data: Pointer to a byte to store the value read.
3824  *
3825  *  Reads a single byte from the NVM using the flash access registers.
3826  **/
3827 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3828 					 u8 *data)
3829 {
3830 	s32 ret_val;
3831 	u16 word = 0;
3832 
3833 	/* In SPT, only 32 bits access is supported,
3834 	 * so this function should not be called.
3835 	 */
3836 	if (hw->mac.type >= e1000_pch_spt)
3837 		return -E1000_ERR_NVM;
3838 	else
3839 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3840 
3841 	if (ret_val)
3842 		return ret_val;
3843 
3844 	*data = (u8)word;
3845 
3846 	return E1000_SUCCESS;
3847 }
3848 
3849 /**
3850  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3851  *  @hw: pointer to the HW structure
3852  *  @offset: The offset (in bytes) of the byte or word to read.
3853  *  @size: Size of data to read, 1=byte 2=word
3854  *  @data: Pointer to the word to store the value read.
3855  *
3856  *  Reads a byte or word from the NVM using the flash access registers.
3857  **/
3858 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3859 					 u8 size, u16 *data)
3860 {
3861 	union ich8_hws_flash_status hsfsts;
3862 	union ich8_hws_flash_ctrl hsflctl;
3863 	u32 flash_linear_addr;
3864 	u32 flash_data = 0;
3865 	s32 ret_val = -E1000_ERR_NVM;
3866 	u8 count = 0;
3867 
3868 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3869 
3870 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3871 		return -E1000_ERR_NVM;
3872 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3873 			     hw->nvm.flash_base_addr);
3874 
3875 	do {
3876 		usec_delay(1);
3877 		/* Steps */
3878 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3879 		if (ret_val != E1000_SUCCESS)
3880 			break;
3881 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3882 
3883 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3884 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3885 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3886 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3887 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3888 
3889 		ret_val = e1000_flash_cycle_ich8lan(hw,
3890 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3891 
3892 		/* Check if FCERR is set to 1, if set to 1, clear it
3893 		 * and try the whole sequence a few more times, else
3894 		 * read in (shift in) the Flash Data0, the order is
3895 		 * least significant byte first msb to lsb
3896 		 */
3897 		if (ret_val == E1000_SUCCESS) {
3898 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3899 			if (size == 1)
3900 				*data = (u8)(flash_data & 0x000000FF);
3901 			else if (size == 2)
3902 				*data = (u16)(flash_data & 0x0000FFFF);
3903 			break;
3904 		} else {
3905 			/* If we've gotten here, then things are probably
3906 			 * completely hosed, but if the error condition is
3907 			 * detected, it won't hurt to give it another try...
3908 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3909 			 */
3910 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3911 							      ICH_FLASH_HSFSTS);
3912 			if (hsfsts.hsf_status.flcerr) {
3913 				/* Repeat for some time before giving up. */
3914 				continue;
3915 			} else if (!hsfsts.hsf_status.flcdone) {
3916 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3917 				break;
3918 			}
3919 		}
3920 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3921 
3922 	return ret_val;
3923 }
3924 
3925 /**
3926  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3927  *  @hw: pointer to the HW structure
3928  *  @offset: The offset (in bytes) of the dword to read.
3929  *  @data: Pointer to the dword to store the value read.
3930  *
3931  *  Reads a byte or word from the NVM using the flash access registers.
3932  **/
3933 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3934 					   u32 *data)
3935 {
3936 	union ich8_hws_flash_status hsfsts;
3937 	union ich8_hws_flash_ctrl hsflctl;
3938 	u32 flash_linear_addr;
3939 	s32 ret_val = -E1000_ERR_NVM;
3940 	u8 count = 0;
3941 
3942 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3943 
3944 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3945 		    hw->mac.type < e1000_pch_spt)
3946 			return -E1000_ERR_NVM;
3947 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3948 			     hw->nvm.flash_base_addr);
3949 
3950 	do {
3951 		usec_delay(1);
3952 		/* Steps */
3953 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3954 		if (ret_val != E1000_SUCCESS)
3955 			break;
3956 		/* In SPT, This register is in Lan memory space, not flash.
3957 		 * Therefore, only 32 bit access is supported
3958 		 */
3959 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3960 
3961 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3962 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3963 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3964 		/* In SPT, This register is in Lan memory space, not flash.
3965 		 * Therefore, only 32 bit access is supported
3966 		 */
3967 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3968 				      (u32)hsflctl.regval << 16);
3969 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3970 
3971 		ret_val = e1000_flash_cycle_ich8lan(hw,
3972 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3973 
3974 		/* Check if FCERR is set to 1, if set to 1, clear it
3975 		 * and try the whole sequence a few more times, else
3976 		 * read in (shift in) the Flash Data0, the order is
3977 		 * least significant byte first msb to lsb
3978 		 */
3979 		if (ret_val == E1000_SUCCESS) {
3980 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3981 			break;
3982 		} else {
3983 			/* If we've gotten here, then things are probably
3984 			 * completely hosed, but if the error condition is
3985 			 * detected, it won't hurt to give it another try...
3986 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3987 			 */
3988 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3989 							      ICH_FLASH_HSFSTS);
3990 			if (hsfsts.hsf_status.flcerr) {
3991 				/* Repeat for some time before giving up. */
3992 				continue;
3993 			} else if (!hsfsts.hsf_status.flcdone) {
3994 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3995 				break;
3996 			}
3997 		}
3998 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3999 
4000 	return ret_val;
4001 }
4002 
4003 /**
4004  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4005  *  @hw: pointer to the HW structure
4006  *  @offset: The offset (in bytes) of the word(s) to write.
4007  *  @words: Size of data to write in words
4008  *  @data: Pointer to the word(s) to write at offset.
4009  *
4010  *  Writes a byte or word to the NVM using the flash access registers.
4011  **/
4012 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4013 				   u16 *data)
4014 {
4015 	struct e1000_nvm_info *nvm = &hw->nvm;
4016 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4017 	u16 i;
4018 
4019 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4020 
4021 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4022 	    (words == 0)) {
4023 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4024 		return -E1000_ERR_NVM;
4025 	}
4026 
4027 	nvm->ops.acquire(hw);
4028 
4029 	for (i = 0; i < words; i++) {
4030 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4031 		dev_spec->shadow_ram[offset+i].value = data[i];
4032 	}
4033 
4034 	nvm->ops.release(hw);
4035 
4036 	return E1000_SUCCESS;
4037 }
4038 
4039 /**
4040  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4041  *  @hw: pointer to the HW structure
4042  *
4043  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4044  *  which writes the checksum to the shadow ram.  The changes in the shadow
4045  *  ram are then committed to the EEPROM by processing each bank at a time
4046  *  checking for the modified bit and writing only the pending changes.
4047  *  After a successful commit, the shadow ram is cleared and is ready for
4048  *  future writes.
4049  **/
4050 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4051 {
4052 	struct e1000_nvm_info *nvm = &hw->nvm;
4053 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4054 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4055 	s32 ret_val;
4056 	u32 dword = 0;
4057 
4058 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4059 
4060 	ret_val = e1000_update_nvm_checksum_generic(hw);
4061 	if (ret_val)
4062 		goto out;
4063 
4064 	if (nvm->type != e1000_nvm_flash_sw)
4065 		goto out;
4066 
4067 	nvm->ops.acquire(hw);
4068 
4069 	/* We're writing to the opposite bank so if we're on bank 1,
4070 	 * write to bank 0 etc.  We also need to erase the segment that
4071 	 * is going to be written
4072 	 */
4073 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4074 	if (ret_val != E1000_SUCCESS) {
4075 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4076 		bank = 0;
4077 	}
4078 
4079 	if (bank == 0) {
4080 		new_bank_offset = nvm->flash_bank_size;
4081 		old_bank_offset = 0;
4082 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4083 		if (ret_val)
4084 			goto release;
4085 	} else {
4086 		old_bank_offset = nvm->flash_bank_size;
4087 		new_bank_offset = 0;
4088 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4089 		if (ret_val)
4090 			goto release;
4091 	}
4092 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4093 		/* Determine whether to write the value stored
4094 		 * in the other NVM bank or a modified value stored
4095 		 * in the shadow RAM
4096 		 */
4097 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4098 							 i + old_bank_offset,
4099 							 &dword);
4100 
4101 		if (dev_spec->shadow_ram[i].modified) {
4102 			dword &= 0xffff0000;
4103 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4104 		}
4105 		if (dev_spec->shadow_ram[i + 1].modified) {
4106 			dword &= 0x0000ffff;
4107 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4108 				  << 16);
4109 		}
4110 		if (ret_val)
4111 			break;
4112 
4113 		/* If the word is 0x13, then make sure the signature bits
4114 		 * (15:14) are 11b until the commit has completed.
