xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision 65b71c48d226f3ef3eb1c4452dccc678a7d2ac96)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 					      u8 *mc_addr_list,
85 					      u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 					    bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 					    bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 				   u16 words, u16 *data);
95 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96 				    u16 words, u16 *data);
97 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100 					    u16 *data);
101 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
105 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109 					   u16 *speed, u16 *duplex);
110 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
112 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
113 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
115 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
117 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
118 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123 					  u32 offset, u8 *data);
124 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					  u8 size, u16 *data);
126 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u16 *data);
128 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129 						 u32 offset, u8 byte);
130 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137 
138 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139 /* Offset 04h HSFSTS */
140 union ich8_hws_flash_status {
141 	struct ich8_hsfsts {
142 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
143 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
144 		u16 dael:1; /* bit 2 Direct Access error Log */
145 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147 		u16 reserved1:2; /* bit 13:6 Reserved */
148 		u16 reserved2:6; /* bit 13:6 Reserved */
149 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151 	} hsf_status;
152 	u16 regval;
153 };
154 
155 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156 /* Offset 06h FLCTL */
157 union ich8_hws_flash_ctrl {
158 	struct ich8_hsflctl {
159 		u16 flcgo:1;   /* 0 Flash Cycle Go */
160 		u16 flcycle:2;   /* 2:1 Flash Cycle */
161 		u16 reserved:5;   /* 7:3 Reserved  */
162 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
163 		u16 flockdn:6;   /* 15:10 Reserved */
164 	} hsf_ctrl;
165 	u16 regval;
166 };
167 
168 /* ICH Flash Region Access Permissions */
169 union ich8_hws_flash_regacc {
170 	struct ich8_flracc {
171 		u32 grra:8; /* 0:7 GbE region Read Access */
172 		u32 grwa:8; /* 8:15 GbE region Write Access */
173 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175 	} hsf_flregacc;
176 	u16 regval;
177 };
178 
179 /**
180  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181  *  @hw: pointer to the HW structure
182  *
183  *  Test access to the PHY registers by reading the PHY ID registers.  If
184  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
185  *  otherwise assume the read PHY ID is correct if it is valid.
186  *
187  *  Assumes the sw/fw/hw semaphore is already acquired.
188  **/
189 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190 {
191 	u16 phy_reg = 0;
192 	u32 phy_id = 0;
193 	s32 ret_val = 0;
194 	u16 retry_count;
195 	u32 mac_reg = 0;
196 
197 	for (retry_count = 0; retry_count < 2; retry_count++) {
198 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199 		if (ret_val || (phy_reg == 0xFFFF))
200 			continue;
201 		phy_id = (u32)(phy_reg << 16);
202 
203 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF)) {
205 			phy_id = 0;
206 			continue;
207 		}
208 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209 		break;
210 	}
211 
212 	if (hw->phy.id) {
213 		if  (hw->phy.id == phy_id)
214 			goto out;
215 	} else if (phy_id) {
216 		hw->phy.id = phy_id;
217 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218 		goto out;
219 	}
220 
221 	/* In case the PHY needs to be in mdio slow mode,
222 	 * set slow mode and try to get the PHY id again.
223 	 */
224 	if (hw->mac.type < e1000_pch_lpt) {
225 		hw->phy.ops.release(hw);
226 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
227 		if (!ret_val)
228 			ret_val = e1000_get_phy_id(hw);
229 		hw->phy.ops.acquire(hw);
230 	}
231 
232 	if (ret_val)
233 		return FALSE;
234 out:
235 	if (hw->mac.type == e1000_pch_lpt) {
236 		/* Unforce SMBus mode in PHY */
237 		hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239 		hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240 
241 		/* Unforce SMBus mode in MAC */
242 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245 	}
246 
247 	return TRUE;
248 }
249 
250 /**
251  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252  *  @hw: pointer to the HW structure
253  *
254  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255  *  used to reset the PHY to a quiescent state when necessary.
