xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72 
73 #include "e1000_api.h"
74 
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 					      u8 *mc_addr_list,
86 					      u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91 					    bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93 					    bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95 				   u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97 			       u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99 				    u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104 					    u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113 					   u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129 					  u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131 					    u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133 					   u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135 					     u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137 						  u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139 					  u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141 						 u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153 	struct ich8_hsfsts {
154 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156 		u16 dael:1; /* bit 2 Direct Access error Log */
157 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159 		u16 reserved1:2; /* bit 13:6 Reserved */
160 		u16 reserved2:6; /* bit 13:6 Reserved */
161 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163 	} hsf_status;
164 	u16 regval;
165 };
166 
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170 	struct ich8_hsflctl {
171 		u16 flcgo:1;   /* 0 Flash Cycle Go */
172 		u16 flcycle:2;   /* 2:1 Flash Cycle */
173 		u16 reserved:5;   /* 7:3 Reserved  */
174 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175 		u16 flockdn:6;   /* 15:10 Reserved */
176 	} hsf_ctrl;
177 	u16 regval;
178 };
179 
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182 	struct ich8_flracc {
183 		u32 grra:8; /* 0:7 GbE region Read Access */
184 		u32 grwa:8; /* 8:15 GbE region Write Access */
185 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187 	} hsf_flregacc;
188 	u16 regval;
189 };
190 
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203 	u16 phy_reg = 0;
204 	u32 phy_id = 0;
205 	s32 ret_val = 0;
206 	u16 retry_count;
207 	u32 mac_reg = 0;
208 
209 	for (retry_count = 0; retry_count < 2; retry_count++) {
210 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211 		if (ret_val || (phy_reg == 0xFFFF))
212 			continue;
213 		phy_id = (u32)(phy_reg << 16);
214 
215 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216 		if (ret_val || (phy_reg == 0xFFFF)) {
217 			phy_id = 0;
218 			continue;
219 		}
220 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221 		break;
222 	}
223 
224 	if (hw->phy.id) {
225 		if  (hw->phy.id == phy_id)
226 			goto out;
227 	} else if (phy_id) {
228 		hw->phy.id = phy_id;
229 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230 		goto out;
231 	}
232 
233 	/* In case the PHY needs to be in mdio slow mode,
234 	 * set slow mode and try to get the PHY id again.
235 	 */
236 	if (hw->mac.type < e1000_pch_lpt) {
237 		hw->phy.ops.release(hw);
238 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239 		if (!ret_val)
240 			ret_val = e1000_get_phy_id(hw);
241 		hw->phy.ops.acquire(hw);
242 	}
243 
244 	if (ret_val)
245 		return FALSE;
246 out:
247 	if (hw->mac.type >= e1000_pch_lpt) {
248 		/* Only unforce SMBus if ME is not active */
249 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250 		    E1000_ICH_FWSM_FW_VALID)) {
251 			/* Unforce SMBus mode in PHY */
252 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 
256 			/* Unforce SMBus mode in MAC */
257 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260 		}
261 	}
262 
263 	return TRUE;
264 }
265 
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275 	u32 mac_reg;
276 
277 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 
279 	/* Set Phy Config Counter to 50msec */
280 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 
285 	/* Toggle LANPHYPC Value bit */
286 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290 	E1000_WRITE_FLUSH(hw);
291 	msec_delay(1);
292 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294 	E1000_WRITE_FLUSH(hw);
295 
296 	if (hw->mac.type < e1000_pch_lpt) {
297 		msec_delay(50);
298 	} else {
299 		u16 count = 20;
300 
301 		do {
302 			msec_delay(5);
303 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304 			   E1000_CTRL_EXT_LPCD) && count--);
305 
306 		msec_delay(30);
307 	}
308 }
309 
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320 	s32 ret_val;
321 
322 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 
324 	/* Gate automatic PHY configuration by hardware on managed and
325 	 * non-managed 82579 and newer adapters.
326 	 */
327 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328 
329 	/* It is not possible to be certain of the current state of ULP
330 	 * so forcibly disable it.
331 	 */
332 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333 	e1000_disable_ulp_lpt_lp(hw, TRUE);
334 
335 	ret_val = hw->phy.ops.acquire(hw);
336 	if (ret_val) {
337 		DEBUGOUT("Failed to initialize PHY flow\n");
338 		goto out;
339 	}
340 
341 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342 	 * inaccessible and resetting the PHY is not blocked, toggle the
343 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344 	 */
345 	switch (hw->mac.type) {
346 	case e1000_pch_lpt:
347 	case e1000_pch_spt:
348 	case e1000_pch_cnp:
349 	case e1000_pch_tgp:
350 	case e1000_pch_adp:
351 	case e1000_pch_mtp:
352 		if (e1000_phy_is_accessible_pchlan(hw))
353 			break;
354 
355 		/* Before toggling LANPHYPC, see if PHY is accessible by
356 		 * forcing MAC to SMBus mode first.
357 		 */
358 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
359 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
360 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
361 
362 		/* Wait 50 milliseconds for MAC to finish any retries
363 		 * that it might be trying to perform from previous
364 		 * attempts to acknowledge any phy read requests.
365 		 */
366 		 msec_delay(50);
367 
368 		/* fall-through */
369 	case e1000_pch2lan:
370 		if (e1000_phy_is_accessible_pchlan(hw))
371 			break;
372 
373 		/* fall-through */
374 	case e1000_pchlan:
375 		if ((hw->mac.type == e1000_pchlan) &&
376 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
377 			break;
378 
379 		if (hw->phy.ops.check_reset_block(hw)) {
380 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
381 			ret_val = -E1000_ERR_PHY;
382 			break;
383 		}
384 
385 		/* Toggle LANPHYPC Value bit */
386 		e1000_toggle_lanphypc_pch_lpt(hw);
387 		if (hw->mac.type >= e1000_pch_lpt) {
388 			if (e1000_phy_is_accessible_pchlan(hw))
389 				break;
390 
391 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
392 			 * so ensure that the MAC is also out of SMBus mode
393 			 */
394 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
395 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
396 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
397 
398 			if (e1000_phy_is_accessible_pchlan(hw))
399 				break;
400 
401 			ret_val = -E1000_ERR_PHY;
402 		}
403 		break;
404 	default:
405 		break;
406 	}
407 
408 	hw->phy.ops.release(hw);
409 	if (!ret_val) {
410 
411 		/* Check to see if able to reset PHY.  Print error if not */
412 		if (hw->phy.ops.check_reset_block(hw)) {
413 			ERROR_REPORT("Reset blocked by ME\n");
414 			goto out;
415 		}
416 
417 		/* Reset the PHY before any access to it.  Doing so, ensures
418 		 * that the PHY is in a known good state before we read/write
419 		 * PHY registers.  The generic reset is sufficient here,
420 		 * because we haven't determined the PHY type yet.
421 		 */
422 		ret_val = e1000_phy_hw_reset_generic(hw);
423 		if (ret_val)
424 			goto out;
425 
426 		/* On a successful reset, possibly need to wait for the PHY
427 		 * to quiesce to an accessible state before returning control
428 		 * to the calling function.  If the PHY does not quiesce, then
429 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
430 		 *  the PHY is in.
431 		 */
432 		ret_val = hw->phy.ops.check_reset_block(hw);
433 		if (ret_val)
434 			ERROR_REPORT("ME blocked access to PHY after reset\n");
435 	}
436 
437 out:
438 	/* Ungate automatic PHY configuration on non-managed 82579 */
439 	if ((hw->mac.type == e1000_pch2lan) &&
440 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
441 		msec_delay(10);
442 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
443 	}
444 
445 	return ret_val;
446 }
447 
448 /**
449  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
450  *  @hw: pointer to the HW structure
451  *
452  *  Initialize family-specific PHY parameters and function pointers.
453  **/
454 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
455 {
456 	struct e1000_phy_info *phy = &hw->phy;
457 	s32 ret_val;
458 
459 	DEBUGFUNC("e1000_init_phy_params_pchlan");
460 
461 	phy->addr		= 1;
462 	phy->reset_delay_us	= 100;
463 
464 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
465 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
466 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
467 	phy->ops.set_page	= e1000_set_page_igp;
468 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
469 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
470 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
471 	phy->ops.release	= e1000_release_swflag_ich8lan;
472 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
473 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
474 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
475 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
476 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
477 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
478 	phy->ops.power_up	= e1000_power_up_phy_copper;
479 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
480 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
481 
482 	phy->id = e1000_phy_unknown;
483 
484 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
485 	if (ret_val)
486 		return ret_val;
487 
488 	if (phy->id == e1000_phy_unknown)
489 		switch (hw->mac.type) {
490 		default:
491 			ret_val = e1000_get_phy_id(hw);
492 			if (ret_val)
493 				return ret_val;
494 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
495 				break;
496 			/* fall-through */
497 		case e1000_pch2lan:
498 		case e1000_pch_lpt:
499 		case e1000_pch_spt:
500 		case e1000_pch_cnp:
501 		case e1000_pch_tgp:
502 		case e1000_pch_adp:
503 		case e1000_pch_mtp:
504 			/* In case the PHY needs to be in mdio slow mode,
505 			 * set slow mode and try to get the PHY id again.
506 			 */
507 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
508 			if (ret_val)
509 				return ret_val;
510 			ret_val = e1000_get_phy_id(hw);
511 			if (ret_val)
512 				return ret_val;
513 			break;
514 		}
515 	phy->type = e1000_get_phy_type_from_id(phy->id);
516 
517 	switch (phy->type) {
518 	case e1000_phy_82577:
519 	case e1000_phy_82579:
520 	case e1000_phy_i217:
521 		phy->ops.check_polarity = e1000_check_polarity_82577;
522 		phy->ops.force_speed_duplex =
523 			e1000_phy_force_speed_duplex_82577;
524 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
525 		phy->ops.get_info = e1000_get_phy_info_82577;
526 		phy->ops.commit = e1000_phy_sw_reset_generic;
527 		break;
528 	case e1000_phy_82578:
529 		phy->ops.check_polarity = e1000_check_polarity_m88;
530 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
531 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
532 		phy->ops.get_info = e1000_get_phy_info_m88;
533 		break;
534 	default:
535 		ret_val = -E1000_ERR_PHY;
536 		break;
537 	}
538 
539 	return ret_val;
540 }
541 
542 /**
543  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
544  *  @hw: pointer to the HW structure
545  *
546  *  Initialize family-specific PHY parameters and function pointers.
547  **/
548 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
549 {
550 	struct e1000_phy_info *phy = &hw->phy;
551 	s32 ret_val;
552 	u16 i = 0;
553 
554 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
555 
556 	phy->addr		= 1;
557 	phy->reset_delay_us	= 100;
558 
559 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
560 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
561 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
562 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
563 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
564 	phy->ops.release	= e1000_release_swflag_ich8lan;
565 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
566 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
567 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
568 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
569 	phy->ops.power_up	= e1000_power_up_phy_copper;
570 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
571 
572 	/* We may need to do this twice - once for IGP and if that fails,
573 	 * we'll set BM func pointers and try again
574 	 */
575 	ret_val = e1000_determine_phy_address(hw);
576 	if (ret_val) {
577 		phy->ops.write_reg = e1000_write_phy_reg_bm;
578 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
579 		ret_val = e1000_determine_phy_address(hw);
580 		if (ret_val) {
581 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
582 			return ret_val;
583 		}
584 	}
585 
586 	phy->id = 0;
587 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
588 	       (i++ < 100)) {
589 		msec_delay(1);
590 		ret_val = e1000_get_phy_id(hw);
591 		if (ret_val)
592 			return ret_val;
593 	}
594 
595 	/* Verify phy id */
596 	switch (phy->id) {
597 	case IGP03E1000_E_PHY_ID:
598 		phy->type = e1000_phy_igp_3;
599 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
600 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
601 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
602 		phy->ops.get_info = e1000_get_phy_info_igp;
603 		phy->ops.check_polarity = e1000_check_polarity_igp;
604 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
605 		break;
606 	case IFE_E_PHY_ID:
607 	case IFE_PLUS_E_PHY_ID:
608 	case IFE_C_E_PHY_ID:
609 		phy->type = e1000_phy_ife;
610 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
611 		phy->ops.get_info = e1000_get_phy_info_ife;
612 		phy->ops.check_polarity = e1000_check_polarity_ife;
613 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
614 		break;
615 	case BME1000_E_PHY_ID:
616 		phy->type = e1000_phy_bm;
617 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
618 		phy->ops.read_reg = e1000_read_phy_reg_bm;
619 		phy->ops.write_reg = e1000_write_phy_reg_bm;
620 		phy->ops.commit = e1000_phy_sw_reset_generic;
621 		phy->ops.get_info = e1000_get_phy_info_m88;
622 		phy->ops.check_polarity = e1000_check_polarity_m88;
623 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
624 		break;
625 	default:
626 		return -E1000_ERR_PHY;
627 		break;
628 	}
629 
630 	return E1000_SUCCESS;
631 }
632 
633 /**
634  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
635  *  @hw: pointer to the HW structure
636  *
637  *  Initialize family-specific NVM parameters and function
638  *  pointers.
639  **/
640 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
641 {
642 	struct e1000_nvm_info *nvm = &hw->nvm;
643 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
644 	u32 gfpreg, sector_base_addr, sector_end_addr;
645 	u16 i;
646 	u32 nvm_size;
647 
648 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
649 
650 	nvm->type = e1000_nvm_flash_sw;
651 
652 	if (hw->mac.type >= e1000_pch_spt) {
653 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
654 		 * STRAP register. This is because in SPT the GbE Flash region
655 		 * is no longer accessed through the flash registers. Instead,
656 		 * the mechanism has changed, and the Flash region access
657 		 * registers are now implemented in GbE memory space.
658 		 */
659 		nvm->flash_base_addr = 0;
660 		nvm_size =
661 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
662 		    * NVM_SIZE_MULTIPLIER;
663 		nvm->flash_bank_size = nvm_size / 2;
664 		/* Adjust to word count */
665 		nvm->flash_bank_size /= sizeof(u16);
666 		/* Set the base address for flash register access */
667 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
668 	} else {
669 		/* Can't read flash registers if register set isn't mapped. */
670 		if (!hw->flash_address) {
671 			DEBUGOUT("ERROR: Flash registers not mapped\n");
672 			return -E1000_ERR_CONFIG;
673 		}
674 
675 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
676 
677 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
678 		 * Add 1 to sector_end_addr since this sector is included in
679 		 * the overall size.
680 		 */
681 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
682 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
683 
684 		/* flash_base_addr is byte-aligned */
685 		nvm->flash_base_addr = sector_base_addr
686 				       << FLASH_SECTOR_ADDR_SHIFT;
687 
688 		/* find total size of the NVM, then cut in half since the total
689 		 * size represents two separate NVM banks.
690 		 */
691 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
692 					<< FLASH_SECTOR_ADDR_SHIFT);
693 		nvm->flash_bank_size /= 2;
694 		/* Adjust to word count */
695 		nvm->flash_bank_size /= sizeof(u16);
696 	}
697 
698 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
699 
700 	/* Clear shadow ram */
701 	for (i = 0; i < nvm->word_size; i++) {
702 		dev_spec->shadow_ram[i].modified = FALSE;
703 		dev_spec->shadow_ram[i].value    = 0xFFFF;
704 	}
705 
706 	/* Function Pointers */
707 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
708 	nvm->ops.release	= e1000_release_nvm_ich8lan;
709 	if (hw->mac.type >= e1000_pch_spt) {
710 		nvm->ops.read	= e1000_read_nvm_spt;
711 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
712 	} else {
713 		nvm->ops.read	= e1000_read_nvm_ich8lan;
714 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
715 	}
716 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
717 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
718 	nvm->ops.write		= e1000_write_nvm_ich8lan;
719 
720 	return E1000_SUCCESS;
721 }
722 
723 /**
724  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
725  *  @hw: pointer to the HW structure
726  *
727  *  Initialize family-specific MAC parameters and function
728  *  pointers.
729  **/
730 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
731 {
732 	struct e1000_mac_info *mac = &hw->mac;
733 
734 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
735 
736 	/* Set media type function pointer */
737 	hw->phy.media_type = e1000_media_type_copper;
738 
739 	/* Set mta register count */
740 	mac->mta_reg_count = 32;
741 	/* Set rar entry count */
742 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
743 	if (mac->type == e1000_ich8lan)
744 		mac->rar_entry_count--;
745 	/* Set if part includes ASF firmware */
746 	mac->asf_firmware_present = TRUE;
747 	/* FWSM register */
748 	mac->has_fwsm = TRUE;
749 	/* ARC subsystem not supported */
750 	mac->arc_subsystem_valid = FALSE;
751 	/* Adaptive IFS supported */
752 	mac->adaptive_ifs = TRUE;
753 
754 	/* Function pointers */
755 
756 	/* bus type/speed/width */
757 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
758 	/* function id */
759 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
760 	/* reset */
761 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
762 	/* hw initialization */
763 	mac->ops.init_hw = e1000_init_hw_ich8lan;
764 	/* link setup */
765 	mac->ops.setup_link = e1000_setup_link_ich8lan;
766 	/* physical interface setup */
767 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
768 	/* check for link */
769 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
770 	/* link info */
771 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
772 	/* multicast address update */
773 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
774 	/* clear hardware counters */
775 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
776 
777 	/* LED and other operations */
778 	switch (mac->type) {
779 	case e1000_ich8lan:
780 	case e1000_ich9lan:
781 	case e1000_ich10lan:
782 		/* check management mode */
783 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
784 		/* ID LED init */
785 		mac->ops.id_led_init = e1000_id_led_init_generic;
786 		/* blink LED */
787 		mac->ops.blink_led = e1000_blink_led_generic;
788 		/* setup LED */
789 		mac->ops.setup_led = e1000_setup_led_generic;
790 		/* cleanup LED */
791 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
792 		/* turn on/off LED */
793 		mac->ops.led_on = e1000_led_on_ich8lan;
794 		mac->ops.led_off = e1000_led_off_ich8lan;
795 		break;
796 	case e1000_pch2lan:
797 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
798 		mac->ops.rar_set = e1000_rar_set_pch2lan;
799 		/* fall-through */
800 	case e1000_pch_lpt:
801 	case e1000_pch_spt:
802 	case e1000_pch_cnp:
803 	case e1000_pch_tgp:
804 	case e1000_pch_adp:
805 	case e1000_pch_mtp:
806 		/* multicast address update for pch2 */
807 		mac->ops.update_mc_addr_list =
808 			e1000_update_mc_addr_list_pch2lan;
809 		/* fall-through */
810 	case e1000_pchlan:
811 		/* check management mode */
812 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
813 		/* ID LED init */
814 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
815 		/* setup LED */
816 		mac->ops.setup_led = e1000_setup_led_pchlan;
817 		/* cleanup LED */
818 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
819 		/* turn on/off LED */
820 		mac->ops.led_on = e1000_led_on_pchlan;
821 		mac->ops.led_off = e1000_led_off_pchlan;
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	if (mac->type >= e1000_pch_lpt) {
828 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
829 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
830 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
831 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
832 	}
833 
834 	/* Enable PCS Lock-loss workaround for ICH8 */
835 	if (mac->type == e1000_ich8lan)
836 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
837 
838 	return E1000_SUCCESS;
839 }
840 
841 /**
842  *  __e1000_access_emi_reg_locked - Read/write EMI register
843  *  @hw: pointer to the HW structure
844  *  @addr: EMI address to program
845  *  @data: pointer to value to read/write from/to the EMI address
846  *  @read: boolean flag to indicate read or write
847  *
848  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
849  **/
850 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
851 					 u16 *data, bool read)
852 {
853 	s32 ret_val;
854 
855 	DEBUGFUNC("__e1000_access_emi_reg_locked");
856 
857 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
858 	if (ret_val)
859 		return ret_val;
860 
861 	if (read)
862 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
863 						      data);
864 	else
865 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
866 						       *data);
867 
868 	return ret_val;
869 }
870 
871 /**
872  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
873  *  @hw: pointer to the HW structure
874  *  @addr: EMI address to program
875  *  @data: value to be read from the EMI address
876  *
877  *  Assumes the SW/FW/HW Semaphore is already acquired.
878  **/
879 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
880 {
881 	DEBUGFUNC("e1000_read_emi_reg_locked");
882 
883 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
884 }
885 
886 /**
887  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
888  *  @hw: pointer to the HW structure
889  *  @addr: EMI address to program
890  *  @data: value to be written to the EMI address
891  *
892  *  Assumes the SW/FW/HW Semaphore is already acquired.
893  **/
894 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
895 {
896 	DEBUGFUNC("e1000_read_emi_reg_locked");
897 
898 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
899 }
900 
901 /**
902  *  e1000_set_eee_pchlan - Enable/disable EEE support
903  *  @hw: pointer to the HW structure
904  *
905  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
906  *  the link and the EEE capabilities of the link partner.  The LPI Control
907  *  register bits will remain set only if/when link is up.
