xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72 
73 #include "e1000_api.h"
74 
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 					      u8 *mc_addr_list,
86 					      u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91 					    bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93 					    bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95 				   u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97 			       u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99 				    u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104 					    u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113 					   u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129 					  u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131 					    u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133 					   u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135 					     u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137 						  u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139 					  u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141 						 u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153 	struct ich8_hsfsts {
154 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156 		u16 dael:1; /* bit 2 Direct Access error Log */
157 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159 		u16 reserved1:2; /* bit 13:6 Reserved */
160 		u16 reserved2:6; /* bit 13:6 Reserved */
161 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163 	} hsf_status;
164 	u16 regval;
165 };
166 
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170 	struct ich8_hsflctl {
171 		u16 flcgo:1;   /* 0 Flash Cycle Go */
172 		u16 flcycle:2;   /* 2:1 Flash Cycle */
173 		u16 reserved:5;   /* 7:3 Reserved  */
174 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175 		u16 flockdn:6;   /* 15:10 Reserved */
176 	} hsf_ctrl;
177 	u16 regval;
178 };
179 
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182 	struct ich8_flracc {
183 		u32 grra:8; /* 0:7 GbE region Read Access */
184 		u32 grwa:8; /* 8:15 GbE region Write Access */
185 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187 	} hsf_flregacc;
188 	u16 regval;
189 };
190 
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203 	u16 phy_reg = 0;
204 	u32 phy_id = 0;
205 	s32 ret_val = 0;
206 	u16 retry_count;
207 	u32 mac_reg = 0;
208 
209 	for (retry_count = 0; retry_count < 2; retry_count++) {
210 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211 		if (ret_val || (phy_reg == 0xFFFF))
212 			continue;
213 		phy_id = (u32)(phy_reg << 16);
214 
215 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216 		if (ret_val || (phy_reg == 0xFFFF)) {
217 			phy_id = 0;
218 			continue;
219 		}
220 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221 		break;
222 	}
223 
224 	if (hw->phy.id) {
225 		if  (hw->phy.id == phy_id)
226 			goto out;
227 	} else if (phy_id) {
228 		hw->phy.id = phy_id;
229 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230 		goto out;
231 	}
232 
233 	/* In case the PHY needs to be in mdio slow mode,
234 	 * set slow mode and try to get the PHY id again.
235 	 */
236 	if (hw->mac.type < e1000_pch_lpt) {
237 		hw->phy.ops.release(hw);
238 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239 		if (!ret_val)
240 			ret_val = e1000_get_phy_id(hw);
241 		hw->phy.ops.acquire(hw);
242 	}
243 
244 	if (ret_val)
245 		return FALSE;
246 out:
247 	if (hw->mac.type >= e1000_pch_lpt) {
248 		/* Only unforce SMBus if ME is not active */
249 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250 		    E1000_ICH_FWSM_FW_VALID)) {
251 			/* Unforce SMBus mode in PHY */
252 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 
256 			/* Unforce SMBus mode in MAC */
257 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260 		}
261 	}
262 
263 	return TRUE;
264 }
265 
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275 	u32 mac_reg;
276 
277 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 
279 	/* Set Phy Config Counter to 50msec */
280 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 
285 	/* Toggle LANPHYPC Value bit */
286 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290 	E1000_WRITE_FLUSH(hw);
291 	msec_delay(1);
292 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294 	E1000_WRITE_FLUSH(hw);
295 
296 	if (hw->mac.type < e1000_pch_lpt) {
297 		msec_delay(50);
298 	} else {
299 		u16 count = 20;
300 
301 		do {
302 			msec_delay(5);
303 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304 			   E1000_CTRL_EXT_LPCD) && count--);
305 
306 		msec_delay(30);
307 	}
308 }
309 
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320 	s32 ret_val;
321 
322 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 
324 	/* Gate automatic PHY configuration by hardware on managed and
325 	 * non-managed 82579 and newer adapters.
326 	 */
327 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328 
329 	/* It is not possible to be certain of the current state of ULP
330 	 * so forcibly disable it.
331 	 */
332 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333 	e1000_disable_ulp_lpt_lp(hw, TRUE);
334 
335 	ret_val = hw->phy.ops.acquire(hw);
336 	if (ret_val) {
337 		DEBUGOUT("Failed to initialize PHY flow\n");
338 		goto out;
339 	}
340 
341 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342 	 * inaccessible and resetting the PHY is not blocked, toggle the
343 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344 	 */
345 	switch (hw->mac.type) {
346 	case e1000_pch_lpt:
347 	case e1000_pch_spt:
348 		if (e1000_phy_is_accessible_pchlan(hw))
349 			break;
350 
351 		/* Before toggling LANPHYPC, see if PHY is accessible by
352 		 * forcing MAC to SMBus mode first.
353 		 */
354 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
355 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
356 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
357 
358 		/* Wait 50 milliseconds for MAC to finish any retries
359 		 * that it might be trying to perform from previous
360 		 * attempts to acknowledge any phy read requests.
361 		 */
362 		 msec_delay(50);
363 
364 		/* fall-through */
365 	case e1000_pch2lan:
366 		if (e1000_phy_is_accessible_pchlan(hw))
367 			break;
368 
369 		/* fall-through */
370 	case e1000_pchlan:
371 		if ((hw->mac.type == e1000_pchlan) &&
372 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
373 			break;
374 
375 		if (hw->phy.ops.check_reset_block(hw)) {
376 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
377 			ret_val = -E1000_ERR_PHY;
378 			break;
379 		}
380 
381 		/* Toggle LANPHYPC Value bit */
382 		e1000_toggle_lanphypc_pch_lpt(hw);
383 		if (hw->mac.type >= e1000_pch_lpt) {
384 			if (e1000_phy_is_accessible_pchlan(hw))
385 				break;
386 
387 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
388 			 * so ensure that the MAC is also out of SMBus mode
389 			 */
390 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
391 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
392 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
393 
394 			if (e1000_phy_is_accessible_pchlan(hw))
395 				break;
396 
397 			ret_val = -E1000_ERR_PHY;
398 		}
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	hw->phy.ops.release(hw);
405 	if (!ret_val) {
406 
407 		/* Check to see if able to reset PHY.  Print error if not */
408 		if (hw->phy.ops.check_reset_block(hw)) {
409 			ERROR_REPORT("Reset blocked by ME\n");
410 			goto out;
411 		}
412 
413 		/* Reset the PHY before any access to it.  Doing so, ensures
414 		 * that the PHY is in a known good state before we read/write
415 		 * PHY registers.  The generic reset is sufficient here,
416 		 * because we haven't determined the PHY type yet.
417 		 */
418 		ret_val = e1000_phy_hw_reset_generic(hw);
419 		if (ret_val)
420 			goto out;
421 
422 		/* On a successful reset, possibly need to wait for the PHY
423 		 * to quiesce to an accessible state before returning control
424 		 * to the calling function.  If the PHY does not quiesce, then
425 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
426 		 *  the PHY is in.
427 		 */
428 		ret_val = hw->phy.ops.check_reset_block(hw);
429 		if (ret_val)
430 			ERROR_REPORT("ME blocked access to PHY after reset\n");
431 	}
432 
433 out:
434 	/* Ungate automatic PHY configuration on non-managed 82579 */
435 	if ((hw->mac.type == e1000_pch2lan) &&
436 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
437 		msec_delay(10);
438 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
439 	}
440 
441 	return ret_val;
442 }
443 
444 /**
445  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
446  *  @hw: pointer to the HW structure
447  *
448  *  Initialize family-specific PHY parameters and function pointers.
449  **/
450 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
451 {
452 	struct e1000_phy_info *phy = &hw->phy;
453 	s32 ret_val;
454 
455 	DEBUGFUNC("e1000_init_phy_params_pchlan");
456 
457 	phy->addr		= 1;
458 	phy->reset_delay_us	= 100;
459 
460 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
461 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
462 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
463 	phy->ops.set_page	= e1000_set_page_igp;
464 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
465 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
466 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
467 	phy->ops.release	= e1000_release_swflag_ich8lan;
468 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
469 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
470 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
471 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
472 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
473 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
474 	phy->ops.power_up	= e1000_power_up_phy_copper;
475 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
476 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
477 
478 	phy->id = e1000_phy_unknown;
479 
480 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
481 	if (ret_val)
482 		return ret_val;
483 
484 	if (phy->id == e1000_phy_unknown)
485 		switch (hw->mac.type) {
486 		default:
487 			ret_val = e1000_get_phy_id(hw);
488 			if (ret_val)
489 				return ret_val;
490 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
491 				break;
492 			/* fall-through */
493 		case e1000_pch2lan:
494 		case e1000_pch_lpt:
495 		case e1000_pch_spt:
496 			/* In case the PHY needs to be in mdio slow mode,
497 			 * set slow mode and try to get the PHY id again.
498 			 */
499 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
500 			if (ret_val)
501 				return ret_val;
502 			ret_val = e1000_get_phy_id(hw);
503 			if (ret_val)
504 				return ret_val;
505 			break;
506 		}
507 	phy->type = e1000_get_phy_type_from_id(phy->id);
508 
509 	switch (phy->type) {
510 	case e1000_phy_82577:
511 	case e1000_phy_82579:
512 	case e1000_phy_i217:
513 		phy->ops.check_polarity = e1000_check_polarity_82577;
514 		phy->ops.force_speed_duplex =
515 			e1000_phy_force_speed_duplex_82577;
516 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
517 		phy->ops.get_info = e1000_get_phy_info_82577;
518 		phy->ops.commit = e1000_phy_sw_reset_generic;
519 		break;
520 	case e1000_phy_82578:
521 		phy->ops.check_polarity = e1000_check_polarity_m88;
522 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
523 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
524 		phy->ops.get_info = e1000_get_phy_info_m88;
525 		break;
526 	default:
527 		ret_val = -E1000_ERR_PHY;
528 		break;
529 	}
530 
531 	return ret_val;
532 }
533 
534 /**
535  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
536  *  @hw: pointer to the HW structure
537  *
538  *  Initialize family-specific PHY parameters and function pointers.
539  **/
540 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
541 {
542 	struct e1000_phy_info *phy = &hw->phy;
543 	s32 ret_val;
544 	u16 i = 0;
545 
546 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
547 
548 	phy->addr		= 1;
549 	phy->reset_delay_us	= 100;
550 
551 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
552 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
553 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
554 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
555 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
556 	phy->ops.release	= e1000_release_swflag_ich8lan;
557 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
558 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
559 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
560 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
561 	phy->ops.power_up	= e1000_power_up_phy_copper;
562 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
563 
564 	/* We may need to do this twice - once for IGP and if that fails,
565 	 * we'll set BM func pointers and try again
566 	 */
567 	ret_val = e1000_determine_phy_address(hw);
568 	if (ret_val) {
569 		phy->ops.write_reg = e1000_write_phy_reg_bm;
570 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
571 		ret_val = e1000_determine_phy_address(hw);
572 		if (ret_val) {
573 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
574 			return ret_val;
575 		}
576 	}
577 
578 	phy->id = 0;
579 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
580 	       (i++ < 100)) {
581 		msec_delay(1);
582 		ret_val = e1000_get_phy_id(hw);
583 		if (ret_val)
584 			return ret_val;
585 	}
586 
587 	/* Verify phy id */
588 	switch (phy->id) {
589 	case IGP03E1000_E_PHY_ID:
590 		phy->type = e1000_phy_igp_3;
591 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
593 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
594 		phy->ops.get_info = e1000_get_phy_info_igp;
595 		phy->ops.check_polarity = e1000_check_polarity_igp;
596 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
597 		break;
598 	case IFE_E_PHY_ID:
599 	case IFE_PLUS_E_PHY_ID:
600 	case IFE_C_E_PHY_ID:
601 		phy->type = e1000_phy_ife;
602 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
603 		phy->ops.get_info = e1000_get_phy_info_ife;
604 		phy->ops.check_polarity = e1000_check_polarity_ife;
605 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
606 		break;
607 	case BME1000_E_PHY_ID:
608 		phy->type = e1000_phy_bm;
609 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
610 		phy->ops.read_reg = e1000_read_phy_reg_bm;
611 		phy->ops.write_reg = e1000_write_phy_reg_bm;
612 		phy->ops.commit = e1000_phy_sw_reset_generic;
613 		phy->ops.get_info = e1000_get_phy_info_m88;
614 		phy->ops.check_polarity = e1000_check_polarity_m88;
615 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
616 		break;
617 	default:
618 		return -E1000_ERR_PHY;
619 		break;
620 	}
621 
622 	return E1000_SUCCESS;
623 }
624 
625 /**
626  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
627  *  @hw: pointer to the HW structure
628  *
629  *  Initialize family-specific NVM parameters and function
630  *  pointers.
631  **/
632 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
633 {
634 	struct e1000_nvm_info *nvm = &hw->nvm;
635 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
636 	u32 gfpreg, sector_base_addr, sector_end_addr;
637 	u16 i;
638 	u32 nvm_size;
639 
640 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
641 
642 	nvm->type = e1000_nvm_flash_sw;
643 
644 	if (hw->mac.type >= e1000_pch_spt) {
645 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
646 		 * STRAP register. This is because in SPT the GbE Flash region
647 		 * is no longer accessed through the flash registers. Instead,
648 		 * the mechanism has changed, and the Flash region access
649 		 * registers are now implemented in GbE memory space.
650 		 */
651 		nvm->flash_base_addr = 0;
652 		nvm_size =
653 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
654 		    * NVM_SIZE_MULTIPLIER;
655 		nvm->flash_bank_size = nvm_size / 2;
656 		/* Adjust to word count */
657 		nvm->flash_bank_size /= sizeof(u16);
658 		/* Set the base address for flash register access */
659 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
660 	} else {
661 		/* Can't read flash registers if register set isn't mapped. */
662 		if (!hw->flash_address) {
663 			DEBUGOUT("ERROR: Flash registers not mapped\n");
664 			return -E1000_ERR_CONFIG;
665 		}
666 
667 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
668 
669 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
670 		 * Add 1 to sector_end_addr since this sector is included in
671 		 * the overall size.
672 		 */
673 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
674 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
675 
676 		/* flash_base_addr is byte-aligned */
677 		nvm->flash_base_addr = sector_base_addr
678 				       << FLASH_SECTOR_ADDR_SHIFT;
679 
680 		/* find total size of the NVM, then cut in half since the total
681 		 * size represents two separate NVM banks.
682 		 */
683 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
684 					<< FLASH_SECTOR_ADDR_SHIFT);
685 		nvm->flash_bank_size /= 2;
686 		/* Adjust to word count */
687 		nvm->flash_bank_size /= sizeof(u16);
688 	}
689 
690 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
691 
692 	/* Clear shadow ram */
693 	for (i = 0; i < nvm->word_size; i++) {
694 		dev_spec->shadow_ram[i].modified = FALSE;
695 		dev_spec->shadow_ram[i].value    = 0xFFFF;
696 	}
697 
698 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
699 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
700 
701 	/* Function Pointers */
702 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
703 	nvm->ops.release	= e1000_release_nvm_ich8lan;
704 	if (hw->mac.type >= e1000_pch_spt) {
705 		nvm->ops.read	= e1000_read_nvm_spt;
706 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
707 	} else {
708 		nvm->ops.read	= e1000_read_nvm_ich8lan;
709 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
710 	}
711 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
712 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
713 	nvm->ops.write		= e1000_write_nvm_ich8lan;
714 
715 	return E1000_SUCCESS;
716 }
717 
718 /**
719  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
720  *  @hw: pointer to the HW structure
721  *
722  *  Initialize family-specific MAC parameters and function
723  *  pointers.
724  **/
725 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
726 {
727 	struct e1000_mac_info *mac = &hw->mac;
728 
729 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
730 
731 	/* Set media type function pointer */
732 	hw->phy.media_type = e1000_media_type_copper;
733 
734 	/* Set mta register count */
735 	mac->mta_reg_count = 32;
736 	/* Set rar entry count */
737 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
738 	if (mac->type == e1000_ich8lan)
739 		mac->rar_entry_count--;
740 	/* Set if part includes ASF firmware */
741 	mac->asf_firmware_present = TRUE;
742 	/* FWSM register */
743 	mac->has_fwsm = TRUE;
744 	/* ARC subsystem not supported */
745 	mac->arc_subsystem_valid = FALSE;
746 	/* Adaptive IFS supported */
747 	mac->adaptive_ifs = TRUE;
748 
749 	/* Function pointers */
750 
751 	/* bus type/speed/width */
752 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
753 	/* function id */
754 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
755 	/* reset */
756 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
757 	/* hw initialization */
758 	mac->ops.init_hw = e1000_init_hw_ich8lan;
759 	/* link setup */
760 	mac->ops.setup_link = e1000_setup_link_ich8lan;
761 	/* physical interface setup */
762 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
763 	/* check for link */
764 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
765 	/* link info */
766 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
767 	/* multicast address update */
768 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
769 	/* clear hardware counters */
770 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
771 
772 	/* LED and other operations */
773 	switch (mac->type) {
774 	case e1000_ich8lan:
775 	case e1000_ich9lan:
776 	case e1000_ich10lan:
777 		/* check management mode */
778 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
779 		/* ID LED init */
780 		mac->ops.id_led_init = e1000_id_led_init_generic;
781 		/* blink LED */
782 		mac->ops.blink_led = e1000_blink_led_generic;
783 		/* setup LED */
784 		mac->ops.setup_led = e1000_setup_led_generic;
785 		/* cleanup LED */
786 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
787 		/* turn on/off LED */
788 		mac->ops.led_on = e1000_led_on_ich8lan;
789 		mac->ops.led_off = e1000_led_off_ich8lan;
790 		break;
791 	case e1000_pch2lan:
792 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
793 		mac->ops.rar_set = e1000_rar_set_pch2lan;
794 		/* fall-through */
795 	case e1000_pch_lpt:
796 	case e1000_pch_spt:
797 		/* multicast address update for pch2 */
798 		mac->ops.update_mc_addr_list =
799 			e1000_update_mc_addr_list_pch2lan;
800 		/* fall-through */
801 	case e1000_pchlan:
802 		/* check management mode */
803 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
804 		/* ID LED init */
805 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
806 		/* setup LED */
807 		mac->ops.setup_led = e1000_setup_led_pchlan;
808 		/* cleanup LED */
809 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
810 		/* turn on/off LED */
811 		mac->ops.led_on = e1000_led_on_pchlan;
812 		mac->ops.led_off = e1000_led_off_pchlan;
813 		break;
814 	default:
815 		break;
816 	}
817 
818 	if (mac->type >= e1000_pch_lpt) {
819 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
820 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
821 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
822 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
823 	}
824 
825 	/* Enable PCS Lock-loss workaround for ICH8 */
826 	if (mac->type == e1000_ich8lan)
827 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
828 
829 	return E1000_SUCCESS;
830 }
831 
832 /**
833  *  __e1000_access_emi_reg_locked - Read/write EMI register
834  *  @hw: pointer to the HW structure
835  *  @addr: EMI address to program
836  *  @data: pointer to value to read/write from/to the EMI address
837  *  @read: boolean flag to indicate read or write
838  *
839  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
840  **/
841 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
842 					 u16 *data, bool read)
843 {
844 	s32 ret_val;
845 
846 	DEBUGFUNC("__e1000_access_emi_reg_locked");
847 
848 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
849 	if (ret_val)
850 		return ret_val;
851 
852 	if (read)
853 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
854 						      data);
855 	else
856 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
857 						       *data);
858 
859 	return ret_val;
860 }
861 
862 /**
863  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
864  *  @hw: pointer to the HW structure
865  *  @addr: EMI address to program
866  *  @data: value to be read from the EMI address
867  *
868  *  Assumes the SW/FW/HW Semaphore is already acquired.
869  **/
870 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
871 {
872 	DEBUGFUNC("e1000_read_emi_reg_locked");
873 
874 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
875 }
876 
877 /**
878  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
879  *  @hw: pointer to the HW structure
880  *  @addr: EMI address to program
881  *  @data: value to be written to the EMI address
882  *
883  *  Assumes the SW/FW/HW Semaphore is already acquired.
884  **/
885 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
886 {
887 	DEBUGFUNC("e1000_read_emi_reg_locked");
888 
889 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
890 }
891 
892 /**
893  *  e1000_set_eee_pchlan - Enable/disable EEE support
894  *  @hw: pointer to the HW structure
895  *
896  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
897  *  the link and the EEE capabilities of the link partner.  The LPI Control
898  *  register bits will remain set only if/when link is up.
899  *
900  *  EEE LPI must not be asserted earlier than one second after link is up.