4115 		 * This will allow us to write 10b which indicates the
4116 		 * signature is valid.  We want to do this after the write
4117 		 * has completed so that we don't mark the segment valid
4118 		 * while the write is still in progress
4119 		 */
4120 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4121 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4122 
4123 		/* Convert offset to bytes. */
4124 		act_offset = (i + new_bank_offset) << 1;
4125 
4126 		usec_delay(100);
4127 
4128 		/* Write the data to the new bank. Offset in words*/
4129 		act_offset = i + new_bank_offset;
4130 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4131 								dword);
4132 		if (ret_val)
4133 			break;
4134 	 }
4135 
4136 	/* Don't bother writing the segment valid bits if sector
4137 	 * programming failed.
4138 	 */
4139 	if (ret_val) {
4140 		DEBUGOUT("Flash commit failed.\n");
4141 		goto release;
4142 	}
4143 
4144 	/* Finally validate the new segment by setting bit 15:14
4145 	 * to 10b in word 0x13 , this can be done without an
4146 	 * erase as well since these bits are 11 to start with
4147 	 * and we need to change bit 14 to 0b
4148 	 */
4149 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4150 
4151 	/*offset in words but we read dword*/
4152 	--act_offset;
4153 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4154 
4155 	if (ret_val)
4156 		goto release;
4157 
4158 	dword &= 0xBFFFFFFF;
4159 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4160 
4161 	if (ret_val)
4162 		goto release;
4163 
4164 	/* And invalidate the previously valid segment by setting
4165 	 * its signature word (0x13) high_byte to 0b. This can be
4166 	 * done without an erase because flash erase sets all bits
4167 	 * to 1's. We can write 1's to 0's without an erase
4168 	 */
4169 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4170 
4171 	/* offset in words but we read dword*/
4172 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4173 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4174 
4175 	if (ret_val)
4176 		goto release;
4177 
4178 	dword &= 0x00FFFFFF;
4179 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4180 
4181 	if (ret_val)
4182 		goto release;
4183 
4184 	/* Great!  Everything worked, we can now clear the cached entries. */
4185 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4186 		dev_spec->shadow_ram[i].modified = FALSE;
4187 		dev_spec->shadow_ram[i].value = 0xFFFF;
4188 	}
4189 
4190 release:
4191 	nvm->ops.release(hw);
4192 
4193 	/* Reload the EEPROM, or else modifications will not appear
4194 	 * until after the next adapter reset.
4195 	 */
4196 	if (!ret_val) {
4197 		nvm->ops.reload(hw);
4198 		msec_delay(10);
4199 	}
4200 
4201 out:
4202 	if (ret_val)
4203 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4204 
4205 	return ret_val;
4206 }
4207 
4208 /**
4209  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4210  *  @hw: pointer to the HW structure
4211  *
4212  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4213  *  which writes the checksum to the shadow ram.  The changes in the shadow
4214  *  ram are then committed to the EEPROM by processing each bank at a time
4215  *  checking for the modified bit and writing only the pending changes.
4216  *  After a successful commit, the shadow ram is cleared and is ready for
4217  *  future writes.
4218  **/
4219 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4220 {
4221 	struct e1000_nvm_info *nvm = &hw->nvm;
4222 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4223 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4224 	s32 ret_val;
4225 	u16 data = 0;
4226 
4227 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4228 
4229 	ret_val = e1000_update_nvm_checksum_generic(hw);
4230 	if (ret_val)
4231 		goto out;
4232 
4233 	if (nvm->type != e1000_nvm_flash_sw)
4234 		goto out;
4235 
4236 	nvm->ops.acquire(hw);
4237 
4238 	/* We're writing to the opposite bank so if we're on bank 1,
4239 	 * write to bank 0 etc.  We also need to erase the segment that
4240 	 * is going to be written
4241 	 */
4242 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4243 	if (ret_val != E1000_SUCCESS) {
4244 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4245 		bank = 0;
4246 	}
4247 
4248 	if (bank == 0) {
4249 		new_bank_offset = nvm->flash_bank_size;
4250 		old_bank_offset = 0;
4251 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4252 		if (ret_val)
4253 			goto release;
4254 	} else {
4255 		old_bank_offset = nvm->flash_bank_size;
4256 		new_bank_offset = 0;
4257 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4258 		if (ret_val)
4259 			goto release;
4260 	}
4261 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4262 		if (dev_spec->shadow_ram[i].modified) {
4263 			data = dev_spec->shadow_ram[i].value;
4264 		} else {
4265 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4266 								old_bank_offset,
4267 								&data);
4268 			if (ret_val)
4269 				break;
4270 		}
4271 		/* If the word is 0x13, then make sure the signature bits
4272 		 * (15:14) are 11b until the commit has completed.
4273 		 * This will allow us to write 10b which indicates the
4274 		 * signature is valid.  We want to do this after the write
4275 		 * has completed so that we don't mark the segment valid
4276 		 * while the write is still in progress
4277 		 */
4278 		if (i == E1000_ICH_NVM_SIG_WORD)
4279 			data |= E1000_ICH_NVM_SIG_MASK;
4280 
4281 		/* Convert offset to bytes. */
4282 		act_offset = (i + new_bank_offset) << 1;
4283 
4284 		usec_delay(100);
4285 
4286 		/* Write the bytes to the new bank. */
4287 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4288 							       act_offset,
4289 							       (u8)data);
4290 		if (ret_val)
4291 			break;
4292 
4293 		usec_delay(100);
4294 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4295 							  act_offset + 1,
4296 							  (u8)(data >> 8));
4297 		if (ret_val)
4298 			break;
4299 	 }
4300 
4301 	/* Don't bother writing the segment valid bits if sector
4302 	 * programming failed.
4303 	 */
4304 	if (ret_val) {
4305 		DEBUGOUT("Flash commit failed.\n");
4306 		goto release;
4307 	}
4308 
4309 	/* Finally validate the new segment by setting bit 15:14
4310 	 * to 10b in word 0x13 , this can be done without an
4311 	 * erase as well since these bits are 11 to start with
4312 	 * and we need to change bit 14 to 0b
4313 	 */
4314 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4315 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4316 	if (ret_val)
4317 		goto release;
4318 
4319 	data &= 0xBFFF;
4320 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4321 						       (u8)(data >> 8));
4322 	if (ret_val)
4323 		goto release;
4324 
4325 	/* And invalidate the previously valid segment by setting
4326 	 * its signature word (0x13) high_byte to 0b. This can be
4327 	 * done without an erase because flash erase sets all bits
4328 	 * to 1's. We can write 1's to 0's without an erase
4329 	 */
4330 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4331 
4332 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4333 
4334 	if (ret_val)
4335 		goto release;
4336 
4337 	/* Great!  Everything worked, we can now clear the cached entries. */
4338 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4339 		dev_spec->shadow_ram[i].modified = FALSE;
4340 		dev_spec->shadow_ram[i].value = 0xFFFF;
4341 	}
4342 
4343 release:
4344 	nvm->ops.release(hw);
4345 
4346 	/* Reload the EEPROM, or else modifications will not appear
4347 	 * until after the next adapter reset.
4348 	 */
4349 	if (!ret_val) {
4350 		nvm->ops.reload(hw);
4351 		msec_delay(10);
4352 	}
4353 
4354 out:
4355 	if (ret_val)
4356 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4357 
4358 	return ret_val;
4359 }
4360 
4361 /**
4362  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4363  *  @hw: pointer to the HW structure
4364  *
4365  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4366  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4367  *  calculated, in which case we need to calculate the checksum and set bit 6.
4368  **/
4369 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4370 {
4371 	s32 ret_val;
4372 	u16 data;
4373 	u16 word;
4374 	u16 valid_csum_mask;
4375 
4376 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4377 
4378 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4379 	 * the checksum needs to be fixed.  This bit is an indication that
4380 	 * the NVM was prepared by OEM software and did not calculate
4381 	 * the checksum...a likely scenario.