908  *
909  *  EEE LPI must not be asserted earlier than one second after link is up.
910  *  On 82579, EEE LPI should not be enabled until such time otherwise there
911  *  can be link issues with some switches.  Other devices can have EEE LPI
912  *  enabled immediately upon link up since they have a timer in hardware which
913  *  prevents LPI from being asserted too early.
914  **/
915 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
916 {
917 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
918 	s32 ret_val;
919 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
920 
921 	DEBUGFUNC("e1000_set_eee_pchlan");
922 
923 	switch (hw->phy.type) {
924 	case e1000_phy_82579:
925 		lpa = I82579_EEE_LP_ABILITY;
926 		pcs_status = I82579_EEE_PCS_STATUS;
927 		adv_addr = I82579_EEE_ADVERTISEMENT;
928 		break;
929 	case e1000_phy_i217:
930 		lpa = I217_EEE_LP_ABILITY;
931 		pcs_status = I217_EEE_PCS_STATUS;
932 		adv_addr = I217_EEE_ADVERTISEMENT;
933 		break;
934 	default:
935 		return E1000_SUCCESS;
936 	}
937 
938 	ret_val = hw->phy.ops.acquire(hw);
939 	if (ret_val)
940 		return ret_val;
941 
942 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
943 	if (ret_val)
944 		goto release;
945 
946 	/* Clear bits that enable EEE in various speeds */
947 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
948 
949 	/* Enable EEE if not disabled by user */
950 	if (!dev_spec->eee_disable) {
951 		/* Save off link partner's EEE ability */
952 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
953 						    &dev_spec->eee_lp_ability);
954 		if (ret_val)
955 			goto release;
956 
957 		/* Read EEE advertisement */
958 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
959 		if (ret_val)
960 			goto release;
961 
962 		/* Enable EEE only for speeds in which the link partner is
963 		 * EEE capable and for which we advertise EEE.
964 		 */
965 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
966 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
967 
968 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
969 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
970 			if (data & NWAY_LPAR_100TX_FD_CAPS)
971 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
972 			else
973 				/* EEE is not supported in 100Half, so ignore
974 				 * partner's EEE in 100 ability if full-duplex
975 				 * is not advertised.
976 				 */
977 				dev_spec->eee_lp_ability &=
978 				    ~I82579_EEE_100_SUPPORTED;
979 		}
980 	}
981 
982 	if (hw->phy.type == e1000_phy_82579) {
983 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
984 						    &data);
985 		if (ret_val)
986 			goto release;
987 
988 		data &= ~I82579_LPI_100_PLL_SHUT;
989 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
990 						     data);
991 	}
992 
993 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
994 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
995 	if (ret_val)
996 		goto release;
997 
998 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
999 release:
1000 	hw->phy.ops.release(hw);
1001 
1002 	return ret_val;
1003 }
1004 
1005 /**
1006  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1007  *  @hw:   pointer to the HW structure
1008  *  @link: link up bool flag
1009  *
1010  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1011  *  preventing further DMA write requests.  Workaround the issue by disabling
1012  *  the de-assertion of the clock request when in 1Gpbs mode.
1013  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1014  *  speeds in order to avoid Tx hangs.
1015  **/
1016 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1017 {
1018 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1019 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1020 	s32 ret_val = E1000_SUCCESS;
1021 	u16 reg;
1022 
1023 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1024 		ret_val = hw->phy.ops.acquire(hw);
1025 		if (ret_val)
1026 			return ret_val;
1027 
1028 		ret_val =
1029 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1030 					       &reg);
1031 		if (ret_val)
1032 			goto release;
1033 
1034 		ret_val =
1035 		    e1000_write_kmrn_reg_locked(hw,
1036 						E1000_KMRNCTRLSTA_K1_CONFIG,
1037 						reg &
1038 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1039 		if (ret_val)
1040 			goto release;
1041 
1042 		usec_delay(10);
1043 
1044 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1045 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1046 
1047 		ret_val =
1048 		    e1000_write_kmrn_reg_locked(hw,
1049 						E1000_KMRNCTRLSTA_K1_CONFIG,
1050 						reg);
1051 release:
1052 		hw->phy.ops.release(hw);
1053 	} else {
1054 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1055 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1056 
1057 		if ((hw->phy.revision > 5) || !link ||
1058 		    ((status & E1000_STATUS_SPEED_100) &&
1059 		     (status & E1000_STATUS_FD)))
1060 			goto update_fextnvm6;
1061 
1062 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1063 		if (ret_val)
1064 			return ret_val;
1065 
1066 		/* Clear link status transmit timeout */
1067 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1068 
1069 		if (status & E1000_STATUS_SPEED_100) {
1070 			/* Set inband Tx timeout to 5x10us for 100Half */
1071 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1072 
1073 			/* Do not extend the K1 entry latency for 100Half */
1074 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1075 		} else {
1076 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1077 			reg |= 50 <<
1078 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1079 
1080 			/* Extend the K1 entry latency for 10 Mbps */
1081 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1082 		}
1083 
1084 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1085 		if (ret_val)
1086 			return ret_val;
1087 
1088 update_fextnvm6:
1089 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1090 	}
1091 
1092 	return ret_val;
1093 }
1094 
1095 static u64 e1000_ltr2ns(u16 ltr)
1096 {
1097 	u32 value, scale;
1098 
1099 	/* Determine the latency in nsec based on the LTR value & scale */
1100 	value = ltr & E1000_LTRV_VALUE_MASK;
1101 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1102 
1103 	return value * (1ULL << (scale * E1000_LTRV_SCALE_FACTOR));
1104 }
1105 
1106 /**
1107  *  e1000_platform_pm_pch_lpt - Set platform power management values
1108  *  @hw: pointer to the HW structure
1109  *  @link: bool indicating link status
1110  *
1111  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1112  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1113  *  when link is up (which must not exceed the maximum latency supported
1114  *  by the platform), otherwise specify there is no LTR requirement.
1115  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1116  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1117  *  Capability register set, on this device LTR is set by writing the
1118  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1119  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1120  *  message to the PMC.
1121  *
1122  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1123  *  high-water mark.
1124  **/
1125 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1126 {
1127 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1128 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1129 	u16 lat_enc = 0;	/* latency encoded */
1130 	s32 obff_hwm = 0;
1131 
1132 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1133 
1134 	if (link) {
1135 		u16 speed, duplex, scale = 0;
1136 		u16 max_snoop, max_nosnoop;
1137 		u16 max_ltr_enc;	/* max LTR latency encoded */
1138 		s64 lat_ns;
1139 		s64 value;
1140 		u32 rxa;
1141 
1142 		if (!hw->mac.max_frame_size) {
1143 			DEBUGOUT("max_frame_size not set.\n");
1144 			return -E1000_ERR_CONFIG;
1145 		}
1146 
1147 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1148 		if (!speed) {
1149 			DEBUGOUT("Speed not set.\n");
1150 			return -E1000_ERR_CONFIG;
1151 		}
1152 
1153 		/* Rx Packet Buffer Allocation size (KB) */
1154 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1155 
1156 		/* Determine the maximum latency tolerated by the device.
1157 		 *
1158 		 * Per the PCIe spec, the tolerated latencies are encoded as
1159 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1160 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1161 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1162 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1163 		 */
1164 		lat_ns = ((s64)rxa * 1024 -
1165 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1166 		if (lat_ns < 0)
1167 			lat_ns = 0;
1168 		else
1169 			lat_ns /= speed;
1170 		value = lat_ns;
1171 
1172 		while (value > E1000_LTRV_VALUE_MASK) {
1173 			scale++;
1174 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1175 		}
1176 		if (scale > E1000_LTRV_SCALE_MAX) {
1177 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1178 			return -E1000_ERR_CONFIG;
1179 		}
1180 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1181 
1182 		/* Determine the maximum latency tolerated by the platform */
1183 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1184 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1185 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1186 
1187 		if (lat_enc > max_ltr_enc) {
1188 			lat_enc = max_ltr_enc;
1189 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1190 		}
1191 
1192 		if (lat_ns) {
1193 			lat_ns *= speed * 1000;
1194 			lat_ns /= 8;
1195 			lat_ns /= 1000000000;
1196 			obff_hwm = (s32)(rxa - lat_ns);
1197 		}
1198 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1199 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1200 			return -E1000_ERR_CONFIG;
1201 		}
1202 	}
1203 
1204 	/* Set Snoop and No-Snoop latencies the same */
1205 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1206 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1207 
1208 	/* Set OBFF high water mark */
1209 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1210 	reg |= obff_hwm;
1211 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1212 
1213 	/* Enable OBFF */
1214 	reg = E1000_READ_REG(hw, E1000_SVCR);
1215 	reg |= E1000_SVCR_OFF_EN;
1216 	/* Always unblock interrupts to the CPU even when the system is
1217 	 * in OBFF mode. This ensures that small round-robin traffic
1218 	 * (like ping) does not get dropped or experience long latency.
1219 	 */
1220 	reg |= E1000_SVCR_OFF_MASKINT;
1221 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1222 
1223 	return E1000_SUCCESS;
1224 }
1225 
1226 /**
1227  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1228  *  @hw: pointer to the HW structure
1229  *  @itr: interrupt throttling rate
1230  *
1231  *  Configure OBFF with the updated interrupt rate.
1232  **/
1233 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1234 {
1235 	u32 svcr;
1236 	s32 timer;
1237 
1238 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1239 
1240 	/* Convert ITR value into microseconds for OBFF timer */
1241 	timer = itr & E1000_ITR_MASK;
1242 	timer = (timer * E1000_ITR_MULT) / 1000;
1243 
1244 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1245 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1246 		return -E1000_ERR_CONFIG;
1247 	}
1248 
1249 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1250 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1251 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1252 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1253 
1254 	return E1000_SUCCESS;
1255 }
1256 
1257 /**
1258  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1259  *  @hw: pointer to the HW structure
1260  *  @to_sx: boolean indicating a system power state transition to Sx
1261  *
1262  *  When link is down, configure ULP mode to significantly reduce the power
1263  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1264  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1265  *  system, configure the ULP mode by software.
1266  */
1267 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1268 {
1269 	u32 mac_reg;
1270 	s32 ret_val = E1000_SUCCESS;
1271 	u16 phy_reg;
1272 	u16 oem_reg = 0;
1273 
1274 	if ((hw->mac.type < e1000_pch_lpt) ||
1275 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1276 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1277 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1278 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1279 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1280 		return 0;
1281 
1282 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1283 		/* Request ME configure ULP mode in the PHY */
1284 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1285 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1286 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1287 
1288 		goto out;
1289 	}
1290 
1291 	if (!to_sx) {
1292 		int i = 0;
1293 
1294 		/* Poll up to 5 seconds for Cable Disconnected indication */
1295 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1296 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1297 			/* Bail if link is re-acquired */
1298 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1299 				return -E1000_ERR_PHY;
1300 
1301 			if (i++ == 100)
1302 				break;
1303 
1304 			msec_delay(50);
1305 		}
1306 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1307 			 (E1000_READ_REG(hw, E1000_FEXT) &
1308 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1309 			 i * 50);
1310 	}
1311 
1312 	ret_val = hw->phy.ops.acquire(hw);
1313 	if (ret_val)
1314 		goto out;
1315 
1316 	/* Force SMBus mode in PHY */
1317 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318 	if (ret_val)
1319 		goto release;
1320 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1321 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1322 
1323 	/* Force SMBus mode in MAC */
1324 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1325 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1326 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1327 
1328 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1329 	 * LPLU and disable Gig speed when entering ULP
1330 	 */
1331 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1332 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1333 						       &oem_reg);
1334 		if (ret_val)
1335 			goto release;
1336 
1337 		phy_reg = oem_reg;
1338 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1339 
1340 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1341 							phy_reg);
1342 
1343 		if (ret_val)
1344 			goto release;
1345 	}
1346 
1347 	/* Set Inband ULP Exit, Reset to SMBus mode and
1348 	 * Disable SMBus Release on PERST# in PHY
1349 	 */
1350 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1351 	if (ret_val)
1352 		goto release;
1353 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1354 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1355 	if (to_sx) {
1356 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1357 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1358 		else
1359 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1360 
1361 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1362 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1363 	} else {
1364 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1365 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1366 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1367 	}
1368 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369 
1370 	/* Set Disable SMBus Release on PERST# in MAC */
1371 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1372 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1373 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1374 
1375 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1376 	phy_reg |= I218_ULP_CONFIG1_START;
1377 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1378 
1379 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1380 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1381 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1382 							oem_reg);
1383 		if (ret_val)
1384 			goto release;
1385 	}
1386 
1387 release:
1388 	hw->phy.ops.release(hw);
1389 out:
1390 	if (ret_val)
1391 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1392 	else
1393 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1394 
1395 	return ret_val;
1396 }
1397 
1398 /**
1399  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1400  *  @hw: pointer to the HW structure
1401  *  @force: boolean indicating whether or not to force disabling ULP
1402  *
1403  *  Un-configure ULP mode when link is up, the system is transitioned from
1404  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1405  *  system, poll for an indication from ME that ULP has been un-configured.
1406  *  If not on an ME enabled system, un-configure the ULP mode by software.
1407  *
1408  *  During nominal operation, this function is called when link is acquired
1409  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1410  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1411  *  to forcibly disable ULP.
1412  */
1413 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1414 {
1415 	s32 ret_val = E1000_SUCCESS;
1416 	u32 mac_reg;
1417 	u16 phy_reg;
1418 	int i = 0;
1419 
1420 	if ((hw->mac.type < e1000_pch_lpt) ||
1421 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1422 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1423 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1424 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1425 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1426 		return 0;
1427 
1428 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1429 		if (force) {
1430 			/* Request ME un-configure ULP mode in the PHY */
1431 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1432 			mac_reg &= ~E1000_H2ME_ULP;
1433 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1434 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1435 		}
1436 
1437 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1438 		while (E1000_READ_REG(hw, E1000_FWSM) &
1439 		       E1000_FWSM_ULP_CFG_DONE) {
1440 			if (i++ == 30) {
1441 				ret_val = -E1000_ERR_PHY;
1442 				goto out;
1443 			}
1444 
1445 			msec_delay(10);
1446 		}
1447 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1448 
1449 		if (force) {
1450 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1451 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1452 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1453 		} else {
1454 			/* Clear H2ME.ULP after ME ULP configuration */
1455 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1456 			mac_reg &= ~E1000_H2ME_ULP;
1457 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1458 		}
1459 
1460 		goto out;
1461 	}
1462 
1463 	ret_val = hw->phy.ops.acquire(hw);
1464 	if (ret_val)
1465 		goto out;
1466 
1467 	if (force)
1468 		/* Toggle LANPHYPC Value bit */
1469 		e1000_toggle_lanphypc_pch_lpt(hw);
1470 
1471 	/* Unforce SMBus mode in PHY */
1472 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1473 	if (ret_val) {
1474 		/* The MAC might be in PCIe mode, so temporarily force to
1475 		 * SMBus mode in order to access the PHY.
1476 		 */
1477 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1478 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1479 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1480 
1481 		msec_delay(50);
1482 
1483 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1484 						       &phy_reg);
1485 		if (ret_val)
1486 			goto release;
1487 	}
1488 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1489 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1490 
1491 	/* Unforce SMBus mode in MAC */
1492 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1493 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1494 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1495 
1496 	/* When ULP mode was previously entered, K1 was disabled by the
1497 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1498 	 */
1499 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1500 	if (ret_val)
1501 		goto release;
1502 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1503 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1504 
1505 	/* Clear ULP enabled configuration */
1506 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1507 	if (ret_val)
1508 		goto release;
1509 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1510 		     I218_ULP_CONFIG1_STICKY_ULP |
1511 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1512 		     I218_ULP_CONFIG1_WOL_HOST |
1513 		     I218_ULP_CONFIG1_INBAND_EXIT |
1514 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1515 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1516 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1517 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1518 
1519 	/* Commit ULP changes by starting auto ULP configuration */
1520 	phy_reg |= I218_ULP_CONFIG1_START;
1521 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1522 
1523 	/* Clear Disable SMBus Release on PERST# in MAC */
1524 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1525 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1526 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1527 
1528 release:
1529 	hw->phy.ops.release(hw);
1530 	if (force) {
1531 		hw->phy.ops.reset(hw);
1532 		msec_delay(50);
1533 	}
1534 out:
1535 	if (ret_val)
1536 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1537 	else
1538 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1539 
1540 	return ret_val;
1541 }
1542 
1543 /**
1544  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1545  *  @hw: pointer to the HW structure
1546  *
1547  *  Checks to see of the link status of the hardware has changed.  If a
1548  *  change in link status has been detected, then we read the PHY registers
1549  *  to get the current speed/duplex if link exists.
1550  **/
1551 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1552 {
1553 	struct e1000_mac_info *mac = &hw->mac;
1554 	s32 ret_val, tipg_reg = 0;
1555 	u16 emi_addr, emi_val = 0;
1556 	bool link;
1557 	u16 phy_reg;
1558 
1559 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1560 
1561 	/* We only want to go out to the PHY registers to see if Auto-Neg
1562 	 * has completed and/or if our link status has changed.  The
1563 	 * get_link_status flag is set upon receiving a Link Status
1564 	 * Change or Rx Sequence Error interrupt.
1565 	 */
1566 	if (!mac->get_link_status)
1567 		return E1000_SUCCESS;
1568 
1569 	/* First we want to see if the MII Status Register reports
1570 	 * link.  If so, then we want to get the current speed/duplex
1571 	 * of the PHY.
1572 	 */
1573 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1574 	if (ret_val)
1575 		return ret_val;
1576 
1577 	if (hw->mac.type == e1000_pchlan) {
1578 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1579 		if (ret_val)
1580 			return ret_val;
1581 	}
1582 
1583 	/* When connected at 10Mbps half-duplex, some parts are excessively
1584 	 * aggressive resulting in many collisions. To avoid this, increase
1585 	 * the IPG and reduce Rx latency in the PHY.
1586 	 */
1587 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1588 		u16 speed, duplex;
1589 
1590 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1591 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1592 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1593 
1594 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1595 			tipg_reg |= 0xFF;
1596 			/* Reduce Rx latency in analog PHY */
1597 			emi_val = 0;
1598 		} else if (hw->mac.type >= e1000_pch_spt &&
1599 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1600 			tipg_reg |= 0xC;
1601 			emi_val = 1;
1602 		} else {
1603 			/* Roll back the default values */
1604 			tipg_reg |= 0x08;
1605 			emi_val = 1;
1606 		}
1607 
1608 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1609 
1610 		ret_val = hw->phy.ops.acquire(hw);
1611 		if (ret_val)
1612 			return ret_val;
1613 
1614 		if (hw->mac.type == e1000_pch2lan)
1615 			emi_addr = I82579_RX_CONFIG;
1616 		else
1617 			emi_addr = I217_RX_CONFIG;
1618 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1619 
1620 
1621 		if (hw->mac.type >= e1000_pch_lpt) {
1622 			u16 phy_reg;
1623 
1624 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1625 						    &phy_reg);
1626 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1627 			if (speed == SPEED_100 || speed == SPEED_10)
1628 				phy_reg |= 0x3E8;
1629 			else
1630 				phy_reg |= 0xFA;
1631 			hw->phy.ops.write_reg_locked(hw,
1632 						     I217_PLL_CLOCK_GATE_REG,
1633 						     phy_reg);
1634 
1635 			if (speed == SPEED_1000) {
1636 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1637 							    &phy_reg);
1638 
1639 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1640 
1641 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1642 							     phy_reg);
1643 				}
1644 		 }
1645 		hw->phy.ops.release(hw);
1646 
1647 		if (ret_val)
1648 			return ret_val;
1649 
1650 		if (hw->mac.type >= e1000_pch_spt) {
1651 			u16 data;
1652 			u16 ptr_gap;
1653 
1654 			if (speed == SPEED_1000) {
1655 				ret_val = hw->phy.ops.acquire(hw);
1656 				if (ret_val)
1657 					return ret_val;
1658 
1659 				ret_val = hw->phy.ops.read_reg_locked(hw,
1660 							      PHY_REG(776, 20),
1661 							      &data);
1662 				if (ret_val) {
1663 					hw->phy.ops.release(hw);
1664 					return ret_val;
1665 				}
1666 
1667 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1668 				if (ptr_gap < 0x18) {
1669 					data &= ~(0x3FF << 2);
1670 					data |= (0x18 << 2);
1671 					ret_val =
1672 						hw->phy.ops.write_reg_locked(hw,
1673 							PHY_REG(776, 20), data);
1674 				}
1675 				hw->phy.ops.release(hw);
1676 				if (ret_val)
1677 					return ret_val;
1678 			} else {
1679 				ret_val = hw->phy.ops.acquire(hw);
1680 				if (ret_val)
1681 					return ret_val;
1682 
1683 				ret_val = hw->phy.ops.write_reg_locked(hw,
1684 							     PHY_REG(776, 20),
1685 							     0xC023);
1686 				hw->phy.ops.release(hw);
1687 				if (ret_val)
1688 					return ret_val;
1689 
1690 			}
1691 		}
1692 	}
1693 
1694 	/* I217 Packet Loss issue:
1695 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1696 	 * on power up.