901  *  On 82579, EEE LPI should not be enabled until such time otherwise there
902  *  can be link issues with some switches.  Other devices can have EEE LPI
903  *  enabled immediately upon link up since they have a timer in hardware which
904  *  prevents LPI from being asserted too early.
905  **/
906 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
907 {
908 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
909 	s32 ret_val;
910 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
911 
912 	DEBUGFUNC("e1000_set_eee_pchlan");
913 
914 	switch (hw->phy.type) {
915 	case e1000_phy_82579:
916 		lpa = I82579_EEE_LP_ABILITY;
917 		pcs_status = I82579_EEE_PCS_STATUS;
918 		adv_addr = I82579_EEE_ADVERTISEMENT;
919 		break;
920 	case e1000_phy_i217:
921 		lpa = I217_EEE_LP_ABILITY;
922 		pcs_status = I217_EEE_PCS_STATUS;
923 		adv_addr = I217_EEE_ADVERTISEMENT;
924 		break;
925 	default:
926 		return E1000_SUCCESS;
927 	}
928 
929 	ret_val = hw->phy.ops.acquire(hw);
930 	if (ret_val)
931 		return ret_val;
932 
933 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
934 	if (ret_val)
935 		goto release;
936 
937 	/* Clear bits that enable EEE in various speeds */
938 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
939 
940 	/* Enable EEE if not disabled by user */
941 	if (!dev_spec->eee_disable) {
942 		/* Save off link partner's EEE ability */
943 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
944 						    &dev_spec->eee_lp_ability);
945 		if (ret_val)
946 			goto release;
947 
948 		/* Read EEE advertisement */
949 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
950 		if (ret_val)
951 			goto release;
952 
953 		/* Enable EEE only for speeds in which the link partner is
954 		 * EEE capable and for which we advertise EEE.
955 		 */
956 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
957 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
958 
959 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
960 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
961 			if (data & NWAY_LPAR_100TX_FD_CAPS)
962 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
963 			else
964 				/* EEE is not supported in 100Half, so ignore
965 				 * partner's EEE in 100 ability if full-duplex
966 				 * is not advertised.
967 				 */
968 				dev_spec->eee_lp_ability &=
969 				    ~I82579_EEE_100_SUPPORTED;
970 		}
971 	}
972 
973 	if (hw->phy.type == e1000_phy_82579) {
974 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
975 						    &data);
976 		if (ret_val)
977 			goto release;
978 
979 		data &= ~I82579_LPI_100_PLL_SHUT;
980 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
981 						     data);
982 	}
983 
984 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
985 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
986 	if (ret_val)
987 		goto release;
988 
989 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
990 release:
991 	hw->phy.ops.release(hw);
992 
993 	return ret_val;
994 }
995 
996 /**
997  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
998  *  @hw:   pointer to the HW structure
999  *  @link: link up bool flag
1000  *
1001  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1002  *  preventing further DMA write requests.  Workaround the issue by disabling
1003  *  the de-assertion of the clock request when in 1Gpbs mode.
1004  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1005  *  speeds in order to avoid Tx hangs.
1006  **/
1007 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1008 {
1009 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1010 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1011 	s32 ret_val = E1000_SUCCESS;
1012 	u16 reg;
1013 
1014 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1015 		ret_val = hw->phy.ops.acquire(hw);
1016 		if (ret_val)
1017 			return ret_val;
1018 
1019 		ret_val =
1020 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1021 					       &reg);
1022 		if (ret_val)
1023 			goto release;
1024 
1025 		ret_val =
1026 		    e1000_write_kmrn_reg_locked(hw,
1027 						E1000_KMRNCTRLSTA_K1_CONFIG,
1028 						reg &
1029 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1030 		if (ret_val)
1031 			goto release;
1032 
1033 		usec_delay(10);
1034 
1035 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1036 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1037 
1038 		ret_val =
1039 		    e1000_write_kmrn_reg_locked(hw,
1040 						E1000_KMRNCTRLSTA_K1_CONFIG,
1041 						reg);
1042 release:
1043 		hw->phy.ops.release(hw);
1044 	} else {
1045 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1046 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1047 
1048 		if ((hw->phy.revision > 5) || !link ||
1049 		    ((status & E1000_STATUS_SPEED_100) &&
1050 		     (status & E1000_STATUS_FD)))
1051 			goto update_fextnvm6;
1052 
1053 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1054 		if (ret_val)
1055 			return ret_val;
1056 
1057 		/* Clear link status transmit timeout */
1058 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1059 
1060 		if (status & E1000_STATUS_SPEED_100) {
1061 			/* Set inband Tx timeout to 5x10us for 100Half */
1062 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1063 
1064 			/* Do not extend the K1 entry latency for 100Half */
1065 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1066 		} else {
1067 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1068 			reg |= 50 <<
1069 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1070 
1071 			/* Extend the K1 entry latency for 10 Mbps */
1072 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1073 		}
1074 
1075 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1076 		if (ret_val)
1077 			return ret_val;
1078 
1079 update_fextnvm6:
1080 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1081 	}
1082 
1083 	return ret_val;
1084 }
1085 
1086 static u64 e1000_ltr2ns(u16 ltr)
1087 {
1088 	u32 value, scale;
1089 
1090 	/* Determine the latency in nsec based on the LTR value & scale */
1091 	value = ltr & E1000_LTRV_VALUE_MASK;
1092 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1093 
1094 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1095 }
1096 
1097 /**
1098  *  e1000_platform_pm_pch_lpt - Set platform power management values
1099  *  @hw: pointer to the HW structure
1100  *  @link: bool indicating link status
1101  *
1102  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1103  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1104  *  when link is up (which must not exceed the maximum latency supported
1105  *  by the platform), otherwise specify there is no LTR requirement.
1106  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1107  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1108  *  Capability register set, on this device LTR is set by writing the
1109  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1110  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1111  *  message to the PMC.
1112  *
1113  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1114  *  high-water mark.
1115  **/
1116 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1117 {
1118 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1119 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1120 	u16 lat_enc = 0;	/* latency encoded */
1121 	s32 obff_hwm = 0;
1122 
1123 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1124 
1125 	if (link) {
1126 		u16 speed, duplex, scale = 0;
1127 		u16 max_snoop, max_nosnoop;
1128 		u16 max_ltr_enc;	/* max LTR latency encoded */
1129 		s64 lat_ns;
1130 		s64 value;
1131 		u32 rxa;
1132 
1133 		if (!hw->mac.max_frame_size) {
1134 			DEBUGOUT("max_frame_size not set.\n");
1135 			return -E1000_ERR_CONFIG;
1136 		}
1137 
1138 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1139 		if (!speed) {
1140 			DEBUGOUT("Speed not set.\n");
1141 			return -E1000_ERR_CONFIG;
1142 		}
1143 
1144 		/* Rx Packet Buffer Allocation size (KB) */
1145 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1146 
1147 		/* Determine the maximum latency tolerated by the device.
1148 		 *
1149 		 * Per the PCIe spec, the tolerated latencies are encoded as
1150 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1151 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1152 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1153 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1154 		 */
1155 		lat_ns = ((s64)rxa * 1024 -
1156 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1157 		if (lat_ns < 0)
1158 			lat_ns = 0;
1159 		else
1160 			lat_ns /= speed;
1161 		value = lat_ns;
1162 
1163 		while (value > E1000_LTRV_VALUE_MASK) {
1164 			scale++;
1165 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1166 		}
1167 		if (scale > E1000_LTRV_SCALE_MAX) {
1168 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1169 			return -E1000_ERR_CONFIG;
1170 		}
1171 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1172 
1173 		/* Determine the maximum latency tolerated by the platform */
1174 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1175 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1176 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1177 
1178 		if (lat_enc > max_ltr_enc) {
1179 			lat_enc = max_ltr_enc;
1180 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1181 		}
1182 
1183 		if (lat_ns) {
1184 			lat_ns *= speed * 1000;
1185 			lat_ns /= 8;
1186 			lat_ns /= 1000000000;
1187 			obff_hwm = (s32)(rxa - lat_ns);
1188 		}
1189 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1190 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1191 			return -E1000_ERR_CONFIG;
1192 		}
1193 	}
1194 
1195 	/* Set Snoop and No-Snoop latencies the same */
1196 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1197 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1198 
1199 	/* Set OBFF high water mark */
1200 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1201 	reg |= obff_hwm;
1202 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1203 
1204 	/* Enable OBFF */
1205 	reg = E1000_READ_REG(hw, E1000_SVCR);
1206 	reg |= E1000_SVCR_OFF_EN;
1207 	/* Always unblock interrupts to the CPU even when the system is
1208 	 * in OBFF mode. This ensures that small round-robin traffic
1209 	 * (like ping) does not get dropped or experience long latency.
1210 	 */
1211 	reg |= E1000_SVCR_OFF_MASKINT;
1212 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1213 
1214 	return E1000_SUCCESS;
1215 }
1216 
1217 /**
1218  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1219  *  @hw: pointer to the HW structure
1220  *  @itr: interrupt throttling rate
1221  *
1222  *  Configure OBFF with the updated interrupt rate.
1223  **/
1224 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1225 {
1226 	u32 svcr;
1227 	s32 timer;
1228 
1229 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1230 
1231 	/* Convert ITR value into microseconds for OBFF timer */
1232 	timer = itr & E1000_ITR_MASK;
1233 	timer = (timer * E1000_ITR_MULT) / 1000;
1234 
1235 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1236 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1237 		return -E1000_ERR_CONFIG;
1238 	}
1239 
1240 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1241 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1242 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1243 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1244 
1245 	return E1000_SUCCESS;
1246 }
1247 
1248 /**
1249  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1250  *  @hw: pointer to the HW structure
1251  *  @to_sx: boolean indicating a system power state transition to Sx
1252  *
1253  *  When link is down, configure ULP mode to significantly reduce the power
1254  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1255  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1256  *  system, configure the ULP mode by software.
1257  */
1258 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1259 {
1260 	u32 mac_reg;
1261 	s32 ret_val = E1000_SUCCESS;
1262 	u16 phy_reg;
1263 	u16 oem_reg = 0;
1264 
1265 	if ((hw->mac.type < e1000_pch_lpt) ||
1266 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1267 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1268 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1269 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1270 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1271 		return 0;
1272 
1273 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1274 		/* Request ME configure ULP mode in the PHY */
1275 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1276 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1277 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1278 
1279 		goto out;
1280 	}
1281 
1282 	if (!to_sx) {
1283 		int i = 0;
1284 
1285 		/* Poll up to 5 seconds for Cable Disconnected indication */
1286 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1287 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1288 			/* Bail if link is re-acquired */
1289 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1290 				return -E1000_ERR_PHY;
1291 
1292 			if (i++ == 100)
1293 				break;
1294 
1295 			msec_delay(50);
1296 		}
1297 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1298 			 (E1000_READ_REG(hw, E1000_FEXT) &
1299 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1300 			 i * 50);
1301 	}
1302 
1303 	ret_val = hw->phy.ops.acquire(hw);
1304 	if (ret_val)
1305 		goto out;
1306 
1307 	/* Force SMBus mode in PHY */
1308 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309 	if (ret_val)
1310 		goto release;
1311 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1312 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1313 
1314 	/* Force SMBus mode in MAC */
1315 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1316 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1317 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1318 
1319 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1320 	 * LPLU and disable Gig speed when entering ULP
1321 	 */
1322 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1323 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1324 						       &oem_reg);
1325 		if (ret_val)
1326 			goto release;
1327 
1328 		phy_reg = oem_reg;
1329 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1330 
1331 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1332 							phy_reg);
1333 
1334 		if (ret_val)
1335 			goto release;
1336 	}
1337 
1338 	/* Set Inband ULP Exit, Reset to SMBus mode and
1339 	 * Disable SMBus Release on PERST# in PHY
1340 	 */
1341 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1342 	if (ret_val)
1343 		goto release;
1344 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1345 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1346 	if (to_sx) {
1347 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1348 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1349 		else
1350 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1351 
1352 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1353 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1354 	} else {
1355 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1356 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1357 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1358 	}
1359 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1360 
1361 	/* Set Disable SMBus Release on PERST# in MAC */
1362 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1363 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1364 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1365 
1366 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1367 	phy_reg |= I218_ULP_CONFIG1_START;
1368 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369 
1370 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1371 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1372 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1373 							oem_reg);
1374 		if (ret_val)
1375 			goto release;
1376 	}
1377 
1378 release:
1379 	hw->phy.ops.release(hw);
1380 out:
1381 	if (ret_val)
1382 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1383 	else
1384 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1385 
1386 	return ret_val;
1387 }
1388 
1389 /**
1390  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1391  *  @hw: pointer to the HW structure
1392  *  @force: boolean indicating whether or not to force disabling ULP
1393  *
1394  *  Un-configure ULP mode when link is up, the system is transitioned from
1395  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1396  *  system, poll for an indication from ME that ULP has been un-configured.
1397  *  If not on an ME enabled system, un-configure the ULP mode by software.
1398  *
1399  *  During nominal operation, this function is called when link is acquired
1400  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1401  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1402  *  to forcibly disable ULP.
1403  */
1404 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1405 {
1406 	s32 ret_val = E1000_SUCCESS;
1407 	u32 mac_reg;
1408 	u16 phy_reg;
1409 	int i = 0;
1410 
1411 	if ((hw->mac.type < e1000_pch_lpt) ||
1412 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1413 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1414 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1415 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1416 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1417 		return 0;
1418 
1419 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1420 		if (force) {
1421 			/* Request ME un-configure ULP mode in the PHY */
1422 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1423 			mac_reg &= ~E1000_H2ME_ULP;
1424 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1425 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1426 		}
1427 
1428 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1429 		while (E1000_READ_REG(hw, E1000_FWSM) &
1430 		       E1000_FWSM_ULP_CFG_DONE) {
1431 			if (i++ == 30) {
1432 				ret_val = -E1000_ERR_PHY;
1433 				goto out;
1434 			}
1435 
1436 			msec_delay(10);
1437 		}
1438 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1439 
1440 		if (force) {
1441 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1442 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1443 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1444 		} else {
1445 			/* Clear H2ME.ULP after ME ULP configuration */
1446 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1447 			mac_reg &= ~E1000_H2ME_ULP;
1448 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1449 		}
1450 
1451 		goto out;
1452 	}
1453 
1454 	ret_val = hw->phy.ops.acquire(hw);
1455 	if (ret_val)
1456 		goto out;
1457 
1458 	if (force)
1459 		/* Toggle LANPHYPC Value bit */
1460 		e1000_toggle_lanphypc_pch_lpt(hw);
1461 
1462 	/* Unforce SMBus mode in PHY */
1463 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1464 	if (ret_val) {
1465 		/* The MAC might be in PCIe mode, so temporarily force to
1466 		 * SMBus mode in order to access the PHY.
1467 		 */
1468 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1469 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1470 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1471 
1472 		msec_delay(50);
1473 
1474 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1475 						       &phy_reg);
1476 		if (ret_val)
1477 			goto release;
1478 	}
1479 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1480 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1481 
1482 	/* Unforce SMBus mode in MAC */
1483 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1484 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1485 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1486 
1487 	/* When ULP mode was previously entered, K1 was disabled by the
1488 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1489 	 */
1490 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1491 	if (ret_val)
1492 		goto release;
1493 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1494 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1495 
1496 	/* Clear ULP enabled configuration */
1497 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1498 	if (ret_val)
1499 		goto release;
1500 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1501 		     I218_ULP_CONFIG1_STICKY_ULP |
1502 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1503 		     I218_ULP_CONFIG1_WOL_HOST |
1504 		     I218_ULP_CONFIG1_INBAND_EXIT |
1505 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1506 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1507 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1508 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1509 
1510 	/* Commit ULP changes by starting auto ULP configuration */
1511 	phy_reg |= I218_ULP_CONFIG1_START;
1512 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1513 
1514 	/* Clear Disable SMBus Release on PERST# in MAC */
1515 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1516 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1517 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1518 
1519 release:
1520 	hw->phy.ops.release(hw);
1521 	if (force) {
1522 		hw->phy.ops.reset(hw);
1523 		msec_delay(50);
1524 	}
1525 out:
1526 	if (ret_val)
1527 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1528 	else
1529 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1530 
1531 	return ret_val;
1532 }
1533 
1534 /**
1535  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1536  *  @hw: pointer to the HW structure
1537  *
1538  *  Checks to see of the link status of the hardware has changed.  If a
1539  *  change in link status has been detected, then we read the PHY registers
1540  *  to get the current speed/duplex if link exists.
1541  **/
1542 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1543 {
1544 	struct e1000_mac_info *mac = &hw->mac;
1545 	s32 ret_val, tipg_reg = 0;
1546 	u16 emi_addr, emi_val = 0;
1547 	bool link;
1548 	u16 phy_reg;
1549 
1550 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1551 
1552 	/* We only want to go out to the PHY registers to see if Auto-Neg
1553 	 * has completed and/or if our link status has changed.  The
1554 	 * get_link_status flag is set upon receiving a Link Status
1555 	 * Change or Rx Sequence Error interrupt.
1556 	 */
1557 	if (!mac->get_link_status)
1558 		return E1000_SUCCESS;
1559 
1560 	/* First we want to see if the MII Status Register reports
1561 	 * link.  If so, then we want to get the current speed/duplex
1562 	 * of the PHY.
1563 	 */
1564 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1565 	if (ret_val)
1566 		return ret_val;
1567 
1568 	if (hw->mac.type == e1000_pchlan) {
1569 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1570 		if (ret_val)
1571 			return ret_val;
1572 	}
1573 
1574 	/* When connected at 10Mbps half-duplex, some parts are excessively
1575 	 * aggressive resulting in many collisions. To avoid this, increase
1576 	 * the IPG and reduce Rx latency in the PHY.
1577 	 */
1578 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1579 		u16 speed, duplex;
1580 
1581 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1582 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1583 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1584 
1585 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1586 			tipg_reg |= 0xFF;
1587 			/* Reduce Rx latency in analog PHY */
1588 			emi_val = 0;
1589 		} else if (hw->mac.type >= e1000_pch_spt &&
1590 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1591 			tipg_reg |= 0xC;
1592 			emi_val = 1;
1593 		} else {
1594 			/* Roll back the default values */
1595 			tipg_reg |= 0x08;
1596 			emi_val = 1;
1597 		}
1598 
1599 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1600 
1601 		ret_val = hw->phy.ops.acquire(hw);
1602 		if (ret_val)
1603 			return ret_val;
1604 
1605 		if (hw->mac.type == e1000_pch2lan)
1606 			emi_addr = I82579_RX_CONFIG;
1607 		else
1608 			emi_addr = I217_RX_CONFIG;
1609 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1610 
1611 
1612 		if (hw->mac.type >= e1000_pch_lpt) {
1613 			u16 phy_reg;
1614 
1615 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1616 						    &phy_reg);
1617 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1618 			if (speed == SPEED_100 || speed == SPEED_10)
1619 				phy_reg |= 0x3E8;
1620 			else
1621 				phy_reg |= 0xFA;
1622 			hw->phy.ops.write_reg_locked(hw,
1623 						     I217_PLL_CLOCK_GATE_REG,
1624 						     phy_reg);
1625 
1626 			if (speed == SPEED_1000) {
1627 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1628 							    &phy_reg);
1629 
1630 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1631 
1632 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1633 							     phy_reg);
1634 				}
1635 		 }
1636 		hw->phy.ops.release(hw);
1637 
1638 		if (ret_val)
1639 			return ret_val;
1640 
1641 		if (hw->mac.type >= e1000_pch_spt) {
1642 			u16 data;
1643 			u16 ptr_gap;
1644 
1645 			if (speed == SPEED_1000) {
1646 				ret_val = hw->phy.ops.acquire(hw);
1647 				if (ret_val)
1648 					return ret_val;
1649 
1650 				ret_val = hw->phy.ops.read_reg_locked(hw,
1651 							      PHY_REG(776, 20),
1652 							      &data);
1653 				if (ret_val) {
1654 					hw->phy.ops.release(hw);
1655 					return ret_val;
1656 				}
1657 
1658 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1659 				if (ptr_gap < 0x18) {
1660 					data &= ~(0x3FF << 2);
1661 					data |= (0x18 << 2);
1662 					ret_val =
1663 						hw->phy.ops.write_reg_locked(hw,
1664 							PHY_REG(776, 20), data);
1665 				}
1666 				hw->phy.ops.release(hw);
1667 				if (ret_val)
1668 					return ret_val;
1669 			} else {
1670 				ret_val = hw->phy.ops.acquire(hw);
1671 				if (ret_val)
1672 					return ret_val;
1673 
1674 				ret_val = hw->phy.ops.write_reg_locked(hw,
1675 							     PHY_REG(776, 20),
1676 							     0xC023);
1677 				hw->phy.ops.release(hw);
1678 				if (ret_val)
1679 					return ret_val;
1680 
1681 			}
1682 		}
1683 	}
1684 
1685 	/* I217 Packet Loss issue:
1686 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1687 	 * on power up.