4382 	 */
4383 	switch (hw->mac.type) {
4384 	case e1000_pch_lpt:
4385 	case e1000_pch_spt:
4386 	case e1000_pch_cnp:
4387 		word = NVM_COMPAT;
4388 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4389 		break;
4390 	default:
4391 		word = NVM_FUTURE_INIT_WORD1;
4392 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4393 		break;
4394 	}
4395 
4396 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4397 	if (ret_val)
4398 		return ret_val;
4399 
4400 	if (!(data & valid_csum_mask)) {
4401 		data |= valid_csum_mask;
4402 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4403 		if (ret_val)
4404 			return ret_val;
4405 		ret_val = hw->nvm.ops.update(hw);
4406 		if (ret_val)
4407 			return ret_val;
4408 	}
4409 
4410 	return e1000_validate_nvm_checksum_generic(hw);
4411 }
4412 
4413 /**
4414  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4415  *  @hw: pointer to the HW structure
4416  *  @offset: The offset (in bytes) of the byte/word to read.
4417  *  @size: Size of data to read, 1=byte 2=word
4418  *  @data: The byte(s) to write to the NVM.
4419  *
4420  *  Writes one/two bytes to the NVM using the flash access registers.
4421  **/
4422 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4423 					  u8 size, u16 data)
4424 {
4425 	union ich8_hws_flash_status hsfsts;
4426 	union ich8_hws_flash_ctrl hsflctl;
4427 	u32 flash_linear_addr;
4428 	u32 flash_data = 0;
4429 	s32 ret_val;
4430 	u8 count = 0;
4431 
4432 	DEBUGFUNC("e1000_write_ich8_data");
4433 
4434 	if (hw->mac.type >= e1000_pch_spt) {
4435 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4436 			return -E1000_ERR_NVM;
4437 	} else {
4438 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4439 			return -E1000_ERR_NVM;
4440 	}
4441 
4442 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4443 			     hw->nvm.flash_base_addr);
4444 
4445 	do {
4446 		usec_delay(1);
4447 		/* Steps */
4448 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4449 		if (ret_val != E1000_SUCCESS)
4450 			break;
4451 		/* In SPT, This register is in Lan memory space, not
4452 		 * flash.  Therefore, only 32 bit access is supported
4453 		 */
4454 		if (hw->mac.type >= e1000_pch_spt)
4455 			hsflctl.regval =
4456 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4457 		else
4458 			hsflctl.regval =
4459 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4460 
4461 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4462 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4463 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4464 		/* In SPT, This register is in Lan memory space,
4465 		 * not flash.  Therefore, only 32 bit access is
4466 		 * supported
4467 		 */
4468 		if (hw->mac.type >= e1000_pch_spt)
4469 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4470 					      hsflctl.regval << 16);
4471 		else
4472 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4473 						hsflctl.regval);
4474 
4475 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4476 
4477 		if (size == 1)
4478 			flash_data = (u32)data & 0x00FF;
4479 		else
4480 			flash_data = (u32)data;
4481 
4482 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4483 
4484 		/* check if FCERR is set to 1 , if set to 1, clear it
4485 		 * and try the whole sequence a few more times else done
4486 		 */
4487 		ret_val =
4488 		    e1000_flash_cycle_ich8lan(hw,
4489 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4490 		if (ret_val == E1000_SUCCESS)
4491 			break;
4492 
4493 		/* If we're here, then things are most likely
4494 		 * completely hosed, but if the error condition
4495 		 * is detected, it won't hurt to give it another
4496 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4497 		 */
4498 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4499 		if (hsfsts.hsf_status.flcerr)
4500 			/* Repeat for some time before giving up. */
4501 			continue;
4502 		if (!hsfsts.hsf_status.flcdone) {
4503 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4504 			break;
4505 		}
4506 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4507 
4508 	return ret_val;
4509 }
4510 
4511 /**
4512 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4513 *  @hw: pointer to the HW structure
4514 *  @offset: The offset (in bytes) of the dwords to read.
4515 *  @data: The 4 bytes to write to the NVM.
4516 *
4517 *  Writes one/two/four bytes to the NVM using the flash access registers.
4518 **/
4519 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4520 					    u32 data)
4521 {
4522 	union ich8_hws_flash_status hsfsts;
4523 	union ich8_hws_flash_ctrl hsflctl;
4524 	u32 flash_linear_addr;
4525 	s32 ret_val;
4526 	u8 count = 0;
4527 
4528 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4529 
4530 	if (hw->mac.type >= e1000_pch_spt) {
4531 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4532 			return -E1000_ERR_NVM;
4533 	}
4534 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4535 			     hw->nvm.flash_base_addr);
4536 	do {
4537 		usec_delay(1);
4538 		/* Steps */
4539 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4540 		if (ret_val != E1000_SUCCESS)
4541 			break;
4542 
4543 		/* In SPT, This register is in Lan memory space, not
4544 		 * flash.  Therefore, only 32 bit access is supported
4545 		 */
4546 		if (hw->mac.type >= e1000_pch_spt)
4547 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4548 							      ICH_FLASH_HSFSTS)
4549 					 >> 16;
4550 		else
4551 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4552 							      ICH_FLASH_HSFCTL);
4553 
4554 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4555 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4556 
4557 		/* In SPT, This register is in Lan memory space,
4558 		 * not flash.  Therefore, only 32 bit access is
4559 		 * supported
4560 		 */
4561 		if (hw->mac.type >= e1000_pch_spt)
4562 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4563 					      hsflctl.regval << 16);
4564 		else
4565 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4566 						hsflctl.regval);
4567 
4568 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4569 
4570 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4571 
4572 		/* check if FCERR is set to 1 , if set to 1, clear it
4573 		 * and try the whole sequence a few more times else done
4574 		 */
4575 		ret_val = e1000_flash_cycle_ich8lan(hw,
4576 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4577 
4578 		if (ret_val == E1000_SUCCESS)
4579 			break;
4580 
4581 		/* If we're here, then things are most likely
4582 		 * completely hosed, but if the error condition
4583 		 * is detected, it won't hurt to give it another
4584 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4585 		 */
4586 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4587 
4588 		if (hsfsts.hsf_status.flcerr)
4589 			/* Repeat for some time before giving up. */
4590 			continue;
4591 		if (!hsfsts.hsf_status.flcdone) {
4592 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4593 			break;
4594 		}
4595 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4596 
4597 	return ret_val;
4598 }
4599 
4600 /**
4601  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4602  *  @hw: pointer to the HW structure
4603  *  @offset: The index of the byte to read.
4604  *  @data: The byte to write to the NVM.
4605  *
4606  *  Writes a single byte to the NVM using the flash access registers.
4607  **/
4608 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4609 					  u8 data)
4610 {
4611 	u16 word = (u16)data;
4612 
4613 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4614 
4615 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4616 }
4617 
4618 /**
4619 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4620 *  @hw: pointer to the HW structure
4621 *  @offset: The offset of the word to write.
4622 *  @dword: The dword to write to the NVM.
4623 *
4624 *  Writes a single dword to the NVM using the flash access registers.
4625 *  Goes through a retry algorithm before giving up.
4626 **/
4627 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4628 						 u32 offset, u32 dword)
4629 {
4630 	s32 ret_val;
4631 	u16 program_retries;
4632 
4633 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4634 
4635 	/* Must convert word offset into bytes. */
4636 	offset <<= 1;
4637 
4638 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4639 
4640 	if (!ret_val)
4641 		return ret_val;
4642 	for (program_retries = 0; program_retries < 100; program_retries++) {
4643 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4644 		usec_delay(100);
4645 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4646 		if (ret_val == E1000_SUCCESS)
4647 			break;
4648 	}
4649 	if (program_retries == 100)
4650 		return -E1000_ERR_NVM;
4651 
4652 	return E1000_SUCCESS;
4653 }
4654 
4655 /**
4656  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4657  *  @hw: pointer to the HW structure
4658  *  @offset: The offset of the byte to write.
4659  *  @byte: The byte to write to the NVM.
4660  *
4661  *  Writes a single byte to the NVM using the flash access registers.
4662  *  Goes through a retry algorithm before giving up.