256  **/
257 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258 {
259 	u32 mac_reg;
260 
261 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262 
263 	/* Set Phy Config Counter to 50msec */
264 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268 
269 	/* Toggle LANPHYPC Value bit */
270 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274 	E1000_WRITE_FLUSH(hw);
275 	usec_delay(10);
276 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278 	E1000_WRITE_FLUSH(hw);
279 
280 	if (hw->mac.type < e1000_pch_lpt) {
281 		msec_delay(50);
282 	} else {
283 		u16 count = 20;
284 
285 		do {
286 			msec_delay(5);
287 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288 			   E1000_CTRL_EXT_LPCD) && count--);
289 
290 		msec_delay(30);
291 	}
292 }
293 
294 /**
295  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296  *  @hw: pointer to the HW structure
297  *
298  *  Workarounds/flow necessary for PHY initialization during driver load
299  *  and resume paths.
300  **/
301 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302 {
303 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304 	s32 ret_val;
305 
306 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307 
308 	/* Gate automatic PHY configuration by hardware on managed and
309 	 * non-managed 82579 and newer adapters.
310 	 */
311 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312 
313 	/* It is not possible to be certain of the current state of ULP
314 	 * so forcibly disable it.
315 	 */
316 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317 	e1000_disable_ulp_lpt_lp(hw, TRUE);
318 
319 	ret_val = hw->phy.ops.acquire(hw);
320 	if (ret_val) {
321 		DEBUGOUT("Failed to initialize PHY flow\n");
322 		goto out;
323 	}
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 		if (e1000_phy_is_accessible_pchlan(hw))
332 			break;
333 
334 		/* Before toggling LANPHYPC, see if PHY is accessible by
335 		 * forcing MAC to SMBus mode first.
336 		 */
337 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340 
341 		/* Wait 50 milliseconds for MAC to finish any retries
342 		 * that it might be trying to perform from previous
343 		 * attempts to acknowledge any phy read requests.
344 		 */
345 		 msec_delay(50);
346 
347 		/* fall-through */
348 	case e1000_pch2lan:
349 		if (e1000_phy_is_accessible_pchlan(hw))
350 			break;
351 
352 		/* fall-through */
353 	case e1000_pchlan:
354 		if ((hw->mac.type == e1000_pchlan) &&
355 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
356 			break;
357 
358 		if (hw->phy.ops.check_reset_block(hw)) {
359 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360 			ret_val = -E1000_ERR_PHY;
361 			break;
362 		}
363 
364 		/* Toggle LANPHYPC Value bit */
365 		e1000_toggle_lanphypc_pch_lpt(hw);
366 		if (hw->mac.type >= e1000_pch_lpt) {
367 			if (e1000_phy_is_accessible_pchlan(hw))
368 				break;
369 
370 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
371 			 * so ensure that the MAC is also out of SMBus mode
372 			 */
373 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376 
377 			if (e1000_phy_is_accessible_pchlan(hw))
378 				break;
379 
380 			ret_val = -E1000_ERR_PHY;
381 		}
382 		break;
383 	default:
384 		break;
385 	}
386 
387 	hw->phy.ops.release(hw);
388 	if (!ret_val) {
389 
390 		/* Check to see if able to reset PHY.  Print error if not */
391 		if (hw->phy.ops.check_reset_block(hw)) {
392 			ERROR_REPORT("Reset blocked by ME\n");
393 			goto out;
394 		}
395 
396 		/* Reset the PHY before any access to it.  Doing so, ensures
397 		 * that the PHY is in a known good state before we read/write
398 		 * PHY registers.  The generic reset is sufficient here,
399 		 * because we haven't determined the PHY type yet.
400 		 */
401 		ret_val = e1000_phy_hw_reset_generic(hw);
402 		if (ret_val)
403 			goto out;
404 
405 		/* On a successful reset, possibly need to wait for the PHY
406 		 * to quiesce to an accessible state before returning control
407 		 * to the calling function.  If the PHY does not quiesce, then
408 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
409 		 *  the PHY is in.