1688 	 * Set the Beacon Duration for I217 to 8 usec
1689 	 */
1690 	if (hw->mac.type >= e1000_pch_lpt) {
1691 		u32 mac_reg;
1692 
1693 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1694 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1695 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1696 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1697 	}
1698 
1699 	/* Work-around I218 hang issue */
1700 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1701 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1702 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1703 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1704 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1705 		if (ret_val)
1706 			return ret_val;
1707 	}
1708 	if (hw->mac.type >= e1000_pch_lpt) {
1709 		/* Set platform power management values for
1710 		 * Latency Tolerance Reporting (LTR)
1711 		 * Optimized Buffer Flush/Fill (OBFF)
1712 		 */
1713 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1714 		if (ret_val)
1715 			return ret_val;
1716 	}
1717 
1718 	/* Clear link partner's EEE ability */
1719 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1720 
1721 	if (hw->mac.type >= e1000_pch_lpt) {
1722 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1723 
1724 		if (hw->mac.type == e1000_pch_spt) {
1725 			/* FEXTNVM6 K1-off workaround - for SPT only */
1726 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1727 
1728 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1729 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1730 			else
1731 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1732 		}
1733 
1734 		if (hw->dev_spec.ich8lan.disable_k1_off == TRUE)
1735 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1736 
1737 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1738 	}
1739 
1740 	if (!link)
1741 		return E1000_SUCCESS; /* No link detected */
1742 
1743 	mac->get_link_status = FALSE;
1744 
1745 	switch (hw->mac.type) {
1746 	case e1000_pch2lan:
1747 		ret_val = e1000_k1_workaround_lv(hw);
1748 		if (ret_val)
1749 			return ret_val;
1750 		/* fall-thru */
1751 	case e1000_pchlan:
1752 		if (hw->phy.type == e1000_phy_82578) {
1753 			ret_val = e1000_link_stall_workaround_hv(hw);
1754 			if (ret_val)
1755 				return ret_val;
1756 		}
1757 
1758 		/* Workaround for PCHx parts in half-duplex:
1759 		 * Set the number of preambles removed from the packet
1760 		 * when it is passed from the PHY to the MAC to prevent
1761 		 * the MAC from misinterpreting the packet type.
1762 		 */
1763 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1764 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1765 
1766 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1767 		    E1000_STATUS_FD)
1768 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1769 
1770 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1771 		break;
1772 	default:
1773 		break;
1774 	}
1775 
1776 	/* Check if there was DownShift, must be checked
1777 	 * immediately after link-up
1778 	 */
1779 	e1000_check_downshift_generic(hw);
1780 
1781 	/* Enable/Disable EEE after link up */
1782 	if (hw->phy.type > e1000_phy_82579) {
1783 		ret_val = e1000_set_eee_pchlan(hw);
1784 		if (ret_val)
1785 			return ret_val;
1786 	}
1787 
1788 	/* If we are forcing speed/duplex, then we simply return since
1789 	 * we have already determined whether we have link or not.
1790 	 */
1791 	if (!mac->autoneg)
1792 		return -E1000_ERR_CONFIG;
1793 
1794 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1795 	 * of MAC speed/duplex configuration.  So we only need to
1796 	 * configure Collision Distance in the MAC.
1797 	 */
1798 	mac->ops.config_collision_dist(hw);
1799 
1800 	/* Configure Flow Control now that Auto-Neg has completed.
1801 	 * First, we need to restore the desired flow control
1802 	 * settings because we may have had to re-autoneg with a
1803 	 * different link partner.
1804 	 */
1805 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1806 	if (ret_val)
1807 		DEBUGOUT("Error configuring flow control\n");
1808 
1809 	return ret_val;
1810 }
1811 
1812 /**
1813  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1814  *  @hw: pointer to the HW structure
1815  *
1816  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1817  **/
1818 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1819 {
1820 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1821 
1822 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1823 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1824 	switch (hw->mac.type) {
1825 	case e1000_ich8lan:
1826 	case e1000_ich9lan:
1827 	case e1000_ich10lan:
1828 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1829 		break;
1830 	case e1000_pchlan:
1831 	case e1000_pch2lan:
1832 	case e1000_pch_lpt:
1833 	case e1000_pch_spt:
1834 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1835 		break;
1836 	default:
1837 		break;
1838 	}
1839 }
1840 
1841 /**
1842  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1843  *  @hw: pointer to the HW structure
1844  *
1845  *  Acquires the mutex for performing NVM operations.
1846  **/
1847 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1848 {
1849 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1850 
1851 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1852 
1853 	return E1000_SUCCESS;
1854 }
1855 
1856 /**
1857  *  e1000_release_nvm_ich8lan - Release NVM mutex
1858  *  @hw: pointer to the HW structure
1859  *
1860  *  Releases the mutex used while performing NVM operations.
1861  **/
1862 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1863 {
1864 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1865 
1866 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1867 
1868 	return;
1869 }
1870 
1871 /**
1872  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1873  *  @hw: pointer to the HW structure
1874  *
1875  *  Acquires the software control flag for performing PHY and select
1876  *  MAC CSR accesses.
1877  **/
1878 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1879 {
1880 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1881 	s32 ret_val = E1000_SUCCESS;
1882 
1883 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1884 
1885 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1886 
1887 	while (timeout) {
1888 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1889 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1890 			break;
1891 
1892 		msec_delay_irq(1);
1893 		timeout--;
1894 	}
1895 
1896 	if (!timeout) {
1897 		DEBUGOUT("SW has already locked the resource.\n");
1898 		ret_val = -E1000_ERR_CONFIG;
1899 		goto out;
1900 	}
1901 
1902 	timeout = SW_FLAG_TIMEOUT;
1903 
1904 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1905 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1906 
1907 	while (timeout) {
1908 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1909 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1910 			break;
1911 
1912 		msec_delay_irq(1);
1913 		timeout--;
1914 	}
1915 
1916 	if (!timeout) {
1917 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1918 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1919 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1920 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1921 		ret_val = -E1000_ERR_CONFIG;
1922 		goto out;
1923 	}
1924 
1925 out:
1926 	if (ret_val)
1927 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1928 
1929 	return ret_val;
1930 }
1931 
1932 /**
1933  *  e1000_release_swflag_ich8lan - Release software control flag
1934  *  @hw: pointer to the HW structure
1935  *
1936  *  Releases the software control flag for performing PHY and select
1937  *  MAC CSR accesses.
1938  **/
1939 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1940 {
1941 	u32 extcnf_ctrl;
1942 
1943 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1944 
1945 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1946 
1947 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1948 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1949 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1950 	} else {
1951 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1952 	}
1953 
1954 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1955 
1956 	return;
1957 }
1958 
1959 /**
1960  *  e1000_check_mng_mode_ich8lan - Checks management mode
1961  *  @hw: pointer to the HW structure
1962  *
1963  *  This checks if the adapter has any manageability enabled.
1964  *  This is a function pointer entry point only called by read/write
1965  *  routines for the PHY and NVM parts.
1966  **/
1967 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1968 {
1969 	u32 fwsm;
1970 
1971 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1972 
1973 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1974 
1975 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1976 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1977 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1978 }
1979 
1980 /**
1981  *  e1000_check_mng_mode_pchlan - Checks management mode
1982  *  @hw: pointer to the HW structure
1983  *
1984  *  This checks if the adapter has iAMT enabled.
1985  *  This is a function pointer entry point only called by read/write
1986  *  routines for the PHY and NVM parts.
1987  **/
1988 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1989 {
1990 	u32 fwsm;
1991 
1992 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1993 
1994 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1995 
1996 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1997 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1998 }
1999 
2000 /**
2001  *  e1000_rar_set_pch2lan - Set receive address register
2002  *  @hw: pointer to the HW structure
2003  *  @addr: pointer to the receive address
2004  *  @index: receive address array register
2005  *
2006  *  Sets the receive address array register at index to the address passed
2007  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2008  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2009  *  Use SHRA[0-3] in place of those reserved for ME.
2010  **/
2011 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2012 {
2013 	u32 rar_low, rar_high;
2014 
2015 	DEBUGFUNC("e1000_rar_set_pch2lan");
2016 
2017 	/* HW expects these in little endian so we reverse the byte order
2018 	 * from network order (big endian) to little endian
2019 	 */
2020 	rar_low = ((u32) addr[0] |
2021 		   ((u32) addr[1] << 8) |
2022 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2023 
2024 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2025 
2026 	/* If MAC address zero, no need to set the AV bit */
2027 	if (rar_low || rar_high)
2028 		rar_high |= E1000_RAH_AV;
2029 
2030 	if (index == 0) {
2031 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2032 		E1000_WRITE_FLUSH(hw);
2033 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2034 		E1000_WRITE_FLUSH(hw);
2035 		return E1000_SUCCESS;
2036 	}
2037 
2038 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2039 	 * next address into the SHRA register array.
2040 	 */
2041 	if (index < (u32) (hw->mac.rar_entry_count)) {
2042 		s32 ret_val;
2043 
2044 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2045 		if (ret_val)
2046 			goto out;
2047 
2048 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2049 		E1000_WRITE_FLUSH(hw);
2050 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2051 		E1000_WRITE_FLUSH(hw);
2052 
2053 		e1000_release_swflag_ich8lan(hw);
2054 
2055 		/* verify the register updates */
2056 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2057 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2058 			return E1000_SUCCESS;
2059 
2060 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2061 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2062 	}
2063 
2064 out:
2065 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2066 	return -E1000_ERR_CONFIG;
2067 }
2068 
2069 /**
2070  *  e1000_rar_set_pch_lpt - Set receive address registers
2071  *  @hw: pointer to the HW structure
2072  *  @addr: pointer to the receive address
2073  *  @index: receive address array register
2074  *
2075  *  Sets the receive address register array at index to the address passed
2076  *  in by addr. For LPT, RAR[0] is the base address register that is to
2077  *  contain the MAC address. SHRA[0-10] are the shared receive address
2078  *  registers that are shared between the Host and manageability engine (ME).
2079  **/
2080 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2081 {
2082 	u32 rar_low, rar_high;
2083 	u32 wlock_mac;
2084 
2085 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2086 
2087 	/* HW expects these in little endian so we reverse the byte order
2088 	 * from network order (big endian) to little endian
2089 	 */
2090 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2091 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2092 
2093 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2094 
2095 	/* If MAC address zero, no need to set the AV bit */
2096 	if (rar_low || rar_high)
2097 		rar_high |= E1000_RAH_AV;
2098 
2099 	if (index == 0) {
2100 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2101 		E1000_WRITE_FLUSH(hw);
2102 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2103 		E1000_WRITE_FLUSH(hw);
2104 		return E1000_SUCCESS;
2105 	}
2106 
2107 	/* The manageability engine (ME) can lock certain SHRAR registers that
2108 	 * it is using - those registers are unavailable for use.
2109 	 */
2110 	if (index < hw->mac.rar_entry_count) {
2111 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2112 			    E1000_FWSM_WLOCK_MAC_MASK;
2113 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2114 
2115 		/* Check if all SHRAR registers are locked */
2116 		if (wlock_mac == 1)
2117 			goto out;
2118 
2119 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2120 			s32 ret_val;
2121 
2122 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2123 
2124 			if (ret_val)
2125 				goto out;
2126 
2127 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2128 					rar_low);
2129 			E1000_WRITE_FLUSH(hw);
2130 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2131 					rar_high);
2132 			E1000_WRITE_FLUSH(hw);
2133 
2134 			e1000_release_swflag_ich8lan(hw);
2135 
2136 			/* verify the register updates */
2137 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2138 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2139 				return E1000_SUCCESS;
2140 		}
2141 	}
2142 
2143 out:
2144 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2145 	return -E1000_ERR_CONFIG;
2146 }
2147 
2148 /**
2149  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2150  *  @hw: pointer to the HW structure
2151  *  @mc_addr_list: array of multicast addresses to program
2152  *  @mc_addr_count: number of multicast addresses to program
2153  *
2154  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2155  *  The caller must have a packed mc_addr_list of multicast addresses.
2156  **/
2157 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2158 					      u8 *mc_addr_list,
2159 					      u32 mc_addr_count)
2160 {
2161 	u16 phy_reg = 0;
2162 	int i;
2163 	s32 ret_val;
2164 
2165 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2166 
2167 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2168 
2169 	ret_val = hw->phy.ops.acquire(hw);
2170 	if (ret_val)
2171 		return;
2172 
2173 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2174 	if (ret_val)
2175 		goto release;
2176 
2177 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2178 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2179 					   (u16)(hw->mac.mta_shadow[i] &
2180 						 0xFFFF));
2181 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2182 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2183 						 0xFFFF));
2184 	}
2185 
2186 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2187 
2188 release:
2189 	hw->phy.ops.release(hw);
2190 }
2191 
2192 /**
2193  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2194  *  @hw: pointer to the HW structure
2195  *
2196  *  Checks if firmware is blocking the reset of the PHY.
2197  *  This is a function pointer entry point only called by
2198  *  reset routines.
2199  **/
2200 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2201 {
2202 	u32 fwsm;
2203 	bool blocked = FALSE;
2204 	int i = 0;
2205 
2206 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2207 
2208 	do {
2209 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2210 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2211 			blocked = TRUE;
2212 			msec_delay(10);
2213 			continue;
2214 		}
2215 		blocked = FALSE;
2216 	} while (blocked && (i++ < 30));
2217 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2218 }
2219 
2220 /**
2221  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2222  *  @hw: pointer to the HW structure
2223  *
2224  *  Assumes semaphore already acquired.
2225  *
2226  **/
2227 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2228 {
2229 	u16 phy_data;
2230 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2231 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2232 		E1000_STRAP_SMT_FREQ_SHIFT;
2233 	s32 ret_val;
2234 
2235 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2236 
2237 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2238 	if (ret_val)
2239 		return ret_val;
2240 
2241 	phy_data &= ~HV_SMB_ADDR_MASK;
2242 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2243 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2244 
2245 	if (hw->phy.type == e1000_phy_i217) {
2246 		/* Restore SMBus frequency */
2247 		if (freq--) {
2248 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2249 			phy_data |= (freq & (1 << 0)) <<
2250 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2251 			phy_data |= (freq & (1 << 1)) <<
2252 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2253 		} else {
2254 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2255 		}
2256 	}
2257 
2258 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2259 }
2260 
2261 /**
2262  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2263  *  @hw:   pointer to the HW structure
2264  *
2265  *  SW should configure the LCD from the NVM extended configuration region
2266  *  as a workaround for certain parts.
2267  **/
2268 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2269 {
2270 	struct e1000_phy_info *phy = &hw->phy;
2271 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2272 	s32 ret_val = E1000_SUCCESS;
2273 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2274 
2275 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2276 
2277 	/* Initialize the PHY from the NVM on ICH platforms.  This
2278 	 * is needed due to an issue where the NVM configuration is
2279 	 * not properly autoloaded after power transitions.
2280 	 * Therefore, after each PHY reset, we will load the
2281 	 * configuration data out of the NVM manually.
2282 	 */
2283 	switch (hw->mac.type) {
2284 	case e1000_ich8lan:
2285 		if (phy->type != e1000_phy_igp_3)
2286 			return ret_val;
2287 
2288 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2289 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2290 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2291 			break;
2292 		}
2293 		/* Fall-thru */
2294 	case e1000_pchlan:
2295 	case e1000_pch2lan:
2296 	case e1000_pch_lpt:
2297 	case e1000_pch_spt:
2298 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2299 		break;
2300 	default:
2301 		return ret_val;
2302 	}
2303 
2304 	ret_val = hw->phy.ops.acquire(hw);
2305 	if (ret_val)
2306 		return ret_val;
2307 
2308 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2309 	if (!(data & sw_cfg_mask))
2310 		goto release;
2311 
2312 	/* Make sure HW does not configure LCD from PHY
2313 	 * extended configuration before SW configuration
2314 	 */
2315 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2316 	if ((hw->mac.type < e1000_pch2lan) &&
2317 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2318 			goto release;
2319 
2320 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2321 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2322 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2323 	if (!cnf_size)
2324 		goto release;
2325 
2326 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2327 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2328 
2329 	if (((hw->mac.type == e1000_pchlan) &&
2330 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2331 	    (hw->mac.type > e1000_pchlan)) {
2332 		/* HW configures the SMBus address and LEDs when the
2333 		 * OEM and LCD Write Enable bits are set in the NVM.
2334 		 * When both NVM bits are cleared, SW will configure
2335 		 * them instead.
2336 		 */
2337 		ret_val = e1000_write_smbus_addr(hw);
2338 		if (ret_val)
2339 			goto release;
2340 
2341 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2342 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2343 							(u16)data);
2344 		if (ret_val)
2345 			goto release;
2346 	}
2347 
2348 	/* Configure LCD from extended configuration region. */
2349 
2350 	/* cnf_base_addr is in DWORD */
2351 	word_addr = (u16)(cnf_base_addr << 1);
2352 
2353 	for (i = 0; i < cnf_size; i++) {
2354 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2355 					   &reg_data);
2356 		if (ret_val)
2357 			goto release;
2358 
2359 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2360 					   1, &reg_addr);
2361 		if (ret_val)
2362 			goto release;
2363 
2364 		/* Save off the PHY page for future writes. */
2365 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2366 			phy_page = reg_data;
2367 			continue;
2368 		}
2369 
2370 		reg_addr &= PHY_REG_MASK;
2371 		reg_addr |= phy_page;
2372 
2373 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2374 						    reg_data);
2375 		if (ret_val)
2376 			goto release;
2377 	}
2378 
2379 release:
2380 	hw->phy.ops.release(hw);
2381 	return ret_val;
2382 }
2383 
2384 /**
2385  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2386  *  @hw:   pointer to the HW structure
2387  *  @link: link up bool flag
2388  *
2389  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2390  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2391  *  If link is down, the function will restore the default K1 setting located
2392  *  in the NVM.
2393  **/
2394 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2395 {
2396 	s32 ret_val = E1000_SUCCESS;
2397 	u16 status_reg = 0;
2398 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2399 
2400 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2401 
2402 	if (hw->mac.type != e1000_pchlan)
2403 		return E1000_SUCCESS;
2404 
2405 	/* Wrap the whole flow with the sw flag */
2406 	ret_val = hw->phy.ops.acquire(hw);
2407 	if (ret_val)
2408 		return ret_val;
2409 
2410 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2411 	if (link) {
2412 		if (hw->phy.type == e1000_phy_82578) {
2413 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2414 							      &status_reg);
2415 			if (ret_val)
2416 				goto release;
2417 
2418 			status_reg &= (BM_CS_STATUS_LINK_UP |
2419 				       BM_CS_STATUS_RESOLVED |
2420 				       BM_CS_STATUS_SPEED_MASK);
2421 
2422 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2423 					   BM_CS_STATUS_RESOLVED |
2424 					   BM_CS_STATUS_SPEED_1000))
2425 				k1_enable = FALSE;
2426 		}
2427 
2428 		if (hw->phy.type == e1000_phy_82577) {
2429 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2430 							      &status_reg);
2431 			if (ret_val)
2432 				goto release;
2433 
2434 			status_reg &= (HV_M_STATUS_LINK_UP |
2435 				       HV_M_STATUS_AUTONEG_COMPLETE |
2436 				       HV_M_STATUS_SPEED_MASK);
2437 
2438 			if (status_reg == (HV_M_STATUS_LINK_UP |
2439 					   HV_M_STATUS_AUTONEG_COMPLETE |
2440 					   HV_M_STATUS_SPEED_1000))
2441 				k1_enable = FALSE;
2442 		}
2443 
2444 		/* Link stall fix for link up */
2445 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2446 						       0x0100);
2447 		if (ret_val)
2448 			goto release;
2449 
2450 	} else {
2451 		/* Link stall fix for link down */
2452 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2453 						       0x4100);
2454 		if (ret_val)
2455 			goto release;
2456 	}
2457 
2458 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2459 
2460 release:
2461 	hw->phy.ops.release(hw);
2462 
2463 	return ret_val;
2464 }
2465 
2466 /**
2467  *  e1000_configure_k1_ich8lan - Configure K1 power state
2468  *  @hw: pointer to the HW structure
2469  *  @enable: K1 state to configure
2470  *
2471  *  Configure the K1 power state based on the provided parameter.
2472  *  Assumes semaphore already acquired.