1697 	 * Set the Beacon Duration for I217 to 8 usec
1698 	 */
1699 	if (hw->mac.type >= e1000_pch_lpt) {
1700 		u32 mac_reg;
1701 
1702 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1703 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1704 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1705 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1706 	}
1707 
1708 	/* Work-around I218 hang issue */
1709 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1710 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1711 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1712 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1713 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1714 		if (ret_val)
1715 			return ret_val;
1716 	}
1717 	if (hw->mac.type >= e1000_pch_lpt) {
1718 		/* Set platform power management values for
1719 		 * Latency Tolerance Reporting (LTR)
1720 		 * Optimized Buffer Flush/Fill (OBFF)
1721 		 */
1722 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1723 		if (ret_val)
1724 			return ret_val;
1725 	}
1726 
1727 	/* Clear link partner's EEE ability */
1728 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1729 
1730 	if (hw->mac.type >= e1000_pch_lpt) {
1731 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1732 
1733 		if (hw->mac.type == e1000_pch_spt) {
1734 			/* FEXTNVM6 K1-off workaround - for SPT only */
1735 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1736 
1737 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1738 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1739 			else
1740 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1741 		}
1742 
1743 		if (hw->dev_spec.ich8lan.disable_k1_off == TRUE)
1744 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1745 
1746 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1747 	}
1748 
1749 	if (!link)
1750 		return E1000_SUCCESS; /* No link detected */
1751 
1752 	mac->get_link_status = FALSE;
1753 
1754 	switch (hw->mac.type) {
1755 	case e1000_pch2lan:
1756 		ret_val = e1000_k1_workaround_lv(hw);
1757 		if (ret_val)
1758 			return ret_val;
1759 		/* fall-thru */
1760 	case e1000_pchlan:
1761 		if (hw->phy.type == e1000_phy_82578) {
1762 			ret_val = e1000_link_stall_workaround_hv(hw);
1763 			if (ret_val)
1764 				return ret_val;
1765 		}
1766 
1767 		/* Workaround for PCHx parts in half-duplex:
1768 		 * Set the number of preambles removed from the packet
1769 		 * when it is passed from the PHY to the MAC to prevent
1770 		 * the MAC from misinterpreting the packet type.
1771 		 */
1772 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1773 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1774 
1775 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1776 		    E1000_STATUS_FD)
1777 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1778 
1779 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1780 		break;
1781 	default:
1782 		break;
1783 	}
1784 
1785 	/* Check if there was DownShift, must be checked
1786 	 * immediately after link-up
1787 	 */
1788 	e1000_check_downshift_generic(hw);
1789 
1790 	/* Enable/Disable EEE after link up */
1791 	if (hw->phy.type > e1000_phy_82579) {
1792 		ret_val = e1000_set_eee_pchlan(hw);
1793 		if (ret_val)
1794 			return ret_val;
1795 	}
1796 
1797 	/* If we are forcing speed/duplex, then we simply return since
1798 	 * we have already determined whether we have link or not.
1799 	 */
1800 	if (!mac->autoneg)
1801 		return -E1000_ERR_CONFIG;
1802 
1803 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1804 	 * of MAC speed/duplex configuration.  So we only need to
1805 	 * configure Collision Distance in the MAC.
1806 	 */
1807 	mac->ops.config_collision_dist(hw);
1808 
1809 	/* Configure Flow Control now that Auto-Neg has completed.
1810 	 * First, we need to restore the desired flow control
1811 	 * settings because we may have had to re-autoneg with a
1812 	 * different link partner.
1813 	 */
1814 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1815 	if (ret_val)
1816 		DEBUGOUT("Error configuring flow control\n");
1817 
1818 	return ret_val;
1819 }
1820 
1821 /**
1822  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1823  *  @hw: pointer to the HW structure
1824  *
1825  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1826  **/
1827 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1828 {
1829 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1830 
1831 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1832 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1833 	switch (hw->mac.type) {
1834 	case e1000_ich8lan:
1835 	case e1000_ich9lan:
1836 	case e1000_ich10lan:
1837 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1838 		break;
1839 	case e1000_pchlan:
1840 	case e1000_pch2lan:
1841 	case e1000_pch_lpt:
1842 	case e1000_pch_spt:
1843 	case e1000_pch_cnp:
1844 	case e1000_pch_tgp:
1845 	case e1000_pch_adp:
1846 	case e1000_pch_mtp:
1847 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1848 		break;
1849 	default:
1850 		break;
1851 	}
1852 }
1853 
1854 /**
1855  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1856  *  @hw: pointer to the HW structure
1857  *
1858  *  Acquires the mutex for performing NVM operations.
1859  **/
1860 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1861 {
1862 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1863 
1864 	ASSERT_CTX_LOCK_HELD(hw);
1865 
1866 	return E1000_SUCCESS;
1867 }
1868 
1869 /**
1870  *  e1000_release_nvm_ich8lan - Release NVM mutex
1871  *  @hw: pointer to the HW structure
1872  *
1873  *  Releases the mutex used while performing NVM operations.
1874  **/
1875 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1876 {
1877 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1878 
1879 	ASSERT_CTX_LOCK_HELD(hw);
1880 }
1881 
1882 /**
1883  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1884  *  @hw: pointer to the HW structure
1885  *
1886  *  Acquires the software control flag for performing PHY and select
1887  *  MAC CSR accesses.
1888  **/
1889 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1890 {
1891 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1892 	s32 ret_val = E1000_SUCCESS;
1893 
1894 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1895 
1896 	ASSERT_CTX_LOCK_HELD(hw);
1897 
1898 	while (timeout) {
1899 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1900 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1901 			break;
1902 
1903 		msec_delay_irq(1);
1904 		timeout--;
1905 	}
1906 
1907 	if (!timeout) {
1908 		DEBUGOUT("SW has already locked the resource.\n");
1909 		ret_val = -E1000_ERR_CONFIG;
1910 		goto out;
1911 	}
1912 
1913 	timeout = SW_FLAG_TIMEOUT;
1914 
1915 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1916 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1917 
1918 	while (timeout) {
1919 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1920 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1921 			break;
1922 
1923 		msec_delay_irq(1);
1924 		timeout--;
1925 	}
1926 
1927 	if (!timeout) {
1928 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1929 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1930 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1931 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1932 		ret_val = -E1000_ERR_CONFIG;
1933 		goto out;
1934 	}
1935 
1936 out:
1937 	return ret_val;
1938 }
1939 
1940 /**
1941  *  e1000_release_swflag_ich8lan - Release software control flag
1942  *  @hw: pointer to the HW structure
1943  *
1944  *  Releases the software control flag for performing PHY and select
1945  *  MAC CSR accesses.
1946  **/
1947 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1948 {
1949 	u32 extcnf_ctrl;
1950 
1951 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1952 
1953 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1954 
1955 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1956 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1957 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1958 	} else {
1959 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1960 	}
1961 }
1962 
1963 /**
1964  *  e1000_check_mng_mode_ich8lan - Checks management mode
1965  *  @hw: pointer to the HW structure
1966  *
1967  *  This checks if the adapter has any manageability enabled.
1968  *  This is a function pointer entry point only called by read/write
1969  *  routines for the PHY and NVM parts.
1970  **/
1971 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1972 {
1973 	u32 fwsm;
1974 
1975 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1976 
1977 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1978 
1979 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1980 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1981 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1982 }
1983 
1984 /**
1985  *  e1000_check_mng_mode_pchlan - Checks management mode
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  This checks if the adapter has iAMT enabled.
1989  *  This is a function pointer entry point only called by read/write
1990  *  routines for the PHY and NVM parts.
1991  **/
1992 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1993 {
1994 	u32 fwsm;
1995 
1996 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1997 
1998 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1999 
2000 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2001 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2002 }
2003 
2004 /**
2005  *  e1000_rar_set_pch2lan - Set receive address register
2006  *  @hw: pointer to the HW structure
2007  *  @addr: pointer to the receive address
2008  *  @index: receive address array register
2009  *
2010  *  Sets the receive address array register at index to the address passed
2011  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2012  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2013  *  Use SHRA[0-3] in place of those reserved for ME.
2014  **/
2015 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2016 {
2017 	u32 rar_low, rar_high;
2018 
2019 	DEBUGFUNC("e1000_rar_set_pch2lan");
2020 
2021 	/* HW expects these in little endian so we reverse the byte order
2022 	 * from network order (big endian) to little endian
2023 	 */
2024 	rar_low = ((u32) addr[0] |
2025 		   ((u32) addr[1] << 8) |
2026 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2027 
2028 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2029 
2030 	/* If MAC address zero, no need to set the AV bit */
2031 	if (rar_low || rar_high)
2032 		rar_high |= E1000_RAH_AV;
2033 
2034 	if (index == 0) {
2035 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2036 		E1000_WRITE_FLUSH(hw);
2037 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2038 		E1000_WRITE_FLUSH(hw);
2039 		return E1000_SUCCESS;
2040 	}
2041 
2042 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2043 	 * next address into the SHRA register array.
2044 	 */
2045 	if (index < (u32) (hw->mac.rar_entry_count)) {
2046 		s32 ret_val;
2047 
2048 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2049 		if (ret_val)
2050 			goto out;
2051 
2052 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2053 		E1000_WRITE_FLUSH(hw);
2054 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2055 		E1000_WRITE_FLUSH(hw);
2056 
2057 		e1000_release_swflag_ich8lan(hw);
2058 
2059 		/* verify the register updates */
2060 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2061 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2062 			return E1000_SUCCESS;
2063 
2064 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2065 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2066 	}
2067 
2068 out:
2069 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2070 	return -E1000_ERR_CONFIG;
2071 }
2072 
2073 /**
2074  *  e1000_rar_set_pch_lpt - Set receive address registers
2075  *  @hw: pointer to the HW structure
2076  *  @addr: pointer to the receive address
2077  *  @index: receive address array register
2078  *
2079  *  Sets the receive address register array at index to the address passed
2080  *  in by addr. For LPT, RAR[0] is the base address register that is to
2081  *  contain the MAC address. SHRA[0-10] are the shared receive address
2082  *  registers that are shared between the Host and manageability engine (ME).
2083  **/
2084 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2085 {
2086 	u32 rar_low, rar_high;
2087 	u32 wlock_mac;
2088 
2089 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2090 
2091 	/* HW expects these in little endian so we reverse the byte order
2092 	 * from network order (big endian) to little endian
2093 	 */
2094 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2095 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2096 
2097 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2098 
2099 	/* If MAC address zero, no need to set the AV bit */
2100 	if (rar_low || rar_high)
2101 		rar_high |= E1000_RAH_AV;
2102 
2103 	if (index == 0) {
2104 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2105 		E1000_WRITE_FLUSH(hw);
2106 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2107 		E1000_WRITE_FLUSH(hw);
2108 		return E1000_SUCCESS;
2109 	}
2110 
2111 	/* The manageability engine (ME) can lock certain SHRAR registers that
2112 	 * it is using - those registers are unavailable for use.
2113 	 */
2114 	if (index < hw->mac.rar_entry_count) {
2115 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2116 			    E1000_FWSM_WLOCK_MAC_MASK;
2117 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2118 
2119 		/* Check if all SHRAR registers are locked */
2120 		if (wlock_mac == 1)
2121 			goto out;
2122 
2123 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2124 			s32 ret_val;
2125 
2126 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2127 
2128 			if (ret_val)
2129 				goto out;
2130 
2131 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2132 					rar_low);
2133 			E1000_WRITE_FLUSH(hw);
2134 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2135 					rar_high);
2136 			E1000_WRITE_FLUSH(hw);
2137 
2138 			e1000_release_swflag_ich8lan(hw);
2139 
2140 			/* verify the register updates */
2141 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2142 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2143 				return E1000_SUCCESS;
2144 		}
2145 	}
2146 
2147 out:
2148 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2149 	return -E1000_ERR_CONFIG;
2150 }
2151 
2152 /**
2153  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2154  *  @hw: pointer to the HW structure
2155  *  @mc_addr_list: array of multicast addresses to program
2156  *  @mc_addr_count: number of multicast addresses to program
2157  *
2158  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2159  *  The caller must have a packed mc_addr_list of multicast addresses.
2160  **/
2161 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2162 					      u8 *mc_addr_list,
2163 					      u32 mc_addr_count)
2164 {
2165 	u16 phy_reg = 0;
2166 	int i;
2167 	s32 ret_val;
2168 
2169 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2170 
2171 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2172 
2173 	ret_val = hw->phy.ops.acquire(hw);
2174 	if (ret_val)
2175 		return;
2176 
2177 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2178 	if (ret_val)
2179 		goto release;
2180 
2181 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2182 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2183 					   (u16)(hw->mac.mta_shadow[i] &
2184 						 0xFFFF));
2185 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2186 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2187 						 0xFFFF));
2188 	}
2189 
2190 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2191 
2192 release:
2193 	hw->phy.ops.release(hw);
2194 }
2195 
2196 /**
2197  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2198  *  @hw: pointer to the HW structure
2199  *
2200  *  Checks if firmware is blocking the reset of the PHY.
2201  *  This is a function pointer entry point only called by
2202  *  reset routines.
2203  **/
2204 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2205 {
2206 	u32 fwsm;
2207 	bool blocked = FALSE;
2208 	int i = 0;
2209 
2210 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2211 
2212 	do {
2213 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2214 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2215 			blocked = TRUE;
2216 			msec_delay(10);
2217 			continue;
2218 		}
2219 		blocked = FALSE;
2220 	} while (blocked && (i++ < 30));
2221 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2222 }
2223 
2224 /**
2225  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2226  *  @hw: pointer to the HW structure
2227  *
2228  *  Assumes semaphore already acquired.
2229  *
2230  **/
2231 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2232 {
2233 	u16 phy_data;
2234 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2235 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2236 		E1000_STRAP_SMT_FREQ_SHIFT;
2237 	s32 ret_val;
2238 
2239 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2240 
2241 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2242 	if (ret_val)
2243 		return ret_val;
2244 
2245 	phy_data &= ~HV_SMB_ADDR_MASK;
2246 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2247 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2248 
2249 	if (hw->phy.type == e1000_phy_i217) {
2250 		/* Restore SMBus frequency */
2251 		if (freq--) {
2252 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2253 			phy_data |= (freq & (1 << 0)) <<
2254 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2255 			phy_data |= (freq & (1 << 1)) <<
2256 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2257 		} else {
2258 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2259 		}
2260 	}
2261 
2262 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2263 }
2264 
2265 /**
2266  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2267  *  @hw:   pointer to the HW structure
2268  *
2269  *  SW should configure the LCD from the NVM extended configuration region
2270  *  as a workaround for certain parts.
2271  **/
2272 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2273 {
2274 	struct e1000_phy_info *phy = &hw->phy;
2275 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2276 	s32 ret_val = E1000_SUCCESS;
2277 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2278 
2279 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2280 
2281 	/* Initialize the PHY from the NVM on ICH platforms.  This
2282 	 * is needed due to an issue where the NVM configuration is
2283 	 * not properly autoloaded after power transitions.
2284 	 * Therefore, after each PHY reset, we will load the
2285 	 * configuration data out of the NVM manually.
2286 	 */
2287 	switch (hw->mac.type) {
2288 	case e1000_ich8lan:
2289 		if (phy->type != e1000_phy_igp_3)
2290 			return ret_val;
2291 
2292 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2293 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2294 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2295 			break;
2296 		}
2297 		/* Fall-thru */
2298 	case e1000_pchlan:
2299 	case e1000_pch2lan:
2300 	case e1000_pch_lpt:
2301 	case e1000_pch_spt:
2302 	case e1000_pch_cnp:
2303 	case e1000_pch_tgp:
2304 	case e1000_pch_adp:
2305 	case e1000_pch_mtp:
2306 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2307 		break;
2308 	default:
2309 		return ret_val;
2310 	}
2311 
2312 	ret_val = hw->phy.ops.acquire(hw);
2313 	if (ret_val)
2314 		return ret_val;
2315 
2316 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2317 	if (!(data & sw_cfg_mask))
2318 		goto release;
2319 
2320 	/* Make sure HW does not configure LCD from PHY
2321 	 * extended configuration before SW configuration
2322 	 */
2323 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2324 	if ((hw->mac.type < e1000_pch2lan) &&
2325 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2326 			goto release;
2327 
2328 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2329 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2330 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2331 	if (!cnf_size)
2332 		goto release;
2333 
2334 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2335 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2336 
2337 	if (((hw->mac.type == e1000_pchlan) &&
2338 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2339 	    (hw->mac.type > e1000_pchlan)) {
2340 		/* HW configures the SMBus address and LEDs when the
2341 		 * OEM and LCD Write Enable bits are set in the NVM.
2342 		 * When both NVM bits are cleared, SW will configure
2343 		 * them instead.
2344 		 */
2345 		ret_val = e1000_write_smbus_addr(hw);
2346 		if (ret_val)
2347 			goto release;
2348 
2349 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2350 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2351 							(u16)data);
2352 		if (ret_val)
2353 			goto release;
2354 	}
2355 
2356 	/* Configure LCD from extended configuration region. */
2357 
2358 	/* cnf_base_addr is in DWORD */
2359 	word_addr = (u16)(cnf_base_addr << 1);
2360 
2361 	for (i = 0; i < cnf_size; i++) {
2362 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2363 					   &reg_data);
2364 		if (ret_val)
2365 			goto release;
2366 
2367 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2368 					   1, &reg_addr);
2369 		if (ret_val)
2370 			goto release;
2371 
2372 		/* Save off the PHY page for future writes. */
2373 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2374 			phy_page = reg_data;
2375 			continue;
2376 		}
2377 
2378 		reg_addr &= PHY_REG_MASK;
2379 		reg_addr |= phy_page;
2380 
2381 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2382 						    reg_data);
2383 		if (ret_val)
2384 			goto release;
2385 	}
2386 
2387 release:
2388 	hw->phy.ops.release(hw);
2389 	return ret_val;
2390 }
2391 
2392 /**
2393  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2394  *  @hw:   pointer to the HW structure
2395  *  @link: link up bool flag
2396  *
2397  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2398  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2399  *  If link is down, the function will restore the default K1 setting located
2400  *  in the NVM.
2401  **/
2402 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2403 {
2404 	s32 ret_val = E1000_SUCCESS;
2405 	u16 status_reg = 0;
2406 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2407 
2408 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2409 
2410 	if (hw->mac.type != e1000_pchlan)
2411 		return E1000_SUCCESS;
2412 
2413 	/* Wrap the whole flow with the sw flag */
2414 	ret_val = hw->phy.ops.acquire(hw);
2415 	if (ret_val)
2416 		return ret_val;
2417 
2418 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2419 	if (link) {
2420 		if (hw->phy.type == e1000_phy_82578) {
2421 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2422 							      &status_reg);
2423 			if (ret_val)
2424 				goto release;
2425 
2426 			status_reg &= (BM_CS_STATUS_LINK_UP |
2427 				       BM_CS_STATUS_RESOLVED |
2428 				       BM_CS_STATUS_SPEED_MASK);
2429 
2430 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2431 					   BM_CS_STATUS_RESOLVED |
2432 					   BM_CS_STATUS_SPEED_1000))
2433 				k1_enable = FALSE;
2434 		}
2435 
2436 		if (hw->phy.type == e1000_phy_82577) {
2437 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2438 							      &status_reg);
2439 			if (ret_val)
2440 				goto release;
2441 
2442 			status_reg &= (HV_M_STATUS_LINK_UP |
2443 				       HV_M_STATUS_AUTONEG_COMPLETE |
2444 				       HV_M_STATUS_SPEED_MASK);
2445 
2446 			if (status_reg == (HV_M_STATUS_LINK_UP |
2447 					   HV_M_STATUS_AUTONEG_COMPLETE |
2448 					   HV_M_STATUS_SPEED_1000))
2449 				k1_enable = FALSE;
2450 		}
2451 
2452 		/* Link stall fix for link up */
2453 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2454 						       0x0100);
2455 		if (ret_val)
2456 			goto release;
2457 
2458 	} else {
2459 		/* Link stall fix for link down */
2460 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2461 						       0x4100);
2462 		if (ret_val)
2463 			goto release;
2464 	}
2465 
2466 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2467 
2468 release:
2469 	hw->phy.ops.release(hw);
2470 
2471 	return ret_val;
2472 }
2473 
2474 /**
2475  *  e1000_configure_k1_ich8lan - Configure K1 power state
2476  *  @hw: pointer to the HW structure
2477  *  @enable: K1 state to configure
2478  *
2479  *  Configure the K1 power state based on the provided parameter.