410 		 */
411 		ret_val = hw->phy.ops.check_reset_block(hw);
412 		if (ret_val)
413 			ERROR_REPORT("ME blocked access to PHY after reset\n");
414 	}
415 
416 out:
417 	/* Ungate automatic PHY configuration on non-managed 82579 */
418 	if ((hw->mac.type == e1000_pch2lan) &&
419 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420 		msec_delay(10);
421 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422 	}
423 
424 	return ret_val;
425 }
426 
427 /**
428  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
429  *  @hw: pointer to the HW structure
430  *
431  *  Initialize family-specific PHY parameters and function pointers.
432  **/
433 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434 {
435 	struct e1000_phy_info *phy = &hw->phy;
436 	s32 ret_val;
437 
438 	DEBUGFUNC("e1000_init_phy_params_pchlan");
439 
440 	phy->addr		= 1;
441 	phy->reset_delay_us	= 100;
442 
443 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
444 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
446 	phy->ops.set_page	= e1000_set_page_igp;
447 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
448 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
450 	phy->ops.release	= e1000_release_swflag_ich8lan;
451 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
452 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
455 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
457 	phy->ops.power_up	= e1000_power_up_phy_copper;
458 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
459 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
460 
461 	phy->id = e1000_phy_unknown;
462 
463 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
464 	if (ret_val)
465 		return ret_val;
466 
467 	if (phy->id == e1000_phy_unknown)
468 		switch (hw->mac.type) {
469 		default:
470 			ret_val = e1000_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474 				break;
475 			/* fall-through */
476 		case e1000_pch2lan:
477 		case e1000_pch_lpt:
478 			/* In case the PHY needs to be in mdio slow mode,
479 			 * set slow mode and try to get the PHY id again.
480 			 */
481 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
482 			if (ret_val)
483 				return ret_val;
484 			ret_val = e1000_get_phy_id(hw);
485 			if (ret_val)
486 				return ret_val;
487 			break;
488 		}
489 	phy->type = e1000_get_phy_type_from_id(phy->id);
490 
491 	switch (phy->type) {
492 	case e1000_phy_82577:
493 	case e1000_phy_82579:
494 	case e1000_phy_i217:
495 		phy->ops.check_polarity = e1000_check_polarity_82577;
496 		phy->ops.force_speed_duplex =
497 			e1000_phy_force_speed_duplex_82577;
498 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
499 		phy->ops.get_info = e1000_get_phy_info_82577;
500 		phy->ops.commit = e1000_phy_sw_reset_generic;
501 		break;
502 	case e1000_phy_82578:
503 		phy->ops.check_polarity = e1000_check_polarity_m88;
504 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
506 		phy->ops.get_info = e1000_get_phy_info_m88;
507 		break;
508 	default:
509 		ret_val = -E1000_ERR_PHY;
510 		break;
511 	}
512 
513 	return ret_val;
514 }
515 
516 /**
517  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518  *  @hw: pointer to the HW structure
519  *
520  *  Initialize family-specific PHY parameters and function pointers.