4663  **/
4664 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4665 						u32 offset, u8 byte)
4666 {
4667 	s32 ret_val;
4668 	u16 program_retries;
4669 
4670 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4671 
4672 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4673 	if (!ret_val)
4674 		return ret_val;
4675 
4676 	for (program_retries = 0; program_retries < 100; program_retries++) {
4677 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4678 		usec_delay(100);
4679 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4680 		if (ret_val == E1000_SUCCESS)
4681 			break;
4682 	}
4683 	if (program_retries == 100)
4684 		return -E1000_ERR_NVM;
4685 
4686 	return E1000_SUCCESS;
4687 }
4688 
4689 /**
4690  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4691  *  @hw: pointer to the HW structure
4692  *  @bank: 0 for first bank, 1 for second bank, etc.
4693  *
4694  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4695  *  bank N is 4096 * N + flash_reg_addr.
4696  **/
4697 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4698 {
4699 	struct e1000_nvm_info *nvm = &hw->nvm;
4700 	union ich8_hws_flash_status hsfsts;
4701 	union ich8_hws_flash_ctrl hsflctl;
4702 	u32 flash_linear_addr;
4703 	/* bank size is in 16bit words - adjust to bytes */
4704 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4705 	s32 ret_val;
4706 	s32 count = 0;
4707 	s32 j, iteration, sector_size;
4708 
4709 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4710 
4711 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4712 
4713 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4714 	 * register
4715 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4716 	 *     consecutive sectors.  The start index for the nth Hw sector
4717 	 *     can be calculated as = bank * 4096 + n * 256
4718 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4719 	 *     The start index for the nth Hw sector can be calculated
4720 	 *     as = bank * 4096
4721 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4722 	 *     (ich9 only, otherwise error condition)
4723 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4724 	 */
4725 	switch (hsfsts.hsf_status.berasesz) {
4726 	case 0:
4727 		/* Hw sector size 256 */
4728 		sector_size = ICH_FLASH_SEG_SIZE_256;
4729 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4730 		break;
4731 	case 1:
4732 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4733 		iteration = 1;
4734 		break;
4735 	case 2:
4736 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4737 		iteration = 1;
4738 		break;
4739 	case 3:
4740 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4741 		iteration = 1;
4742 		break;
4743 	default:
4744 		return -E1000_ERR_NVM;
4745 	}
4746 
4747 	/* Start with the base address, then add the sector offset. */
4748 	flash_linear_addr = hw->nvm.flash_base_addr;
4749 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4750 
4751 	for (j = 0; j < iteration; j++) {
4752 		do {
4753 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4754 
4755 			/* Steps */
4756 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4757 			if (ret_val)
4758 				return ret_val;
4759 
4760 			/* Write a value 11 (block Erase) in Flash
4761 			 * Cycle field in hw flash control
4762 			 */
4763 			if (hw->mac.type >= e1000_pch_spt)
4764 				hsflctl.regval =
4765 				    E1000_READ_FLASH_REG(hw,
4766 							 ICH_FLASH_HSFSTS)>>16;
4767 			else
4768 				hsflctl.regval =
4769 				    E1000_READ_FLASH_REG16(hw,
4770 							   ICH_FLASH_HSFCTL);
4771 
4772 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4773 			if (hw->mac.type >= e1000_pch_spt)
4774 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4775 						      hsflctl.regval << 16);
4776 			else
4777 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4778 							hsflctl.regval);
4779 
4780 			/* Write the last 24 bits of an index within the
4781 			 * block into Flash Linear address field in Flash
4782 			 * Address.
4783 			 */
4784 			flash_linear_addr += (j * sector_size);
4785 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4786 					      flash_linear_addr);
4787 
4788 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4789 			if (ret_val == E1000_SUCCESS)
4790 				break;
4791 
4792 			/* Check if FCERR is set to 1.  If 1,
4793 			 * clear it and try the whole sequence
4794 			 * a few more times else Done
4795 			 */
4796 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4797 						      ICH_FLASH_HSFSTS);
4798 			if (hsfsts.hsf_status.flcerr)
4799 				/* repeat for some time before giving up */
4800 				continue;
4801 			else if (!hsfsts.hsf_status.flcdone)
4802 				return ret_val;
4803 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4804 	}
4805 
4806 	return E1000_SUCCESS;
4807 }
4808 
4809 /**
4810  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4811  *  @hw: pointer to the HW structure
4812  *  @data: Pointer to the LED settings
4813  *
4814  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4815  *  settings is all 0's or F's, set the LED default to a valid LED default
4816  *  setting.
4817  **/
4818 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4819 {
4820 	s32 ret_val;
4821 
4822 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4823 
4824 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4825 	if (ret_val) {
4826 		DEBUGOUT("NVM Read Error\n");
4827 		return ret_val;
4828 	}
4829 
4830 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4831 		*data = ID_LED_DEFAULT_ICH8LAN;
4832 
4833 	return E1000_SUCCESS;
4834 }
4835 
4836 /**
4837  *  e1000_id_led_init_pchlan - store LED configurations
4838  *  @hw: pointer to the HW structure
4839  *
4840  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4841  *  the PHY LED configuration register.
4842  *
4843  *  PCH also does not have an "always on" or "always off" mode which
4844  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4845  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4846  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4847  *  link based on logic in e1000_led_[on|off]_pchlan().
4848  **/
4849 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4850 {
4851 	struct e1000_mac_info *mac = &hw->mac;
4852 	s32 ret_val;
4853 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4854 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4855 	u16 data, i, temp, shift;
4856 
4857 	DEBUGFUNC("e1000_id_led_init_pchlan");
4858 
4859 	/* Get default ID LED modes */
4860 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4861 	if (ret_val)
4862 		return ret_val;
4863 
4864 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4865 	mac->ledctl_mode1 = mac->ledctl_default;
4866 	mac->ledctl_mode2 = mac->ledctl_default;
4867 
4868 	for (i = 0; i < 4; i++) {
4869 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4870 		shift = (i * 5);
4871 		switch (temp) {
4872 		case ID_LED_ON1_DEF2:
4873 		case ID_LED_ON1_ON2:
4874 		case ID_LED_ON1_OFF2:
4875 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4876 			mac->ledctl_mode1 |= (ledctl_on << shift);
4877 			break;
4878 		case ID_LED_OFF1_DEF2:
4879 		case ID_LED_OFF1_ON2:
4880 		case ID_LED_OFF1_OFF2:
4881 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4882 			mac->ledctl_mode1 |= (ledctl_off << shift);
4883 			break;
4884 		default:
4885 			/* Do nothing */
4886 			break;
4887 		}
4888 		switch (temp) {
4889 		case ID_LED_DEF1_ON2:
4890 		case ID_LED_ON1_ON2:
4891 		case ID_LED_OFF1_ON2:
4892 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4893 			mac->ledctl_mode2 |= (ledctl_on << shift);
4894 			break;
4895 		case ID_LED_DEF1_OFF2:
4896 		case ID_LED_ON1_OFF2:
4897 		case ID_LED_OFF1_OFF2:
4898 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4899 			mac->ledctl_mode2 |= (ledctl_off << shift);
4900 			break;
4901 		default:
4902 			/* Do nothing */
4903 			break;
4904 		}
4905 	}
4906 
4907 	return E1000_SUCCESS;
4908 }
4909 
4910 /**
4911  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4912  *  @hw: pointer to the HW structure
4913  *
4914  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4915  *  register, so the bus width is hard coded.
4916  **/
4917 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4918 {
4919 	struct e1000_bus_info *bus = &hw->bus;
4920 	s32 ret_val;
4921 
4922 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4923 
4924 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4925 
4926 	/* ICH devices are "PCI Express"-ish.  They have
4927 	 * a configuration space, but do not contain
4928 	 * PCI Express Capability registers, so bus width
4929 	 * must be hardcoded.
4930 	 */
4931 	if (bus->width == e1000_bus_width_unknown)
4932 		bus->width = e1000_bus_width_pcie_x1;
4933 
4934 	return ret_val;
4935 }
4936 
4937 /**
4938  *  e1000_reset_hw_ich8lan - Reset the hardware
4939  *  @hw: pointer to the HW structure
4940  *
4941  *  Does a full reset of the hardware which includes a reset of the PHY and
4942  *  MAC.
4943  **/
4944 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4945 {
4946 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4947 	u16 kum_cfg;
4948 	u32 ctrl, reg;
4949 	s32 ret_val;
4950 
4951 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4952 
4953 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4954 	 * on the last TLP read/write transaction when MAC is reset.