2480  *  Assumes semaphore already acquired.
2481  *
2482  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2483  **/
2484 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2485 {
2486 	s32 ret_val;
2487 	u32 ctrl_reg = 0;
2488 	u32 ctrl_ext = 0;
2489 	u32 reg = 0;
2490 	u16 kmrn_reg = 0;
2491 
2492 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2493 
2494 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2495 					     &kmrn_reg);
2496 	if (ret_val)
2497 		return ret_val;
2498 
2499 	if (k1_enable)
2500 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2501 	else
2502 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2503 
2504 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2505 					      kmrn_reg);
2506 	if (ret_val)
2507 		return ret_val;
2508 
2509 	usec_delay(20);
2510 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2511 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2512 
2513 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2514 	reg |= E1000_CTRL_FRCSPD;
2515 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2516 
2517 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2518 	E1000_WRITE_FLUSH(hw);
2519 	usec_delay(20);
2520 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2521 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2522 	E1000_WRITE_FLUSH(hw);
2523 	usec_delay(20);
2524 
2525 	return E1000_SUCCESS;
2526 }
2527 
2528 /**
2529  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2530  *  @hw:       pointer to the HW structure
2531  *  @d0_state: boolean if entering d0 or d3 device state
2532  *
2533  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2534  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2535  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2536  **/
2537 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2538 {
2539 	s32 ret_val = 0;
2540 	u32 mac_reg;
2541 	u16 oem_reg;
2542 
2543 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2544 
2545 	if (hw->mac.type < e1000_pchlan)
2546 		return ret_val;
2547 
2548 	ret_val = hw->phy.ops.acquire(hw);
2549 	if (ret_val)
2550 		return ret_val;
2551 
2552 	if (hw->mac.type == e1000_pchlan) {
2553 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2554 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2555 			goto release;
2556 	}
2557 
2558 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2559 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2560 		goto release;
2561 
2562 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2563 
2564 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2565 	if (ret_val)
2566 		goto release;
2567 
2568 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2569 
2570 	if (d0_state) {
2571 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2572 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2573 
2574 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2575 			oem_reg |= HV_OEM_BITS_LPLU;
2576 	} else {
2577 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2578 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2579 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2580 
2581 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2582 		    E1000_PHY_CTRL_NOND0A_LPLU))
2583 			oem_reg |= HV_OEM_BITS_LPLU;
2584 	}
2585 
2586 	/* Set Restart auto-neg to activate the bits */
2587 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2588 	    !hw->phy.ops.check_reset_block(hw))
2589 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2590 
2591 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2592 
2593 release:
2594 	hw->phy.ops.release(hw);
2595 
2596 	return ret_val;
2597 }
2598 
2599 
2600 /**
2601  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2602  *  @hw:   pointer to the HW structure
2603  **/
2604 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2605 {
2606 	s32 ret_val;
2607 	u16 data;
2608 
2609 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2610 
2611 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2612 	if (ret_val)
2613 		return ret_val;
2614 
2615 	data |= HV_KMRN_MDIO_SLOW;
2616 
2617 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2618 
2619 	return ret_val;
2620 }
2621 
2622 /**
2623  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2624  *  done after every PHY reset.
2625  **/
2626 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2627 {
2628 	s32 ret_val = E1000_SUCCESS;
2629 	u16 phy_data;
2630 
2631 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2632 
2633 	if (hw->mac.type != e1000_pchlan)
2634 		return E1000_SUCCESS;
2635 
2636 	/* Set MDIO slow mode before any other MDIO access */
2637 	if (hw->phy.type == e1000_phy_82577) {
2638 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2639 		if (ret_val)
2640 			return ret_val;
2641 	}
2642 
2643 	if (((hw->phy.type == e1000_phy_82577) &&
2644 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2645 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2646 		/* Disable generation of early preamble */
2647 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2648 		if (ret_val)
2649 			return ret_val;
2650 
2651 		/* Preamble tuning for SSC */
2652 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2653 						0xA204);
2654 		if (ret_val)
2655 			return ret_val;
2656 	}
2657 
2658 	if (hw->phy.type == e1000_phy_82578) {
2659 		/* Return registers to default by doing a soft reset then
2660 		 * writing 0x3140 to the control register.
2661 		 */
2662 		if (hw->phy.revision < 2) {
2663 			e1000_phy_sw_reset_generic(hw);
2664 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2665 							0x3140);
2666 			if (ret_val)
2667 				return ret_val;
2668 		}
2669 	}
2670 
2671 	/* Select page 0 */
2672 	ret_val = hw->phy.ops.acquire(hw);
2673 	if (ret_val)
2674 		return ret_val;
2675 
2676 	hw->phy.addr = 1;
2677 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2678 	hw->phy.ops.release(hw);
2679 	if (ret_val)
2680 		return ret_val;
2681 
2682 	/* Configure the K1 Si workaround during phy reset assuming there is
2683 	 * link so that it disables K1 if link is in 1Gbps.
2684 	 */
2685 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2686 	if (ret_val)
2687 		return ret_val;
2688 
2689 	/* Workaround for link disconnects on a busy hub in half duplex */
2690 	ret_val = hw->phy.ops.acquire(hw);
2691 	if (ret_val)
2692 		return ret_val;
2693 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2694 	if (ret_val)
2695 		goto release;
2696 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2697 					       phy_data & 0x00FF);
2698 	if (ret_val)
2699 		goto release;
2700 
2701 	/* set MSE higher to enable link to stay up when noise is high */
2702 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2703 release:
2704 	hw->phy.ops.release(hw);
2705 
2706 	return ret_val;
2707 }
2708 
2709 /**
2710  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2711  *  @hw:   pointer to the HW structure
2712  **/
2713 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2714 {
2715 	u32 mac_reg;
2716 	u16 i, phy_reg = 0;
2717 	s32 ret_val;
2718 
2719 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2720 
2721 	ret_val = hw->phy.ops.acquire(hw);
2722 	if (ret_val)
2723 		return;
2724 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2725 	if (ret_val)
2726 		goto release;
2727 
2728 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2729 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2730 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2731 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2732 					   (u16)(mac_reg & 0xFFFF));
2733 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2734 					   (u16)((mac_reg >> 16) & 0xFFFF));
2735 
2736 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2737 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2738 					   (u16)(mac_reg & 0xFFFF));
2739 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2740 					   (u16)((mac_reg & E1000_RAH_AV)
2741 						 >> 16));
2742 	}
2743 
2744 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2745 
2746 release:
2747 	hw->phy.ops.release(hw);
2748 }
2749 
2750 static u32 e1000_calc_rx_da_crc(u8 mac[])
2751 {
2752 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2753 	u32 i, j, mask, crc;
2754 
2755 	DEBUGFUNC("e1000_calc_rx_da_crc");
2756 
2757 	crc = 0xffffffff;
2758 	for (i = 0; i < 6; i++) {
2759 		crc = crc ^ mac[i];
2760 		for (j = 8; j > 0; j--) {
2761 			mask = (crc & 1) * (-1);
2762 			crc = (crc >> 1) ^ (poly & mask);
2763 		}
2764 	}
2765 	return ~crc;
2766 }
2767 
2768 /**
2769  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2770  *  with 82579 PHY
2771  *  @hw: pointer to the HW structure
2772  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2773  **/
2774 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2775 {
2776 	s32 ret_val = E1000_SUCCESS;
2777 	u16 phy_reg, data;
2778 	u32 mac_reg;
2779 	u16 i;
2780 
2781 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2782 
2783 	if (hw->mac.type < e1000_pch2lan)
2784 		return E1000_SUCCESS;
2785 
2786 	/* disable Rx path while enabling/disabling workaround */
2787 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2788 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2789 					phy_reg | (1 << 14));
2790 	if (ret_val)
2791 		return ret_val;
2792 
2793 	if (enable) {
2794 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2795 		 * SHRAL/H) and initial CRC values to the MAC
2796 		 */
2797 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2798 			u8 mac_addr[ETHER_ADDR_LEN] = {0};
2799 			u32 addr_high, addr_low;
2800 
2801 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2802 			if (!(addr_high & E1000_RAH_AV))
2803 				continue;
2804 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2805 			mac_addr[0] = (addr_low & 0xFF);
2806 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2807 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2808 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2809 			mac_addr[4] = (addr_high & 0xFF);
2810 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2811 
2812 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2813 					e1000_calc_rx_da_crc(mac_addr));
2814 		}
2815 
2816 		/* Write Rx addresses to the PHY */
2817 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2818 
2819 		/* Enable jumbo frame workaround in the MAC */
2820 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2821 		mac_reg &= ~(1 << 14);
2822 		mac_reg |= (7 << 15);
2823 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2824 
2825 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2826 		mac_reg |= E1000_RCTL_SECRC;
2827 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2828 
2829 		ret_val = e1000_read_kmrn_reg_generic(hw,
2830 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2831 						&data);
2832 		if (ret_val)
2833 			return ret_val;
2834 		ret_val = e1000_write_kmrn_reg_generic(hw,
2835 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2836 						data | (1 << 0));
2837 		if (ret_val)
2838 			return ret_val;
2839 		ret_val = e1000_read_kmrn_reg_generic(hw,
2840 						E1000_KMRNCTRLSTA_HD_CTRL,
2841 						&data);
2842 		if (ret_val)
2843 			return ret_val;
2844 		data &= ~(0xF << 8);
2845 		data |= (0xB << 8);
2846 		ret_val = e1000_write_kmrn_reg_generic(hw,
2847 						E1000_KMRNCTRLSTA_HD_CTRL,
2848 						data);
2849 		if (ret_val)
2850 			return ret_val;
2851 
2852 		/* Enable jumbo frame workaround in the PHY */
2853 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2854 		data &= ~(0x7F << 5);
2855 		data |= (0x37 << 5);
2856 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2857 		if (ret_val)
2858 			return ret_val;
2859 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2860 		data &= ~(1 << 13);
2861 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2862 		if (ret_val)
2863 			return ret_val;
2864 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2865 		data &= ~(0x3FF << 2);
2866 		data |= (E1000_TX_PTR_GAP << 2);
2867 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2868 		if (ret_val)
2869 			return ret_val;
2870 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2871 		if (ret_val)
2872 			return ret_val;
2873 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2874 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2875 						(1 << 10));
2876 		if (ret_val)
2877 			return ret_val;
2878 	} else {
2879 		/* Write MAC register values back to h/w defaults */
2880 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2881 		mac_reg &= ~(0xF << 14);
2882 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2883 
2884 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2885 		mac_reg &= ~E1000_RCTL_SECRC;
2886 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2887 
2888 		ret_val = e1000_read_kmrn_reg_generic(hw,
2889 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2890 						&data);
2891 		if (ret_val)
2892 			return ret_val;
2893 		ret_val = e1000_write_kmrn_reg_generic(hw,
2894 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2895 						data & ~(1 << 0));
2896 		if (ret_val)
2897 			return ret_val;
2898 		ret_val = e1000_read_kmrn_reg_generic(hw,
2899 						E1000_KMRNCTRLSTA_HD_CTRL,
2900 						&data);
2901 		if (ret_val)
2902 			return ret_val;
2903 		data &= ~(0xF << 8);
2904 		data |= (0xB << 8);
2905 		ret_val = e1000_write_kmrn_reg_generic(hw,
2906 						E1000_KMRNCTRLSTA_HD_CTRL,
2907 						data);
2908 		if (ret_val)
2909 			return ret_val;
2910 
2911 		/* Write PHY register values back to h/w defaults */
2912 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2913 		data &= ~(0x7F << 5);
2914 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2915 		if (ret_val)
2916 			return ret_val;
2917 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2918 		data |= (1 << 13);
2919 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2920 		if (ret_val)
2921 			return ret_val;
2922 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2923 		data &= ~(0x3FF << 2);
2924 		data |= (0x8 << 2);
2925 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2926 		if (ret_val)
2927 			return ret_val;
2928 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2929 		if (ret_val)
2930 			return ret_val;
2931 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2932 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2933 						~(1 << 10));
2934 		if (ret_val)
2935 			return ret_val;
2936 	}
2937 
2938 	/* re-enable Rx path after enabling/disabling workaround */
2939 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2940 				     ~(1 << 14));
2941 }
2942 
2943 /**
2944  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2945  *  done after every PHY reset.
2946  **/
2947 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2948 {
2949 	s32 ret_val = E1000_SUCCESS;
2950 
2951 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2952 
2953 	if (hw->mac.type != e1000_pch2lan)
2954 		return E1000_SUCCESS;
2955 
2956 	/* Set MDIO slow mode before any other MDIO access */
2957 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2958 	if (ret_val)
2959 		return ret_val;
2960 
2961 	ret_val = hw->phy.ops.acquire(hw);
2962 	if (ret_val)
2963 		return ret_val;
2964 	/* set MSE higher to enable link to stay up when noise is high */
2965 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2966 	if (ret_val)
2967 		goto release;
2968 	/* drop link after 5 times MSE threshold was reached */
2969 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2970 release:
2971 	hw->phy.ops.release(hw);
2972 
2973 	return ret_val;
2974 }
2975 
2976 /**
2977  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2978  *  @hw:   pointer to the HW structure
2979  *
2980  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2981  *  Disable K1 for 1000 and 100 speeds
2982  **/
2983 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2984 {
2985 	s32 ret_val = E1000_SUCCESS;
2986 	u16 status_reg = 0;
2987 
2988 	DEBUGFUNC("e1000_k1_workaround_lv");
2989 
2990 	if (hw->mac.type != e1000_pch2lan)
2991 		return E1000_SUCCESS;
2992 
2993 	/* Set K1 beacon duration based on 10Mbs speed */
2994 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2995 	if (ret_val)
2996 		return ret_val;
2997 
2998 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2999 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
3000 		if (status_reg &
3001 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
3002 			u16 pm_phy_reg;
3003 
3004 			/* LV 1G/100 Packet drop issue wa  */
3005 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3006 						       &pm_phy_reg);
3007 			if (ret_val)
3008 				return ret_val;
3009 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3010 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3011 							pm_phy_reg);
3012 			if (ret_val)
3013 				return ret_val;
3014 		} else {
3015 			u32 mac_reg;
3016 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3017 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3018 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3019 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3020 		}
3021 	}
3022 
3023 	return ret_val;
3024 }
3025 
3026 /**
3027  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3028  *  @hw:   pointer to the HW structure
3029  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3030  *
3031  *  Gate/ungate the automatic PHY configuration via hardware; perform
3032  *  the configuration via software instead.
3033  **/
3034 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3035 {
3036 	u32 extcnf_ctrl;
3037 
3038 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3039 
3040 	if (hw->mac.type < e1000_pch2lan)
3041 		return;
3042 
3043 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3044 
3045 	if (gate)
3046 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3047 	else
3048 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3049 
3050 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3051 }
3052 
3053 /**
3054  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3055  *  @hw: pointer to the HW structure
3056  *
3057  *  Check the appropriate indication the MAC has finished configuring the
3058  *  PHY after a software reset.
3059  **/
3060 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3061 {
3062 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3063 
3064 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3065 
3066 	/* Wait for basic configuration completes before proceeding */
3067 	do {
3068 		data = E1000_READ_REG(hw, E1000_STATUS);
3069 		data &= E1000_STATUS_LAN_INIT_DONE;
3070 		usec_delay(100);
3071 	} while ((!data) && --loop);
3072 
3073 	/* If basic configuration is incomplete before the above loop
3074 	 * count reaches 0, loading the configuration from NVM will
3075 	 * leave the PHY in a bad state possibly resulting in no link.
3076 	 */
3077 	if (loop == 0)
3078 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3079 
3080 	/* Clear the Init Done bit for the next init event */
3081 	data = E1000_READ_REG(hw, E1000_STATUS);
3082 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3083 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3084 }
3085 
3086 /**
3087  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3088  *  @hw: pointer to the HW structure
3089  **/
3090 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3091 {
3092 	s32 ret_val = E1000_SUCCESS;
3093 	u16 reg;
3094 
3095 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3096 
3097 	if (hw->phy.ops.check_reset_block(hw))
3098 		return E1000_SUCCESS;
3099 
3100 	/* Allow time for h/w to get to quiescent state after reset */
3101 	msec_delay(10);
3102 
3103 	/* Perform any necessary post-reset workarounds */
3104 	switch (hw->mac.type) {
3105 	case e1000_pchlan:
3106 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3107 		if (ret_val)
3108 			return ret_val;
3109 		break;
3110 	case e1000_pch2lan:
3111 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3112 		if (ret_val)
3113 			return ret_val;
3114 		break;
3115 	default:
3116 		break;
3117 	}
3118 
3119 	/* Clear the host wakeup bit after lcd reset */
3120 	if (hw->mac.type >= e1000_pchlan) {
3121 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3122 		reg &= ~BM_WUC_HOST_WU_BIT;
3123 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3124 	}
3125 
3126 	/* Configure the LCD with the extended configuration region in NVM */
3127 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3128 	if (ret_val)
3129 		return ret_val;
3130 
3131 	/* Configure the LCD with the OEM bits in NVM */
3132 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3133 
3134 	if (hw->mac.type == e1000_pch2lan) {
3135 		/* Ungate automatic PHY configuration on non-managed 82579 */
3136 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3137 		    E1000_ICH_FWSM_FW_VALID)) {
3138 			msec_delay(10);
3139 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3140 		}
3141 
3142 		/* Set EEE LPI Update Timer to 200usec */
3143 		ret_val = hw->phy.ops.acquire(hw);
3144 		if (ret_val)
3145 			return ret_val;
3146 		ret_val = e1000_write_emi_reg_locked(hw,
3147 						     I82579_LPI_UPDATE_TIMER,
3148 						     0x1387);
3149 		hw->phy.ops.release(hw);
3150 	}
3151 
3152 	return ret_val;
3153 }
3154 
3155 /**
3156  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3157  *  @hw: pointer to the HW structure
3158  *
3159  *  Resets the PHY
3160  *  This is a function pointer entry point called by drivers
3161  *  or other shared routines.
3162  **/
3163 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3164 {
3165 	s32 ret_val = E1000_SUCCESS;
3166 
3167 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3168 
3169 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3170 	if ((hw->mac.type == e1000_pch2lan) &&
3171 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3172 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3173 
3174 	ret_val = e1000_phy_hw_reset_generic(hw);
3175 	if (ret_val)
3176 		return ret_val;
3177 
3178 	return e1000_post_phy_reset_ich8lan(hw);
3179 }
3180 
3181 /**
3182  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3183  *  @hw: pointer to the HW structure
3184  *  @active: TRUE to enable LPLU, FALSE to disable
3185  *
3186  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3187  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3188  *  the phy speed. This function will manually set the LPLU bit and restart
3189  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3190  *  since it configures the same bit.
3191  **/
3192 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3193 {
3194 	s32 ret_val;
3195 	u16 oem_reg;
3196 
3197 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3198 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3199 	if (ret_val)
3200 		return ret_val;
3201 
3202 	if (active)
3203 		oem_reg |= HV_OEM_BITS_LPLU;
3204 	else
3205 		oem_reg &= ~HV_OEM_BITS_LPLU;
3206 
3207 	if (!hw->phy.ops.check_reset_block(hw))
3208 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3209 
3210 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3211 }
3212 
3213 /**
3214  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3215  *  @hw: pointer to the HW structure
3216  *  @active: TRUE to enable LPLU, FALSE to disable
3217  *
3218  *  Sets the LPLU D0 state according to the active flag.  When
3219  *  activating LPLU this function also disables smart speed
3220  *  and vice versa.  LPLU will not be activated unless the
3221  *  device autonegotiation advertisement meets standards of
3222  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3223  *  This is a function pointer entry point only called by
3224  *  PHY setup routines.
3225  **/
3226 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3227 {
3228 	struct e1000_phy_info *phy = &hw->phy;
3229 	u32 phy_ctrl;
3230 	s32 ret_val = E1000_SUCCESS;
3231 	u16 data;
3232 
3233 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3234 
3235 	if (phy->type == e1000_phy_ife)
3236 		return E1000_SUCCESS;
3237 
3238 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3239 
3240 	if (active) {
3241 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3242 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3243 
3244 		if (phy->type != e1000_phy_igp_3)
3245 			return E1000_SUCCESS;
3246 
3247 		/* Call gig speed drop workaround on LPLU before accessing
3248 		 * any PHY registers
3249 		 */
3250 		if (hw->mac.type == e1000_ich8lan)
3251 			e1000_gig_downshift_workaround_ich8lan(hw);
3252 
3253 		/* When LPLU is enabled, we should disable SmartSpeed */
3254 		ret_val = phy->ops.read_reg(hw,
3255 					    IGP01E1000_PHY_PORT_CONFIG,
3256 					    &data);
3257 		if (ret_val)
3258 			return ret_val;
3259 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3260 		ret_val = phy->ops.write_reg(hw,
3261 					     IGP01E1000_PHY_PORT_CONFIG,
3262 					     data);
3263 		if (ret_val)
3264 			return ret_val;
3265 	} else {
3266 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3267 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3268 
3269 		if (phy->type != e1000_phy_igp_3)
3270 			return E1000_SUCCESS;
3271 
3272 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3273 		 * during Dx states where the power conservation is most
3274 		 * important.  During driver activity we should enable
3275 		 * SmartSpeed, so performance is maintained.