2473  *
2474  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2475  **/
2476 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2477 {
2478 	s32 ret_val;
2479 	u32 ctrl_reg = 0;
2480 	u32 ctrl_ext = 0;
2481 	u32 reg = 0;
2482 	u16 kmrn_reg = 0;
2483 
2484 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2485 
2486 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2487 					     &kmrn_reg);
2488 	if (ret_val)
2489 		return ret_val;
2490 
2491 	if (k1_enable)
2492 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2493 	else
2494 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2495 
2496 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2497 					      kmrn_reg);
2498 	if (ret_val)
2499 		return ret_val;
2500 
2501 	usec_delay(20);
2502 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2503 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2504 
2505 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2506 	reg |= E1000_CTRL_FRCSPD;
2507 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2508 
2509 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2510 	E1000_WRITE_FLUSH(hw);
2511 	usec_delay(20);
2512 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2513 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2514 	E1000_WRITE_FLUSH(hw);
2515 	usec_delay(20);
2516 
2517 	return E1000_SUCCESS;
2518 }
2519 
2520 /**
2521  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2522  *  @hw:       pointer to the HW structure
2523  *  @d0_state: boolean if entering d0 or d3 device state
2524  *
2525  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2526  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2527  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2528  **/
2529 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2530 {
2531 	s32 ret_val = 0;
2532 	u32 mac_reg;
2533 	u16 oem_reg;
2534 
2535 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2536 
2537 	if (hw->mac.type < e1000_pchlan)
2538 		return ret_val;
2539 
2540 	ret_val = hw->phy.ops.acquire(hw);
2541 	if (ret_val)
2542 		return ret_val;
2543 
2544 	if (hw->mac.type == e1000_pchlan) {
2545 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2546 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2547 			goto release;
2548 	}
2549 
2550 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2551 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2552 		goto release;
2553 
2554 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2555 
2556 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2557 	if (ret_val)
2558 		goto release;
2559 
2560 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2561 
2562 	if (d0_state) {
2563 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2564 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2565 
2566 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2567 			oem_reg |= HV_OEM_BITS_LPLU;
2568 	} else {
2569 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2570 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2571 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2572 
2573 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2574 		    E1000_PHY_CTRL_NOND0A_LPLU))
2575 			oem_reg |= HV_OEM_BITS_LPLU;
2576 	}
2577 
2578 	/* Set Restart auto-neg to activate the bits */
2579 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2580 	    !hw->phy.ops.check_reset_block(hw))
2581 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2582 
2583 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2584 
2585 release:
2586 	hw->phy.ops.release(hw);
2587 
2588 	return ret_val;
2589 }
2590 
2591 
2592 /**
2593  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2594  *  @hw:   pointer to the HW structure
2595  **/
2596 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2597 {
2598 	s32 ret_val;
2599 	u16 data;
2600 
2601 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2602 
2603 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2604 	if (ret_val)
2605 		return ret_val;
2606 
2607 	data |= HV_KMRN_MDIO_SLOW;
2608 
2609 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2610 
2611 	return ret_val;
2612 }
2613 
2614 /**
2615  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2616  *  done after every PHY reset.
2617  **/
2618 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2619 {
2620 	s32 ret_val = E1000_SUCCESS;
2621 	u16 phy_data;
2622 
2623 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2624 
2625 	if (hw->mac.type != e1000_pchlan)
2626 		return E1000_SUCCESS;
2627 
2628 	/* Set MDIO slow mode before any other MDIO access */
2629 	if (hw->phy.type == e1000_phy_82577) {
2630 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2631 		if (ret_val)
2632 			return ret_val;
2633 	}
2634 
2635 	if (((hw->phy.type == e1000_phy_82577) &&
2636 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2637 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2638 		/* Disable generation of early preamble */
2639 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2640 		if (ret_val)
2641 			return ret_val;
2642 
2643 		/* Preamble tuning for SSC */
2644 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2645 						0xA204);
2646 		if (ret_val)
2647 			return ret_val;
2648 	}
2649 
2650 	if (hw->phy.type == e1000_phy_82578) {
2651 		/* Return registers to default by doing a soft reset then
2652 		 * writing 0x3140 to the control register.
2653 		 */
2654 		if (hw->phy.revision < 2) {
2655 			e1000_phy_sw_reset_generic(hw);
2656 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2657 							0x3140);
2658 		}
2659 	}
2660 
2661 	/* Select page 0 */
2662 	ret_val = hw->phy.ops.acquire(hw);
2663 	if (ret_val)
2664 		return ret_val;
2665 
2666 	hw->phy.addr = 1;
2667 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2668 	hw->phy.ops.release(hw);
2669 	if (ret_val)
2670 		return ret_val;
2671 
2672 	/* Configure the K1 Si workaround during phy reset assuming there is
2673 	 * link so that it disables K1 if link is in 1Gbps.
2674 	 */
2675 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2676 	if (ret_val)
2677 		return ret_val;
2678 
2679 	/* Workaround for link disconnects on a busy hub in half duplex */
2680 	ret_val = hw->phy.ops.acquire(hw);
2681 	if (ret_val)
2682 		return ret_val;
2683 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2684 	if (ret_val)
2685 		goto release;
2686 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2687 					       phy_data & 0x00FF);
2688 	if (ret_val)
2689 		goto release;
2690 
2691 	/* set MSE higher to enable link to stay up when noise is high */
2692 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2693 release:
2694 	hw->phy.ops.release(hw);
2695 
2696 	return ret_val;
2697 }
2698 
2699 /**
2700  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2701  *  @hw:   pointer to the HW structure
2702  **/
2703 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2704 {
2705 	u32 mac_reg;
2706 	u16 i, phy_reg = 0;
2707 	s32 ret_val;
2708 
2709 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2710 
2711 	ret_val = hw->phy.ops.acquire(hw);
2712 	if (ret_val)
2713 		return;
2714 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2715 	if (ret_val)
2716 		goto release;
2717 
2718 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2719 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2720 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2721 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2722 					   (u16)(mac_reg & 0xFFFF));
2723 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2724 					   (u16)((mac_reg >> 16) & 0xFFFF));
2725 
2726 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2727 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2728 					   (u16)(mac_reg & 0xFFFF));
2729 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2730 					   (u16)((mac_reg & E1000_RAH_AV)
2731 						 >> 16));
2732 	}
2733 
2734 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2735 
2736 release:
2737 	hw->phy.ops.release(hw);
2738 }
2739 
2740 static u32 e1000_calc_rx_da_crc(u8 mac[])
2741 {
2742 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2743 	u32 i, j, mask, crc;
2744 
2745 	DEBUGFUNC("e1000_calc_rx_da_crc");
2746 
2747 	crc = 0xffffffff;
2748 	for (i = 0; i < 6; i++) {
2749 		crc = crc ^ mac[i];
2750 		for (j = 8; j > 0; j--) {
2751 			mask = (crc & 1) * (-1);
2752 			crc = (crc >> 1) ^ (poly & mask);
2753 		}
2754 	}
2755 	return ~crc;
2756 }
2757 
2758 /**
2759  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2760  *  with 82579 PHY
2761  *  @hw: pointer to the HW structure
2762  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2763  **/
2764 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2765 {
2766 	s32 ret_val = E1000_SUCCESS;
2767 	u16 phy_reg, data;
2768 	u32 mac_reg;
2769 	u16 i;
2770 
2771 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2772 
2773 	if (hw->mac.type < e1000_pch2lan)
2774 		return E1000_SUCCESS;
2775 
2776 	/* disable Rx path while enabling/disabling workaround */
2777 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2778 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2779 					phy_reg | (1 << 14));
2780 	if (ret_val)
2781 		return ret_val;
2782 
2783 	if (enable) {
2784 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2785 		 * SHRAL/H) and initial CRC values to the MAC
2786 		 */
2787 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2788 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2789 			u32 addr_high, addr_low;
2790 
2791 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2792 			if (!(addr_high & E1000_RAH_AV))
2793 				continue;
2794 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2795 			mac_addr[0] = (addr_low & 0xFF);
2796 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2797 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2798 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2799 			mac_addr[4] = (addr_high & 0xFF);
2800 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2801 
2802 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2803 					e1000_calc_rx_da_crc(mac_addr));
2804 		}
2805 
2806 		/* Write Rx addresses to the PHY */
2807 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2808 
2809 		/* Enable jumbo frame workaround in the MAC */
2810 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2811 		mac_reg &= ~(1 << 14);
2812 		mac_reg |= (7 << 15);
2813 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2814 
2815 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2816 		mac_reg |= E1000_RCTL_SECRC;
2817 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2818 
2819 		ret_val = e1000_read_kmrn_reg_generic(hw,
2820 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2821 						&data);
2822 		if (ret_val)
2823 			return ret_val;
2824 		ret_val = e1000_write_kmrn_reg_generic(hw,
2825 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2826 						data | (1 << 0));
2827 		if (ret_val)
2828 			return ret_val;
2829 		ret_val = e1000_read_kmrn_reg_generic(hw,
2830 						E1000_KMRNCTRLSTA_HD_CTRL,
2831 						&data);
2832 		if (ret_val)
2833 			return ret_val;
2834 		data &= ~(0xF << 8);
2835 		data |= (0xB << 8);
2836 		ret_val = e1000_write_kmrn_reg_generic(hw,
2837 						E1000_KMRNCTRLSTA_HD_CTRL,
2838 						data);
2839 		if (ret_val)
2840 			return ret_val;
2841 
2842 		/* Enable jumbo frame workaround in the PHY */
2843 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2844 		data &= ~(0x7F << 5);
2845 		data |= (0x37 << 5);
2846 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2847 		if (ret_val)
2848 			return ret_val;
2849 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2850 		data &= ~(1 << 13);
2851 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2852 		if (ret_val)
2853 			return ret_val;
2854 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2855 		data &= ~(0x3FF << 2);
2856 		data |= (E1000_TX_PTR_GAP << 2);
2857 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2858 		if (ret_val)
2859 			return ret_val;
2860 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2861 		if (ret_val)
2862 			return ret_val;
2863 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2864 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2865 						(1 << 10));
2866 		if (ret_val)
2867 			return ret_val;
2868 	} else {
2869 		/* Write MAC register values back to h/w defaults */
2870 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2871 		mac_reg &= ~(0xF << 14);
2872 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2873 
2874 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2875 		mac_reg &= ~E1000_RCTL_SECRC;
2876 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2877 
2878 		ret_val = e1000_read_kmrn_reg_generic(hw,
2879 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2880 						&data);
2881 		if (ret_val)
2882 			return ret_val;
2883 		ret_val = e1000_write_kmrn_reg_generic(hw,
2884 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2885 						data & ~(1 << 0));
2886 		if (ret_val)
2887 			return ret_val;
2888 		ret_val = e1000_read_kmrn_reg_generic(hw,
2889 						E1000_KMRNCTRLSTA_HD_CTRL,
2890 						&data);
2891 		if (ret_val)
2892 			return ret_val;
2893 		data &= ~(0xF << 8);
2894 		data |= (0xB << 8);
2895 		ret_val = e1000_write_kmrn_reg_generic(hw,
2896 						E1000_KMRNCTRLSTA_HD_CTRL,
2897 						data);
2898 		if (ret_val)
2899 			return ret_val;
2900 
2901 		/* Write PHY register values back to h/w defaults */
2902 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2903 		data &= ~(0x7F << 5);
2904 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2905 		if (ret_val)
2906 			return ret_val;
2907 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2908 		data |= (1 << 13);
2909 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2910 		if (ret_val)
2911 			return ret_val;
2912 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2913 		data &= ~(0x3FF << 2);
2914 		data |= (0x8 << 2);
2915 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2916 		if (ret_val)
2917 			return ret_val;
2918 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2919 		if (ret_val)
2920 			return ret_val;
2921 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2922 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2923 						~(1 << 10));
2924 		if (ret_val)
2925 			return ret_val;
2926 	}
2927 
2928 	/* re-enable Rx path after enabling/disabling workaround */
2929 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2930 				     ~(1 << 14));
2931 }
2932 
2933 /**
2934  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2935  *  done after every PHY reset.
2936  **/
2937 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2938 {
2939 	s32 ret_val = E1000_SUCCESS;
2940 
2941 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2942 
2943 	if (hw->mac.type != e1000_pch2lan)
2944 		return E1000_SUCCESS;
2945 
2946 	/* Set MDIO slow mode before any other MDIO access */
2947 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2948 	if (ret_val)
2949 		return ret_val;
2950 
2951 	ret_val = hw->phy.ops.acquire(hw);
2952 	if (ret_val)
2953 		return ret_val;
2954 	/* set MSE higher to enable link to stay up when noise is high */
2955 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2956 	if (ret_val)
2957 		goto release;
2958 	/* drop link after 5 times MSE threshold was reached */
2959 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2960 release:
2961 	hw->phy.ops.release(hw);
2962 
2963 	return ret_val;
2964 }
2965 
2966 /**
2967  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2968  *  @hw:   pointer to the HW structure
2969  *
2970  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2971  *  Disable K1 for 1000 and 100 speeds
2972  **/
2973 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2974 {
2975 	s32 ret_val = E1000_SUCCESS;
2976 	u16 status_reg = 0;
2977 
2978 	DEBUGFUNC("e1000_k1_workaround_lv");
2979 
2980 	if (hw->mac.type != e1000_pch2lan)
2981 		return E1000_SUCCESS;
2982 
2983 	/* Set K1 beacon duration based on 10Mbs speed */
2984 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2985 	if (ret_val)
2986 		return ret_val;
2987 
2988 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2989 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2990 		if (status_reg &
2991 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2992 			u16 pm_phy_reg;
2993 
2994 			/* LV 1G/100 Packet drop issue wa  */
2995 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2996 						       &pm_phy_reg);
2997 			if (ret_val)
2998 				return ret_val;
2999 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3000 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3001 							pm_phy_reg);
3002 			if (ret_val)
3003 				return ret_val;
3004 		} else {
3005 			u32 mac_reg;
3006 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3007 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3008 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3009 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3010 		}
3011 	}
3012 
3013 	return ret_val;
3014 }
3015 
3016 /**
3017  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3018  *  @hw:   pointer to the HW structure
3019  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3020  *
3021  *  Gate/ungate the automatic PHY configuration via hardware; perform
3022  *  the configuration via software instead.
3023  **/
3024 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3025 {
3026 	u32 extcnf_ctrl;
3027 
3028 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3029 
3030 	if (hw->mac.type < e1000_pch2lan)
3031 		return;
3032 
3033 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3034 
3035 	if (gate)
3036 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3037 	else
3038 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3039 
3040 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3041 }
3042 
3043 /**
3044  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3045  *  @hw: pointer to the HW structure
3046  *
3047  *  Check the appropriate indication the MAC has finished configuring the
3048  *  PHY after a software reset.
3049  **/
3050 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3051 {
3052 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3053 
3054 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3055 
3056 	/* Wait for basic configuration completes before proceeding */
3057 	do {
3058 		data = E1000_READ_REG(hw, E1000_STATUS);
3059 		data &= E1000_STATUS_LAN_INIT_DONE;
3060 		usec_delay(100);
3061 	} while ((!data) && --loop);
3062 
3063 	/* If basic configuration is incomplete before the above loop
3064 	 * count reaches 0, loading the configuration from NVM will
3065 	 * leave the PHY in a bad state possibly resulting in no link.
3066 	 */
3067 	if (loop == 0)
3068 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3069 
3070 	/* Clear the Init Done bit for the next init event */
3071 	data = E1000_READ_REG(hw, E1000_STATUS);
3072 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3073 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3074 }
3075 
3076 /**
3077  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3078  *  @hw: pointer to the HW structure
3079  **/
3080 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3081 {
3082 	s32 ret_val = E1000_SUCCESS;
3083 	u16 reg;
3084 
3085 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3086 
3087 	if (hw->phy.ops.check_reset_block(hw))
3088 		return E1000_SUCCESS;
3089 
3090 	/* Allow time for h/w to get to quiescent state after reset */
3091 	msec_delay(10);
3092 
3093 	/* Perform any necessary post-reset workarounds */
3094 	switch (hw->mac.type) {
3095 	case e1000_pchlan:
3096 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3097 		if (ret_val)
3098 			return ret_val;
3099 		break;
3100 	case e1000_pch2lan:
3101 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3102 		if (ret_val)
3103 			return ret_val;
3104 		break;
3105 	default:
3106 		break;
3107 	}
3108 
3109 	/* Clear the host wakeup bit after lcd reset */
3110 	if (hw->mac.type >= e1000_pchlan) {
3111 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3112 		reg &= ~BM_WUC_HOST_WU_BIT;
3113 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3114 	}
3115 
3116 	/* Configure the LCD with the extended configuration region in NVM */
3117 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3118 	if (ret_val)
3119 		return ret_val;
3120 
3121 	/* Configure the LCD with the OEM bits in NVM */
3122 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3123 
3124 	if (hw->mac.type == e1000_pch2lan) {
3125 		/* Ungate automatic PHY configuration on non-managed 82579 */
3126 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3127 		    E1000_ICH_FWSM_FW_VALID)) {
3128 			msec_delay(10);
3129 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3130 		}
3131 
3132 		/* Set EEE LPI Update Timer to 200usec */
3133 		ret_val = hw->phy.ops.acquire(hw);
3134 		if (ret_val)
3135 			return ret_val;
3136 		ret_val = e1000_write_emi_reg_locked(hw,
3137 						     I82579_LPI_UPDATE_TIMER,
3138 						     0x1387);
3139 		hw->phy.ops.release(hw);
3140 	}
3141 
3142 	return ret_val;
3143 }
3144 
3145 /**
3146  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3147  *  @hw: pointer to the HW structure
3148  *
3149  *  Resets the PHY
3150  *  This is a function pointer entry point called by drivers
3151  *  or other shared routines.
3152  **/
3153 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3154 {
3155 	s32 ret_val = E1000_SUCCESS;
3156 
3157 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3158 
3159 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3160 	if ((hw->mac.type == e1000_pch2lan) &&
3161 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3162 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3163 
3164 	ret_val = e1000_phy_hw_reset_generic(hw);
3165 	if (ret_val)
3166 		return ret_val;
3167 
3168 	return e1000_post_phy_reset_ich8lan(hw);
3169 }
3170 
3171 /**
3172  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3173  *  @hw: pointer to the HW structure
3174  *  @active: TRUE to enable LPLU, FALSE to disable
3175  *
3176  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3177  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3178  *  the phy speed. This function will manually set the LPLU bit and restart
3179  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3180  *  since it configures the same bit.
3181  **/
3182 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3183 {
3184 	s32 ret_val;
3185 	u16 oem_reg;
3186 
3187 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3188 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3189 	if (ret_val)
3190 		return ret_val;
3191 
3192 	if (active)
3193 		oem_reg |= HV_OEM_BITS_LPLU;
3194 	else
3195 		oem_reg &= ~HV_OEM_BITS_LPLU;
3196 
3197 	if (!hw->phy.ops.check_reset_block(hw))
3198 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3199 
3200 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3201 }
3202 
3203 /**
3204  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3205  *  @hw: pointer to the HW structure
3206  *  @active: TRUE to enable LPLU, FALSE to disable
3207  *
3208  *  Sets the LPLU D0 state according to the active flag.  When
3209  *  activating LPLU this function also disables smart speed
3210  *  and vice versa.  LPLU will not be activated unless the
3211  *  device autonegotiation advertisement meets standards of
3212  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3213  *  This is a function pointer entry point only called by
3214  *  PHY setup routines.
3215  **/
3216 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3217 {
3218 	struct e1000_phy_info *phy = &hw->phy;
3219 	u32 phy_ctrl;
3220 	s32 ret_val = E1000_SUCCESS;
3221 	u16 data;
3222 
3223 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3224 
3225 	if (phy->type == e1000_phy_ife)
3226 		return E1000_SUCCESS;
3227 
3228 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3229 
3230 	if (active) {
3231 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3232 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3233 
3234 		if (phy->type != e1000_phy_igp_3)
3235 			return E1000_SUCCESS;
3236 
3237 		/* Call gig speed drop workaround on LPLU before accessing
3238 		 * any PHY registers
3239 		 */
3240 		if (hw->mac.type == e1000_ich8lan)
3241 			e1000_gig_downshift_workaround_ich8lan(hw);
3242 
3243 		/* When LPLU is enabled, we should disable SmartSpeed */
3244 		ret_val = phy->ops.read_reg(hw,
3245 					    IGP01E1000_PHY_PORT_CONFIG,
3246 					    &data);
3247 		if (ret_val)
3248 			return ret_val;
3249 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3250 		ret_val = phy->ops.write_reg(hw,
3251 					     IGP01E1000_PHY_PORT_CONFIG,
3252 					     data);
3253 		if (ret_val)
3254 			return ret_val;
3255 	} else {
3256 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3257 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3258 
3259 		if (phy->type != e1000_phy_igp_3)
3260 			return E1000_SUCCESS;
3261 
3262 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3263 		 * during Dx states where the power conservation is most
3264 		 * important.  During driver activity we should enable
3265 		 * SmartSpeed, so performance is maintained.