521  **/
522 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 {
524 	struct e1000_phy_info *phy = &hw->phy;
525 	s32 ret_val;
526 	u16 i = 0;
527 
528 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
529 
530 	phy->addr		= 1;
531 	phy->reset_delay_us	= 100;
532 
533 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
534 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
537 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
538 	phy->ops.release	= e1000_release_swflag_ich8lan;
539 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
540 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
543 	phy->ops.power_up	= e1000_power_up_phy_copper;
544 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
545 
546 	/* We may need to do this twice - once for IGP and if that fails,
547 	 * we'll set BM func pointers and try again
548 	 */
549 	ret_val = e1000_determine_phy_address(hw);
550 	if (ret_val) {
551 		phy->ops.write_reg = e1000_write_phy_reg_bm;
552 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
553 		ret_val = e1000_determine_phy_address(hw);
554 		if (ret_val) {
555 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556 			return ret_val;
557 		}
558 	}
559 
560 	phy->id = 0;
561 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562 	       (i++ < 100)) {
563 		msec_delay(1);
564 		ret_val = e1000_get_phy_id(hw);
565 		if (ret_val)
566 			return ret_val;
567 	}
568 
569 	/* Verify phy id */
570 	switch (phy->id) {
571 	case IGP03E1000_E_PHY_ID:
572 		phy->type = e1000_phy_igp_3;
573 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576 		phy->ops.get_info = e1000_get_phy_info_igp;
577 		phy->ops.check_polarity = e1000_check_polarity_igp;
578 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579 		break;
580 	case IFE_E_PHY_ID:
581 	case IFE_PLUS_E_PHY_ID:
582 	case IFE_C_E_PHY_ID:
583 		phy->type = e1000_phy_ife;
584 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
585 		phy->ops.get_info = e1000_get_phy_info_ife;
586 		phy->ops.check_polarity = e1000_check_polarity_ife;
587 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588 		break;
589 	case BME1000_E_PHY_ID:
590 		phy->type = e1000_phy_bm;
591 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592 		phy->ops.read_reg = e1000_read_phy_reg_bm;
593 		phy->ops.write_reg = e1000_write_phy_reg_bm;
594 		phy->ops.commit = e1000_phy_sw_reset_generic;
595 		phy->ops.get_info = e1000_get_phy_info_m88;
596 		phy->ops.check_polarity = e1000_check_polarity_m88;
597 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598 		break;
599 	default:
600 		return -E1000_ERR_PHY;
601 		break;
602 	}
603 
604 	return E1000_SUCCESS;
605 }
606 
607 /**
608  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609  *  @hw: pointer to the HW structure
610  *
611  *  Initialize family-specific NVM parameters and function
612  *  pointers.
613  **/
614 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615 {
616 	struct e1000_nvm_info *nvm = &hw->nvm;
617 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618 	u32 gfpreg, sector_base_addr, sector_end_addr;
619 	u16 i;
620 
621 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622 
623 	/* Can't read flash registers if the register set isn't mapped. */
624 	nvm->type = e1000_nvm_flash_sw;
625 	if (!hw->flash_address) {
626 		DEBUGOUT("ERROR: Flash registers not mapped\n");
627 		return -E1000_ERR_CONFIG;
628 	}
629 
630 	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631 
632 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 	 * Add 1 to sector_end_addr since this sector is included in
634 	 * the overall size.
635 	 */
636 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638 
639 	/* flash_base_addr is byte-aligned */
640 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641 
642 	/* find total size of the NVM, then cut in half since the total
643 	 * size represents two separate NVM banks.
644 	 */
645 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646 				<< FLASH_SECTOR_ADDR_SHIFT);
647 	nvm->flash_bank_size /= 2;
648 	/* Adjust to word count */
649 	nvm->flash_bank_size /= sizeof(u16);
650 
651 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
652 
653 	/* Clear shadow ram */
654 	for (i = 0; i < nvm->word_size; i++) {
655 		dev_spec->shadow_ram[i].modified = FALSE;
656 		dev_spec->shadow_ram[i].value    = 0xFFFF;
657 	}
658 
659 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661 
662 	/* Function Pointers */
663 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
664 	nvm->ops.release	= e1000_release_nvm_ich8lan;
665 	nvm->ops.read		= e1000_read_nvm_ich8lan;
666 	nvm->ops.update		= e1000_update_nvm_checksum_ich8lan;
667 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
669 	nvm->ops.write		= e1000_write_nvm_ich8lan;
670 
671 	return E1000_SUCCESS;
672 }
673 
674 /**
675  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676  *  @hw: pointer to the HW structure
677  *
678  *  Initialize family-specific MAC parameters and function
679  *  pointers.