3276 		 */
3277 		if (phy->smart_speed == e1000_smart_speed_on) {
3278 			ret_val = phy->ops.read_reg(hw,
3279 						    IGP01E1000_PHY_PORT_CONFIG,
3280 						    &data);
3281 			if (ret_val)
3282 				return ret_val;
3283 
3284 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3285 			ret_val = phy->ops.write_reg(hw,
3286 						     IGP01E1000_PHY_PORT_CONFIG,
3287 						     data);
3288 			if (ret_val)
3289 				return ret_val;
3290 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3291 			ret_val = phy->ops.read_reg(hw,
3292 						    IGP01E1000_PHY_PORT_CONFIG,
3293 						    &data);
3294 			if (ret_val)
3295 				return ret_val;
3296 
3297 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3298 			ret_val = phy->ops.write_reg(hw,
3299 						     IGP01E1000_PHY_PORT_CONFIG,
3300 						     data);
3301 			if (ret_val)
3302 				return ret_val;
3303 		}
3304 	}
3305 
3306 	return E1000_SUCCESS;
3307 }
3308 
3309 /**
3310  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3311  *  @hw: pointer to the HW structure
3312  *  @active: TRUE to enable LPLU, FALSE to disable
3313  *
3314  *  Sets the LPLU D3 state according to the active flag.  When
3315  *  activating LPLU this function also disables smart speed
3316  *  and vice versa.  LPLU will not be activated unless the
3317  *  device autonegotiation advertisement meets standards of
3318  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3319  *  This is a function pointer entry point only called by
3320  *  PHY setup routines.
3321  **/
3322 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3323 {
3324 	struct e1000_phy_info *phy = &hw->phy;
3325 	u32 phy_ctrl;
3326 	s32 ret_val = E1000_SUCCESS;
3327 	u16 data;
3328 
3329 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3330 
3331 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3332 
3333 	if (!active) {
3334 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3335 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3336 
3337 		if (phy->type != e1000_phy_igp_3)
3338 			return E1000_SUCCESS;
3339 
3340 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3341 		 * during Dx states where the power conservation is most
3342 		 * important.  During driver activity we should enable
3343 		 * SmartSpeed, so performance is maintained.
3344 		 */
3345 		if (phy->smart_speed == e1000_smart_speed_on) {
3346 			ret_val = phy->ops.read_reg(hw,
3347 						    IGP01E1000_PHY_PORT_CONFIG,
3348 						    &data);
3349 			if (ret_val)
3350 				return ret_val;
3351 
3352 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3353 			ret_val = phy->ops.write_reg(hw,
3354 						     IGP01E1000_PHY_PORT_CONFIG,
3355 						     data);
3356 			if (ret_val)
3357 				return ret_val;
3358 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3359 			ret_val = phy->ops.read_reg(hw,
3360 						    IGP01E1000_PHY_PORT_CONFIG,
3361 						    &data);
3362 			if (ret_val)
3363 				return ret_val;
3364 
3365 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3366 			ret_val = phy->ops.write_reg(hw,
3367 						     IGP01E1000_PHY_PORT_CONFIG,
3368 						     data);
3369 			if (ret_val)
3370 				return ret_val;
3371 		}
3372 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3373 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3374 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3375 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3376 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3377 
3378 		if (phy->type != e1000_phy_igp_3)
3379 			return E1000_SUCCESS;
3380 
3381 		/* Call gig speed drop workaround on LPLU before accessing
3382 		 * any PHY registers
3383 		 */
3384 		if (hw->mac.type == e1000_ich8lan)
3385 			e1000_gig_downshift_workaround_ich8lan(hw);
3386 
3387 		/* When LPLU is enabled, we should disable SmartSpeed */
3388 		ret_val = phy->ops.read_reg(hw,
3389 					    IGP01E1000_PHY_PORT_CONFIG,
3390 					    &data);
3391 		if (ret_val)
3392 			return ret_val;
3393 
3394 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3395 		ret_val = phy->ops.write_reg(hw,
3396 					     IGP01E1000_PHY_PORT_CONFIG,
3397 					     data);
3398 	}
3399 
3400 	return ret_val;
3401 }
3402 
3403 /**
3404  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3405  *  @hw: pointer to the HW structure
3406  *  @bank:  pointer to the variable that returns the active bank
3407  *
3408  *  Reads signature byte from the NVM using the flash access registers.
3409  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3410  **/
3411 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3412 {
3413 	u32 eecd;
3414 	struct e1000_nvm_info *nvm = &hw->nvm;
3415 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3416 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3417 	u32 nvm_dword = 0;
3418 	u8 sig_byte = 0;
3419 	s32 ret_val;
3420 
3421 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3422 
3423 	switch (hw->mac.type) {
3424 	case e1000_pch_spt:
3425 	case e1000_pch_cnp:
3426 	case e1000_pch_tgp:
3427 	case e1000_pch_adp:
3428 	case e1000_pch_mtp:
3429 		bank1_offset = nvm->flash_bank_size;
3430 		act_offset = E1000_ICH_NVM_SIG_WORD;
3431 
3432 		/* set bank to 0 in case flash read fails */
3433 		*bank = 0;
3434 
3435 		/* Check bank 0 */
3436 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3437 							 &nvm_dword);
3438 		if (ret_val)
3439 			return ret_val;
3440 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3441 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3442 		    E1000_ICH_NVM_SIG_VALUE) {
3443 			*bank = 0;
3444 			return E1000_SUCCESS;
3445 		}
3446 
3447 		/* Check bank 1 */
3448 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3449 							 bank1_offset,
3450 							 &nvm_dword);
3451 		if (ret_val)
3452 			return ret_val;
3453 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3454 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3455 		    E1000_ICH_NVM_SIG_VALUE) {
3456 			*bank = 1;
3457 			return E1000_SUCCESS;
3458 		}
3459 
3460 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3461 		return -E1000_ERR_NVM;
3462 	case e1000_ich8lan:
3463 	case e1000_ich9lan:
3464 		eecd = E1000_READ_REG(hw, E1000_EECD);
3465 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3466 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3467 			if (eecd & E1000_EECD_SEC1VAL)
3468 				*bank = 1;
3469 			else
3470 				*bank = 0;
3471 
3472 			return E1000_SUCCESS;
3473 		}
3474 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3475 		/* fall-thru */
3476 	default:
3477 		/* set bank to 0 in case flash read fails */
3478 		*bank = 0;
3479 
3480 		/* Check bank 0 */
3481 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3482 							&sig_byte);
3483 		if (ret_val)
3484 			return ret_val;
3485 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3486 		    E1000_ICH_NVM_SIG_VALUE) {
3487 			*bank = 0;
3488 			return E1000_SUCCESS;
3489 		}
3490 
3491 		/* Check bank 1 */
3492 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3493 							bank1_offset,
3494 							&sig_byte);
3495 		if (ret_val)
3496 			return ret_val;
3497 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3498 		    E1000_ICH_NVM_SIG_VALUE) {
3499 			*bank = 1;
3500 			return E1000_SUCCESS;
3501 		}
3502 
3503 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3504 		return -E1000_ERR_NVM;
3505 	}
3506 }
3507 
3508 /**
3509  *  e1000_read_nvm_spt - NVM access for SPT
3510  *  @hw: pointer to the HW structure
3511  *  @offset: The offset (in bytes) of the word(s) to read.
3512  *  @words: Size of data to read in words.
3513  *  @data: pointer to the word(s) to read at offset.
3514  *
3515  *  Reads a word(s) from the NVM
3516  **/
3517 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3518 			      u16 *data)
3519 {
3520 	struct e1000_nvm_info *nvm = &hw->nvm;
3521 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3522 	u32 act_offset;
3523 	s32 ret_val = E1000_SUCCESS;
3524 	u32 bank = 0;
3525 	u32 dword = 0;
3526 	u16 offset_to_read;
3527 	u16 i;
3528 
3529 	DEBUGFUNC("e1000_read_nvm_spt");
3530 
3531 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3532 	    (words == 0)) {
3533 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3534 		ret_val = -E1000_ERR_NVM;
3535 		goto out;
3536 	}
3537 
3538 	nvm->ops.acquire(hw);
3539 
3540 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3541 	if (ret_val != E1000_SUCCESS) {
3542 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3543 		bank = 0;
3544 	}
3545 
3546 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3547 	act_offset += offset;
3548 
3549 	ret_val = E1000_SUCCESS;
3550 
3551 	for (i = 0; i < words; i += 2) {
3552 		if (words - i == 1) {
3553 			if (dev_spec->shadow_ram[offset+i].modified) {
3554 				data[i] = dev_spec->shadow_ram[offset+i].value;
3555 			} else {
3556 				offset_to_read = act_offset + i -
3557 						 ((act_offset + i) % 2);
3558 				ret_val =
3559 				   e1000_read_flash_dword_ich8lan(hw,
3560 								 offset_to_read,
3561 								 &dword);
3562 				if (ret_val)
3563 					break;
3564 				if ((act_offset + i) % 2 == 0)
3565 					data[i] = (u16)(dword & 0xFFFF);
3566 				else
3567 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3568 			}
3569 		} else {
3570 			offset_to_read = act_offset + i;
3571 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3572 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3573 				ret_val =
3574 				   e1000_read_flash_dword_ich8lan(hw,
3575 								 offset_to_read,
3576 								 &dword);
3577 				if (ret_val)
3578 					break;
3579 			}
3580 			if (dev_spec->shadow_ram[offset+i].modified)
3581 				data[i] = dev_spec->shadow_ram[offset+i].value;
3582 			else
3583 				data[i] = (u16) (dword & 0xFFFF);
3584 			if (dev_spec->shadow_ram[offset+i].modified)
3585 				data[i+1] =
3586 				   dev_spec->shadow_ram[offset+i+1].value;
3587 			else
3588 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3589 		}
3590 	}
3591 
3592 	nvm->ops.release(hw);
3593 
3594 out:
3595 	if (ret_val)
3596 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3597 
3598 	return ret_val;
3599 }
3600 
3601 /**
3602  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3603  *  @hw: pointer to the HW structure
3604  *  @offset: The offset (in bytes) of the word(s) to read.
3605  *  @words: Size of data to read in words
3606  *  @data: Pointer to the word(s) to read at offset.
3607  *
3608  *  Reads a word(s) from the NVM using the flash access registers.
3609  **/
3610 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3611 				  u16 *data)
3612 {
3613 	struct e1000_nvm_info *nvm = &hw->nvm;
3614 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3615 	u32 act_offset;
3616 	s32 ret_val = E1000_SUCCESS;
3617 	u32 bank = 0;
3618 	u16 i, word;
3619 
3620 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3621 
3622 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3623 	    (words == 0)) {
3624 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3625 		ret_val = -E1000_ERR_NVM;
3626 		goto out;
3627 	}
3628 
3629 	nvm->ops.acquire(hw);
3630 
3631 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3632 	if (ret_val != E1000_SUCCESS) {
3633 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3634 		bank = 0;
3635 	}
3636 
3637 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3638 	act_offset += offset;
3639 
3640 	ret_val = E1000_SUCCESS;
3641 	for (i = 0; i < words; i++) {
3642 		if (dev_spec->shadow_ram[offset+i].modified) {
3643 			data[i] = dev_spec->shadow_ram[offset+i].value;
3644 		} else {
3645 			ret_val = e1000_read_flash_word_ich8lan(hw,
3646 								act_offset + i,
3647 								&word);
3648 			if (ret_val)
3649 				break;
3650 			data[i] = word;
3651 		}
3652 	}
3653 
3654 	nvm->ops.release(hw);
3655 
3656 out:
3657 	if (ret_val)
3658 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3659 
3660 	return ret_val;
3661 }
3662 
3663 /**
3664  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3665  *  @hw: pointer to the HW structure
3666  *
3667  *  This function does initial flash setup so that a new read/write/erase cycle
3668  *  can be started.
3669  **/
3670 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3671 {
3672 	union ich8_hws_flash_status hsfsts;
3673 	s32 ret_val = -E1000_ERR_NVM;
3674 
3675 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3676 
3677 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3678 
3679 	/* Check if the flash descriptor is valid */
3680 	if (!hsfsts.hsf_status.fldesvalid) {
3681 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3682 		return -E1000_ERR_NVM;
3683 	}
3684 
3685 	/* Clear FCERR and DAEL in hw status by writing 1 */
3686 	hsfsts.hsf_status.flcerr = 1;
3687 	hsfsts.hsf_status.dael = 1;
3688 	if (hw->mac.type >= e1000_pch_spt)
3689 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3690 				      hsfsts.regval & 0xFFFF);
3691 	else
3692 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3693 
3694 	/* Either we should have a hardware SPI cycle in progress
3695 	 * bit to check against, in order to start a new cycle or
3696 	 * FDONE bit should be changed in the hardware so that it
3697 	 * is 1 after hardware reset, which can then be used as an
3698 	 * indication whether a cycle is in progress or has been
3699 	 * completed.
3700 	 */
3701 
3702 	if (!hsfsts.hsf_status.flcinprog) {
3703 		/* There is no cycle running at present,
3704 		 * so we can start a cycle.
3705 		 * Begin by setting Flash Cycle Done.
3706 		 */
3707 		hsfsts.hsf_status.flcdone = 1;
3708 		if (hw->mac.type >= e1000_pch_spt)
3709 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3710 					      hsfsts.regval & 0xFFFF);
3711 		else
3712 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3713 						hsfsts.regval);
3714 		ret_val = E1000_SUCCESS;
3715 	} else {
3716 		s32 i;
3717 
3718 		/* Otherwise poll for sometime so the current
3719 		 * cycle has a chance to end before giving up.
3720 		 */
3721 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3722 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3723 							      ICH_FLASH_HSFSTS);
3724 			if (!hsfsts.hsf_status.flcinprog) {
3725 				ret_val = E1000_SUCCESS;
3726 				break;
3727 			}
3728 			usec_delay(1);
3729 		}
3730 		if (ret_val == E1000_SUCCESS) {
3731 			/* Successful in waiting for previous cycle to timeout,
3732 			 * now set the Flash Cycle Done.
3733 			 */
3734 			hsfsts.hsf_status.flcdone = 1;
3735 			if (hw->mac.type >= e1000_pch_spt)
3736 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3737 						      hsfsts.regval & 0xFFFF);
3738 			else
3739 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3740 							hsfsts.regval);
3741 		} else {
3742 			DEBUGOUT("Flash controller busy, cannot get access\n");
3743 		}
3744 	}
3745 
3746 	return ret_val;
3747 }
3748 
3749 /**
3750  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3751  *  @hw: pointer to the HW structure
3752  *  @timeout: maximum time to wait for completion
3753  *
3754  *  This function starts a flash cycle and waits for its completion.
3755  **/
3756 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3757 {
3758 	union ich8_hws_flash_ctrl hsflctl;
3759 	union ich8_hws_flash_status hsfsts;
3760 	u32 i = 0;
3761 
3762 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3763 
3764 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3765 	if (hw->mac.type >= e1000_pch_spt)
3766 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3767 	else
3768 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3769 	hsflctl.hsf_ctrl.flcgo = 1;
3770 
3771 	if (hw->mac.type >= e1000_pch_spt)
3772 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3773 				      hsflctl.regval << 16);
3774 	else
3775 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3776 
3777 	/* wait till FDONE bit is set to 1 */
3778 	do {
3779 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3780 		if (hsfsts.hsf_status.flcdone)
3781 			break;
3782 		usec_delay(1);
3783 	} while (i++ < timeout);
3784 
3785 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3786 		return E1000_SUCCESS;
3787 
3788 	return -E1000_ERR_NVM;
3789 }
3790 
3791 /**
3792  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3793  *  @hw: pointer to the HW structure
3794  *  @offset: offset to data location
3795  *  @data: pointer to the location for storing the data
3796  *
3797  *  Reads the flash dword at offset into data.  Offset is converted
3798  *  to bytes before read.
3799  **/
3800 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3801 					  u32 *data)
3802 {
3803 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3804 
3805 	if (!data)
3806 		return -E1000_ERR_NVM;
3807 
3808 	/* Must convert word offset into bytes. */
3809 	offset <<= 1;
3810 
3811 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3812 }
3813 
3814 /**
3815  *  e1000_read_flash_word_ich8lan - Read word from flash
3816  *  @hw: pointer to the HW structure
3817  *  @offset: offset to data location
3818  *  @data: pointer to the location for storing the data
3819  *
3820  *  Reads the flash word at offset into data.  Offset is converted
3821  *  to bytes before read.
3822  **/
3823 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3824 					 u16 *data)
3825 {
3826 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3827 
3828 	if (!data)
3829 		return -E1000_ERR_NVM;
3830 
3831 	/* Must convert offset into bytes. */
3832 	offset <<= 1;
3833 
3834 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3835 }
3836 
3837 /**
3838  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3839  *  @hw: pointer to the HW structure
3840  *  @offset: The offset of the byte to read.
3841  *  @data: Pointer to a byte to store the value read.
3842  *
3843  *  Reads a single byte from the NVM using the flash access registers.
3844  **/
3845 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3846 					 u8 *data)
3847 {
3848 	s32 ret_val;
3849 	u16 word = 0;
3850 
3851 	/* In SPT, only 32 bits access is supported,
3852 	 * so this function should not be called.
3853 	 */
3854 	if (hw->mac.type >= e1000_pch_spt)
3855 		return -E1000_ERR_NVM;
3856 	else
3857 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3858 
3859 	if (ret_val)
3860 		return ret_val;
3861 
3862 	*data = (u8)word;
3863 
3864 	return E1000_SUCCESS;
3865 }
3866 
3867 /**
3868  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3869  *  @hw: pointer to the HW structure
3870  *  @offset: The offset (in bytes) of the byte or word to read.
3871  *  @size: Size of data to read, 1=byte 2=word
3872  *  @data: Pointer to the word to store the value read.
3873  *
3874  *  Reads a byte or word from the NVM using the flash access registers.
3875  **/
3876 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3877 					 u8 size, u16 *data)
3878 {
3879 	union ich8_hws_flash_status hsfsts;
3880 	union ich8_hws_flash_ctrl hsflctl;
3881 	u32 flash_linear_addr;
3882 	u32 flash_data = 0;
3883 	s32 ret_val = -E1000_ERR_NVM;
3884 	u8 count = 0;
3885 
3886 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3887 
3888 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3889 		return -E1000_ERR_NVM;
3890 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3891 			     hw->nvm.flash_base_addr);
3892 
3893 	do {
3894 		usec_delay(1);
3895 		/* Steps */
3896 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3897 		if (ret_val != E1000_SUCCESS)
3898 			break;
3899 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3900 
3901 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3902 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3903 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3904 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3905 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3906 
3907 		ret_val = e1000_flash_cycle_ich8lan(hw,
3908 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3909 
3910 		/* Check if FCERR is set to 1, if set to 1, clear it
3911 		 * and try the whole sequence a few more times, else
3912 		 * read in (shift in) the Flash Data0, the order is
3913 		 * least significant byte first msb to lsb
3914 		 */
3915 		if (ret_val == E1000_SUCCESS) {
3916 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3917 			if (size == 1)
3918 				*data = (u8)(flash_data & 0x000000FF);
3919 			else if (size == 2)
3920 				*data = (u16)(flash_data & 0x0000FFFF);
3921 			break;
3922 		} else {
3923 			/* If we've gotten here, then things are probably
3924 			 * completely hosed, but if the error condition is
3925 			 * detected, it won't hurt to give it another try...
3926 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3927 			 */
3928 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3929 							      ICH_FLASH_HSFSTS);
3930 			if (hsfsts.hsf_status.flcerr) {
3931 				/* Repeat for some time before giving up. */
3932 				continue;
3933 			} else if (!hsfsts.hsf_status.flcdone) {
3934 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3935 				break;
3936 			}
3937 		}
3938 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3939 
3940 	return ret_val;
3941 }
3942 
3943 /**
3944  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3945  *  @hw: pointer to the HW structure
3946  *  @offset: The offset (in bytes) of the dword to read.