3266 		 */
3267 		if (phy->smart_speed == e1000_smart_speed_on) {
3268 			ret_val = phy->ops.read_reg(hw,
3269 						    IGP01E1000_PHY_PORT_CONFIG,
3270 						    &data);
3271 			if (ret_val)
3272 				return ret_val;
3273 
3274 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3275 			ret_val = phy->ops.write_reg(hw,
3276 						     IGP01E1000_PHY_PORT_CONFIG,
3277 						     data);
3278 			if (ret_val)
3279 				return ret_val;
3280 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3281 			ret_val = phy->ops.read_reg(hw,
3282 						    IGP01E1000_PHY_PORT_CONFIG,
3283 						    &data);
3284 			if (ret_val)
3285 				return ret_val;
3286 
3287 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3288 			ret_val = phy->ops.write_reg(hw,
3289 						     IGP01E1000_PHY_PORT_CONFIG,
3290 						     data);
3291 			if (ret_val)
3292 				return ret_val;
3293 		}
3294 	}
3295 
3296 	return E1000_SUCCESS;
3297 }
3298 
3299 /**
3300  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3301  *  @hw: pointer to the HW structure
3302  *  @active: TRUE to enable LPLU, FALSE to disable
3303  *
3304  *  Sets the LPLU D3 state according to the active flag.  When
3305  *  activating LPLU this function also disables smart speed
3306  *  and vice versa.  LPLU will not be activated unless the
3307  *  device autonegotiation advertisement meets standards of
3308  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3309  *  This is a function pointer entry point only called by
3310  *  PHY setup routines.
3311  **/
3312 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3313 {
3314 	struct e1000_phy_info *phy = &hw->phy;
3315 	u32 phy_ctrl;
3316 	s32 ret_val = E1000_SUCCESS;
3317 	u16 data;
3318 
3319 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3320 
3321 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3322 
3323 	if (!active) {
3324 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3325 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3326 
3327 		if (phy->type != e1000_phy_igp_3)
3328 			return E1000_SUCCESS;
3329 
3330 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3331 		 * during Dx states where the power conservation is most
3332 		 * important.  During driver activity we should enable
3333 		 * SmartSpeed, so performance is maintained.
3334 		 */
3335 		if (phy->smart_speed == e1000_smart_speed_on) {
3336 			ret_val = phy->ops.read_reg(hw,
3337 						    IGP01E1000_PHY_PORT_CONFIG,
3338 						    &data);
3339 			if (ret_val)
3340 				return ret_val;
3341 
3342 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3343 			ret_val = phy->ops.write_reg(hw,
3344 						     IGP01E1000_PHY_PORT_CONFIG,
3345 						     data);
3346 			if (ret_val)
3347 				return ret_val;
3348 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3349 			ret_val = phy->ops.read_reg(hw,
3350 						    IGP01E1000_PHY_PORT_CONFIG,
3351 						    &data);
3352 			if (ret_val)
3353 				return ret_val;
3354 
3355 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3356 			ret_val = phy->ops.write_reg(hw,
3357 						     IGP01E1000_PHY_PORT_CONFIG,
3358 						     data);
3359 			if (ret_val)
3360 				return ret_val;
3361 		}
3362 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3363 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3364 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3365 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3366 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3367 
3368 		if (phy->type != e1000_phy_igp_3)
3369 			return E1000_SUCCESS;
3370 
3371 		/* Call gig speed drop workaround on LPLU before accessing
3372 		 * any PHY registers
3373 		 */
3374 		if (hw->mac.type == e1000_ich8lan)
3375 			e1000_gig_downshift_workaround_ich8lan(hw);
3376 
3377 		/* When LPLU is enabled, we should disable SmartSpeed */
3378 		ret_val = phy->ops.read_reg(hw,
3379 					    IGP01E1000_PHY_PORT_CONFIG,
3380 					    &data);
3381 		if (ret_val)
3382 			return ret_val;
3383 
3384 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3385 		ret_val = phy->ops.write_reg(hw,
3386 					     IGP01E1000_PHY_PORT_CONFIG,
3387 					     data);
3388 	}
3389 
3390 	return ret_val;
3391 }
3392 
3393 /**
3394  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3395  *  @hw: pointer to the HW structure
3396  *  @bank:  pointer to the variable that returns the active bank
3397  *
3398  *  Reads signature byte from the NVM using the flash access registers.
3399  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3400  **/
3401 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3402 {
3403 	u32 eecd;
3404 	struct e1000_nvm_info *nvm = &hw->nvm;
3405 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3406 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3407 	u32 nvm_dword = 0;
3408 	u8 sig_byte = 0;
3409 	s32 ret_val;
3410 
3411 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3412 
3413 	switch (hw->mac.type) {
3414 	case e1000_pch_spt:
3415 		bank1_offset = nvm->flash_bank_size;
3416 		act_offset = E1000_ICH_NVM_SIG_WORD;
3417 
3418 		/* set bank to 0 in case flash read fails */
3419 		*bank = 0;
3420 
3421 		/* Check bank 0 */
3422 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3423 							 &nvm_dword);
3424 		if (ret_val)
3425 			return ret_val;
3426 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3427 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3428 		    E1000_ICH_NVM_SIG_VALUE) {
3429 			*bank = 0;
3430 			return E1000_SUCCESS;
3431 		}
3432 
3433 		/* Check bank 1 */
3434 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3435 							 bank1_offset,
3436 							 &nvm_dword);
3437 		if (ret_val)
3438 			return ret_val;
3439 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3440 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3441 		    E1000_ICH_NVM_SIG_VALUE) {
3442 			*bank = 1;
3443 			return E1000_SUCCESS;
3444 		}
3445 
3446 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3447 		return -E1000_ERR_NVM;
3448 	case e1000_ich8lan:
3449 	case e1000_ich9lan:
3450 		eecd = E1000_READ_REG(hw, E1000_EECD);
3451 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3452 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3453 			if (eecd & E1000_EECD_SEC1VAL)
3454 				*bank = 1;
3455 			else
3456 				*bank = 0;
3457 
3458 			return E1000_SUCCESS;
3459 		}
3460 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3461 		/* fall-thru */
3462 	default:
3463 		/* set bank to 0 in case flash read fails */
3464 		*bank = 0;
3465 
3466 		/* Check bank 0 */
3467 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3468 							&sig_byte);
3469 		if (ret_val)
3470 			return ret_val;
3471 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3472 		    E1000_ICH_NVM_SIG_VALUE) {
3473 			*bank = 0;
3474 			return E1000_SUCCESS;
3475 		}
3476 
3477 		/* Check bank 1 */
3478 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3479 							bank1_offset,
3480 							&sig_byte);
3481 		if (ret_val)
3482 			return ret_val;
3483 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3484 		    E1000_ICH_NVM_SIG_VALUE) {
3485 			*bank = 1;
3486 			return E1000_SUCCESS;
3487 		}
3488 
3489 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3490 		return -E1000_ERR_NVM;
3491 	}
3492 }
3493 
3494 /**
3495  *  e1000_read_nvm_spt - NVM access for SPT
3496  *  @hw: pointer to the HW structure
3497  *  @offset: The offset (in bytes) of the word(s) to read.
3498  *  @words: Size of data to read in words.
3499  *  @data: pointer to the word(s) to read at offset.
3500  *
3501  *  Reads a word(s) from the NVM
3502  **/
3503 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3504 			      u16 *data)
3505 {
3506 	struct e1000_nvm_info *nvm = &hw->nvm;
3507 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3508 	u32 act_offset;
3509 	s32 ret_val = E1000_SUCCESS;
3510 	u32 bank = 0;
3511 	u32 dword = 0;
3512 	u16 offset_to_read;
3513 	u16 i;
3514 
3515 	DEBUGFUNC("e1000_read_nvm_spt");
3516 
3517 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3518 	    (words == 0)) {
3519 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3520 		ret_val = -E1000_ERR_NVM;
3521 		goto out;
3522 	}
3523 
3524 	nvm->ops.acquire(hw);
3525 
3526 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3527 	if (ret_val != E1000_SUCCESS) {
3528 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3529 		bank = 0;
3530 	}
3531 
3532 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3533 	act_offset += offset;
3534 
3535 	ret_val = E1000_SUCCESS;
3536 
3537 	for (i = 0; i < words; i += 2) {
3538 		if (words - i == 1) {
3539 			if (dev_spec->shadow_ram[offset+i].modified) {
3540 				data[i] = dev_spec->shadow_ram[offset+i].value;
3541 			} else {
3542 				offset_to_read = act_offset + i -
3543 						 ((act_offset + i) % 2);
3544 				ret_val =
3545 				   e1000_read_flash_dword_ich8lan(hw,
3546 								 offset_to_read,
3547 								 &dword);
3548 				if (ret_val)
3549 					break;
3550 				if ((act_offset + i) % 2 == 0)
3551 					data[i] = (u16)(dword & 0xFFFF);
3552 				else
3553 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3554 			}
3555 		} else {
3556 			offset_to_read = act_offset + i;
3557 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3558 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3559 				ret_val =
3560 				   e1000_read_flash_dword_ich8lan(hw,
3561 								 offset_to_read,
3562 								 &dword);
3563 				if (ret_val)
3564 					break;
3565 			}
3566 			if (dev_spec->shadow_ram[offset+i].modified)
3567 				data[i] = dev_spec->shadow_ram[offset+i].value;
3568 			else
3569 				data[i] = (u16) (dword & 0xFFFF);
3570 			if (dev_spec->shadow_ram[offset+i].modified)
3571 				data[i+1] =
3572 				   dev_spec->shadow_ram[offset+i+1].value;
3573 			else
3574 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3575 		}
3576 	}
3577 
3578 	nvm->ops.release(hw);
3579 
3580 out:
3581 	if (ret_val)
3582 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3583 
3584 	return ret_val;
3585 }
3586 
3587 /**
3588  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3589  *  @hw: pointer to the HW structure
3590  *  @offset: The offset (in bytes) of the word(s) to read.
3591  *  @words: Size of data to read in words
3592  *  @data: Pointer to the word(s) to read at offset.
3593  *
3594  *  Reads a word(s) from the NVM using the flash access registers.
3595  **/
3596 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3597 				  u16 *data)
3598 {
3599 	struct e1000_nvm_info *nvm = &hw->nvm;
3600 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3601 	u32 act_offset;
3602 	s32 ret_val = E1000_SUCCESS;
3603 	u32 bank = 0;
3604 	u16 i, word;
3605 
3606 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3607 
3608 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3609 	    (words == 0)) {
3610 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3611 		ret_val = -E1000_ERR_NVM;
3612 		goto out;
3613 	}
3614 
3615 	nvm->ops.acquire(hw);
3616 
3617 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3618 	if (ret_val != E1000_SUCCESS) {
3619 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3620 		bank = 0;
3621 	}
3622 
3623 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3624 	act_offset += offset;
3625 
3626 	ret_val = E1000_SUCCESS;
3627 	for (i = 0; i < words; i++) {
3628 		if (dev_spec->shadow_ram[offset+i].modified) {
3629 			data[i] = dev_spec->shadow_ram[offset+i].value;
3630 		} else {
3631 			ret_val = e1000_read_flash_word_ich8lan(hw,
3632 								act_offset + i,
3633 								&word);
3634 			if (ret_val)
3635 				break;
3636 			data[i] = word;
3637 		}
3638 	}
3639 
3640 	nvm->ops.release(hw);
3641 
3642 out:
3643 	if (ret_val)
3644 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3645 
3646 	return ret_val;
3647 }
3648 
3649 /**
3650  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3651  *  @hw: pointer to the HW structure
3652  *
3653  *  This function does initial flash setup so that a new read/write/erase cycle
3654  *  can be started.
3655  **/
3656 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3657 {
3658 	union ich8_hws_flash_status hsfsts;
3659 	s32 ret_val = -E1000_ERR_NVM;
3660 
3661 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3662 
3663 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3664 
3665 	/* Check if the flash descriptor is valid */
3666 	if (!hsfsts.hsf_status.fldesvalid) {
3667 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3668 		return -E1000_ERR_NVM;
3669 	}
3670 
3671 	/* Clear FCERR and DAEL in hw status by writing 1 */
3672 	hsfsts.hsf_status.flcerr = 1;
3673 	hsfsts.hsf_status.dael = 1;
3674 	if (hw->mac.type >= e1000_pch_spt)
3675 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3676 				      hsfsts.regval & 0xFFFF);
3677 	else
3678 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3679 
3680 	/* Either we should have a hardware SPI cycle in progress
3681 	 * bit to check against, in order to start a new cycle or
3682 	 * FDONE bit should be changed in the hardware so that it
3683 	 * is 1 after hardware reset, which can then be used as an
3684 	 * indication whether a cycle is in progress or has been
3685 	 * completed.
3686 	 */
3687 
3688 	if (!hsfsts.hsf_status.flcinprog) {
3689 		/* There is no cycle running at present,
3690 		 * so we can start a cycle.
3691 		 * Begin by setting Flash Cycle Done.
3692 		 */
3693 		hsfsts.hsf_status.flcdone = 1;
3694 		if (hw->mac.type >= e1000_pch_spt)
3695 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3696 					      hsfsts.regval & 0xFFFF);
3697 		else
3698 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3699 						hsfsts.regval);
3700 		ret_val = E1000_SUCCESS;
3701 	} else {
3702 		s32 i;
3703 
3704 		/* Otherwise poll for sometime so the current
3705 		 * cycle has a chance to end before giving up.
3706 		 */
3707 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3708 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3709 							      ICH_FLASH_HSFSTS);
3710 			if (!hsfsts.hsf_status.flcinprog) {
3711 				ret_val = E1000_SUCCESS;
3712 				break;
3713 			}
3714 			usec_delay(1);
3715 		}
3716 		if (ret_val == E1000_SUCCESS) {
3717 			/* Successful in waiting for previous cycle to timeout,
3718 			 * now set the Flash Cycle Done.
3719 			 */
3720 			hsfsts.hsf_status.flcdone = 1;
3721 			if (hw->mac.type >= e1000_pch_spt)
3722 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3723 						      hsfsts.regval & 0xFFFF);
3724 			else
3725 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3726 							hsfsts.regval);
3727 		} else {
3728 			DEBUGOUT("Flash controller busy, cannot get access\n");
3729 		}
3730 	}
3731 
3732 	return ret_val;
3733 }
3734 
3735 /**
3736  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3737  *  @hw: pointer to the HW structure
3738  *  @timeout: maximum time to wait for completion
3739  *
3740  *  This function starts a flash cycle and waits for its completion.
3741  **/
3742 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3743 {
3744 	union ich8_hws_flash_ctrl hsflctl;
3745 	union ich8_hws_flash_status hsfsts;
3746 	u32 i = 0;
3747 
3748 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3749 
3750 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3751 	if (hw->mac.type >= e1000_pch_spt)
3752 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3753 	else
3754 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3755 	hsflctl.hsf_ctrl.flcgo = 1;
3756 
3757 	if (hw->mac.type >= e1000_pch_spt)
3758 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3759 				      hsflctl.regval << 16);
3760 	else
3761 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3762 
3763 	/* wait till FDONE bit is set to 1 */
3764 	do {
3765 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3766 		if (hsfsts.hsf_status.flcdone)
3767 			break;
3768 		usec_delay(1);
3769 	} while (i++ < timeout);
3770 
3771 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3772 		return E1000_SUCCESS;
3773 
3774 	return -E1000_ERR_NVM;
3775 }
3776 
3777 /**
3778  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3779  *  @hw: pointer to the HW structure
3780  *  @offset: offset to data location
3781  *  @data: pointer to the location for storing the data
3782  *
3783  *  Reads the flash dword at offset into data.  Offset is converted
3784  *  to bytes before read.
3785  **/
3786 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3787 					  u32 *data)
3788 {
3789 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3790 
3791 	if (!data)
3792 		return -E1000_ERR_NVM;
3793 
3794 	/* Must convert word offset into bytes. */
3795 	offset <<= 1;
3796 
3797 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3798 }
3799 
3800 /**
3801  *  e1000_read_flash_word_ich8lan - Read word from flash
3802  *  @hw: pointer to the HW structure
3803  *  @offset: offset to data location
3804  *  @data: pointer to the location for storing the data
3805  *
3806  *  Reads the flash word at offset into data.  Offset is converted
3807  *  to bytes before read.
3808  **/
3809 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3810 					 u16 *data)
3811 {
3812 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3813 
3814 	if (!data)
3815 		return -E1000_ERR_NVM;
3816 
3817 	/* Must convert offset into bytes. */
3818 	offset <<= 1;
3819 
3820 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3821 }
3822 
3823 /**
3824  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3825  *  @hw: pointer to the HW structure
3826  *  @offset: The offset of the byte to read.
3827  *  @data: Pointer to a byte to store the value read.
3828  *
3829  *  Reads a single byte from the NVM using the flash access registers.
3830  **/
3831 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3832 					 u8 *data)
3833 {
3834 	s32 ret_val;
3835 	u16 word = 0;
3836 
3837 	/* In SPT, only 32 bits access is supported,
3838 	 * so this function should not be called.
3839 	 */
3840 	if (hw->mac.type >= e1000_pch_spt)
3841 		return -E1000_ERR_NVM;
3842 	else
3843 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3844 
3845 	if (ret_val)
3846 		return ret_val;
3847 
3848 	*data = (u8)word;
3849 
3850 	return E1000_SUCCESS;
3851 }
3852 
3853 /**
3854  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3855  *  @hw: pointer to the HW structure
3856  *  @offset: The offset (in bytes) of the byte or word to read.
3857  *  @size: Size of data to read, 1=byte 2=word
3858  *  @data: Pointer to the word to store the value read.
3859  *
3860  *  Reads a byte or word from the NVM using the flash access registers.
3861  **/
3862 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3863 					 u8 size, u16 *data)
3864 {
3865 	union ich8_hws_flash_status hsfsts;
3866 	union ich8_hws_flash_ctrl hsflctl;
3867 	u32 flash_linear_addr;
3868 	u32 flash_data = 0;
3869 	s32 ret_val = -E1000_ERR_NVM;
3870 	u8 count = 0;
3871 
3872 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3873 
3874 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3875 		return -E1000_ERR_NVM;
3876 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3877 			     hw->nvm.flash_base_addr);
3878 
3879 	do {
3880 		usec_delay(1);
3881 		/* Steps */
3882 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3883 		if (ret_val != E1000_SUCCESS)
3884 			break;
3885 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3886 
3887 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3888 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3889 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3890 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3891 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3892 
3893 		ret_val = e1000_flash_cycle_ich8lan(hw,
3894 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3895 
3896 		/* Check if FCERR is set to 1, if set to 1, clear it
3897 		 * and try the whole sequence a few more times, else
3898 		 * read in (shift in) the Flash Data0, the order is
3899 		 * least significant byte first msb to lsb
3900 		 */
3901 		if (ret_val == E1000_SUCCESS) {
3902 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3903 			if (size == 1)
3904 				*data = (u8)(flash_data & 0x000000FF);
3905 			else if (size == 2)
3906 				*data = (u16)(flash_data & 0x0000FFFF);
3907 			break;
3908 		} else {
3909 			/* If we've gotten here, then things are probably
3910 			 * completely hosed, but if the error condition is
3911 			 * detected, it won't hurt to give it another try...
3912 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3913 			 */
3914 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3915 							      ICH_FLASH_HSFSTS);
3916 			if (hsfsts.hsf_status.flcerr) {
3917 				/* Repeat for some time before giving up. */
3918 				continue;
3919 			} else if (!hsfsts.hsf_status.flcdone) {
3920 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3921 				break;
3922 			}
3923 		}
3924 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3925 
3926 	return ret_val;
3927 }
3928 
3929 /**
3930  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3931  *  @hw: pointer to the HW structure
3932  *  @offset: The offset (in bytes) of the dword to read.
3933  *  @data: Pointer to the dword to store the value read.
3934  *
3935  *  Reads a byte or word from the NVM using the flash access registers.