680  **/
681 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682 {
683 	struct e1000_mac_info *mac = &hw->mac;
684 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
685 	u16 pci_cfg;
686 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
687 
688 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
689 
690 	/* Set media type function pointer */
691 	hw->phy.media_type = e1000_media_type_copper;
692 
693 	/* Set mta register count */
694 	mac->mta_reg_count = 32;
695 	/* Set rar entry count */
696 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
697 	if (mac->type == e1000_ich8lan)
698 		mac->rar_entry_count--;
699 	/* Set if part includes ASF firmware */
700 	mac->asf_firmware_present = TRUE;
701 	/* FWSM register */
702 	mac->has_fwsm = TRUE;
703 	/* ARC subsystem not supported */
704 	mac->arc_subsystem_valid = FALSE;
705 	/* Adaptive IFS supported */
706 	mac->adaptive_ifs = TRUE;
707 
708 	/* Function pointers */
709 
710 	/* bus type/speed/width */
711 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
712 	/* function id */
713 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
714 	/* reset */
715 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
716 	/* hw initialization */
717 	mac->ops.init_hw = e1000_init_hw_ich8lan;
718 	/* link setup */
719 	mac->ops.setup_link = e1000_setup_link_ich8lan;
720 	/* physical interface setup */
721 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
722 	/* check for link */
723 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
724 	/* link info */
725 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
726 	/* multicast address update */
727 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
728 	/* clear hardware counters */
729 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
730 
731 	/* LED and other operations */
732 	switch (mac->type) {
733 	case e1000_ich8lan:
734 	case e1000_ich9lan:
735 	case e1000_ich10lan:
736 		/* check management mode */
737 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738 		/* ID LED init */
739 		mac->ops.id_led_init = e1000_id_led_init_generic;
740 		/* blink LED */
741 		mac->ops.blink_led = e1000_blink_led_generic;
742 		/* setup LED */
743 		mac->ops.setup_led = e1000_setup_led_generic;
744 		/* cleanup LED */
745 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746 		/* turn on/off LED */
747 		mac->ops.led_on = e1000_led_on_ich8lan;
748 		mac->ops.led_off = e1000_led_off_ich8lan;
749 		break;
750 	case e1000_pch2lan:
751 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752 		mac->ops.rar_set = e1000_rar_set_pch2lan;
753 		/* fall-through */
754 	case e1000_pch_lpt:
755 		/* multicast address update for pch2 */
756 		mac->ops.update_mc_addr_list =
757 			e1000_update_mc_addr_list_pch2lan;
758 	case e1000_pchlan:
759 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
760 		/* save PCH revision_id */
761 		e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
762 		hw->revision_id = (u8)(pci_cfg &= 0x000F);
763 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
764 		/* check management mode */
765 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
766 		/* ID LED init */
767 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
768 		/* setup LED */
769 		mac->ops.setup_led = e1000_setup_led_pchlan;
770 		/* cleanup LED */
771 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
772 		/* turn on/off LED */
773 		mac->ops.led_on = e1000_led_on_pchlan;
774 		mac->ops.led_off = e1000_led_off_pchlan;
775 		break;
776 	default:
777 		break;
778 	}
779 
780 	if (mac->type == e1000_pch_lpt) {
781 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
782 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
783 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
784 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
785 	}
786 
787 	/* Enable PCS Lock-loss workaround for ICH8 */
788 	if (mac->type == e1000_ich8lan)
789 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
790 
791 	return E1000_SUCCESS;
792 }
793 
794 /**
795  *  __e1000_access_emi_reg_locked - Read/write EMI register
796  *  @hw: pointer to the HW structure
797  *  @addr: EMI address to program
798  *  @data: pointer to value to read/write from/to the EMI address
799  *  @read: boolean flag to indicate read or write
800  *
801  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
802  **/
803 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
804 					 u16 *data, bool read)
805 {
806 	s32 ret_val;
807 
808 	DEBUGFUNC("__e1000_access_emi_reg_locked");
809 
810 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
811 	if (ret_val)
812 		return ret_val;
813 
814 	if (read)
815 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
816 						      data);
817 	else
818 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
819 						       *data);
820 
821 	return ret_val;
822 }
823 
824 /**
825  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
826  *  @hw: pointer to the HW structure
827  *  @addr: EMI address to program
828  *  @data: value to be read from the EMI address
829  *
830  *  Assumes the SW/FW/HW Semaphore is already acquired.