4955 	 */
4956 	ret_val = e1000_disable_pcie_master_generic(hw);
4957 	if (ret_val)
4958 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4959 
4960 	DEBUGOUT("Masking off all interrupts\n");
4961 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4962 
4963 	/* Disable the Transmit and Receive units.  Then delay to allow
4964 	 * any pending transactions to complete before we hit the MAC
4965 	 * with the global reset.
4966 	 */
4967 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4968 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4969 	E1000_WRITE_FLUSH(hw);
4970 
4971 	msec_delay(10);
4972 
4973 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4974 	if (hw->mac.type == e1000_ich8lan) {
4975 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4976 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4977 		/* Set Packet Buffer Size to 16k. */
4978 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4979 	}
4980 
4981 	if (hw->mac.type == e1000_pchlan) {
4982 		/* Save the NVM K1 bit setting*/
4983 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4984 		if (ret_val)
4985 			return ret_val;
4986 
4987 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4988 			dev_spec->nvm_k1_enabled = TRUE;
4989 		else
4990 			dev_spec->nvm_k1_enabled = FALSE;
4991 	}
4992 
4993 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4994 
4995 	if (!hw->phy.ops.check_reset_block(hw)) {
4996 		/* Full-chip reset requires MAC and PHY reset at the same
4997 		 * time to make sure the interface between MAC and the
4998 		 * external PHY is reset.
4999 		 */
5000 		ctrl |= E1000_CTRL_PHY_RST;
5001 
5002 		/* Gate automatic PHY configuration by hardware on
5003 		 * non-managed 82579
5004 		 */
5005 		if ((hw->mac.type == e1000_pch2lan) &&
5006 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5007 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5008 	}
5009 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5010 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5011 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5012 	/* cannot issue a flush here because it hangs the hardware */
5013 	msec_delay(20);
5014 
5015 	/* Set Phy Config Counter to 50msec */
5016 	if (hw->mac.type == e1000_pch2lan) {
5017 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5018 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5019 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5020 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5021 	}
5022 
5023 
5024 	if (ctrl & E1000_CTRL_PHY_RST) {
5025 		ret_val = hw->phy.ops.get_cfg_done(hw);
5026 		if (ret_val)
5027 			return ret_val;
5028 
5029 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5030 		if (ret_val)
5031 			return ret_val;
5032 	}
5033 
5034 	/* For PCH, this write will make sure that any noise
5035 	 * will be detected as a CRC error and be dropped rather than show up
5036 	 * as a bad packet to the DMA engine.
5037 	 */
5038 	if (hw->mac.type == e1000_pchlan)
5039 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5040 
5041 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5042 	E1000_READ_REG(hw, E1000_ICR);
5043 
5044 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5045 	reg |= E1000_KABGTXD_BGSQLBIAS;
5046 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5047 
5048 	return E1000_SUCCESS;
5049 }
5050 
5051 /**
5052  *  e1000_init_hw_ich8lan - Initialize the hardware
5053  *  @hw: pointer to the HW structure
5054  *
5055  *  Prepares the hardware for transmit and receive by doing the following:
5056  *   - initialize hardware bits
5057  *   - initialize LED identification
5058  *   - setup receive address registers
5059  *   - setup flow control
5060  *   - setup transmit descriptors
5061  *   - clear statistics
5062  **/
5063 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5064 {
5065 	struct e1000_mac_info *mac = &hw->mac;
5066 	u32 ctrl_ext, txdctl, snoop;
5067 	s32 ret_val;
5068 	u16 i;
5069 
5070 	DEBUGFUNC("e1000_init_hw_ich8lan");
5071 
5072 	e1000_initialize_hw_bits_ich8lan(hw);
5073 
5074 	/* Initialize identification LED */
5075 	ret_val = mac->ops.id_led_init(hw);
5076 	/* An error is not fatal and we should not stop init due to this */
5077 	if (ret_val)
5078 		DEBUGOUT("Error initializing identification LED\n");
5079 
5080 	/* Setup the receive address. */
5081 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5082 
5083 	/* Zero out the Multicast HASH table */
5084 	DEBUGOUT("Zeroing the MTA\n");
5085 	for (i = 0; i < mac->mta_reg_count; i++)
5086 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5087 
5088 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5089 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5090 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5091 	 */
5092 	if (hw->phy.type == e1000_phy_82578) {
5093 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5094 		i &= ~BM_WUC_HOST_WU_BIT;
5095 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5096 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5097 		if (ret_val)
5098 			return ret_val;
5099 	}
5100 
5101 	/* Setup link and flow control */
5102 	ret_val = mac->ops.setup_link(hw);
5103 
5104 	/* Set the transmit descriptor write-back policy for both queues */
5105 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5106 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5107 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5108 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5109 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5110 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5111 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5112 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5113 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5114 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5115 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5116 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5117 
5118 	/* ICH8 has opposite polarity of no_snoop bits.
5119 	 * By default, we should use snoop behavior.
5120 	 */
5121 	if (mac->type == e1000_ich8lan)
5122 		snoop = PCIE_ICH8_SNOOP_ALL;
5123 	else
5124 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5125 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5126 
5127 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5128 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5129 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5130 
5131 	/* Clear all of the statistics registers (clear on read).  It is
5132 	 * important that we do this after we have tried to establish link
5133 	 * because the symbol error count will increment wildly if there
5134 	 * is no link.
5135 	 */
5136 	e1000_clear_hw_cntrs_ich8lan(hw);
5137 
5138 	return ret_val;
5139 }
5140 
5141 /**
5142  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5143  *  @hw: pointer to the HW structure
5144  *
5145  *  Sets/Clears required hardware bits necessary for correctly setting up the
5146  *  hardware for transmit and receive.
5147  **/
5148 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5149 {
5150 	u32 reg;
5151 
5152 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5153 
5154 	/* Extended Device Control */
5155 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5156 	reg |= (1 << 22);
5157 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5158 	if (hw->mac.type >= e1000_pchlan)
5159 		reg |= E1000_CTRL_EXT_PHYPDEN;
5160 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5161 
5162 	/* Transmit Descriptor Control 0 */
5163 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5164 	reg |= (1 << 22);
5165 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5166 
5167 	/* Transmit Descriptor Control 1 */
5168 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5169 	reg |= (1 << 22);
5170 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5171 
5172 	/* Transmit Arbitration Control 0 */
5173 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5174 	if (hw->mac.type == e1000_ich8lan)
5175 		reg |= (1 << 28) | (1 << 29);
5176 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5177 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5178 
5179 	/* Transmit Arbitration Control 1 */
5180 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5181 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5182 		reg &= ~(1 << 28);
5183 	else
5184 		reg |= (1 << 28);
5185 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5186 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5187 
5188 	/* Device Status */
5189 	if (hw->mac.type == e1000_ich8lan) {
5190 		reg = E1000_READ_REG(hw, E1000_STATUS);
5191 		reg &= ~(1U << 31);
5192 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5193 	}
5194 
5195 	/* work-around descriptor data corruption issue during nfs v2 udp
5196 	 * traffic, just disable the nfs filtering capability
5197 	 */
5198 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5199 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5200 
5201 	/* Disable IPv6 extension header parsing because some malformed
5202 	 * IPv6 headers can hang the Rx.
5203 	 */
5204 	if (hw->mac.type == e1000_ich8lan)
5205 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5206 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5207 
5208 	/* Enable ECC on Lynxpoint */
5209 	if (hw->mac.type >= e1000_pch_lpt) {
5210 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5211 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5212 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5213 
5214 		reg = E1000_READ_REG(hw, E1000_CTRL);
5215 		reg |= E1000_CTRL_MEHE;
5216 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5217 	}
5218 
5219 	return;
5220 }
5221 
5222 /**
5223  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5224  *  @hw: pointer to the HW structure
5225  *
5226  *  Determines which flow control settings to use, then configures flow
5227  *  control.  Calls the appropriate media-specific link configuration
5228  *  function.  Assuming the adapter has a valid link partner, a valid link
5229  *  should be established.  Assumes the hardware has previously been reset
5230  *  and the transmitter and receiver are not enabled.