3936  **/
3937 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3938 					   u32 *data)
3939 {
3940 	union ich8_hws_flash_status hsfsts;
3941 	union ich8_hws_flash_ctrl hsflctl;
3942 	u32 flash_linear_addr;
3943 	s32 ret_val = -E1000_ERR_NVM;
3944 	u8 count = 0;
3945 
3946 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3947 
3948 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3949 		    hw->mac.type < e1000_pch_spt)
3950 			return -E1000_ERR_NVM;
3951 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3952 			     hw->nvm.flash_base_addr);
3953 
3954 	do {
3955 		usec_delay(1);
3956 		/* Steps */
3957 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3958 		if (ret_val != E1000_SUCCESS)
3959 			break;
3960 		/* In SPT, This register is in Lan memory space, not flash.
3961 		 * Therefore, only 32 bit access is supported
3962 		 */
3963 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3964 
3965 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3966 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3967 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3968 		/* In SPT, This register is in Lan memory space, not flash.
3969 		 * Therefore, only 32 bit access is supported
3970 		 */
3971 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3972 				      (u32)hsflctl.regval << 16);
3973 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3974 
3975 		ret_val = e1000_flash_cycle_ich8lan(hw,
3976 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3977 
3978 		/* Check if FCERR is set to 1, if set to 1, clear it
3979 		 * and try the whole sequence a few more times, else
3980 		 * read in (shift in) the Flash Data0, the order is
3981 		 * least significant byte first msb to lsb
3982 		 */
3983 		if (ret_val == E1000_SUCCESS) {
3984 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3985 			break;
3986 		} else {
3987 			/* If we've gotten here, then things are probably
3988 			 * completely hosed, but if the error condition is
3989 			 * detected, it won't hurt to give it another try...
3990 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3991 			 */
3992 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3993 							      ICH_FLASH_HSFSTS);
3994 			if (hsfsts.hsf_status.flcerr) {
3995 				/* Repeat for some time before giving up. */
3996 				continue;
3997 			} else if (!hsfsts.hsf_status.flcdone) {
3998 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3999 				break;
4000 			}
4001 		}
4002 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4003 
4004 	return ret_val;
4005 }
4006 
4007 /**
4008  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4009  *  @hw: pointer to the HW structure
4010  *  @offset: The offset (in bytes) of the word(s) to write.
4011  *  @words: Size of data to write in words
4012  *  @data: Pointer to the word(s) to write at offset.
4013  *
4014  *  Writes a byte or word to the NVM using the flash access registers.
4015  **/
4016 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4017 				   u16 *data)
4018 {
4019 	struct e1000_nvm_info *nvm = &hw->nvm;
4020 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4021 	u16 i;
4022 
4023 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4024 
4025 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4026 	    (words == 0)) {
4027 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4028 		return -E1000_ERR_NVM;
4029 	}
4030 
4031 	nvm->ops.acquire(hw);
4032 
4033 	for (i = 0; i < words; i++) {
4034 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4035 		dev_spec->shadow_ram[offset+i].value = data[i];
4036 	}
4037 
4038 	nvm->ops.release(hw);
4039 
4040 	return E1000_SUCCESS;
4041 }
4042 
4043 /**
4044  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4045  *  @hw: pointer to the HW structure
4046  *
4047  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4048  *  which writes the checksum to the shadow ram.  The changes in the shadow
4049  *  ram are then committed to the EEPROM by processing each bank at a time
4050  *  checking for the modified bit and writing only the pending changes.
4051  *  After a successful commit, the shadow ram is cleared and is ready for
4052  *  future writes.
4053  **/
4054 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4055 {
4056 	struct e1000_nvm_info *nvm = &hw->nvm;
4057 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4058 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4059 	s32 ret_val;
4060 	u32 dword = 0;
4061 
4062 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4063 
4064 	ret_val = e1000_update_nvm_checksum_generic(hw);
4065 	if (ret_val)
4066 		goto out;
4067 
4068 	if (nvm->type != e1000_nvm_flash_sw)
4069 		goto out;
4070 
4071 	nvm->ops.acquire(hw);
4072 
4073 	/* We're writing to the opposite bank so if we're on bank 1,
4074 	 * write to bank 0 etc.  We also need to erase the segment that
4075 	 * is going to be written
4076 	 */
4077 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4078 	if (ret_val != E1000_SUCCESS) {
4079 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4080 		bank = 0;
4081 	}
4082 
4083 	if (bank == 0) {
4084 		new_bank_offset = nvm->flash_bank_size;
4085 		old_bank_offset = 0;
4086 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4087 		if (ret_val)
4088 			goto release;
4089 	} else {
4090 		old_bank_offset = nvm->flash_bank_size;
4091 		new_bank_offset = 0;
4092 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4093 		if (ret_val)
4094 			goto release;
4095 	}
4096 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4097 		/* Determine whether to write the value stored
4098 		 * in the other NVM bank or a modified value stored
4099 		 * in the shadow RAM
4100 		 */
4101 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4102 							 i + old_bank_offset,
4103 							 &dword);
4104 
4105 		if (dev_spec->shadow_ram[i].modified) {
4106 			dword &= 0xffff0000;
4107 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4108 		}
4109 		if (dev_spec->shadow_ram[i + 1].modified) {
4110 			dword &= 0x0000ffff;
4111 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4112 				  << 16);
4113 		}
4114 		if (ret_val)
4115 			break;
4116 
4117 		/* If the word is 0x13, then make sure the signature bits
4118 		 * (15:14) are 11b until the commit has completed.
4119 		 * This will allow us to write 10b which indicates the
4120 		 * signature is valid.  We want to do this after the write
4121 		 * has completed so that we don't mark the segment valid
4122 		 * while the write is still in progress
4123 		 */
4124 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4125 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4126 
4127 		/* Convert offset to bytes. */
4128 		act_offset = (i + new_bank_offset) << 1;
4129 
4130 		usec_delay(100);
4131 
4132 		/* Write the data to the new bank. Offset in words*/
4133 		act_offset = i + new_bank_offset;
4134 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4135 								dword);
4136 		if (ret_val)
4137 			break;
4138 	 }
4139 
4140 	/* Don't bother writing the segment valid bits if sector
4141 	 * programming failed.
4142 	 */
4143 	if (ret_val) {
4144 		DEBUGOUT("Flash commit failed.\n");
4145 		goto release;
4146 	}
4147 
4148 	/* Finally validate the new segment by setting bit 15:14
4149 	 * to 10b in word 0x13 , this can be done without an
4150 	 * erase as well since these bits are 11 to start with
4151 	 * and we need to change bit 14 to 0b
4152 	 */
4153 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4154 
4155 	/*offset in words but we read dword*/
4156 	--act_offset;
4157 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4158 
4159 	if (ret_val)
4160 		goto release;
4161 
4162 	dword &= 0xBFFFFFFF;
4163 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4164 
4165 	if (ret_val)
4166 		goto release;
4167 
4168 	/* And invalidate the previously valid segment by setting
4169 	 * its signature word (0x13) high_byte to 0b. This can be
4170 	 * done without an erase because flash erase sets all bits
4171 	 * to 1's. We can write 1's to 0's without an erase
4172 	 */
4173 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4174 
4175 	/* offset in words but we read dword*/
4176 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4177 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4178 
4179 	if (ret_val)
4180 		goto release;
4181 
4182 	dword &= 0x00FFFFFF;
4183 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4184 
4185 	if (ret_val)
4186 		goto release;
4187 
4188 	/* Great!  Everything worked, we can now clear the cached entries. */
4189 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4190 		dev_spec->shadow_ram[i].modified = FALSE;
4191 		dev_spec->shadow_ram[i].value = 0xFFFF;
4192 	}
4193 
4194 release:
4195 	nvm->ops.release(hw);
4196 
4197 	/* Reload the EEPROM, or else modifications will not appear
4198 	 * until after the next adapter reset.
4199 	 */
4200 	if (!ret_val) {
4201 		nvm->ops.reload(hw);
4202 		msec_delay(10);
4203 	}
4204 
4205 out:
4206 	if (ret_val)
4207 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4208 
4209 	return ret_val;
4210 }
4211 
4212 /**
4213  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4214  *  @hw: pointer to the HW structure
4215  *
4216  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4217  *  which writes the checksum to the shadow ram.  The changes in the shadow
4218  *  ram are then committed to the EEPROM by processing each bank at a time
4219  *  checking for the modified bit and writing only the pending changes.
4220  *  After a successful commit, the shadow ram is cleared and is ready for
4221  *  future writes.
4222  **/
4223 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4224 {
4225 	struct e1000_nvm_info *nvm = &hw->nvm;
4226 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4227 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4228 	s32 ret_val;
4229 	u16 data = 0;
4230 
4231 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4232 
4233 	ret_val = e1000_update_nvm_checksum_generic(hw);
4234 	if (ret_val)
4235 		goto out;
4236 
4237 	if (nvm->type != e1000_nvm_flash_sw)
4238 		goto out;
4239 
4240 	nvm->ops.acquire(hw);
4241 
4242 	/* We're writing to the opposite bank so if we're on bank 1,
4243 	 * write to bank 0 etc.  We also need to erase the segment that
4244 	 * is going to be written
4245 	 */
4246 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4247 	if (ret_val != E1000_SUCCESS) {
4248 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4249 		bank = 0;
4250 	}
4251 
4252 	if (bank == 0) {
4253 		new_bank_offset = nvm->flash_bank_size;
4254 		old_bank_offset = 0;
4255 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4256 		if (ret_val)
4257 			goto release;
4258 	} else {
4259 		old_bank_offset = nvm->flash_bank_size;
4260 		new_bank_offset = 0;
4261 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4262 		if (ret_val)
4263 			goto release;
4264 	}
4265 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4266 		if (dev_spec->shadow_ram[i].modified) {
4267 			data = dev_spec->shadow_ram[i].value;
4268 		} else {
4269 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4270 								old_bank_offset,
4271 								&data);
4272 			if (ret_val)
4273 				break;
4274 		}
4275 		/* If the word is 0x13, then make sure the signature bits
4276 		 * (15:14) are 11b until the commit has completed.
4277 		 * This will allow us to write 10b which indicates the
4278 		 * signature is valid.  We want to do this after the write
4279 		 * has completed so that we don't mark the segment valid
4280 		 * while the write is still in progress
4281 		 */
4282 		if (i == E1000_ICH_NVM_SIG_WORD)
4283 			data |= E1000_ICH_NVM_SIG_MASK;
4284 
4285 		/* Convert offset to bytes. */
4286 		act_offset = (i + new_bank_offset) << 1;
4287 
4288 		usec_delay(100);
4289 
4290 		/* Write the bytes to the new bank. */
4291 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4292 							       act_offset,
4293 							       (u8)data);
4294 		if (ret_val)
4295 			break;
4296 
4297 		usec_delay(100);
4298 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4299 							  act_offset + 1,
4300 							  (u8)(data >> 8));
4301 		if (ret_val)
4302 			break;
4303 	 }
4304 
4305 	/* Don't bother writing the segment valid bits if sector
4306 	 * programming failed.
4307 	 */
4308 	if (ret_val) {
4309 		DEBUGOUT("Flash commit failed.\n");
4310 		goto release;
4311 	}
4312 
4313 	/* Finally validate the new segment by setting bit 15:14
4314 	 * to 10b in word 0x13 , this can be done without an
4315 	 * erase as well since these bits are 11 to start with
4316 	 * and we need to change bit 14 to 0b
4317 	 */
4318 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4319 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4320 	if (ret_val)
4321 		goto release;
4322 
4323 	data &= 0xBFFF;
4324 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4325 						       (u8)(data >> 8));
4326 	if (ret_val)
4327 		goto release;
4328 
4329 	/* And invalidate the previously valid segment by setting
4330 	 * its signature word (0x13) high_byte to 0b. This can be
4331 	 * done without an erase because flash erase sets all bits
4332 	 * to 1's. We can write 1's to 0's without an erase
4333 	 */
4334 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4335 
4336 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4337 
4338 	if (ret_val)
4339 		goto release;
4340 
4341 	/* Great!  Everything worked, we can now clear the cached entries. */
4342 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4343 		dev_spec->shadow_ram[i].modified = FALSE;
4344 		dev_spec->shadow_ram[i].value = 0xFFFF;
4345 	}
4346 
4347 release:
4348 	nvm->ops.release(hw);
4349 
4350 	/* Reload the EEPROM, or else modifications will not appear
4351 	 * until after the next adapter reset.
4352 	 */
4353 	if (!ret_val) {
4354 		nvm->ops.reload(hw);
4355 		msec_delay(10);
4356 	}
4357 
4358 out:
4359 	if (ret_val)
4360 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4361 
4362 	return ret_val;
4363 }
4364 
4365 /**
4366  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4367  *  @hw: pointer to the HW structure
4368  *
4369  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4370  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4371  *  calculated, in which case we need to calculate the checksum and set bit 6.
4372  **/
4373 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4374 {
4375 	s32 ret_val;
4376 	u16 data;
4377 	u16 word;
4378 	u16 valid_csum_mask;
4379 
4380 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4381 
4382 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4383 	 * the checksum needs to be fixed.  This bit is an indication that
4384 	 * the NVM was prepared by OEM software and did not calculate
4385 	 * the checksum...a likely scenario.
4386 	 */
4387 	switch (hw->mac.type) {
4388 	case e1000_pch_lpt:
4389 	case e1000_pch_spt:
4390 		word = NVM_COMPAT;
4391 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4392 		break;
4393 	default:
4394 		word = NVM_FUTURE_INIT_WORD1;
4395 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4396 		break;
4397 	}
4398 
4399 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4400 	if (ret_val)
4401 		return ret_val;
4402 
4403 	if (!(data & valid_csum_mask)) {
4404 		data |= valid_csum_mask;
4405 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4406 		if (ret_val)
4407 			return ret_val;
4408 		ret_val = hw->nvm.ops.update(hw);
4409 		if (ret_val)
4410 			return ret_val;
4411 	}
4412 
4413 	return e1000_validate_nvm_checksum_generic(hw);
4414 }
4415 
4416 /**
4417  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4418  *  @hw: pointer to the HW structure
4419  *  @offset: The offset (in bytes) of the byte/word to read.
4420  *  @size: Size of data to read, 1=byte 2=word
4421  *  @data: The byte(s) to write to the NVM.
4422  *
4423  *  Writes one/two bytes to the NVM using the flash access registers.
4424  **/
4425 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4426 					  u8 size, u16 data)
4427 {
4428 	union ich8_hws_flash_status hsfsts;
4429 	union ich8_hws_flash_ctrl hsflctl;
4430 	u32 flash_linear_addr;
4431 	u32 flash_data = 0;
4432 	s32 ret_val;
4433 	u8 count = 0;
4434 
4435 	DEBUGFUNC("e1000_write_ich8_data");
4436 
4437 	if (hw->mac.type >= e1000_pch_spt) {
4438 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4439 			return -E1000_ERR_NVM;
4440 	} else {
4441 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4442 			return -E1000_ERR_NVM;
4443 	}
4444 
4445 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4446 			     hw->nvm.flash_base_addr);
4447 
4448 	do {
4449 		usec_delay(1);
4450 		/* Steps */
4451 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4452 		if (ret_val != E1000_SUCCESS)
4453 			break;
4454 		/* In SPT, This register is in Lan memory space, not
4455 		 * flash.  Therefore, only 32 bit access is supported
4456 		 */
4457 		if (hw->mac.type >= e1000_pch_spt)
4458 			hsflctl.regval =
4459 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4460 		else
4461 			hsflctl.regval =
4462 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4463 
4464 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4465 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4466 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4467 		/* In SPT, This register is in Lan memory space,
4468 		 * not flash.  Therefore, only 32 bit access is
4469 		 * supported
4470 		 */
4471 		if (hw->mac.type >= e1000_pch_spt)
4472 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4473 					      hsflctl.regval << 16);
4474 		else
4475 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4476 						hsflctl.regval);
4477 
4478 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4479 
4480 		if (size == 1)
4481 			flash_data = (u32)data & 0x00FF;
4482 		else
4483 			flash_data = (u32)data;
4484 
4485 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4486 
4487 		/* check if FCERR is set to 1 , if set to 1, clear it
4488 		 * and try the whole sequence a few more times else done
4489 		 */
4490 		ret_val =
4491 		    e1000_flash_cycle_ich8lan(hw,
4492 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4493 		if (ret_val == E1000_SUCCESS)
4494 			break;
4495 
4496 		/* If we're here, then things are most likely
4497 		 * completely hosed, but if the error condition
4498 		 * is detected, it won't hurt to give it another
4499 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4500 		 */
4501 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4502 		if (hsfsts.hsf_status.flcerr)
4503 			/* Repeat for some time before giving up. */
4504 			continue;
4505 		if (!hsfsts.hsf_status.flcdone) {
4506 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4507 			break;
4508 		}
4509 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4510 
4511 	return ret_val;
4512 }
4513 
4514 /**
4515 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4516 *  @hw: pointer to the HW structure
4517 *  @offset: The offset (in bytes) of the dwords to read.
4518 *  @data: The 4 bytes to write to the NVM.
4519 *
4520 *  Writes one/two/four bytes to the NVM using the flash access registers.
4521 **/
4522 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4523 					    u32 data)
4524 {
4525 	union ich8_hws_flash_status hsfsts;
4526 	union ich8_hws_flash_ctrl hsflctl;
4527 	u32 flash_linear_addr;
4528 	s32 ret_val;
4529 	u8 count = 0;
4530 
4531 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4532 
4533 	if (hw->mac.type >= e1000_pch_spt) {
4534 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4535 			return -E1000_ERR_NVM;
4536 	}
4537 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4538 			     hw->nvm.flash_base_addr);
4539 	do {
4540 		usec_delay(1);
4541 		/* Steps */
4542 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543 		if (ret_val != E1000_SUCCESS)
4544 			break;
4545 
4546 		/* In SPT, This register is in Lan memory space, not
4547 		 * flash.  Therefore, only 32 bit access is supported
4548 		 */
4549 		if (hw->mac.type >= e1000_pch_spt)
4550 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4551 							      ICH_FLASH_HSFSTS)
4552 					 >> 16;
4553 		else
4554 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4555 							      ICH_FLASH_HSFCTL);
4556 
4557 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4558 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4559 
4560 		/* In SPT, This register is in Lan memory space,
4561 		 * not flash.  Therefore, only 32 bit access is
4562 		 * supported
4563 		 */
4564 		if (hw->mac.type >= e1000_pch_spt)
4565 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4566 					      hsflctl.regval << 16);
4567 		else
4568 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4569 						hsflctl.regval);
4570 
4571 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4572 
4573 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4574 
4575 		/* check if FCERR is set to 1 , if set to 1, clear it
4576 		 * and try the whole sequence a few more times else done
4577 		 */
4578 		ret_val = e1000_flash_cycle_ich8lan(hw,
4579 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4580 
4581 		if (ret_val == E1000_SUCCESS)
4582 			break;
4583 
4584 		/* If we're here, then things are most likely
4585 		 * completely hosed, but if the error condition
4586 		 * is detected, it won't hurt to give it another
4587 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4588 		 */
4589 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4590 
4591 		if (hsfsts.hsf_status.flcerr)
4592 			/* Repeat for some time before giving up. */
4593 			continue;
4594 		if (!hsfsts.hsf_status.flcdone) {
4595 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4596 			break;
4597 		}
4598 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4599 
4600 	return ret_val;
4601 }
4602 
4603 /**
4604  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4605  *  @hw: pointer to the HW structure
4606  *  @offset: The index of the byte to read.
4607  *  @data: The byte to write to the NVM.
4608  *
4609  *  Writes a single byte to the NVM using the flash access registers.
4610  **/
4611 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4612 					  u8 data)
4613 {
4614 	u16 word = (u16)data;
4615 
4616 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4617 
4618 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4619 }
4620 
4621 /**
4622 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4623 *  @hw: pointer to the HW structure
4624 *  @offset: The offset of the word to write.
4625 *  @dword: The dword to write to the NVM.
4626 *
4627 *  Writes a single dword to the NVM using the flash access registers.
4628 *  Goes through a retry algorithm before giving up.
4629 **/
4630 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4631 						 u32 offset, u32 dword)
4632 {
4633 	s32 ret_val;
4634 	u16 program_retries;
4635 
4636 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4637 
4638 	/* Must convert word offset into bytes. */
4639 	offset <<= 1;
4640 
4641 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4642 
4643 	if (!ret_val)
4644 		return ret_val;
4645 	for (program_retries = 0; program_retries < 100; program_retries++) {
4646 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4647 		usec_delay(100);
4648 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4649 		if (ret_val == E1000_SUCCESS)
4650 			break;
4651 	}
4652 	if (program_retries == 100)
4653 		return -E1000_ERR_NVM;
4654 
4655 	return E1000_SUCCESS;
4656 }
4657 
4658 /**
4659  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4660  *  @hw: pointer to the HW structure
4661  *  @offset: The offset of the byte to write.
4662  *  @byte: The byte to write to the NVM.