831  **/
832 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
833 {
834 	DEBUGFUNC("e1000_read_emi_reg_locked");
835 
836 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
837 }
838 
839 /**
840  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
841  *  @hw: pointer to the HW structure
842  *  @addr: EMI address to program
843  *  @data: value to be written to the EMI address
844  *
845  *  Assumes the SW/FW/HW Semaphore is already acquired.
846  **/
847 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
848 {
849 	DEBUGFUNC("e1000_read_emi_reg_locked");
850 
851 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
852 }
853 
854 /**
855  *  e1000_set_eee_pchlan - Enable/disable EEE support
856  *  @hw: pointer to the HW structure
857  *
858  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
859  *  the link and the EEE capabilities of the link partner.  The LPI Control
860  *  register bits will remain set only if/when link is up.
861  *
862  *  EEE LPI must not be asserted earlier than one second after link is up.
863  *  On 82579, EEE LPI should not be enabled until such time otherwise there
864  *  can be link issues with some switches.  Other devices can have EEE LPI
865  *  enabled immediately upon link up since they have a timer in hardware which
866  *  prevents LPI from being asserted too early.
867  **/
868 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
869 {
870 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
871 	s32 ret_val;
872 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
873 
874 	DEBUGFUNC("e1000_set_eee_pchlan");
875 
876 	switch (hw->phy.type) {
877 	case e1000_phy_82579:
878 		lpa = I82579_EEE_LP_ABILITY;
879 		pcs_status = I82579_EEE_PCS_STATUS;
880 		adv_addr = I82579_EEE_ADVERTISEMENT;
881 		break;
882 	case e1000_phy_i217:
883 		lpa = I217_EEE_LP_ABILITY;
884 		pcs_status = I217_EEE_PCS_STATUS;
885 		adv_addr = I217_EEE_ADVERTISEMENT;
886 		break;
887 	default:
888 		return E1000_SUCCESS;
889 	}
890 
891 	ret_val = hw->phy.ops.acquire(hw);
892 	if (ret_val)
893 		return ret_val;
894 
895 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
896 	if (ret_val)
897 		goto release;
898 
899 	/* Clear bits that enable EEE in various speeds */
900 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
901 
902 	/* Enable EEE if not disabled by user */
903 	if (!dev_spec->eee_disable) {
904 		/* Save off link partner's EEE ability */
905 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
906 						    &dev_spec->eee_lp_ability);
907 		if (ret_val)
908 			goto release;
909 
910 		/* Read EEE advertisement */
911 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
912 		if (ret_val)
913 			goto release;
914 
915 		/* Enable EEE only for speeds in which the link partner is
916 		 * EEE capable and for which we advertise EEE.
917 		 */
918 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
919 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
920 
921 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
922 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
923 			if (data & NWAY_LPAR_100TX_FD_CAPS)
924 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
925 			else
926 				/* EEE is not supported in 100Half, so ignore
927 				 * partner's EEE in 100 ability if full-duplex
928 				 * is not advertised.
929 				 */
930 				dev_spec->eee_lp_ability &=
931 				    ~I82579_EEE_100_SUPPORTED;
932 		}
933 	}
934 
935 	if (hw->phy.type == e1000_phy_82579) {
936 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
937 						    &data);
938 		if (ret_val)
939 			goto release;
940 
941 		data &= ~I82579_LPI_100_PLL_SHUT;
942 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
943 						     data);
944 	}
945 
946 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
947 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
948 	if (ret_val)
949 		goto release;
950 
951 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
952 release:
953 	hw->phy.ops.release(hw);
954 
955 	return ret_val;
956 }
957 
958 /**
959  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
960  *  @hw:   pointer to the HW structure
961  *  @link: link up bool flag
962  *
963  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
964  *  preventing further DMA write requests.  Workaround the issue by disabling
965  *  the de-assertion of the clock request when in 1Gpbs mode.