5231  **/
5232 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5233 {
5234 	s32 ret_val;
5235 
5236 	DEBUGFUNC("e1000_setup_link_ich8lan");
5237 
5238 	if (hw->phy.ops.check_reset_block(hw))
5239 		return E1000_SUCCESS;
5240 
5241 	/* ICH parts do not have a word in the NVM to determine
5242 	 * the default flow control setting, so we explicitly
5243 	 * set it to full.
5244 	 */
5245 	if (hw->fc.requested_mode == e1000_fc_default)
5246 		hw->fc.requested_mode = e1000_fc_full;
5247 
5248 	/* Save off the requested flow control mode for use later.  Depending
5249 	 * on the link partner's capabilities, we may or may not use this mode.
5250 	 */
5251 	hw->fc.current_mode = hw->fc.requested_mode;
5252 
5253 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5254 		hw->fc.current_mode);
5255 
5256 	/* Continue to configure the copper link. */
5257 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5258 	if (ret_val)
5259 		return ret_val;
5260 
5261 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5262 	if ((hw->phy.type == e1000_phy_82578) ||
5263 	    (hw->phy.type == e1000_phy_82579) ||
5264 	    (hw->phy.type == e1000_phy_i217) ||
5265 	    (hw->phy.type == e1000_phy_82577)) {
5266 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5267 
5268 		ret_val = hw->phy.ops.write_reg(hw,
5269 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5270 					     hw->fc.pause_time);
5271 		if (ret_val)
5272 			return ret_val;
5273 	}
5274 
5275 	return e1000_set_fc_watermarks_generic(hw);
5276 }
5277 
5278 /**
5279  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5280  *  @hw: pointer to the HW structure
5281  *
5282  *  Configures the kumeran interface to the PHY to wait the appropriate time
5283  *  when polling the PHY, then call the generic setup_copper_link to finish
5284  *  configuring the copper link.
5285  **/
5286 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5287 {
5288 	u32 ctrl;
5289 	s32 ret_val;
5290 	u16 reg_data;
5291 
5292 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5293 
5294 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5295 	ctrl |= E1000_CTRL_SLU;
5296 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5297 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5298 
5299 	/* Set the mac to wait the maximum time between each iteration
5300 	 * and increase the max iterations when polling the phy;
5301 	 * this fixes erroneous timeouts at 10Mbps.
5302 	 */
5303 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5304 					       0xFFFF);
5305 	if (ret_val)
5306 		return ret_val;
5307 	ret_val = e1000_read_kmrn_reg_generic(hw,
5308 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5309 					      &reg_data);
5310 	if (ret_val)
5311 		return ret_val;
5312 	reg_data |= 0x3F;
5313 	ret_val = e1000_write_kmrn_reg_generic(hw,
5314 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5315 					       reg_data);
5316 	if (ret_val)
5317 		return ret_val;
5318 
5319 	switch (hw->phy.type) {
5320 	case e1000_phy_igp_3:
5321 		ret_val = e1000_copper_link_setup_igp(hw);
5322 		if (ret_val)
5323 			return ret_val;
5324 		break;
5325 	case e1000_phy_bm:
5326 	case e1000_phy_82578:
5327 		ret_val = e1000_copper_link_setup_m88(hw);
5328 		if (ret_val)
5329 			return ret_val;
5330 		break;
5331 	case e1000_phy_82577:
5332 	case e1000_phy_82579:
5333 		ret_val = e1000_copper_link_setup_82577(hw);
5334 		if (ret_val)
5335 			return ret_val;
5336 		break;
5337 	case e1000_phy_ife:
5338 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5339 					       &reg_data);
5340 		if (ret_val)
5341 			return ret_val;
5342 
5343 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5344 
5345 		switch (hw->phy.mdix) {
5346 		case 1:
5347 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5348 			break;
5349 		case 2:
5350 			reg_data |= IFE_PMC_FORCE_MDIX;
5351 			break;
5352 		case 0:
5353 		default:
5354 			reg_data |= IFE_PMC_AUTO_MDIX;
5355 			break;
5356 		}
5357 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5358 						reg_data);
5359 		if (ret_val)
5360 			return ret_val;
5361 		break;
5362 	default:
5363 		break;
5364 	}
5365 
5366 	return e1000_setup_copper_link_generic(hw);
5367 }
5368 
5369 /**
5370  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5371  *  @hw: pointer to the HW structure
5372  *
5373  *  Calls the PHY specific link setup function and then calls the
5374  *  generic setup_copper_link to finish configuring the link for
5375  *  Lynxpoint PCH devices
5376  **/
5377 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5378 {
5379 	u32 ctrl;
5380 	s32 ret_val;
5381 
5382 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5383 
5384 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5385 	ctrl |= E1000_CTRL_SLU;
5386 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5387 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5388 
5389 	ret_val = e1000_copper_link_setup_82577(hw);
5390 	if (ret_val)
5391 		return ret_val;
5392 
5393 	return e1000_setup_copper_link_generic(hw);
5394 }
5395 
5396 /**
5397  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5398  *  @hw: pointer to the HW structure
5399  *  @speed: pointer to store current link speed
5400  *  @duplex: pointer to store the current link duplex
5401  *
5402  *  Calls the generic get_speed_and_duplex to retrieve the current link
5403  *  information and then calls the Kumeran lock loss workaround for links at
5404  *  gigabit speeds.
5405  **/
5406 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5407 					  u16 *duplex)
5408 {
5409 	s32 ret_val;
5410 
5411 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5412 
5413 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5414 	if (ret_val)
5415 		return ret_val;
5416 
5417 	if ((hw->mac.type == e1000_ich8lan) &&
5418 	    (hw->phy.type == e1000_phy_igp_3) &&
5419 	    (*speed == SPEED_1000)) {
5420 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5421 	}
5422 
5423 	return ret_val;
5424 }
5425 
5426 /**
5427  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5428  *  @hw: pointer to the HW structure
5429  *
5430  *  Work-around for 82566 Kumeran PCS lock loss:
5431  *  On link status change (i.e. PCI reset, speed change) and link is up and
5432  *  speed is gigabit-
5433  *    0) if workaround is optionally disabled do nothing
5434  *    1) wait 1ms for Kumeran link to come up
5435  *    2) check Kumeran Diagnostic register PCS lock loss bit
5436  *    3) if not set the link is locked (all is good), otherwise...
5437  *    4) reset the PHY
5438  *    5) repeat up to 10 times
5439  *  Note: this is only called for IGP3 copper when speed is 1gb.
5440  **/
5441 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5442 {
5443 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5444 	u32 phy_ctrl;
5445 	s32 ret_val;
5446 	u16 i, data;
5447 	bool link;
5448 
5449 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5450 
5451 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5452 		return E1000_SUCCESS;
5453 
5454 	/* Make sure link is up before proceeding.  If not just return.
5455 	 * Attempting this while link is negotiating fouled up link
5456 	 * stability
5457 	 */
5458 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5459 	if (!link)
5460 		return E1000_SUCCESS;
5461 
5462 	for (i = 0; i < 10; i++) {
5463 		/* read once to clear */
5464 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5465 		if (ret_val)
5466 			return ret_val;
5467 		/* and again to get new status */
5468 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5469 		if (ret_val)
5470 			return ret_val;
5471 
5472 		/* check for PCS lock */
5473 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5474 			return E1000_SUCCESS;
5475 
5476 		/* Issue PHY reset */
5477 		hw->phy.ops.reset(hw);
5478 		msec_delay_irq(5);
5479 	}
5480 	/* Disable GigE link negotiation */
5481 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5482 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5483 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5484 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5485 
5486 	/* Call gig speed drop workaround on Gig disable before accessing
5487 	 * any PHY registers
5488 	 */
5489 	e1000_gig_downshift_workaround_ich8lan(hw);
5490 
5491 	/* unable to acquire PCS lock */
5492 	return -E1000_ERR_PHY;
5493 }
5494 
5495 /**
5496  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5497  *  @hw: pointer to the HW structure
5498  *  @state: boolean value used to set the current Kumeran workaround state
5499  *
5500  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5501  *  /disabled - FALSE).