4663  *
4664  *  Writes a single byte to the NVM using the flash access registers.
4665  *  Goes through a retry algorithm before giving up.
4666  **/
4667 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4668 						u32 offset, u8 byte)
4669 {
4670 	s32 ret_val;
4671 	u16 program_retries;
4672 
4673 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4674 
4675 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4676 	if (!ret_val)
4677 		return ret_val;
4678 
4679 	for (program_retries = 0; program_retries < 100; program_retries++) {
4680 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4681 		usec_delay(100);
4682 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4683 		if (ret_val == E1000_SUCCESS)
4684 			break;
4685 	}
4686 	if (program_retries == 100)
4687 		return -E1000_ERR_NVM;
4688 
4689 	return E1000_SUCCESS;
4690 }
4691 
4692 /**
4693  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4694  *  @hw: pointer to the HW structure
4695  *  @bank: 0 for first bank, 1 for second bank, etc.
4696  *
4697  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4698  *  bank N is 4096 * N + flash_reg_addr.
4699  **/
4700 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4701 {
4702 	struct e1000_nvm_info *nvm = &hw->nvm;
4703 	union ich8_hws_flash_status hsfsts;
4704 	union ich8_hws_flash_ctrl hsflctl;
4705 	u32 flash_linear_addr;
4706 	/* bank size is in 16bit words - adjust to bytes */
4707 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4708 	s32 ret_val;
4709 	s32 count = 0;
4710 	s32 j, iteration, sector_size;
4711 
4712 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4713 
4714 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4715 
4716 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4717 	 * register
4718 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4719 	 *     consecutive sectors.  The start index for the nth Hw sector
4720 	 *     can be calculated as = bank * 4096 + n * 256
4721 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4722 	 *     The start index for the nth Hw sector can be calculated
4723 	 *     as = bank * 4096
4724 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4725 	 *     (ich9 only, otherwise error condition)
4726 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4727 	 */
4728 	switch (hsfsts.hsf_status.berasesz) {
4729 	case 0:
4730 		/* Hw sector size 256 */
4731 		sector_size = ICH_FLASH_SEG_SIZE_256;
4732 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4733 		break;
4734 	case 1:
4735 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4736 		iteration = 1;
4737 		break;
4738 	case 2:
4739 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4740 		iteration = 1;
4741 		break;
4742 	case 3:
4743 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4744 		iteration = 1;
4745 		break;
4746 	default:
4747 		return -E1000_ERR_NVM;
4748 	}
4749 
4750 	/* Start with the base address, then add the sector offset. */
4751 	flash_linear_addr = hw->nvm.flash_base_addr;
4752 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4753 
4754 	for (j = 0; j < iteration; j++) {
4755 		do {
4756 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4757 
4758 			/* Steps */
4759 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4760 			if (ret_val)
4761 				return ret_val;
4762 
4763 			/* Write a value 11 (block Erase) in Flash
4764 			 * Cycle field in hw flash control
4765 			 */
4766 			if (hw->mac.type >= e1000_pch_spt)
4767 				hsflctl.regval =
4768 				    E1000_READ_FLASH_REG(hw,
4769 							 ICH_FLASH_HSFSTS)>>16;
4770 			else
4771 				hsflctl.regval =
4772 				    E1000_READ_FLASH_REG16(hw,
4773 							   ICH_FLASH_HSFCTL);
4774 
4775 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4776 			if (hw->mac.type >= e1000_pch_spt)
4777 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4778 						      hsflctl.regval << 16);
4779 			else
4780 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4781 							hsflctl.regval);
4782 
4783 			/* Write the last 24 bits of an index within the
4784 			 * block into Flash Linear address field in Flash
4785 			 * Address.
4786 			 */
4787 			flash_linear_addr += (j * sector_size);
4788 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4789 					      flash_linear_addr);
4790 
4791 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4792 			if (ret_val == E1000_SUCCESS)
4793 				break;
4794 
4795 			/* Check if FCERR is set to 1.  If 1,
4796 			 * clear it and try the whole sequence
4797 			 * a few more times else Done
4798 			 */
4799 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4800 						      ICH_FLASH_HSFSTS);
4801 			if (hsfsts.hsf_status.flcerr)
4802 				/* repeat for some time before giving up */
4803 				continue;
4804 			else if (!hsfsts.hsf_status.flcdone)
4805 				return ret_val;
4806 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4807 	}
4808 
4809 	return E1000_SUCCESS;
4810 }
4811 
4812 /**
4813  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4814  *  @hw: pointer to the HW structure
4815  *  @data: Pointer to the LED settings
4816  *
4817  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4818  *  settings is all 0's or F's, set the LED default to a valid LED default
4819  *  setting.
4820  **/
4821 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4822 {
4823 	s32 ret_val;
4824 
4825 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4826 
4827 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4828 	if (ret_val) {
4829 		DEBUGOUT("NVM Read Error\n");
4830 		return ret_val;
4831 	}
4832 
4833 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4834 		*data = ID_LED_DEFAULT_ICH8LAN;
4835 
4836 	return E1000_SUCCESS;
4837 }
4838 
4839 /**
4840  *  e1000_id_led_init_pchlan - store LED configurations
4841  *  @hw: pointer to the HW structure
4842  *
4843  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4844  *  the PHY LED configuration register.
4845  *
4846  *  PCH also does not have an "always on" or "always off" mode which
4847  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4848  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4849  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4850  *  link based on logic in e1000_led_[on|off]_pchlan().
4851  **/
4852 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4853 {
4854 	struct e1000_mac_info *mac = &hw->mac;
4855 	s32 ret_val;
4856 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4857 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4858 	u16 data, i, temp, shift;
4859 
4860 	DEBUGFUNC("e1000_id_led_init_pchlan");
4861 
4862 	/* Get default ID LED modes */
4863 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4864 	if (ret_val)
4865 		return ret_val;
4866 
4867 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4868 	mac->ledctl_mode1 = mac->ledctl_default;
4869 	mac->ledctl_mode2 = mac->ledctl_default;
4870 
4871 	for (i = 0; i < 4; i++) {
4872 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4873 		shift = (i * 5);
4874 		switch (temp) {
4875 		case ID_LED_ON1_DEF2:
4876 		case ID_LED_ON1_ON2:
4877 		case ID_LED_ON1_OFF2:
4878 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4879 			mac->ledctl_mode1 |= (ledctl_on << shift);
4880 			break;
4881 		case ID_LED_OFF1_DEF2:
4882 		case ID_LED_OFF1_ON2:
4883 		case ID_LED_OFF1_OFF2:
4884 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4885 			mac->ledctl_mode1 |= (ledctl_off << shift);
4886 			break;
4887 		default:
4888 			/* Do nothing */
4889 			break;
4890 		}
4891 		switch (temp) {
4892 		case ID_LED_DEF1_ON2:
4893 		case ID_LED_ON1_ON2:
4894 		case ID_LED_OFF1_ON2:
4895 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4896 			mac->ledctl_mode2 |= (ledctl_on << shift);
4897 			break;
4898 		case ID_LED_DEF1_OFF2:
4899 		case ID_LED_ON1_OFF2:
4900 		case ID_LED_OFF1_OFF2:
4901 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4902 			mac->ledctl_mode2 |= (ledctl_off << shift);
4903 			break;
4904 		default:
4905 			/* Do nothing */
4906 			break;
4907 		}
4908 	}
4909 
4910 	return E1000_SUCCESS;
4911 }
4912 
4913 /**
4914  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4915  *  @hw: pointer to the HW structure
4916  *
4917  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4918  *  register, so the bus width is hard coded.
4919  **/
4920 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4921 {
4922 	struct e1000_bus_info *bus = &hw->bus;
4923 	s32 ret_val;
4924 
4925 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4926 
4927 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4928 
4929 	/* ICH devices are "PCI Express"-ish.  They have
4930 	 * a configuration space, but do not contain
4931 	 * PCI Express Capability registers, so bus width
4932 	 * must be hardcoded.
4933 	 */
4934 	if (bus->width == e1000_bus_width_unknown)
4935 		bus->width = e1000_bus_width_pcie_x1;
4936 
4937 	return ret_val;
4938 }
4939 
4940 /**
4941  *  e1000_reset_hw_ich8lan - Reset the hardware
4942  *  @hw: pointer to the HW structure
4943  *
4944  *  Does a full reset of the hardware which includes a reset of the PHY and
4945  *  MAC.
4946  **/
4947 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4948 {
4949 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4950 	u16 kum_cfg;
4951 	u32 ctrl, reg;
4952 	s32 ret_val;
4953 
4954 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4955 
4956 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4957 	 * on the last TLP read/write transaction when MAC is reset.
4958 	 */
4959 	ret_val = e1000_disable_pcie_master_generic(hw);
4960 	if (ret_val)
4961 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4962 
4963 	DEBUGOUT("Masking off all interrupts\n");
4964 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4965 
4966 	/* Disable the Transmit and Receive units.  Then delay to allow
4967 	 * any pending transactions to complete before we hit the MAC
4968 	 * with the global reset.
4969 	 */
4970 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4971 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4972 	E1000_WRITE_FLUSH(hw);
4973 
4974 	msec_delay(10);
4975 
4976 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4977 	if (hw->mac.type == e1000_ich8lan) {
4978 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4979 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4980 		/* Set Packet Buffer Size to 16k. */
4981 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4982 	}
4983 
4984 	if (hw->mac.type == e1000_pchlan) {
4985 		/* Save the NVM K1 bit setting*/
4986 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4987 		if (ret_val)
4988 			return ret_val;
4989 
4990 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4991 			dev_spec->nvm_k1_enabled = TRUE;
4992 		else
4993 			dev_spec->nvm_k1_enabled = FALSE;
4994 	}
4995 
4996 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4997 
4998 	if (!hw->phy.ops.check_reset_block(hw)) {
4999 		/* Full-chip reset requires MAC and PHY reset at the same
5000 		 * time to make sure the interface between MAC and the
5001 		 * external PHY is reset.
5002 		 */
5003 		ctrl |= E1000_CTRL_PHY_RST;
5004 
5005 		/* Gate automatic PHY configuration by hardware on
5006 		 * non-managed 82579
5007 		 */
5008 		if ((hw->mac.type == e1000_pch2lan) &&
5009 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5010 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5011 	}
5012 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5013 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5014 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5015 	/* cannot issue a flush here because it hangs the hardware */
5016 	msec_delay(20);
5017 
5018 	/* Set Phy Config Counter to 50msec */
5019 	if (hw->mac.type == e1000_pch2lan) {
5020 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5021 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5022 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5023 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5024 	}
5025 
5026 	if (!ret_val)
5027 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5028 
5029 	if (ctrl & E1000_CTRL_PHY_RST) {
5030 		ret_val = hw->phy.ops.get_cfg_done(hw);
5031 		if (ret_val)
5032 			return ret_val;
5033 
5034 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5035 		if (ret_val)
5036 			return ret_val;
5037 	}
5038 
5039 	/* For PCH, this write will make sure that any noise
5040 	 * will be detected as a CRC error and be dropped rather than show up
5041 	 * as a bad packet to the DMA engine.
5042 	 */
5043 	if (hw->mac.type == e1000_pchlan)
5044 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5045 
5046 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5047 	E1000_READ_REG(hw, E1000_ICR);
5048 
5049 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5050 	reg |= E1000_KABGTXD_BGSQLBIAS;
5051 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5052 
5053 	return E1000_SUCCESS;
5054 }
5055 
5056 /**
5057  *  e1000_init_hw_ich8lan - Initialize the hardware
5058  *  @hw: pointer to the HW structure
5059  *
5060  *  Prepares the hardware for transmit and receive by doing the following:
5061  *   - initialize hardware bits
5062  *   - initialize LED identification
5063  *   - setup receive address registers
5064  *   - setup flow control
5065  *   - setup transmit descriptors
5066  *   - clear statistics
5067  **/
5068 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5069 {
5070 	struct e1000_mac_info *mac = &hw->mac;
5071 	u32 ctrl_ext, txdctl, snoop;
5072 	s32 ret_val;
5073 	u16 i;
5074 
5075 	DEBUGFUNC("e1000_init_hw_ich8lan");
5076 
5077 	e1000_initialize_hw_bits_ich8lan(hw);
5078 
5079 	/* Initialize identification LED */
5080 	ret_val = mac->ops.id_led_init(hw);
5081 	/* An error is not fatal and we should not stop init due to this */
5082 	if (ret_val)
5083 		DEBUGOUT("Error initializing identification LED\n");
5084 
5085 	/* Setup the receive address. */
5086 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5087 
5088 	/* Zero out the Multicast HASH table */
5089 	DEBUGOUT("Zeroing the MTA\n");
5090 	for (i = 0; i < mac->mta_reg_count; i++)
5091 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5092 
5093 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5094 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5095 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5096 	 */
5097 	if (hw->phy.type == e1000_phy_82578) {
5098 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5099 		i &= ~BM_WUC_HOST_WU_BIT;
5100 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5101 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5102 		if (ret_val)
5103 			return ret_val;
5104 	}
5105 
5106 	/* Setup link and flow control */
5107 	ret_val = mac->ops.setup_link(hw);
5108 
5109 	/* Set the transmit descriptor write-back policy for both queues */
5110 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5111 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5112 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5113 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5114 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5115 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5116 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5117 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5118 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5119 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5120 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5121 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5122 
5123 	/* ICH8 has opposite polarity of no_snoop bits.
5124 	 * By default, we should use snoop behavior.
5125 	 */
5126 	if (mac->type == e1000_ich8lan)
5127 		snoop = PCIE_ICH8_SNOOP_ALL;
5128 	else
5129 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5130 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5131 
5132 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5133 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5134 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5135 
5136 	/* Clear all of the statistics registers (clear on read).  It is
5137 	 * important that we do this after we have tried to establish link
5138 	 * because the symbol error count will increment wildly if there
5139 	 * is no link.
5140 	 */
5141 	e1000_clear_hw_cntrs_ich8lan(hw);
5142 
5143 	return ret_val;
5144 }
5145 
5146 /**
5147  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5148  *  @hw: pointer to the HW structure
5149  *
5150  *  Sets/Clears required hardware bits necessary for correctly setting up the
5151  *  hardware for transmit and receive.
5152  **/
5153 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5154 {
5155 	u32 reg;
5156 
5157 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5158 
5159 	/* Extended Device Control */
5160 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5161 	reg |= (1 << 22);
5162 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5163 	if (hw->mac.type >= e1000_pchlan)
5164 		reg |= E1000_CTRL_EXT_PHYPDEN;
5165 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5166 
5167 	/* Transmit Descriptor Control 0 */
5168 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5169 	reg |= (1 << 22);
5170 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5171 
5172 	/* Transmit Descriptor Control 1 */
5173 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5174 	reg |= (1 << 22);
5175 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5176 
5177 	/* Transmit Arbitration Control 0 */
5178 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5179 	if (hw->mac.type == e1000_ich8lan)
5180 		reg |= (1 << 28) | (1 << 29);
5181 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5182 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5183 
5184 	/* Transmit Arbitration Control 1 */
5185 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5186 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5187 		reg &= ~(1 << 28);
5188 	else
5189 		reg |= (1 << 28);
5190 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5191 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5192 
5193 	/* Device Status */
5194 	if (hw->mac.type == e1000_ich8lan) {
5195 		reg = E1000_READ_REG(hw, E1000_STATUS);
5196 		reg &= ~(1 << 31);
5197 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5198 	}
5199 
5200 	/* work-around descriptor data corruption issue during nfs v2 udp
5201 	 * traffic, just disable the nfs filtering capability
5202 	 */
5203 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5204 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5205 
5206 	/* Disable IPv6 extension header parsing because some malformed
5207 	 * IPv6 headers can hang the Rx.
5208 	 */
5209 	if (hw->mac.type == e1000_ich8lan)
5210 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5211 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5212 
5213 	/* Enable ECC on Lynxpoint */
5214 	if (hw->mac.type >= e1000_pch_lpt) {
5215 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5216 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5217 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5218 
5219 		reg = E1000_READ_REG(hw, E1000_CTRL);
5220 		reg |= E1000_CTRL_MEHE;
5221 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5222 	}
5223 
5224 	return;
5225 }
5226 
5227 /**
5228  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5229  *  @hw: pointer to the HW structure
5230  *
5231  *  Determines which flow control settings to use, then configures flow
5232  *  control.  Calls the appropriate media-specific link configuration
5233  *  function.  Assuming the adapter has a valid link partner, a valid link
5234  *  should be established.  Assumes the hardware has previously been reset
5235  *  and the transmitter and receiver are not enabled.
5236  **/
5237 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5238 {
5239 	s32 ret_val;
5240 
5241 	DEBUGFUNC("e1000_setup_link_ich8lan");
5242 
5243 	if (hw->phy.ops.check_reset_block(hw))
5244 		return E1000_SUCCESS;
5245 
5246 	/* ICH parts do not have a word in the NVM to determine
5247 	 * the default flow control setting, so we explicitly
5248 	 * set it to full.
5249 	 */
5250 	if (hw->fc.requested_mode == e1000_fc_default)
5251 		hw->fc.requested_mode = e1000_fc_full;
5252 
5253 	/* Save off the requested flow control mode for use later.  Depending
5254 	 * on the link partner's capabilities, we may or may not use this mode.
5255 	 */
5256 	hw->fc.current_mode = hw->fc.requested_mode;
5257 
5258 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5259 		hw->fc.current_mode);
5260 
5261 	/* Continue to configure the copper link. */
5262 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5263 	if (ret_val)
5264 		return ret_val;
5265 
5266 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5267 	if ((hw->phy.type == e1000_phy_82578) ||
5268 	    (hw->phy.type == e1000_phy_82579) ||
5269 	    (hw->phy.type == e1000_phy_i217) ||
5270 	    (hw->phy.type == e1000_phy_82577)) {
5271 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5272 
5273 		ret_val = hw->phy.ops.write_reg(hw,
5274 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5275 					     hw->fc.pause_time);
5276 		if (ret_val)
5277 			return ret_val;
5278 	}
5279 
5280 	return e1000_set_fc_watermarks_generic(hw);
5281 }
5282 
5283 /**
5284  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5285  *  @hw: pointer to the HW structure
5286  *
5287  *  Configures the kumeran interface to the PHY to wait the appropriate time
5288  *  when polling the PHY, then call the generic setup_copper_link to finish
5289  *  configuring the copper link.
5290  **/
5291 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5292 {
5293 	u32 ctrl;
5294 	s32 ret_val;
5295 	u16 reg_data;
5296 
5297 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5298 
5299 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5300 	ctrl |= E1000_CTRL_SLU;
5301 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5302 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5303 
5304 	/* Set the mac to wait the maximum time between each iteration
5305 	 * and increase the max iterations when polling the phy;
5306 	 * this fixes erroneous timeouts at 10Mbps.
5307 	 */
5308 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5309 					       0xFFFF);
5310 	if (ret_val)
5311 		return ret_val;
5312 	ret_val = e1000_read_kmrn_reg_generic(hw,
5313 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5314 					      &reg_data);
5315 	if (ret_val)
5316 		return ret_val;
5317 	reg_data |= 0x3F;
5318 	ret_val = e1000_write_kmrn_reg_generic(hw,
5319 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5320 					       reg_data);
5321 	if (ret_val)
5322 		return ret_val;
5323 
5324 	switch (hw->phy.type) {
5325 	case e1000_phy_igp_3:
5326 		ret_val = e1000_copper_link_setup_igp(hw);
5327 		if (ret_val)
5328 			return ret_val;
5329 		break;
5330 	case e1000_phy_bm:
5331 	case e1000_phy_82578:
5332 		ret_val = e1000_copper_link_setup_m88(hw);
5333 		if (ret_val)
5334 			return ret_val;
5335 		break;
5336 	case e1000_phy_82577:
5337 	case e1000_phy_82579:
5338 		ret_val = e1000_copper_link_setup_82577(hw);
5339 		if (ret_val)
5340 			return ret_val;
5341 		break;
5342 	case e1000_phy_ife:
5343 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5344 					       &reg_data);
5345 		if (ret_val)
5346 			return ret_val;
5347 
5348 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5349 
5350 		switch (hw->phy.mdix) {
5351 		case 1:
5352 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5353 			break;
5354 		case 2:
5355 			reg_data |= IFE_PMC_FORCE_MDIX;
5356 			break;
5357 		case 0:
5358 		default:
5359 			reg_data |= IFE_PMC_AUTO_MDIX;
5360 			break;
5361 		}
5362 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5363 						reg_data);
5364 		if (ret_val)
5365 			return ret_val;
5366 		break;
5367 	default:
5368 		break;
5369 	}
5370 
5371 	return e1000_setup_copper_link_generic(hw);
5372 }
5373 
5374 /**
5375  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5376  *  @hw: pointer to the HW structure
5377  *
5378  *  Calls the PHY specific link setup function and then calls the
5379  *  generic setup_copper_link to finish configuring the link for
5380  *  Lynxpoint PCH devices
5381  **/
5382 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5383 {
5384 	u32 ctrl;
5385 	s32 ret_val;
5386 
5387 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5388 
5389 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5390 	ctrl |= E1000_CTRL_SLU;
5391 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5392 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5393 
5394 	ret_val = e1000_copper_link_setup_82577(hw);
5395 	if (ret_val)
5396 		return ret_val;
5397 
5398 	return e1000_setup_copper_link_generic(hw);
5399 }
5400 
5401 /**
5402  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5403  *  @hw: pointer to the HW structure
5404  *  @speed: pointer to store current link speed
5405  *  @duplex: pointer to store the current link duplex
5406  *
5407  *  Calls the generic get_speed_and_duplex to retrieve the current link
5408  *  information and then calls the Kumeran lock loss workaround for links at
5409  *  gigabit speeds.