966  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
967  *  speeds in order to avoid Tx hangs.
968  **/
969 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
970 {
971 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
972 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
973 	s32 ret_val = E1000_SUCCESS;
974 	u16 reg;
975 
976 	if (link && (status & E1000_STATUS_SPEED_1000)) {
977 		ret_val = hw->phy.ops.acquire(hw);
978 		if (ret_val)
979 			return ret_val;
980 
981 		ret_val =
982 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
983 					       &reg);
984 		if (ret_val)
985 			goto release;
986 
987 		ret_val =
988 		    e1000_write_kmrn_reg_locked(hw,
989 						E1000_KMRNCTRLSTA_K1_CONFIG,
990 						reg &
991 						~E1000_KMRNCTRLSTA_K1_ENABLE);
992 		if (ret_val)
993 			goto release;
994 
995 		usec_delay(10);
996 
997 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
998 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
999 
1000 		ret_val =
1001 		    e1000_write_kmrn_reg_locked(hw,
1002 						E1000_KMRNCTRLSTA_K1_CONFIG,
1003 						reg);
1004 release:
1005 		hw->phy.ops.release(hw);
1006 	} else {
1007 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1008 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1009 
1010 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
1011 			      (status & E1000_STATUS_FD)))
1012 			goto update_fextnvm6;
1013 
1014 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1015 		if (ret_val)
1016 			return ret_val;
1017 
1018 		/* Clear link status transmit timeout */
1019 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1020 
1021 		if (status & E1000_STATUS_SPEED_100) {
1022 			/* Set inband Tx timeout to 5x10us for 100Half */
1023 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024 
1025 			/* Do not extend the K1 entry latency for 100Half */
1026 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027 		} else {
1028 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1029 			reg |= 50 <<
1030 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1031 
1032 			/* Extend the K1 entry latency for 10 Mbps */
1033 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1034 		}
1035 
1036 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1037 		if (ret_val)
1038 			return ret_val;
1039 
1040 update_fextnvm6:
1041 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1042 	}
1043 
1044 	return ret_val;
1045 }
1046 
1047 static u64 e1000_ltr2ns(u16 ltr)
1048 {
1049 	u32 value, scale;
1050 
1051 	/* Determine the latency in nsec based on the LTR value & scale */
1052 	value = ltr & E1000_LTRV_VALUE_MASK;
1053 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1054 
1055 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1056 }
1057 
1058 /**
1059  *  e1000_platform_pm_pch_lpt - Set platform power management values
1060  *  @hw: pointer to the HW structure
1061  *  @link: bool indicating link status
1062  *
1063  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1064  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1065  *  when link is up (which must not exceed the maximum latency supported
1066  *  by the platform), otherwise specify there is no LTR requirement.
1067  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1068  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1069  *  Capability register set, on this device LTR is set by writing the
1070  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1071  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1072  *  message to the PMC.
1073  *
1074  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1075  *  high-water mark.
1076  **/
1077 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1078 {
1079 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1080 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1081 	u16 lat_enc = 0;	/* latency encoded */
1082 	s32 obff_hwm = 0;
1083 
1084 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1085 
1086 	if (link) {
1087 		u16 speed, duplex, scale = 0;
1088 		u16 max_snoop, max_nosnoop;
1089 		u16 max_ltr_enc;	/* max LTR latency encoded */
1090 		s64 lat_ns;
1091 		s64 value;
1092 		u32 rxa;
1093 
1094 		if (!hw->mac.max_frame_size) {
1095 			DEBUGOUT("max_frame_size not set.\n");
1096 			return -E1000_ERR_CONFIG;
1097 		}
1098 
1099 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1100 		if (!speed) {
1101 			DEBUGOUT("Speed not set.\n");
1102 			return -E1000_ERR_CONFIG;
1103 		}
1104 
1105 		/* Rx Packet Buffer Allocation size (KB) */
1106 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1107 
1108 		/* Determine the maximum latency tolerated by the device.