5502  **/
5503 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5504 						 bool state)
5505 {
5506 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5507 
5508 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5509 
5510 	if (hw->mac.type != e1000_ich8lan) {
5511 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5512 		return;
5513 	}
5514 
5515 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5516 
5517 	return;
5518 }
5519 
5520 /**
5521  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5522  *  @hw: pointer to the HW structure
5523  *
5524  *  Workaround for 82566 power-down on D3 entry:
5525  *    1) disable gigabit link
5526  *    2) write VR power-down enable
5527  *    3) read it back
5528  *  Continue if successful, else issue LCD reset and repeat
5529  **/
5530 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5531 {
5532 	u32 reg;
5533 	u16 data;
5534 	u8  retry = 0;
5535 
5536 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5537 
5538 	if (hw->phy.type != e1000_phy_igp_3)
5539 		return;
5540 
5541 	/* Try the workaround twice (if needed) */
5542 	do {
5543 		/* Disable link */
5544 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5545 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5546 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5547 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5548 
5549 		/* Call gig speed drop workaround on Gig disable before
5550 		 * accessing any PHY registers
5551 		 */
5552 		if (hw->mac.type == e1000_ich8lan)
5553 			e1000_gig_downshift_workaround_ich8lan(hw);
5554 
5555 		/* Write VR power-down enable */
5556 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5557 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5558 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5559 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5560 
5561 		/* Read it back and test */
5562 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5563 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5564 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5565 			break;
5566 
5567 		/* Issue PHY reset and repeat at most one more time */
5568 		reg = E1000_READ_REG(hw, E1000_CTRL);
5569 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5570 		retry++;
5571 	} while (retry);
5572 }
5573 
5574 /**
5575  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5576  *  @hw: pointer to the HW structure
5577  *
5578  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5579  *  LPLU, Gig disable, MDIC PHY reset):
5580  *    1) Set Kumeran Near-end loopback
5581  *    2) Clear Kumeran Near-end loopback
5582  *  Should only be called for ICH8[m] devices with any 1G Phy.
5583  **/
5584 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5585 {
5586 	s32 ret_val;
5587 	u16 reg_data;
5588 
5589 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5590 
5591 	if ((hw->mac.type != e1000_ich8lan) ||
5592 	    (hw->phy.type == e1000_phy_ife))
5593 		return;
5594 
5595 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5596 					      &reg_data);
5597 	if (ret_val)
5598 		return;
5599 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5600 	ret_val = e1000_write_kmrn_reg_generic(hw,
5601 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5602 					       reg_data);
5603 	if (ret_val)
5604 		return;
5605 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5606 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5607 				     reg_data);
5608 }
5609 
5610 /**
5611  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5612  *  @hw: pointer to the HW structure
5613  *
5614  *  During S0 to Sx transition, it is possible the link remains at gig
5615  *  instead of negotiating to a lower speed.  Before going to Sx, set
5616  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5617  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5618  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5619  *  needs to be written.
5620  *  Parts that support (and are linked to a partner which support) EEE in
5621  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5622  *  than 10Mbps w/o EEE.
5623  **/
5624 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5625 {
5626 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5627 	u32 phy_ctrl;
5628 	s32 ret_val;
5629 
5630 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5631 
5632 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5633 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5634 
5635 	if (hw->phy.type == e1000_phy_i217) {
5636 		u16 phy_reg, device_id = hw->device_id;
5637 
5638 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5639 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5640 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5641 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5642 		    (hw->mac.type >= e1000_pch_spt)) {
5643 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5644 
5645 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5646 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5647 		}
5648 
5649 		ret_val = hw->phy.ops.acquire(hw);
5650 		if (ret_val)
5651 			goto out;
5652 
5653 		if (!dev_spec->eee_disable) {
5654 			u16 eee_advert;
5655 
5656 			ret_val =
5657 			    e1000_read_emi_reg_locked(hw,
5658 						      I217_EEE_ADVERTISEMENT,
5659 						      &eee_advert);
5660 			if (ret_val)
5661 				goto release;
5662 
5663 			/* Disable LPLU if both link partners support 100BaseT
5664 			 * EEE and 100Full is advertised on both ends of the
5665 			 * link, and enable Auto Enable LPI since there will
5666 			 * be no driver to enable LPI while in Sx.
5667 			 */
5668 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5669 			    (dev_spec->eee_lp_ability &
5670 			     I82579_EEE_100_SUPPORTED) &&
5671 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5672 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5673 					      E1000_PHY_CTRL_NOND0A_LPLU);
5674 
5675 				/* Set Auto Enable LPI after link up */
5676 				hw->phy.ops.read_reg_locked(hw,
5677 							    I217_LPI_GPIO_CTRL,
5678 							    &phy_reg);
5679 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5680 				hw->phy.ops.write_reg_locked(hw,
5681 							     I217_LPI_GPIO_CTRL,
5682 							     phy_reg);
5683 			}
5684 		}
5685 
5686 		/* For i217 Intel Rapid Start Technology support,
5687 		 * when the system is going into Sx and no manageability engine
5688 		 * is present, the driver must configure proxy to reset only on
5689 		 * power good.  LPI (Low Power Idle) state must also reset only
5690 		 * on power good, as well as the MTA (Multicast table array).
5691 		 * The SMBus release must also be disabled on LCD reset.
5692 		 */
5693 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5694 		      E1000_ICH_FWSM_FW_VALID)) {
5695 			/* Enable proxy to reset only on power good. */
5696 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5697 						    &phy_reg);
5698 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5699 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5700 						     phy_reg);
5701 
5702 			/* Set bit enable LPI (EEE) to reset only on
5703 			 * power good.
5704 			*/
5705 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5706 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5707 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5708 
5709 			/* Disable the SMB release on LCD reset. */
5710 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5711 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5712 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5713 		}
5714 
5715 		/* Enable MTA to reset for Intel Rapid Start Technology
5716 		 * Support
5717 		 */
5718 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5719 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5720 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5721 
5722 release:
5723 		hw->phy.ops.release(hw);
5724 	}
5725 out:
5726 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5727 
5728 	if (hw->mac.type == e1000_ich8lan)
5729 		e1000_gig_downshift_workaround_ich8lan(hw);
5730 
5731 	if (hw->mac.type >= e1000_pchlan) {
5732 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5733 
5734 		/* Reset PHY to activate OEM bits on 82577/8 */
5735 		if (hw->mac.type == e1000_pchlan)
5736 			e1000_phy_hw_reset_generic(hw);
5737 
5738 		ret_val = hw->phy.ops.acquire(hw);
5739 		if (ret_val)
5740 			return;
5741 		e1000_write_smbus_addr(hw);
5742 		hw->phy.ops.release(hw);
5743 	}
5744 
5745 	return;
5746 }
5747 
5748 /**
5749  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5750  *  @hw: pointer to the HW structure
5751  *
5752  *  During Sx to S0 transitions on non-managed devices or managed devices
5753  *  on which PHY resets are not blocked, if the PHY registers cannot be
5754  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5755  *  the PHY.
5756  *  On i217, setup Intel Rapid Start Technology.
5757  **/
5758 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5759 {
5760 	s32 ret_val;
5761 
5762 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5763 	if (hw->mac.type < e1000_pch2lan)
5764 		return E1000_SUCCESS;
5765 
5766 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5767 	if (ret_val) {
5768 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5769 		return ret_val;
5770 	}
5771 
5772 	/* For i217 Intel Rapid Start Technology support when the system
5773 	 * is transitioning from Sx and no manageability engine is present
5774 	 * configure SMBus to restore on reset, disable proxy, and enable
5775 	 * the reset on MTA (Multicast table array).
5776 	 */
5777 	if (hw->phy.type == e1000_phy_i217) {
5778 		u16 phy_reg;
5779 
5780 		ret_val = hw->phy.ops.acquire(hw);
5781 		if (ret_val) {
5782 			DEBUGOUT("Failed to setup iRST\n");
5783 			return ret_val;
5784 		}
5785 
5786 		/* Clear Auto Enable LPI after link up */
5787 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5788 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5789 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5790 
5791 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5792 		    E1000_ICH_FWSM_FW_VALID)) {
5793 			/* Restore clear on SMB if no manageability engine
5794 			 * is present
5795 			 */
5796 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5797 							      &phy_reg);
5798 			if (ret_val)
5799 				goto release;
5800 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5801 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5802 
5803 			/* Disable Proxy */
5804 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5805 		}
5806 		/* Enable reset on MTA */
5807 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5808 						      &phy_reg);
5809 		if (ret_val)
5810 			goto release;
5811 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5812 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5813 release:
5814 		if (ret_val)
5815 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5816 		hw->phy.ops.release(hw);
5817 		return ret_val;
5818 	}
5819 	return E1000_SUCCESS;
5820 }
5821 
5822 /**
5823  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5824  *  @hw: pointer to the HW structure
5825  *
5826  *  Return the LED back to the default configuration.