5410  **/
5411 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5412 					  u16 *duplex)
5413 {
5414 	s32 ret_val;
5415 
5416 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5417 
5418 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5419 	if (ret_val)
5420 		return ret_val;
5421 
5422 	if ((hw->mac.type == e1000_ich8lan) &&
5423 	    (hw->phy.type == e1000_phy_igp_3) &&
5424 	    (*speed == SPEED_1000)) {
5425 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5426 	}
5427 
5428 	return ret_val;
5429 }
5430 
5431 /**
5432  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5433  *  @hw: pointer to the HW structure
5434  *
5435  *  Work-around for 82566 Kumeran PCS lock loss:
5436  *  On link status change (i.e. PCI reset, speed change) and link is up and
5437  *  speed is gigabit-
5438  *    0) if workaround is optionally disabled do nothing
5439  *    1) wait 1ms for Kumeran link to come up
5440  *    2) check Kumeran Diagnostic register PCS lock loss bit
5441  *    3) if not set the link is locked (all is good), otherwise...
5442  *    4) reset the PHY
5443  *    5) repeat up to 10 times
5444  *  Note: this is only called for IGP3 copper when speed is 1gb.
5445  **/
5446 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5447 {
5448 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5449 	u32 phy_ctrl;
5450 	s32 ret_val;
5451 	u16 i, data;
5452 	bool link;
5453 
5454 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5455 
5456 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5457 		return E1000_SUCCESS;
5458 
5459 	/* Make sure link is up before proceeding.  If not just return.
5460 	 * Attempting this while link is negotiating fouled up link
5461 	 * stability
5462 	 */
5463 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5464 	if (!link)
5465 		return E1000_SUCCESS;
5466 
5467 	for (i = 0; i < 10; i++) {
5468 		/* read once to clear */
5469 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5470 		if (ret_val)
5471 			return ret_val;
5472 		/* and again to get new status */
5473 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5474 		if (ret_val)
5475 			return ret_val;
5476 
5477 		/* check for PCS lock */
5478 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5479 			return E1000_SUCCESS;
5480 
5481 		/* Issue PHY reset */
5482 		hw->phy.ops.reset(hw);
5483 		msec_delay_irq(5);
5484 	}
5485 	/* Disable GigE link negotiation */
5486 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5487 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5488 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5489 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5490 
5491 	/* Call gig speed drop workaround on Gig disable before accessing
5492 	 * any PHY registers
5493 	 */
5494 	e1000_gig_downshift_workaround_ich8lan(hw);
5495 
5496 	/* unable to acquire PCS lock */
5497 	return -E1000_ERR_PHY;
5498 }
5499 
5500 /**
5501  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5502  *  @hw: pointer to the HW structure
5503  *  @state: boolean value used to set the current Kumeran workaround state
5504  *
5505  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5506  *  /disabled - FALSE).
5507  **/
5508 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5509 						 bool state)
5510 {
5511 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5512 
5513 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5514 
5515 	if (hw->mac.type != e1000_ich8lan) {
5516 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5517 		return;
5518 	}
5519 
5520 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5521 
5522 	return;
5523 }
5524 
5525 /**
5526  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5527  *  @hw: pointer to the HW structure
5528  *
5529  *  Workaround for 82566 power-down on D3 entry:
5530  *    1) disable gigabit link
5531  *    2) write VR power-down enable
5532  *    3) read it back
5533  *  Continue if successful, else issue LCD reset and repeat
5534  **/
5535 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5536 {
5537 	u32 reg;
5538 	u16 data;
5539 	u8  retry = 0;
5540 
5541 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5542 
5543 	if (hw->phy.type != e1000_phy_igp_3)
5544 		return;
5545 
5546 	/* Try the workaround twice (if needed) */
5547 	do {
5548 		/* Disable link */
5549 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5550 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5551 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5552 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5553 
5554 		/* Call gig speed drop workaround on Gig disable before
5555 		 * accessing any PHY registers
5556 		 */
5557 		if (hw->mac.type == e1000_ich8lan)
5558 			e1000_gig_downshift_workaround_ich8lan(hw);
5559 
5560 		/* Write VR power-down enable */
5561 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5562 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5563 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5564 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5565 
5566 		/* Read it back and test */
5567 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5568 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5569 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5570 			break;
5571 
5572 		/* Issue PHY reset and repeat at most one more time */
5573 		reg = E1000_READ_REG(hw, E1000_CTRL);
5574 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5575 		retry++;
5576 	} while (retry);
5577 }
5578 
5579 /**
5580  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5581  *  @hw: pointer to the HW structure
5582  *
5583  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5584  *  LPLU, Gig disable, MDIC PHY reset):
5585  *    1) Set Kumeran Near-end loopback
5586  *    2) Clear Kumeran Near-end loopback
5587  *  Should only be called for ICH8[m] devices with any 1G Phy.
5588  **/
5589 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5590 {
5591 	s32 ret_val;
5592 	u16 reg_data;
5593 
5594 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5595 
5596 	if ((hw->mac.type != e1000_ich8lan) ||
5597 	    (hw->phy.type == e1000_phy_ife))
5598 		return;
5599 
5600 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5601 					      &reg_data);
5602 	if (ret_val)
5603 		return;
5604 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5605 	ret_val = e1000_write_kmrn_reg_generic(hw,
5606 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5607 					       reg_data);
5608 	if (ret_val)
5609 		return;
5610 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5611 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5612 				     reg_data);
5613 }
5614 
5615 /**
5616  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5617  *  @hw: pointer to the HW structure
5618  *
5619  *  During S0 to Sx transition, it is possible the link remains at gig
5620  *  instead of negotiating to a lower speed.  Before going to Sx, set
5621  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5622  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5623  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5624  *  needs to be written.
5625  *  Parts that support (and are linked to a partner which support) EEE in
5626  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5627  *  than 10Mbps w/o EEE.
5628  **/
5629 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5630 {
5631 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5632 	u32 phy_ctrl;
5633 	s32 ret_val;
5634 
5635 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5636 
5637 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5638 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5639 
5640 	if (hw->phy.type == e1000_phy_i217) {
5641 		u16 phy_reg, device_id = hw->device_id;
5642 
5643 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5644 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5645 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5646 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5647 		    (hw->mac.type >= e1000_pch_spt)) {
5648 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5649 
5650 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5651 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5652 		}
5653 
5654 		ret_val = hw->phy.ops.acquire(hw);
5655 		if (ret_val)
5656 			goto out;
5657 
5658 		if (!dev_spec->eee_disable) {
5659 			u16 eee_advert;
5660 
5661 			ret_val =
5662 			    e1000_read_emi_reg_locked(hw,
5663 						      I217_EEE_ADVERTISEMENT,
5664 						      &eee_advert);
5665 			if (ret_val)
5666 				goto release;
5667 
5668 			/* Disable LPLU if both link partners support 100BaseT
5669 			 * EEE and 100Full is advertised on both ends of the
5670 			 * link, and enable Auto Enable LPI since there will
5671 			 * be no driver to enable LPI while in Sx.
5672 			 */
5673 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5674 			    (dev_spec->eee_lp_ability &
5675 			     I82579_EEE_100_SUPPORTED) &&
5676 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5677 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5678 					      E1000_PHY_CTRL_NOND0A_LPLU);
5679 
5680 				/* Set Auto Enable LPI after link up */
5681 				hw->phy.ops.read_reg_locked(hw,
5682 							    I217_LPI_GPIO_CTRL,
5683 							    &phy_reg);
5684 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5685 				hw->phy.ops.write_reg_locked(hw,
5686 							     I217_LPI_GPIO_CTRL,
5687 							     phy_reg);
5688 			}
5689 		}
5690 
5691 		/* For i217 Intel Rapid Start Technology support,
5692 		 * when the system is going into Sx and no manageability engine
5693 		 * is present, the driver must configure proxy to reset only on
5694 		 * power good.  LPI (Low Power Idle) state must also reset only
5695 		 * on power good, as well as the MTA (Multicast table array).
5696 		 * The SMBus release must also be disabled on LCD reset.
5697 		 */
5698 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5699 		      E1000_ICH_FWSM_FW_VALID)) {
5700 			/* Enable proxy to reset only on power good. */
5701 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5702 						    &phy_reg);
5703 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5704 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5705 						     phy_reg);
5706 
5707 			/* Set bit enable LPI (EEE) to reset only on
5708 			 * power good.
5709 			*/
5710 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5711 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5712 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5713 
5714 			/* Disable the SMB release on LCD reset. */
5715 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5716 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5717 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5718 		}
5719 
5720 		/* Enable MTA to reset for Intel Rapid Start Technology
5721 		 * Support
5722 		 */
5723 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5724 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5725 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5726 
5727 release:
5728 		hw->phy.ops.release(hw);
5729 	}
5730 out:
5731 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5732 
5733 	if (hw->mac.type == e1000_ich8lan)
5734 		e1000_gig_downshift_workaround_ich8lan(hw);
5735 
5736 	if (hw->mac.type >= e1000_pchlan) {
5737 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5738 
5739 		/* Reset PHY to activate OEM bits on 82577/8 */
5740 		if (hw->mac.type == e1000_pchlan)
5741 			e1000_phy_hw_reset_generic(hw);
5742 
5743 		ret_val = hw->phy.ops.acquire(hw);
5744 		if (ret_val)
5745 			return;
5746 		e1000_write_smbus_addr(hw);
5747 		hw->phy.ops.release(hw);
5748 	}
5749 
5750 	return;
5751 }
5752 
5753 /**
5754  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5755  *  @hw: pointer to the HW structure
5756  *
5757  *  During Sx to S0 transitions on non-managed devices or managed devices
5758  *  on which PHY resets are not blocked, if the PHY registers cannot be
5759  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5760  *  the PHY.
5761  *  On i217, setup Intel Rapid Start Technology.
5762  **/
5763 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5764 {
5765 	s32 ret_val;
5766 
5767 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5768 	if (hw->mac.type < e1000_pch2lan)
5769 		return E1000_SUCCESS;
5770 
5771 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5772 	if (ret_val) {
5773 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5774 		return ret_val;
5775 	}
5776 
5777 	/* For i217 Intel Rapid Start Technology support when the system
5778 	 * is transitioning from Sx and no manageability engine is present
5779 	 * configure SMBus to restore on reset, disable proxy, and enable
5780 	 * the reset on MTA (Multicast table array).
5781 	 */
5782 	if (hw->phy.type == e1000_phy_i217) {
5783 		u16 phy_reg;
5784 
5785 		ret_val = hw->phy.ops.acquire(hw);
5786 		if (ret_val) {
5787 			DEBUGOUT("Failed to setup iRST\n");
5788 			return ret_val;
5789 		}
5790 
5791 		/* Clear Auto Enable LPI after link up */
5792 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5793 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5794 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5795 
5796 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5797 		    E1000_ICH_FWSM_FW_VALID)) {
5798 			/* Restore clear on SMB if no manageability engine
5799 			 * is present
5800 			 */
5801 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5802 							      &phy_reg);
5803 			if (ret_val)
5804 				goto release;
5805 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5806 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5807 
5808 			/* Disable Proxy */
5809 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5810 		}
5811 		/* Enable reset on MTA */
5812 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5813 						      &phy_reg);
5814 		if (ret_val)
5815 			goto release;
5816 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5817 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5818 release:
5819 		if (ret_val)
5820 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5821 		hw->phy.ops.release(hw);
5822 		return ret_val;
5823 	}
5824 	return E1000_SUCCESS;
5825 }
5826 
5827 /**
5828  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5829  *  @hw: pointer to the HW structure
5830  *
5831  *  Return the LED back to the default configuration.
5832  **/
5833 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5834 {
5835 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5836 
5837 	if (hw->phy.type == e1000_phy_ife)
5838 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5839 					     0);
5840 
5841 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5842 	return E1000_SUCCESS;
5843 }
5844 
5845 /**
5846  *  e1000_led_on_ich8lan - Turn LEDs on
5847  *  @hw: pointer to the HW structure
5848  *
5849  *  Turn on the LEDs.
5850  **/
5851 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5852 {
5853 	DEBUGFUNC("e1000_led_on_ich8lan");
5854 
5855 	if (hw->phy.type == e1000_phy_ife)
5856 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5857 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5858 
5859 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5860 	return E1000_SUCCESS;
5861 }
5862 
5863 /**
5864  *  e1000_led_off_ich8lan - Turn LEDs off
5865  *  @hw: pointer to the HW structure
5866  *
5867  *  Turn off the LEDs.
5868  **/
5869 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5870 {
5871 	DEBUGFUNC("e1000_led_off_ich8lan");
5872 
5873 	if (hw->phy.type == e1000_phy_ife)
5874 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5875 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5876 
5877 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5878 	return E1000_SUCCESS;
5879 }
5880 
5881 /**
5882  *  e1000_setup_led_pchlan - Configures SW controllable LED
5883  *  @hw: pointer to the HW structure
5884  *
5885  *  This prepares the SW controllable LED for use.
5886  **/
5887 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5888 {
5889 	DEBUGFUNC("e1000_setup_led_pchlan");
5890 
5891 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5892 				     (u16)hw->mac.ledctl_mode1);
5893 }
5894 
5895 /**
5896  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5897  *  @hw: pointer to the HW structure
5898  *
5899  *  Return the LED back to the default configuration.
5900  **/
5901 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5902 {
5903 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5904 
5905 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5906 				     (u16)hw->mac.ledctl_default);
5907 }
5908 
5909 /**
5910  *  e1000_led_on_pchlan - Turn LEDs on
5911  *  @hw: pointer to the HW structure
5912  *
5913  *  Turn on the LEDs.
5914  **/
5915 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5916 {
5917 	u16 data = (u16)hw->mac.ledctl_mode2;
5918 	u32 i, led;
5919 
5920 	DEBUGFUNC("e1000_led_on_pchlan");
5921 
5922 	/* If no link, then turn LED on by setting the invert bit
5923 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5924 	 */
5925 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5926 		for (i = 0; i < 3; i++) {
5927 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5928 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5929 			    E1000_LEDCTL_MODE_LINK_UP)
5930 				continue;
5931 			if (led & E1000_PHY_LED0_IVRT)
5932 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5933 			else
5934 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5935 		}
5936 	}
5937 
5938 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5939 }
5940 
5941 /**
5942  *  e1000_led_off_pchlan - Turn LEDs off
5943  *  @hw: pointer to the HW structure
5944  *
5945  *  Turn off the LEDs.
5946  **/
5947 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5948 {
5949 	u16 data = (u16)hw->mac.ledctl_mode1;
5950 	u32 i, led;
5951 
5952 	DEBUGFUNC("e1000_led_off_pchlan");
5953 
5954 	/* If no link, then turn LED off by clearing the invert bit
5955 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5956 	 */
5957 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5958 		for (i = 0; i < 3; i++) {
5959 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5960 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5961 			    E1000_LEDCTL_MODE_LINK_UP)
5962 				continue;
5963 			if (led & E1000_PHY_LED0_IVRT)
5964 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5965 			else
5966 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5967 		}
5968 	}
5969 
5970 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5971 }
5972 
5973 /**
5974  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5975  *  @hw: pointer to the HW structure
5976  *
5977  *  Read appropriate register for the config done bit for completion status
5978  *  and configure the PHY through s/w for EEPROM-less parts.
5979  *
5980  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5981  *  config done bit, so only an error is logged and continues.  If we were
5982  *  to return with error, EEPROM-less silicon would not be able to be reset
5983  *  or change link.
5984  **/
5985 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5986 {
5987 	s32 ret_val = E1000_SUCCESS;
5988 	u32 bank = 0;
5989 	u32 status;
5990 
5991 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5992 
5993 	e1000_get_cfg_done_generic(hw);
5994 
5995 	/* Wait for indication from h/w that it has completed basic config */
5996 	if (hw->mac.type >= e1000_ich10lan) {
5997 		e1000_lan_init_done_ich8lan(hw);
5998 	} else {
5999 		ret_val = e1000_get_auto_rd_done_generic(hw);
6000 		if (ret_val) {
6001 			/* When auto config read does not complete, do not
6002 			 * return with an error. This can happen in situations
6003 			 * where there is no eeprom and prevents getting link.
6004 			 */
6005 			DEBUGOUT("Auto Read Done did not complete\n");
6006 			ret_val = E1000_SUCCESS;
6007 		}
6008 	}
6009 
6010 	/* Clear PHY Reset Asserted bit */
6011 	status = E1000_READ_REG(hw, E1000_STATUS);
6012 	if (status & E1000_STATUS_PHYRA)
6013 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6014 	else
6015 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6016 
6017 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6018 	if (hw->mac.type <= e1000_ich9lan) {
6019 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6020 		    (hw->phy.type == e1000_phy_igp_3)) {
6021 			e1000_phy_init_script_igp3(hw);
6022 		}
6023 	} else {
6024 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6025 			/* Maybe we should do a basic PHY config */
6026 			DEBUGOUT("EEPROM not present\n");
6027 			ret_val = -E1000_ERR_CONFIG;
6028 		}
6029 	}
6030 
6031 	return ret_val;
6032 }
6033 
6034 /**
6035  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6036  * @hw: pointer to the HW structure
6037  *
6038  * In the case of a PHY power down to save power, or to turn off link during a
6039  * driver unload, or wake on lan is not enabled, remove the link.
6040  **/
6041 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6042 {
6043 	/* If the management interface is not enabled, then power down */
6044 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6045 	      hw->phy.ops.check_reset_block(hw)))
6046 		e1000_power_down_phy_copper(hw);
6047 
6048 	return;
6049 }
6050 
6051 /**
6052  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6053  *  @hw: pointer to the HW structure
6054  *
6055  *  Clears hardware counters specific to the silicon family and calls
6056  *  clear_hw_cntrs_generic to clear all general purpose counters.
6057  **/
6058 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6059 {
6060 	u16 phy_data;
6061 	s32 ret_val;
6062 
6063 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6064 
6065 	e1000_clear_hw_cntrs_base_generic(hw);
6066 
6067 	E1000_READ_REG(hw, E1000_ALGNERRC);
6068 	E1000_READ_REG(hw, E1000_RXERRC);
6069 	E1000_READ_REG(hw, E1000_TNCRS);
6070 	E1000_READ_REG(hw, E1000_CEXTERR);
6071 	E1000_READ_REG(hw, E1000_TSCTC);
6072 	E1000_READ_REG(hw, E1000_TSCTFC);
6073 
6074 	E1000_READ_REG(hw, E1000_MGTPRC);
6075 	E1000_READ_REG(hw, E1000_MGTPDC);
6076 	E1000_READ_REG(hw, E1000_MGTPTC);
6077 
6078 	E1000_READ_REG(hw, E1000_IAC);
6079 	E1000_READ_REG(hw, E1000_ICRXOC);
6080 
6081 	/* Clear PHY statistics registers */
6082 	if ((hw->phy.type == e1000_phy_82578) ||
6083 	    (hw->phy.type == e1000_phy_82579) ||
6084 	    (hw->phy.type == e1000_phy_i217) ||
6085 	    (hw->phy.type == e1000_phy_82577)) {
6086 		ret_val = hw->phy.ops.acquire(hw);
6087 		if (ret_val)
6088 			return;
6089 		ret_val = hw->phy.ops.set_page(hw,
6090 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6091 		if (ret_val)
6092 			goto release;
6093 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6094 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6095 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6096 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6097 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6098 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6099 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6100 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6101 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6102 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6103 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6104 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6105 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6106 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6107 release:
6108 		hw->phy.ops.release(hw);
6109 	}
6110 }
6111 
6112