3947  *  @data: Pointer to the dword to store the value read.
3948  *
3949  *  Reads a byte or word from the NVM using the flash access registers.
3950  **/
3951 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3952 					   u32 *data)
3953 {
3954 	union ich8_hws_flash_status hsfsts;
3955 	union ich8_hws_flash_ctrl hsflctl;
3956 	u32 flash_linear_addr;
3957 	s32 ret_val = -E1000_ERR_NVM;
3958 	u8 count = 0;
3959 
3960 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3961 
3962 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3963 		    hw->mac.type < e1000_pch_spt)
3964 			return -E1000_ERR_NVM;
3965 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3966 			     hw->nvm.flash_base_addr);
3967 
3968 	do {
3969 		usec_delay(1);
3970 		/* Steps */
3971 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3972 		if (ret_val != E1000_SUCCESS)
3973 			break;
3974 		/* In SPT, This register is in Lan memory space, not flash.
3975 		 * Therefore, only 32 bit access is supported
3976 		 */
3977 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3978 
3979 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3980 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3981 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3982 		/* In SPT, This register is in Lan memory space, not flash.
3983 		 * Therefore, only 32 bit access is supported
3984 		 */
3985 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3986 				      (u32)hsflctl.regval << 16);
3987 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3988 
3989 		ret_val = e1000_flash_cycle_ich8lan(hw,
3990 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3991 
3992 		/* Check if FCERR is set to 1, if set to 1, clear it
3993 		 * and try the whole sequence a few more times, else
3994 		 * read in (shift in) the Flash Data0, the order is
3995 		 * least significant byte first msb to lsb
3996 		 */
3997 		if (ret_val == E1000_SUCCESS) {
3998 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3999 			break;
4000 		} else {
4001 			/* If we've gotten here, then things are probably
4002 			 * completely hosed, but if the error condition is
4003 			 * detected, it won't hurt to give it another try...
4004 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
4005 			 */
4006 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4007 							      ICH_FLASH_HSFSTS);
4008 			if (hsfsts.hsf_status.flcerr) {
4009 				/* Repeat for some time before giving up. */
4010 				continue;
4011 			} else if (!hsfsts.hsf_status.flcdone) {
4012 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4013 				break;
4014 			}
4015 		}
4016 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4017 
4018 	return ret_val;
4019 }
4020 
4021 /**
4022  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4023  *  @hw: pointer to the HW structure
4024  *  @offset: The offset (in bytes) of the word(s) to write.
4025  *  @words: Size of data to write in words
4026  *  @data: Pointer to the word(s) to write at offset.
4027  *
4028  *  Writes a byte or word to the NVM using the flash access registers.
4029  **/
4030 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4031 				   u16 *data)
4032 {
4033 	struct e1000_nvm_info *nvm = &hw->nvm;
4034 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4035 	u16 i;
4036 
4037 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4038 
4039 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4040 	    (words == 0)) {
4041 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4042 		return -E1000_ERR_NVM;
4043 	}
4044 
4045 	nvm->ops.acquire(hw);
4046 
4047 	for (i = 0; i < words; i++) {
4048 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4049 		dev_spec->shadow_ram[offset+i].value = data[i];
4050 	}
4051 
4052 	nvm->ops.release(hw);
4053 
4054 	return E1000_SUCCESS;
4055 }
4056 
4057 /**
4058  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4059  *  @hw: pointer to the HW structure
4060  *
4061  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4062  *  which writes the checksum to the shadow ram.  The changes in the shadow
4063  *  ram are then committed to the EEPROM by processing each bank at a time
4064  *  checking for the modified bit and writing only the pending changes.
4065  *  After a successful commit, the shadow ram is cleared and is ready for
4066  *  future writes.
4067  **/
4068 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4069 {
4070 	struct e1000_nvm_info *nvm = &hw->nvm;
4071 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4072 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4073 	s32 ret_val;
4074 	u32 dword = 0;
4075 
4076 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4077 
4078 	ret_val = e1000_update_nvm_checksum_generic(hw);
4079 	if (ret_val)
4080 		goto out;
4081 
4082 	if (nvm->type != e1000_nvm_flash_sw)
4083 		goto out;
4084 
4085 	nvm->ops.acquire(hw);
4086 
4087 	/* We're writing to the opposite bank so if we're on bank 1,
4088 	 * write to bank 0 etc.  We also need to erase the segment that
4089 	 * is going to be written
4090 	 */
4091 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4092 	if (ret_val != E1000_SUCCESS) {
4093 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4094 		bank = 0;
4095 	}
4096 
4097 	if (bank == 0) {
4098 		new_bank_offset = nvm->flash_bank_size;
4099 		old_bank_offset = 0;
4100 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4101 		if (ret_val)
4102 			goto release;
4103 	} else {
4104 		old_bank_offset = nvm->flash_bank_size;
4105 		new_bank_offset = 0;
4106 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4107 		if (ret_val)
4108 			goto release;
4109 	}
4110 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4111 		/* Determine whether to write the value stored
4112 		 * in the other NVM bank or a modified value stored
4113 		 * in the shadow RAM
4114 		 */
4115 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4116 							 i + old_bank_offset,
4117 							 &dword);
4118 
4119 		if (dev_spec->shadow_ram[i].modified) {
4120 			dword &= 0xffff0000;
4121 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4122 		}
4123 		if (dev_spec->shadow_ram[i + 1].modified) {
4124 			dword &= 0x0000ffff;
4125 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4126 				  << 16);
4127 		}
4128 		if (ret_val)
4129 			break;
4130 
4131 		/* If the word is 0x13, then make sure the signature bits
4132 		 * (15:14) are 11b until the commit has completed.
4133 		 * This will allow us to write 10b which indicates the
4134 		 * signature is valid.  We want to do this after the write
4135 		 * has completed so that we don't mark the segment valid
4136 		 * while the write is still in progress
4137 		 */
4138 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4139 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4140 
4141 		/* Convert offset to bytes. */
4142 		act_offset = (i + new_bank_offset) << 1;
4143 
4144 		usec_delay(100);
4145 
4146 		/* Write the data to the new bank. Offset in words*/
4147 		act_offset = i + new_bank_offset;
4148 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4149 								dword);
4150 		if (ret_val)
4151 			break;
4152 	 }
4153 
4154 	/* Don't bother writing the segment valid bits if sector
4155 	 * programming failed.
4156 	 */
4157 	if (ret_val) {
4158 		DEBUGOUT("Flash commit failed.\n");
4159 		goto release;
4160 	}
4161 
4162 	/* Finally validate the new segment by setting bit 15:14
4163 	 * to 10b in word 0x13 , this can be done without an
4164 	 * erase as well since these bits are 11 to start with
4165 	 * and we need to change bit 14 to 0b
4166 	 */
4167 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4168 
4169 	/*offset in words but we read dword*/
4170 	--act_offset;
4171 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4172 
4173 	if (ret_val)
4174 		goto release;
4175 
4176 	dword &= 0xBFFFFFFF;
4177 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4178 
4179 	if (ret_val)
4180 		goto release;
4181 
4182 	/* offset in words but we read dword*/
4183 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4184 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4185 
4186 	if (ret_val)
4187 		goto release;
4188 
4189 	dword &= 0x00FFFFFF;
4190 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4191 
4192 	if (ret_val)
4193 		goto release;
4194 
4195 	/* Great!  Everything worked, we can now clear the cached entries. */
4196 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4197 		dev_spec->shadow_ram[i].modified = FALSE;
4198 		dev_spec->shadow_ram[i].value = 0xFFFF;
4199 	}
4200 
4201 release:
4202 	nvm->ops.release(hw);
4203 
4204 	/* Reload the EEPROM, or else modifications will not appear
4205 	 * until after the next adapter reset.
4206 	 */
4207 	if (!ret_val) {
4208 		nvm->ops.reload(hw);
4209 		msec_delay(10);
4210 	}
4211 
4212 out:
4213 	if (ret_val)
4214 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4215 
4216 	return ret_val;
4217 }
4218 
4219 /**
4220  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4221  *  @hw: pointer to the HW structure
4222  *
4223  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4224  *  which writes the checksum to the shadow ram.  The changes in the shadow
4225  *  ram are then committed to the EEPROM by processing each bank at a time
4226  *  checking for the modified bit and writing only the pending changes.
4227  *  After a successful commit, the shadow ram is cleared and is ready for
4228  *  future writes.
4229  **/
4230 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4231 {
4232 	struct e1000_nvm_info *nvm = &hw->nvm;
4233 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4234 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4235 	s32 ret_val;
4236 	u16 data = 0;
4237 
4238 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4239 
4240 	ret_val = e1000_update_nvm_checksum_generic(hw);
4241 	if (ret_val)
4242 		goto out;
4243 
4244 	if (nvm->type != e1000_nvm_flash_sw)
4245 		goto out;
4246 
4247 	nvm->ops.acquire(hw);
4248 
4249 	/* We're writing to the opposite bank so if we're on bank 1,
4250 	 * write to bank 0 etc.  We also need to erase the segment that
4251 	 * is going to be written
4252 	 */
4253 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4254 	if (ret_val != E1000_SUCCESS) {
4255 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4256 		bank = 0;
4257 	}
4258 
4259 	if (bank == 0) {
4260 		new_bank_offset = nvm->flash_bank_size;
4261 		old_bank_offset = 0;
4262 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4263 		if (ret_val)
4264 			goto release;
4265 	} else {
4266 		old_bank_offset = nvm->flash_bank_size;
4267 		new_bank_offset = 0;
4268 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4269 		if (ret_val)
4270 			goto release;
4271 	}
4272 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4273 		if (dev_spec->shadow_ram[i].modified) {
4274 			data = dev_spec->shadow_ram[i].value;
4275 		} else {
4276 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4277 								old_bank_offset,
4278 								&data);
4279 			if (ret_val)
4280 				break;
4281 		}
4282 		/* If the word is 0x13, then make sure the signature bits
4283 		 * (15:14) are 11b until the commit has completed.
4284 		 * This will allow us to write 10b which indicates the
4285 		 * signature is valid.  We want to do this after the write
4286 		 * has completed so that we don't mark the segment valid
4287 		 * while the write is still in progress
4288 		 */
4289 		if (i == E1000_ICH_NVM_SIG_WORD)
4290 			data |= E1000_ICH_NVM_SIG_MASK;
4291 
4292 		/* Convert offset to bytes. */
4293 		act_offset = (i + new_bank_offset) << 1;
4294 
4295 		usec_delay(100);
4296 
4297 		/* Write the bytes to the new bank. */
4298 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4299 							       act_offset,
4300 							       (u8)data);
4301 		if (ret_val)
4302 			break;
4303 
4304 		usec_delay(100);
4305 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4306 							  act_offset + 1,
4307 							  (u8)(data >> 8));
4308 		if (ret_val)
4309 			break;
4310 	 }
4311 
4312 	/* Don't bother writing the segment valid bits if sector
4313 	 * programming failed.
4314 	 */
4315 	if (ret_val) {
4316 		DEBUGOUT("Flash commit failed.\n");
4317 		goto release;
4318 	}
4319 
4320 	/* Finally validate the new segment by setting bit 15:14
4321 	 * to 10b in word 0x13 , this can be done without an
4322 	 * erase as well since these bits are 11 to start with
4323 	 * and we need to change bit 14 to 0b
4324 	 */
4325 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4326 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4327 	if (ret_val)
4328 		goto release;
4329 
4330 	data &= 0xBFFF;
4331 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4332 						       (u8)(data >> 8));
4333 	if (ret_val)
4334 		goto release;
4335 
4336 	/* And invalidate the previously valid segment by setting
4337 	 * its signature word (0x13) high_byte to 0b. This can be
4338 	 * done without an erase because flash erase sets all bits
4339 	 * to 1's. We can write 1's to 0's without an erase
4340 	 */
4341 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4342 
4343 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4344 
4345 	if (ret_val)
4346 		goto release;
4347 
4348 	/* Great!  Everything worked, we can now clear the cached entries. */
4349 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4350 		dev_spec->shadow_ram[i].modified = FALSE;
4351 		dev_spec->shadow_ram[i].value = 0xFFFF;
4352 	}
4353 
4354 release:
4355 	nvm->ops.release(hw);
4356 
4357 	/* Reload the EEPROM, or else modifications will not appear
4358 	 * until after the next adapter reset.
4359 	 */
4360 	if (!ret_val) {
4361 		nvm->ops.reload(hw);
4362 		msec_delay(10);
4363 	}
4364 
4365 out:
4366 	if (ret_val)
4367 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4368 
4369 	return ret_val;
4370 }
4371 
4372 /**
4373  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4374  *  @hw: pointer to the HW structure
4375  *
4376  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4377  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4378  *  calculated, in which case we need to calculate the checksum and set bit 6.
4379  **/
4380 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4381 {
4382 	s32 ret_val;
4383 	u16 data;
4384 	u16 word;
4385 	u16 valid_csum_mask;
4386 
4387 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4388 
4389 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4390 	 * the checksum needs to be fixed.  This bit is an indication that
4391 	 * the NVM was prepared by OEM software and did not calculate
4392 	 * the checksum...a likely scenario.
4393 	 */
4394 	switch (hw->mac.type) {
4395 	case e1000_pch_lpt:
4396 	case e1000_pch_spt:
4397 	case e1000_pch_cnp:
4398 	case e1000_pch_tgp:
4399 	case e1000_pch_adp:
4400 	case e1000_pch_mtp:
4401 		word = NVM_COMPAT;
4402 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4403 		break;
4404 	default:
4405 		word = NVM_FUTURE_INIT_WORD1;
4406 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4407 		break;
4408 	}
4409 
4410 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4411 	if (ret_val)
4412 		return ret_val;
4413 
4414 	if (!(data & valid_csum_mask)) {
4415 		data |= valid_csum_mask;
4416 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4417 		if (ret_val)
4418 			return ret_val;
4419 		ret_val = hw->nvm.ops.update(hw);
4420 		if (ret_val)
4421 			return ret_val;
4422 	}
4423 
4424 	return e1000_validate_nvm_checksum_generic(hw);
4425 }
4426 
4427 /**
4428  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4429  *  @hw: pointer to the HW structure
4430  *  @offset: The offset (in bytes) of the byte/word to read.
4431  *  @size: Size of data to read, 1=byte 2=word
4432  *  @data: The byte(s) to write to the NVM.
4433  *
4434  *  Writes one/two bytes to the NVM using the flash access registers.
4435  **/
4436 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4437 					  u8 size, u16 data)
4438 {
4439 	union ich8_hws_flash_status hsfsts;
4440 	union ich8_hws_flash_ctrl hsflctl;
4441 	u32 flash_linear_addr;
4442 	u32 flash_data = 0;
4443 	s32 ret_val;
4444 	u8 count = 0;
4445 
4446 	DEBUGFUNC("e1000_write_ich8_data");
4447 
4448 	if (hw->mac.type >= e1000_pch_spt) {
4449 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4450 			return -E1000_ERR_NVM;
4451 	} else {
4452 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4453 			return -E1000_ERR_NVM;
4454 	}
4455 
4456 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4457 			     hw->nvm.flash_base_addr);
4458 
4459 	do {
4460 		usec_delay(1);
4461 		/* Steps */
4462 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4463 		if (ret_val != E1000_SUCCESS)
4464 			break;
4465 		/* In SPT, This register is in Lan memory space, not
4466 		 * flash.  Therefore, only 32 bit access is supported
4467 		 */
4468 		if (hw->mac.type >= e1000_pch_spt)
4469 			hsflctl.regval =
4470 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4471 		else
4472 			hsflctl.regval =
4473 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4474 
4475 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4476 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4477 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4478 		/* In SPT, This register is in Lan memory space,
4479 		 * not flash.  Therefore, only 32 bit access is
4480 		 * supported
4481 		 */
4482 		if (hw->mac.type >= e1000_pch_spt)
4483 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4484 					      hsflctl.regval << 16);
4485 		else
4486 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4487 						hsflctl.regval);
4488 
4489 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4490 
4491 		if (size == 1)
4492 			flash_data = (u32)data & 0x00FF;
4493 		else
4494 			flash_data = (u32)data;
4495 
4496 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4497 
4498 		/* check if FCERR is set to 1 , if set to 1, clear it
4499 		 * and try the whole sequence a few more times else done
4500 		 */
4501 		ret_val =
4502 		    e1000_flash_cycle_ich8lan(hw,
4503 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4504 		if (ret_val == E1000_SUCCESS)
4505 			break;
4506 
4507 		/* If we're here, then things are most likely
4508 		 * completely hosed, but if the error condition
4509 		 * is detected, it won't hurt to give it another
4510 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4511 		 */
4512 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4513 		if (hsfsts.hsf_status.flcerr)
4514 			/* Repeat for some time before giving up. */
4515 			continue;
4516 		if (!hsfsts.hsf_status.flcdone) {
4517 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4518 			break;
4519 		}
4520 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4521 
4522 	return ret_val;
4523 }
4524 
4525 /**
4526 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4527 *  @hw: pointer to the HW structure
4528 *  @offset: The offset (in bytes) of the dwords to read.
4529 *  @data: The 4 bytes to write to the NVM.
4530 *
4531 *  Writes one/two/four bytes to the NVM using the flash access registers.
4532 **/
4533 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4534 					    u32 data)
4535 {
4536 	union ich8_hws_flash_status hsfsts;
4537 	union ich8_hws_flash_ctrl hsflctl;
4538 	u32 flash_linear_addr;
4539 	s32 ret_val;
4540 	u8 count = 0;
4541 
4542 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4543 
4544 	if (hw->mac.type >= e1000_pch_spt) {
4545 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4546 			return -E1000_ERR_NVM;
4547 	}
4548 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4549 			     hw->nvm.flash_base_addr);
4550 	do {
4551 		usec_delay(1);
4552 		/* Steps */
4553 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4554 		if (ret_val != E1000_SUCCESS)
4555 			break;
4556 
4557 		/* In SPT, This register is in Lan memory space, not
4558 		 * flash.  Therefore, only 32 bit access is supported
4559 		 */
4560 		if (hw->mac.type >= e1000_pch_spt)
4561 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4562 							      ICH_FLASH_HSFSTS)
4563 					 >> 16;
4564 		else
4565 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4566 							      ICH_FLASH_HSFCTL);
4567 
4568 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4569 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4570 
4571 		/* In SPT, This register is in Lan memory space,
4572 		 * not flash.  Therefore, only 32 bit access is
4573 		 * supported
4574 		 */
4575 		if (hw->mac.type >= e1000_pch_spt)
4576 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4577 					      hsflctl.regval << 16);
4578 		else
4579 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4580 						hsflctl.regval);
4581 
4582 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4583 
4584 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4585 
4586 		/* check if FCERR is set to 1 , if set to 1, clear it
4587 		 * and try the whole sequence a few more times else done
4588 		 */
4589 		ret_val = e1000_flash_cycle_ich8lan(hw,
4590 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4591 
4592 		if (ret_val == E1000_SUCCESS)
4593 			break;
4594 
4595 		/* If we're here, then things are most likely
4596 		 * completely hosed, but if the error condition
4597 		 * is detected, it won't hurt to give it another
4598 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4599 		 */
4600 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4601 
4602 		if (hsfsts.hsf_status.flcerr)
4603 			/* Repeat for some time before giving up. */
4604 			continue;
4605 		if (!hsfsts.hsf_status.flcdone) {
4606 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4607 			break;
4608 		}
4609 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4610 
4611 	return ret_val;
4612 }
4613 
4614 /**
4615  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4616  *  @hw: pointer to the HW structure
4617  *  @offset: The index of the byte to read.
4618  *  @data: The byte to write to the NVM.
4619  *
4620  *  Writes a single byte to the NVM using the flash access registers.
4621  **/
4622 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4623 					  u8 data)
4624 {
4625 	u16 word = (u16)data;
4626 
4627 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4628 
4629 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4630 }
4631 
4632 /**
4633 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4634 *  @hw: pointer to the HW structure
4635 *  @offset: The offset of the word to write.
4636 *  @dword: The dword to write to the NVM.
4637 *
4638 *  Writes a single dword to the NVM using the flash access registers.
4639 *  Goes through a retry algorithm before giving up.
4640 **/
4641 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4642 						 u32 offset, u32 dword)
4643 {
4644 	s32 ret_val;
4645 	u16 program_retries;
4646 
4647 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4648 
4649 	/* Must convert word offset into bytes. */
4650 	offset <<= 1;
4651 
4652 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4653 
4654 	if (!ret_val)
4655 		return ret_val;
4656 	for (program_retries = 0; program_retries < 100; program_retries++) {
4657 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4658 		usec_delay(100);
4659 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4660 		if (ret_val == E1000_SUCCESS)
4661 			break;
4662 	}
4663 	if (program_retries == 100)
4664 		return -E1000_ERR_NVM;
4665 
4666 	return E1000_SUCCESS;
4667 }
4668 
4669 /**
4670  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4671  *  @hw: pointer to the HW structure
4672  *  @offset: The offset of the byte to write.