5827  **/
5828 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5829 {
5830 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5831 
5832 	if (hw->phy.type == e1000_phy_ife)
5833 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5834 					     0);
5835 
5836 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5837 	return E1000_SUCCESS;
5838 }
5839 
5840 /**
5841  *  e1000_led_on_ich8lan - Turn LEDs on
5842  *  @hw: pointer to the HW structure
5843  *
5844  *  Turn on the LEDs.
5845  **/
5846 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5847 {
5848 	DEBUGFUNC("e1000_led_on_ich8lan");
5849 
5850 	if (hw->phy.type == e1000_phy_ife)
5851 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5852 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5853 
5854 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5855 	return E1000_SUCCESS;
5856 }
5857 
5858 /**
5859  *  e1000_led_off_ich8lan - Turn LEDs off
5860  *  @hw: pointer to the HW structure
5861  *
5862  *  Turn off the LEDs.
5863  **/
5864 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5865 {
5866 	DEBUGFUNC("e1000_led_off_ich8lan");
5867 
5868 	if (hw->phy.type == e1000_phy_ife)
5869 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5870 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5871 
5872 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5873 	return E1000_SUCCESS;
5874 }
5875 
5876 /**
5877  *  e1000_setup_led_pchlan - Configures SW controllable LED
5878  *  @hw: pointer to the HW structure
5879  *
5880  *  This prepares the SW controllable LED for use.
5881  **/
5882 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5883 {
5884 	DEBUGFUNC("e1000_setup_led_pchlan");
5885 
5886 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5887 				     (u16)hw->mac.ledctl_mode1);
5888 }
5889 
5890 /**
5891  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5892  *  @hw: pointer to the HW structure
5893  *
5894  *  Return the LED back to the default configuration.
5895  **/
5896 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5897 {
5898 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5899 
5900 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5901 				     (u16)hw->mac.ledctl_default);
5902 }
5903 
5904 /**
5905  *  e1000_led_on_pchlan - Turn LEDs on
5906  *  @hw: pointer to the HW structure
5907  *
5908  *  Turn on the LEDs.
5909  **/
5910 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5911 {
5912 	u16 data = (u16)hw->mac.ledctl_mode2;
5913 	u32 i, led;
5914 
5915 	DEBUGFUNC("e1000_led_on_pchlan");
5916 
5917 	/* If no link, then turn LED on by setting the invert bit
5918 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5919 	 */
5920 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5921 		for (i = 0; i < 3; i++) {
5922 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5923 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5924 			    E1000_LEDCTL_MODE_LINK_UP)
5925 				continue;
5926 			if (led & E1000_PHY_LED0_IVRT)
5927 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5928 			else
5929 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5930 		}
5931 	}
5932 
5933 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5934 }
5935 
5936 /**
5937  *  e1000_led_off_pchlan - Turn LEDs off
5938  *  @hw: pointer to the HW structure
5939  *
5940  *  Turn off the LEDs.
5941  **/
5942 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5943 {
5944 	u16 data = (u16)hw->mac.ledctl_mode1;
5945 	u32 i, led;
5946 
5947 	DEBUGFUNC("e1000_led_off_pchlan");
5948 
5949 	/* If no link, then turn LED off by clearing the invert bit
5950 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5951 	 */
5952 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5953 		for (i = 0; i < 3; i++) {
5954 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5955 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5956 			    E1000_LEDCTL_MODE_LINK_UP)
5957 				continue;
5958 			if (led & E1000_PHY_LED0_IVRT)
5959 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5960 			else
5961 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5962 		}
5963 	}
5964 
5965 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5966 }
5967 
5968 /**
5969  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5970  *  @hw: pointer to the HW structure
5971  *
5972  *  Read appropriate register for the config done bit for completion status
5973  *  and configure the PHY through s/w for EEPROM-less parts.
5974  *
5975  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5976  *  config done bit, so only an error is logged and continues.  If we were
5977  *  to return with error, EEPROM-less silicon would not be able to be reset
5978  *  or change link.
5979  **/
5980 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5981 {
5982 	s32 ret_val = E1000_SUCCESS;
5983 	u32 bank = 0;
5984 	u32 status;
5985 
5986 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5987 
5988 	e1000_get_cfg_done_generic(hw);
5989 
5990 	/* Wait for indication from h/w that it has completed basic config */
5991 	if (hw->mac.type >= e1000_ich10lan) {
5992 		e1000_lan_init_done_ich8lan(hw);
5993 	} else {
5994 		ret_val = e1000_get_auto_rd_done_generic(hw);
5995 		if (ret_val) {
5996 			/* When auto config read does not complete, do not
5997 			 * return with an error. This can happen in situations
5998 			 * where there is no eeprom and prevents getting link.
5999 			 */
6000 			DEBUGOUT("Auto Read Done did not complete\n");
6001 			ret_val = E1000_SUCCESS;
6002 		}
6003 	}
6004 
6005 	/* Clear PHY Reset Asserted bit */
6006 	status = E1000_READ_REG(hw, E1000_STATUS);
6007 	if (status & E1000_STATUS_PHYRA)
6008 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6009 	else
6010 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6011 
6012 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6013 	if (hw->mac.type <= e1000_ich9lan) {
6014 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6015 		    (hw->phy.type == e1000_phy_igp_3)) {
6016 			e1000_phy_init_script_igp3(hw);
6017 		}
6018 	} else {
6019 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6020 			/* Maybe we should do a basic PHY config */
6021 			DEBUGOUT("EEPROM not present\n");
6022 			ret_val = -E1000_ERR_CONFIG;
6023 		}
6024 	}
6025 
6026 	return ret_val;
6027 }
6028 
6029 /**
6030  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6031  * @hw: pointer to the HW structure
6032  *
6033  * In the case of a PHY power down to save power, or to turn off link during a
6034  * driver unload, or wake on lan is not enabled, remove the link.
6035  **/
6036 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6037 {
6038 	/* If the management interface is not enabled, then power down */
6039 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6040 	      hw->phy.ops.check_reset_block(hw)))
6041 		e1000_power_down_phy_copper(hw);
6042 
6043 	return;
6044 }
6045 
6046 /**
6047  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6048  *  @hw: pointer to the HW structure
6049  *
6050  *  Clears hardware counters specific to the silicon family and calls
6051  *  clear_hw_cntrs_generic to clear all general purpose counters.
6052  **/
6053 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6054 {
6055 	u16 phy_data;
6056 	s32 ret_val;
6057 
6058 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6059 
6060 	e1000_clear_hw_cntrs_base_generic(hw);
6061 
6062 	E1000_READ_REG(hw, E1000_ALGNERRC);
6063 	E1000_READ_REG(hw, E1000_RXERRC);
6064 	E1000_READ_REG(hw, E1000_TNCRS);
6065 	E1000_READ_REG(hw, E1000_CEXTERR);
6066 	E1000_READ_REG(hw, E1000_TSCTC);
6067 	E1000_READ_REG(hw, E1000_TSCTFC);
6068 
6069 	E1000_READ_REG(hw, E1000_MGTPRC);
6070 	E1000_READ_REG(hw, E1000_MGTPDC);
6071 	E1000_READ_REG(hw, E1000_MGTPTC);
6072 
6073 	E1000_READ_REG(hw, E1000_IAC);
6074 	E1000_READ_REG(hw, E1000_ICRXOC);
6075 
6076 	/* Clear PHY statistics registers */
6077 	if ((hw->phy.type == e1000_phy_82578) ||
6078 	    (hw->phy.type == e1000_phy_82579) ||
6079 	    (hw->phy.type == e1000_phy_i217) ||
6080 	    (hw->phy.type == e1000_phy_82577)) {
6081 		ret_val = hw->phy.ops.acquire(hw);
6082 		if (ret_val)
6083 			return;
6084 		ret_val = hw->phy.ops.set_page(hw,
6085 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6086 		if (ret_val)
6087 			goto release;
6088 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6089 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6090 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6091 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6092 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6093 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6094 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6095 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6096 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6097 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6098 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6099 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6100 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6101 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6102 release:
6103 		hw->phy.ops.release(hw);
6104 	}
6105 }
6106 
6107