4673  *  @byte: The byte to write to the NVM.
4674  *
4675  *  Writes a single byte to the NVM using the flash access registers.
4676  *  Goes through a retry algorithm before giving up.
4677  **/
4678 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4679 						u32 offset, u8 byte)
4680 {
4681 	s32 ret_val;
4682 	u16 program_retries;
4683 
4684 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4685 
4686 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4687 	if (!ret_val)
4688 		return ret_val;
4689 
4690 	for (program_retries = 0; program_retries < 100; program_retries++) {
4691 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4692 		usec_delay(100);
4693 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4694 		if (ret_val == E1000_SUCCESS)
4695 			break;
4696 	}
4697 	if (program_retries == 100)
4698 		return -E1000_ERR_NVM;
4699 
4700 	return E1000_SUCCESS;
4701 }
4702 
4703 /**
4704  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4705  *  @hw: pointer to the HW structure
4706  *  @bank: 0 for first bank, 1 for second bank, etc.
4707  *
4708  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4709  *  bank N is 4096 * N + flash_reg_addr.
4710  **/
4711 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4712 {
4713 	struct e1000_nvm_info *nvm = &hw->nvm;
4714 	union ich8_hws_flash_status hsfsts;
4715 	union ich8_hws_flash_ctrl hsflctl;
4716 	u32 flash_linear_addr;
4717 	/* bank size is in 16bit words - adjust to bytes */
4718 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4719 	s32 ret_val;
4720 	s32 count = 0;
4721 	s32 j, iteration, sector_size;
4722 
4723 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4724 
4725 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4726 
4727 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4728 	 * register
4729 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4730 	 *     consecutive sectors.  The start index for the nth Hw sector
4731 	 *     can be calculated as = bank * 4096 + n * 256
4732 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4733 	 *     The start index for the nth Hw sector can be calculated
4734 	 *     as = bank * 4096
4735 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4736 	 *     (ich9 only, otherwise error condition)
4737 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4738 	 */
4739 	switch (hsfsts.hsf_status.berasesz) {
4740 	case 0:
4741 		/* Hw sector size 256 */
4742 		sector_size = ICH_FLASH_SEG_SIZE_256;
4743 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4744 		break;
4745 	case 1:
4746 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4747 		iteration = 1;
4748 		break;
4749 	case 2:
4750 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4751 		iteration = 1;
4752 		break;
4753 	case 3:
4754 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4755 		iteration = 1;
4756 		break;
4757 	default:
4758 		return -E1000_ERR_NVM;
4759 	}
4760 
4761 	/* Start with the base address, then add the sector offset. */
4762 	flash_linear_addr = hw->nvm.flash_base_addr;
4763 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4764 
4765 	for (j = 0; j < iteration; j++) {
4766 		do {
4767 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4768 
4769 			/* Steps */
4770 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4771 			if (ret_val)
4772 				return ret_val;
4773 
4774 			/* Write a value 11 (block Erase) in Flash
4775 			 * Cycle field in hw flash control
4776 			 */
4777 			if (hw->mac.type >= e1000_pch_spt)
4778 				hsflctl.regval =
4779 				    E1000_READ_FLASH_REG(hw,
4780 							 ICH_FLASH_HSFSTS)>>16;
4781 			else
4782 				hsflctl.regval =
4783 				    E1000_READ_FLASH_REG16(hw,
4784 							   ICH_FLASH_HSFCTL);
4785 
4786 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4787 			if (hw->mac.type >= e1000_pch_spt)
4788 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4789 						      hsflctl.regval << 16);
4790 			else
4791 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4792 							hsflctl.regval);
4793 
4794 			/* Write the last 24 bits of an index within the
4795 			 * block into Flash Linear address field in Flash
4796 			 * Address.
4797 			 */
4798 			flash_linear_addr += (j * sector_size);
4799 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4800 					      flash_linear_addr);
4801 
4802 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4803 			if (ret_val == E1000_SUCCESS)
4804 				break;
4805 
4806 			/* Check if FCERR is set to 1.  If 1,
4807 			 * clear it and try the whole sequence
4808 			 * a few more times else Done
4809 			 */
4810 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4811 						      ICH_FLASH_HSFSTS);
4812 			if (hsfsts.hsf_status.flcerr)
4813 				/* repeat for some time before giving up */
4814 				continue;
4815 			else if (!hsfsts.hsf_status.flcdone)
4816 				return ret_val;
4817 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4818 	}
4819 
4820 	return E1000_SUCCESS;
4821 }
4822 
4823 /**
4824  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4825  *  @hw: pointer to the HW structure
4826  *  @data: Pointer to the LED settings
4827  *
4828  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4829  *  settings is all 0's or F's, set the LED default to a valid LED default
4830  *  setting.
4831  **/
4832 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4833 {
4834 	s32 ret_val;
4835 
4836 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4837 
4838 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4839 	if (ret_val) {
4840 		DEBUGOUT("NVM Read Error\n");
4841 		return ret_val;
4842 	}
4843 
4844 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4845 		*data = ID_LED_DEFAULT_ICH8LAN;
4846 
4847 	return E1000_SUCCESS;
4848 }
4849 
4850 /**
4851  *  e1000_id_led_init_pchlan - store LED configurations
4852  *  @hw: pointer to the HW structure
4853  *
4854  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4855  *  the PHY LED configuration register.
4856  *
4857  *  PCH also does not have an "always on" or "always off" mode which
4858  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4859  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4860  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4861  *  link based on logic in e1000_led_[on|off]_pchlan().
4862  **/
4863 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4864 {
4865 	struct e1000_mac_info *mac = &hw->mac;
4866 	s32 ret_val;
4867 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4868 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4869 	u16 data, i, temp, shift;
4870 
4871 	DEBUGFUNC("e1000_id_led_init_pchlan");
4872 
4873 	/* Get default ID LED modes */
4874 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4875 	if (ret_val)
4876 		return ret_val;
4877 
4878 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4879 	mac->ledctl_mode1 = mac->ledctl_default;
4880 	mac->ledctl_mode2 = mac->ledctl_default;
4881 
4882 	for (i = 0; i < 4; i++) {
4883 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4884 		shift = (i * 5);
4885 		switch (temp) {
4886 		case ID_LED_ON1_DEF2:
4887 		case ID_LED_ON1_ON2:
4888 		case ID_LED_ON1_OFF2:
4889 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4890 			mac->ledctl_mode1 |= (ledctl_on << shift);
4891 			break;
4892 		case ID_LED_OFF1_DEF2:
4893 		case ID_LED_OFF1_ON2:
4894 		case ID_LED_OFF1_OFF2:
4895 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4896 			mac->ledctl_mode1 |= (ledctl_off << shift);
4897 			break;
4898 		default:
4899 			/* Do nothing */
4900 			break;
4901 		}
4902 		switch (temp) {
4903 		case ID_LED_DEF1_ON2:
4904 		case ID_LED_ON1_ON2:
4905 		case ID_LED_OFF1_ON2:
4906 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4907 			mac->ledctl_mode2 |= (ledctl_on << shift);
4908 			break;
4909 		case ID_LED_DEF1_OFF2:
4910 		case ID_LED_ON1_OFF2:
4911 		case ID_LED_OFF1_OFF2:
4912 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4913 			mac->ledctl_mode2 |= (ledctl_off << shift);
4914 			break;
4915 		default:
4916 			/* Do nothing */
4917 			break;
4918 		}
4919 	}
4920 
4921 	return E1000_SUCCESS;
4922 }
4923 
4924 /**
4925  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4926  *  @hw: pointer to the HW structure
4927  *
4928  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4929  *  register, so the bus width is hard coded.
4930  **/
4931 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4932 {
4933 	struct e1000_bus_info *bus = &hw->bus;
4934 	s32 ret_val;
4935 
4936 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4937 
4938 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4939 
4940 	/* ICH devices are "PCI Express"-ish.  They have
4941 	 * a configuration space, but do not contain
4942 	 * PCI Express Capability registers, so bus width
4943 	 * must be hardcoded.
4944 	 */
4945 	if (bus->width == e1000_bus_width_unknown)
4946 		bus->width = e1000_bus_width_pcie_x1;
4947 
4948 	return ret_val;
4949 }
4950 
4951 /**
4952  *  e1000_reset_hw_ich8lan - Reset the hardware
4953  *  @hw: pointer to the HW structure
4954  *
4955  *  Does a full reset of the hardware which includes a reset of the PHY and
4956  *  MAC.
4957  **/
4958 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4959 {
4960 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4961 	u16 kum_cfg;
4962 	u32 ctrl, reg;
4963 	s32 ret_val;
4964 
4965 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4966 
4967 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4968 	 * on the last TLP read/write transaction when MAC is reset.
4969 	 */
4970 	ret_val = e1000_disable_pcie_master_generic(hw);
4971 	if (ret_val)
4972 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4973 
4974 	DEBUGOUT("Masking off all interrupts\n");
4975 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4976 
4977 	/* Disable the Transmit and Receive units.  Then delay to allow
4978 	 * any pending transactions to complete before we hit the MAC
4979 	 * with the global reset.
4980 	 */
4981 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4982 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4983 	E1000_WRITE_FLUSH(hw);
4984 
4985 	msec_delay(10);
4986 
4987 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4988 	if (hw->mac.type == e1000_ich8lan) {
4989 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4990 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4991 		/* Set Packet Buffer Size to 16k. */
4992 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4993 	}
4994 
4995 	if (hw->mac.type == e1000_pchlan) {
4996 		/* Save the NVM K1 bit setting*/
4997 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4998 		if (ret_val)
4999 			return ret_val;
5000 
5001 		if (kum_cfg & E1000_NVM_K1_ENABLE)
5002 			dev_spec->nvm_k1_enabled = TRUE;
5003 		else
5004 			dev_spec->nvm_k1_enabled = FALSE;
5005 	}
5006 
5007 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5008 
5009 	if (!hw->phy.ops.check_reset_block(hw)) {
5010 		/* Full-chip reset requires MAC and PHY reset at the same
5011 		 * time to make sure the interface between MAC and the
5012 		 * external PHY is reset.
5013 		 */
5014 		ctrl |= E1000_CTRL_PHY_RST;
5015 
5016 		/* Gate automatic PHY configuration by hardware on
5017 		 * non-managed 82579
5018 		 */
5019 		if ((hw->mac.type == e1000_pch2lan) &&
5020 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5021 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5022 	}
5023 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5024 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5025 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5026 	/* cannot issue a flush here because it hangs the hardware */
5027 	msec_delay(20);
5028 
5029 	/* Set Phy Config Counter to 50msec */
5030 	if (hw->mac.type == e1000_pch2lan) {
5031 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5032 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5033 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5034 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5035 	}
5036 
5037 
5038 	if (ctrl & E1000_CTRL_PHY_RST) {
5039 		ret_val = hw->phy.ops.get_cfg_done(hw);
5040 		if (ret_val)
5041 			return ret_val;
5042 
5043 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5044 		if (ret_val)
5045 			return ret_val;
5046 	}
5047 
5048 	/* For PCH, this write will make sure that any noise
5049 	 * will be detected as a CRC error and be dropped rather than show up
5050 	 * as a bad packet to the DMA engine.
5051 	 */
5052 	if (hw->mac.type == e1000_pchlan)
5053 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5054 
5055 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5056 	E1000_READ_REG(hw, E1000_ICR);
5057 
5058 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5059 	reg |= E1000_KABGTXD_BGSQLBIAS;
5060 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5061 
5062 	return E1000_SUCCESS;
5063 }
5064 
5065 /**
5066  *  e1000_init_hw_ich8lan - Initialize the hardware
5067  *  @hw: pointer to the HW structure
5068  *
5069  *  Prepares the hardware for transmit and receive by doing the following:
5070  *   - initialize hardware bits
5071  *   - initialize LED identification
5072  *   - setup receive address registers
5073  *   - setup flow control
5074  *   - setup transmit descriptors
5075  *   - clear statistics
5076  **/
5077 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5078 {
5079 	struct e1000_mac_info *mac = &hw->mac;
5080 	u32 ctrl_ext, txdctl, snoop;
5081 	s32 ret_val;
5082 	u16 i;
5083 
5084 	DEBUGFUNC("e1000_init_hw_ich8lan");
5085 
5086 	e1000_initialize_hw_bits_ich8lan(hw);
5087 
5088 	/* Initialize identification LED */
5089 	ret_val = mac->ops.id_led_init(hw);
5090 	/* An error is not fatal and we should not stop init due to this */
5091 	if (ret_val)
5092 		DEBUGOUT("Error initializing identification LED\n");
5093 
5094 	/* Setup the receive address. */
5095 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5096 
5097 	/* Zero out the Multicast HASH table */
5098 	DEBUGOUT("Zeroing the MTA\n");
5099 	for (i = 0; i < mac->mta_reg_count; i++)
5100 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5101 
5102 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5103 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5104 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5105 	 */
5106 	if (hw->phy.type == e1000_phy_82578) {
5107 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5108 		i &= ~BM_WUC_HOST_WU_BIT;
5109 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5110 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5111 		if (ret_val)
5112 			return ret_val;
5113 	}
5114 
5115 	/* Setup link and flow control */
5116 	ret_val = mac->ops.setup_link(hw);
5117 
5118 	/* Set the transmit descriptor write-back policy for both queues */
5119 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5120 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5121 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5122 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5123 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5124 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5125 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5126 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5127 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5128 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5129 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5130 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5131 
5132 	/* ICH8 has opposite polarity of no_snoop bits.
5133 	 * By default, we should use snoop behavior.
5134 	 */
5135 	if (mac->type == e1000_ich8lan)
5136 		snoop = PCIE_ICH8_SNOOP_ALL;
5137 	else
5138 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5139 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5140 
5141 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5142 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5143 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5144 
5145 	/* Clear all of the statistics registers (clear on read).  It is
5146 	 * important that we do this after we have tried to establish link
5147 	 * because the symbol error count will increment wildly if there
5148 	 * is no link.
5149 	 */
5150 	e1000_clear_hw_cntrs_ich8lan(hw);
5151 
5152 	return ret_val;
5153 }
5154 
5155 /**
5156  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5157  *  @hw: pointer to the HW structure
5158  *
5159  *  Sets/Clears required hardware bits necessary for correctly setting up the
5160  *  hardware for transmit and receive.
5161  **/
5162 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5163 {
5164 	u32 reg;
5165 
5166 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5167 
5168 	/* Extended Device Control */
5169 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5170 	reg |= (1 << 22);
5171 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5172 	if (hw->mac.type >= e1000_pchlan)
5173 		reg |= E1000_CTRL_EXT_PHYPDEN;
5174 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5175 
5176 	/* Transmit Descriptor Control 0 */
5177 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5178 	reg |= (1 << 22);
5179 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5180 
5181 	/* Transmit Descriptor Control 1 */
5182 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5183 	reg |= (1 << 22);
5184 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5185 
5186 	/* Transmit Arbitration Control 0 */
5187 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5188 	if (hw->mac.type == e1000_ich8lan)
5189 		reg |= (1 << 28) | (1 << 29);
5190 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5191 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5192 
5193 	/* Transmit Arbitration Control 1 */
5194 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5195 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5196 		reg &= ~(1 << 28);
5197 	else
5198 		reg |= (1 << 28);
5199 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5200 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5201 
5202 	/* Device Status */
5203 	if (hw->mac.type == e1000_ich8lan) {
5204 		reg = E1000_READ_REG(hw, E1000_STATUS);
5205 		reg &= ~(1U << 31);
5206 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5207 	}
5208 
5209 	/* work-around descriptor data corruption issue during nfs v2 udp
5210 	 * traffic, just disable the nfs filtering capability
5211 	 */
5212 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5213 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5214 
5215 	/* Disable IPv6 extension header parsing because some malformed
5216 	 * IPv6 headers can hang the Rx.
5217 	 */
5218 	if (hw->mac.type == e1000_ich8lan)
5219 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5220 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5221 
5222 	/* Enable ECC on Lynxpoint */
5223 	if (hw->mac.type >= e1000_pch_lpt) {
5224 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5225 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5226 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5227 
5228 		reg = E1000_READ_REG(hw, E1000_CTRL);
5229 		reg |= E1000_CTRL_MEHE;
5230 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5231 	}
5232 
5233 	return;
5234 }
5235 
5236 /**
5237  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5238  *  @hw: pointer to the HW structure
5239  *
5240  *  Determines which flow control settings to use, then configures flow
5241  *  control.  Calls the appropriate media-specific link configuration
5242  *  function.  Assuming the adapter has a valid link partner, a valid link
5243  *  should be established.  Assumes the hardware has previously been reset
5244  *  and the transmitter and receiver are not enabled.
5245  **/
5246 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5247 {
5248 	s32 ret_val;
5249 
5250 	DEBUGFUNC("e1000_setup_link_ich8lan");
5251 
5252 	/* ICH parts do not have a word in the NVM to determine
5253 	 * the default flow control setting, so we explicitly
5254 	 * set it to full.
5255 	 */
5256 	if (hw->fc.requested_mode == e1000_fc_default)
5257 		hw->fc.requested_mode = e1000_fc_full;
5258 
5259 	/* Save off the requested flow control mode for use later.  Depending
5260 	 * on the link partner's capabilities, we may or may not use this mode.
5261 	 */
5262 	hw->fc.current_mode = hw->fc.requested_mode;
5263 
5264 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5265 		hw->fc.current_mode);
5266 
5267 	if (!hw->phy.ops.check_reset_block(hw)) {
5268 		/* Continue to configure the copper link. */
5269 		ret_val = hw->mac.ops.setup_physical_interface(hw);
5270 		if (ret_val)
5271 			return ret_val;
5272 	}
5273 
5274 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5275 	if ((hw->phy.type == e1000_phy_82578) ||
5276 	    (hw->phy.type == e1000_phy_82579) ||
5277 	    (hw->phy.type == e1000_phy_i217) ||
5278 	    (hw->phy.type == e1000_phy_82577)) {
5279 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5280 
5281 		ret_val = hw->phy.ops.write_reg(hw,
5282 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5283 					     hw->fc.pause_time);
5284 		if (ret_val)
5285 			return ret_val;
5286 	}
5287 
5288 	return e1000_set_fc_watermarks_generic(hw);
5289 }
5290 
5291 /**
5292  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5293  *  @hw: pointer to the HW structure
5294  *
5295  *  Configures the kumeran interface to the PHY to wait the appropriate time
5296  *  when polling the PHY, then call the generic setup_copper_link to finish
5297  *  configuring the copper link.
5298  **/
5299 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5300 {
5301 	u32 ctrl;
5302 	s32 ret_val;
5303 	u16 reg_data;
5304 
5305 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5306 
5307 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5308 	ctrl |= E1000_CTRL_SLU;
5309 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5310 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5311 
5312 	/* Set the mac to wait the maximum time between each iteration
5313 	 * and increase the max iterations when polling the phy;
5314 	 * this fixes erroneous timeouts at 10Mbps.
5315 	 */
5316 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5317 					       0xFFFF);
5318 	if (ret_val)
5319 		return ret_val;
5320 	ret_val = e1000_read_kmrn_reg_generic(hw,
5321 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5322 					      &reg_data);
5323 	if (ret_val)
5324 		return ret_val;
5325 	reg_data |= 0x3F;
5326 	ret_val = e1000_write_kmrn_reg_generic(hw,
5327 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5328 					       reg_data);
5329 	if (ret_val)
5330 		return ret_val;
5331 
5332 	switch (hw->phy.type) {
5333 	case e1000_phy_igp_3:
5334 		ret_val = e1000_copper_link_setup_igp(hw);
5335 		if (ret_val)
5336 			return ret_val;
5337 		break;
5338 	case e1000_phy_bm:
5339 	case e1000_phy_82578:
5340 		ret_val = e1000_copper_link_setup_m88(hw);
5341 		if (ret_val)
5342 			return ret_val;
5343 		break;
5344 	case e1000_phy_82577:
5345 	case e1000_phy_82579:
5346 		ret_val = e1000_copper_link_setup_82577(hw);
5347 		if (ret_val)
5348 			return ret_val;
5349 		break;
5350 	case e1000_phy_ife:
5351 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5352 					       &reg_data);
5353 		if (ret_val)
5354 			return ret_val;
5355 
5356 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5357 
5358 		switch (hw->phy.mdix) {
5359 		case 1:
5360 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5361 			break;
5362 		case 2:
5363 			reg_data |= IFE_PMC_FORCE_MDIX;
5364 			break;
5365 		case 0:
5366 		default:
5367 			reg_data |= IFE_PMC_AUTO_MDIX;
5368 			break;
5369 		}
5370 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5371 						reg_data);
5372 		if (ret_val)
5373 			return ret_val;
5374 		break;
5375 	default:
5376 		break;
5377 	}
5378 
5379 	return e1000_setup_copper_link_generic(hw);
5380 }
5381 
5382 /**
5383  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5384  *  @hw: pointer to the HW structure
5385  *
5386  *  Calls the PHY specific link setup function and then calls the
5387  *  generic setup_copper_link to finish configuring the link for
5388  *  Lynxpoint PCH devices
5389  **/
5390 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5391 {
5392 	u32 ctrl;
5393 	s32 ret_val;
5394 
5395 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5396 
5397 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5398 	ctrl |= E1000_CTRL_SLU;
5399 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5400 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5401 
5402 	ret_val = e1000_copper_link_setup_82577(hw);
5403 	if (ret_val)
5404 		return ret_val;
5405 
5406 	return e1000_setup_copper_link_generic(hw);
5407 }
5408 
5409 /**
5410  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5411  *  @hw: pointer to the HW structure
5412  *  @speed: pointer to store current link speed
5413  *  @duplex: pointer to store the current link duplex
5414  *
5415  *  Calls the generic get_speed_and_duplex to retrieve the current link
5416  *  information and then calls the Kumeran lock loss workaround for links at
5417  *  gigabit speeds.
5418  **/
5419 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5420 					  u16 *duplex)
5421 {
5422 	s32 ret_val;
5423 
5424 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5425 
5426 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5427 	if (ret_val)
5428 		return ret_val;
5429 
5430 	if ((hw->mac.type == e1000_ich8lan) &&
5431 	    (hw->phy.type == e1000_phy_igp_3) &&
5432 	    (*speed == SPEED_1000)) {
5433 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5434 	}
5435 
5436 	return ret_val;
5437 }
5438 
5439 /**
5440  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5441  *  @hw: pointer to the HW structure
5442  *
5443  *  Work-around for 82566 Kumeran PCS lock loss:
5444  *  On link status change (i.e. PCI reset, speed change) and link is up and
5445  *  speed is gigabit-
5446  *    0) if workaround is optionally disabled do nothing
5447  *    1) wait 1ms for Kumeran link to come up
5448  *    2) check Kumeran Diagnostic register PCS lock loss bit
5449  *    3) if not set the link is locked (all is good), otherwise...
5450  *    4) reset the PHY
5451  *    5) repeat up to 10 times
5452  *  Note: this is only called for IGP3 copper when speed is 1gb.
5453  **/
5454 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5455 {
5456 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5457 	u32 phy_ctrl;
5458 	s32 ret_val;
5459 	u16 i, data;
5460 	bool link;
5461 
5462 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5463 
5464 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5465 		return E1000_SUCCESS;
5466 
5467 	/* Make sure link is up before proceeding.  If not just return.
5468 	 * Attempting this while link is negotiating fouled up link
5469 	 * stability
5470 	 */
5471 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5472 	if (!link)
5473 		return E1000_SUCCESS;
5474 
5475 	for (i = 0; i < 10; i++) {
5476 		/* read once to clear */
5477 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5478 		if (ret_val)
5479 			return ret_val;
5480 		/* and again to get new status */
5481 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5482 		if (ret_val)
5483 			return ret_val;
5484 
5485 		/* check for PCS lock */
5486 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5487 			return E1000_SUCCESS;
5488 
5489 		/* Issue PHY reset */
5490 		hw->phy.ops.reset(hw);
5491 		msec_delay_irq(5);
5492 	}
5493 	/* Disable GigE link negotiation */
5494 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5495 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5496 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5497 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5498 
5499 	/* Call gig speed drop workaround on Gig disable before accessing
5500 	 * any PHY registers
5501 	 */
5502 	e1000_gig_downshift_workaround_ich8lan(hw);
5503 
5504 	/* unable to acquire PCS lock */
5505 	return -E1000_ERR_PHY;
5506 }
5507 
5508 /**
5509  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5510  *  @hw: pointer to the HW structure
5511  *  @state: boolean value used to set the current Kumeran workaround state
5512  *
5513  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5514  *  /disabled - FALSE).
5515  **/
5516 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5517 						 bool state)
5518 {
5519 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5520 
5521 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5522 
5523 	if (hw->mac.type != e1000_ich8lan) {
5524 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5525 		return;
5526 	}
5527 
5528 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5529 
5530 	return;
5531 }
5532 
5533 /**
5534  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5535  *  @hw: pointer to the HW structure
5536  *
5537  *  Workaround for 82566 power-down on D3 entry:
5538  *    1) disable gigabit link
5539  *    2) write VR power-down enable
5540  *    3) read it back
5541  *  Continue if successful, else issue LCD reset and repeat
5542  **/
5543 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5544 {
5545 	u32 reg;
5546 	u16 data;
5547 	u8  retry = 0;
5548 
5549 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5550 
5551 	if (hw->phy.type != e1000_phy_igp_3)
5552 		return;
5553 
5554 	/* Try the workaround twice (if needed) */
5555 	do {
5556 		/* Disable link */
5557 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5558 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5559 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5560 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5561 
5562 		/* Call gig speed drop workaround on Gig disable before
5563 		 * accessing any PHY registers
5564 		 */
5565 		if (hw->mac.type == e1000_ich8lan)
5566 			e1000_gig_downshift_workaround_ich8lan(hw);
5567 
5568 		/* Write VR power-down enable */
5569 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5570 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5571 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5572 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5573 
5574 		/* Read it back and test */
5575 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5576 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5577 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5578 			break;
5579 
5580 		/* Issue PHY reset and repeat at most one more time */
5581 		reg = E1000_READ_REG(hw, E1000_CTRL);
5582 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5583 		retry++;
5584 	} while (retry);
5585 }
5586 
5587 /**
5588  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5589  *  @hw: pointer to the HW structure
5590  *
5591  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5592  *  LPLU, Gig disable, MDIC PHY reset):
5593  *    1) Set Kumeran Near-end loopback
5594  *    2) Clear Kumeran Near-end loopback
5595  *  Should only be called for ICH8[m] devices with any 1G Phy.
5596  **/
5597 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5598 {
5599 	s32 ret_val;
5600 	u16 reg_data;
5601 
5602 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5603 
5604 	if ((hw->mac.type != e1000_ich8lan) ||
5605 	    (hw->phy.type == e1000_phy_ife))
5606 		return;
5607 
5608 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5609 					      &reg_data);
5610 	if (ret_val)
5611 		return;
5612 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5613 	ret_val = e1000_write_kmrn_reg_generic(hw,
5614 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5615 					       reg_data);
5616 	if (ret_val)
5617 		return;
5618 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5619 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5620 				     reg_data);
5621 }
5622 
5623 /**
5624  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5625  *  @hw: pointer to the HW structure
5626  *
5627  *  During S0 to Sx transition, it is possible the link remains at gig
5628  *  instead of negotiating to a lower speed.  Before going to Sx, set
5629  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5630  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5631  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5632  *  needs to be written.
5633  *  Parts that support (and are linked to a partner which support) EEE in
5634  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5635  *  than 10Mbps w/o EEE.
5636  **/
5637 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5638 {
5639 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5640 	u32 phy_ctrl;
5641 	s32 ret_val;
5642 
5643 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5644 
5645 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5646 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5647 
5648 	if (hw->phy.type == e1000_phy_i217) {
5649 		u16 phy_reg, device_id = hw->device_id;
5650 
5651 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5652 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5653 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5654 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5655 		    (hw->mac.type >= e1000_pch_spt)) {
5656 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5657 
5658 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5659 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5660 		}
5661 
5662 		ret_val = hw->phy.ops.acquire(hw);
5663 		if (ret_val)
5664 			goto out;
5665 
5666 		if (!dev_spec->eee_disable) {
5667 			u16 eee_advert;
5668 
5669 			ret_val =
5670 			    e1000_read_emi_reg_locked(hw,
5671 						      I217_EEE_ADVERTISEMENT,
5672 						      &eee_advert);
5673 			if (ret_val)
5674 				goto release;
5675 
5676 			/* Disable LPLU if both link partners support 100BaseT
5677 			 * EEE and 100Full is advertised on both ends of the
5678 			 * link, and enable Auto Enable LPI since there will
5679 			 * be no driver to enable LPI while in Sx.
5680 			 */
5681 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5682 			    (dev_spec->eee_lp_ability &
5683 			     I82579_EEE_100_SUPPORTED) &&
5684 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5685 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5686 					      E1000_PHY_CTRL_NOND0A_LPLU);
5687 
5688 				/* Set Auto Enable LPI after link up */
5689 				hw->phy.ops.read_reg_locked(hw,
5690 							    I217_LPI_GPIO_CTRL,
5691 							    &phy_reg);
5692 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5693 				hw->phy.ops.write_reg_locked(hw,
5694 							     I217_LPI_GPIO_CTRL,
5695 							     phy_reg);
5696 			}
5697 		}
5698 
5699 		/* For i217 Intel Rapid Start Technology support,
5700 		 * when the system is going into Sx and no manageability engine
5701 		 * is present, the driver must configure proxy to reset only on
5702 		 * power good.  LPI (Low Power Idle) state must also reset only
5703 		 * on power good, as well as the MTA (Multicast table array).
5704 		 * The SMBus release must also be disabled on LCD reset.
5705 		 */
5706 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5707 		      E1000_ICH_FWSM_FW_VALID)) {
5708 			/* Enable proxy to reset only on power good. */
5709 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5710 						    &phy_reg);
5711 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5712 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5713 						     phy_reg);
5714 
5715 			/* Set bit enable LPI (EEE) to reset only on
5716 			 * power good.
5717 			*/
5718 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5719 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5720 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5721 
5722 			/* Disable the SMB release on LCD reset. */
5723 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5724 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5725 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5726 		}
5727 
5728 		/* Enable MTA to reset for Intel Rapid Start Technology
5729 		 * Support
5730 		 */
5731 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5732 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5733 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5734 
5735 release:
5736 		hw->phy.ops.release(hw);
5737 	}
5738 out:
5739 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5740 
5741 	if (hw->mac.type == e1000_ich8lan)
5742 		e1000_gig_downshift_workaround_ich8lan(hw);
5743 
5744 	if (hw->mac.type >= e1000_pchlan) {
5745 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5746 
5747 		/* Reset PHY to activate OEM bits on 82577/8 */
5748 		if (hw->mac.type == e1000_pchlan)
5749 			e1000_phy_hw_reset_generic(hw);
5750 
5751 		ret_val = hw->phy.ops.acquire(hw);
5752 		if (ret_val)
5753 			return;
5754 		e1000_write_smbus_addr(hw);
5755 		hw->phy.ops.release(hw);
5756 	}
5757 
5758 	return;
5759 }
5760 
5761 /**
5762  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5763  *  @hw: pointer to the HW structure
5764  *
5765  *  During Sx to S0 transitions on non-managed devices or managed devices
5766  *  on which PHY resets are not blocked, if the PHY registers cannot be
5767  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5768  *  the PHY.
5769  *  On i217, setup Intel Rapid Start Technology.
5770  **/
5771 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5772 {
5773 	s32 ret_val;
5774 
5775 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5776 	if (hw->mac.type < e1000_pch2lan)
5777 		return E1000_SUCCESS;
5778 
5779 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5780 	if (ret_val) {
5781 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5782 		return ret_val;
5783 	}
5784 
5785 	/* For i217 Intel Rapid Start Technology support when the system
5786 	 * is transitioning from Sx and no manageability engine is present
5787 	 * configure SMBus to restore on reset, disable proxy, and enable
5788 	 * the reset on MTA (Multicast table array).
5789 	 */
5790 	if (hw->phy.type == e1000_phy_i217) {
5791 		u16 phy_reg;
5792 
5793 		ret_val = hw->phy.ops.acquire(hw);
5794 		if (ret_val) {
5795 			DEBUGOUT("Failed to setup iRST\n");
5796 			return ret_val;
5797 		}
5798 
5799 		/* Clear Auto Enable LPI after link up */
5800 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5801 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5802 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5803 
5804 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5805 		    E1000_ICH_FWSM_FW_VALID)) {
5806 			/* Restore clear on SMB if no manageability engine
5807 			 * is present
5808 			 */
5809 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5810 							      &phy_reg);
5811 			if (ret_val)
5812 				goto release;
5813 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5814 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5815 
5816 			/* Disable Proxy */
5817 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5818 		}
5819 		/* Enable reset on MTA */
5820 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5821 						      &phy_reg);
5822 		if (ret_val)
5823 			goto release;
5824 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5825 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5826 release:
5827 		if (ret_val)
5828 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5829 		hw->phy.ops.release(hw);
5830 		return ret_val;
5831 	}
5832 	return E1000_SUCCESS;
5833 }
5834 
5835 /**
5836  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5837  *  @hw: pointer to the HW structure
5838  *
5839  *  Return the LED back to the default configuration.
5840  **/
5841 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5842 {
5843 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5844 
5845 	if (hw->phy.type == e1000_phy_ife)
5846 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5847 					     0);
5848 
5849 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5850 	return E1000_SUCCESS;
5851 }
5852 
5853 /**
5854  *  e1000_led_on_ich8lan - Turn LEDs on
5855  *  @hw: pointer to the HW structure
5856  *
5857  *  Turn on the LEDs.
5858  **/
5859 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5860 {
5861 	DEBUGFUNC("e1000_led_on_ich8lan");
5862 
5863 	if (hw->phy.type == e1000_phy_ife)
5864 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5865 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5866 
5867 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5868 	return E1000_SUCCESS;
5869 }
5870 
5871 /**
5872  *  e1000_led_off_ich8lan - Turn LEDs off
5873  *  @hw: pointer to the HW structure
5874  *
5875  *  Turn off the LEDs.
5876  **/
5877 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5878 {
5879 	DEBUGFUNC("e1000_led_off_ich8lan");
5880 
5881 	if (hw->phy.type == e1000_phy_ife)
5882 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5883 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5884 
5885 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5886 	return E1000_SUCCESS;
5887 }
5888 
5889 /**
5890  *  e1000_setup_led_pchlan - Configures SW controllable LED
5891  *  @hw: pointer to the HW structure
5892  *
5893  *  This prepares the SW controllable LED for use.
5894  **/
5895 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5896 {
5897 	DEBUGFUNC("e1000_setup_led_pchlan");
5898 
5899 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5900 				     (u16)hw->mac.ledctl_mode1);
5901 }
5902 
5903 /**
5904  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5905  *  @hw: pointer to the HW structure
5906  *
5907  *  Return the LED back to the default configuration.
5908  **/
5909 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5910 {
5911 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5912 
5913 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5914 				     (u16)hw->mac.ledctl_default);
5915 }
5916 
5917 /**
5918  *  e1000_led_on_pchlan - Turn LEDs on
5919  *  @hw: pointer to the HW structure
5920  *
5921  *  Turn on the LEDs.
5922  **/
5923 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5924 {
5925 	u16 data = (u16)hw->mac.ledctl_mode2;
5926 	u32 i, led;
5927 
5928 	DEBUGFUNC("e1000_led_on_pchlan");
5929 
5930 	/* If no link, then turn LED on by setting the invert bit
5931 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5932 	 */
5933 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5934 		for (i = 0; i < 3; i++) {
5935 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5936 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5937 			    E1000_LEDCTL_MODE_LINK_UP)
5938 				continue;
5939 			if (led & E1000_PHY_LED0_IVRT)
5940 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5941 			else
5942 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5943 		}
5944 	}
5945 
5946 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5947 }
5948 
5949 /**
5950  *  e1000_led_off_pchlan - Turn LEDs off
5951  *  @hw: pointer to the HW structure
5952  *
5953  *  Turn off the LEDs.
5954  **/
5955 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5956 {
5957 	u16 data = (u16)hw->mac.ledctl_mode1;
5958 	u32 i, led;
5959 
5960 	DEBUGFUNC("e1000_led_off_pchlan");
5961 
5962 	/* If no link, then turn LED off by clearing the invert bit
5963 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5964 	 */
5965 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5966 		for (i = 0; i < 3; i++) {
5967 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5968 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5969 			    E1000_LEDCTL_MODE_LINK_UP)
5970 				continue;
5971 			if (led & E1000_PHY_LED0_IVRT)
5972 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5973 			else
5974 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5975 		}
5976 	}
5977 
5978 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5979 }
5980 
5981 /**
5982  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5983  *  @hw: pointer to the HW structure
5984  *
5985  *  Read appropriate register for the config done bit for completion status
5986  *  and configure the PHY through s/w for EEPROM-less parts.
5987  *
5988  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5989  *  config done bit, so only an error is logged and continues.  If we were
5990  *  to return with error, EEPROM-less silicon would not be able to be reset
5991  *  or change link.
5992  **/
5993 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5994 {
5995 	s32 ret_val = E1000_SUCCESS;
5996 	u32 bank = 0;
5997 	u32 status;
5998 
5999 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6000 
6001 	e1000_get_cfg_done_generic(hw);
6002 
6003 	/* Wait for indication from h/w that it has completed basic config */
6004 	if (hw->mac.type >= e1000_ich10lan) {
6005 		e1000_lan_init_done_ich8lan(hw);
6006 	} else {
6007 		ret_val = e1000_get_auto_rd_done_generic(hw);
6008 		if (ret_val) {
6009 			/* When auto config read does not complete, do not
6010 			 * return with an error. This can happen in situations
6011 			 * where there is no eeprom and prevents getting link.
6012 			 */
6013 			DEBUGOUT("Auto Read Done did not complete\n");
6014 			ret_val = E1000_SUCCESS;
6015 		}
6016 	}
6017 
6018 	/* Clear PHY Reset Asserted bit */
6019 	status = E1000_READ_REG(hw, E1000_STATUS);
6020 	if (status & E1000_STATUS_PHYRA)
6021 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6022 	else
6023 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6024 
6025 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6026 	if (hw->mac.type <= e1000_ich9lan) {
6027 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6028 		    (hw->phy.type == e1000_phy_igp_3)) {
6029 			e1000_phy_init_script_igp3(hw);
6030 		}
6031 	} else {
6032 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6033 			/* Maybe we should do a basic PHY config */
6034 			DEBUGOUT("EEPROM not present\n");
6035 			ret_val = -E1000_ERR_CONFIG;
6036 		}
6037 	}
6038 
6039 	return ret_val;
6040 }
6041 
6042 /**
6043  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6044  * @hw: pointer to the HW structure
6045  *
6046  * In the case of a PHY power down to save power, or to turn off link during a
6047  * driver unload, or wake on lan is not enabled, remove the link.
6048  **/
6049 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6050 {
6051 	/* If the management interface is not enabled, then power down */
6052 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6053 	      hw->phy.ops.check_reset_block(hw)))
6054 		e1000_power_down_phy_copper(hw);
6055 
6056 	return;
6057 }
6058 
6059 /**
6060  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6061  *  @hw: pointer to the HW structure
6062  *
6063  *  Clears hardware counters specific to the silicon family and calls
6064  *  clear_hw_cntrs_generic to clear all general purpose counters.
6065  **/
6066 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6067 {
6068 	u16 phy_data;
6069 	s32 ret_val;
6070 
6071 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6072 
6073 	e1000_clear_hw_cntrs_base_generic(hw);
6074 
6075 	E1000_READ_REG(hw, E1000_ALGNERRC);
6076 	E1000_READ_REG(hw, E1000_RXERRC);
6077 	E1000_READ_REG(hw, E1000_TNCRS);
6078 	E1000_READ_REG(hw, E1000_CEXTERR);
6079 	E1000_READ_REG(hw, E1000_TSCTC);
6080 	E1000_READ_REG(hw, E1000_TSCTFC);
6081 
6082 	E1000_READ_REG(hw, E1000_MGTPRC);
6083 	E1000_READ_REG(hw, E1000_MGTPDC);
6084 	E1000_READ_REG(hw, E1000_MGTPTC);
6085 
6086 	E1000_READ_REG(hw, E1000_IAC);
6087 	E1000_READ_REG(hw, E1000_ICRXOC);
6088 
6089 	/* Clear PHY statistics registers */
6090 	if ((hw->phy.type == e1000_phy_82578) ||
6091 	    (hw->phy.type == e1000_phy_82579) ||
6092 	    (hw->phy.type == e1000_phy_i217) ||
6093 	    (hw->phy.type == e1000_phy_82577)) {
6094 		ret_val = hw->phy.ops.acquire(hw);
6095 		if (ret_val)
6096 			return;
6097 		ret_val = hw->phy.ops.set_page(hw,
6098 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6099 		if (ret_val)
6100 			goto release;
6101 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6102 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6103 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6104 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6105 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6106 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6107 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6108 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6109 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6110 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6111 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6112 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6113 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6114 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6115 release:
6116 		hw->phy.ops.release(hw);
6117 	}
6118 }
6119 
6120