1109 		 *
1110 		 * Per the PCIe spec, the tolerated latencies are encoded as
1111 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1112 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1113 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1114 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1115 		 */
1116 		lat_ns = ((s64)rxa * 1024 -
1117 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1118 		if (lat_ns < 0)
1119 			lat_ns = 0;
1120 		else
1121 			lat_ns /= speed;
1122 		value = lat_ns;
1123 
1124 		while (value > E1000_LTRV_VALUE_MASK) {
1125 			scale++;
1126 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1127 		}
1128 		if (scale > E1000_LTRV_SCALE_MAX) {
1129 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1130 			return -E1000_ERR_CONFIG;
1131 		}
1132 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1133 
1134 		/* Determine the maximum latency tolerated by the platform */
1135 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1136 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1137 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1138 
1139 		if (lat_enc > max_ltr_enc) {
1140 			lat_enc = max_ltr_enc;
1141 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1142 		}
1143 
1144 		if (lat_ns) {
1145 			lat_ns *= speed * 1000;
1146 			lat_ns /= 8;
1147 			lat_ns /= 1000000000;
1148 			obff_hwm = (s32)(rxa - lat_ns);
1149 		}
1150 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1151 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1152 			return -E1000_ERR_CONFIG;
1153 		}
1154 	}
1155 
1156 	/* Set Snoop and No-Snoop latencies the same */
1157 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1158 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1159 
1160 	/* Set OBFF high water mark */
1161 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1162 	reg |= obff_hwm;
1163 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1164 
1165 	/* Enable OBFF */
1166 	reg = E1000_READ_REG(hw, E1000_SVCR);
1167 	reg |= E1000_SVCR_OFF_EN;
1168 	/* Always unblock interrupts to the CPU even when the system is
1169 	 * in OBFF mode. This ensures that small round-robin traffic
1170 	 * (like ping) does not get dropped or experience long latency.
1171 	 */
1172 	reg |= E1000_SVCR_OFF_MASKINT;
1173 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1174 
1175 	return E1000_SUCCESS;
1176 }
1177 
1178 /**
1179  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1180  *  @hw: pointer to the HW structure
1181  *  @itr: interrupt throttling rate
1182  *
1183  *  Configure OBFF with the updated interrupt rate.
1184  **/
1185 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1186 {
1187 	u32 svcr;
1188 	s32 timer;
1189 
1190 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1191 
1192 	/* Convert ITR value into microseconds for OBFF timer */
1193 	timer = itr & E1000_ITR_MASK;
1194 	timer = (timer * E1000_ITR_MULT) / 1000;
1195 
1196 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1197 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1198 		return -E1000_ERR_CONFIG;
1199 	}
1200 
1201 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1202 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1203 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1204 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1205 
1206 	return E1000_SUCCESS;
1207 }
1208 
1209 /**
1210  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211  *  @hw: pointer to the HW structure
1212  *  @to_sx: boolean indicating a system power state transition to Sx
1213  *
1214  *  When link is down, configure ULP mode to significantly reduce the power
1215  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1216  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1217  *  system, configure the ULP mode by software.
1218  */
1219 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220 {
1221 	u32 mac_reg;
1222 	s32 ret_val = E1000_SUCCESS;
1223 	u16 phy_reg;
1224 
1225 	if ((hw->mac.type < e1000_pch_lpt) ||
1226 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1227 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1228 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1229 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1230 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1231 		return 0;
1232 
1233 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1234 		/* Request ME configure ULP mode in the PHY */
1235 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1236 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1237 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1238 
1239 		goto out;
1240 	}
1241 
1242 	if (!to_sx) {
1243 		int i = 0;
1244 
1245 		/* Poll up to 5 seconds for Cable Disconnected indication */
1246 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1247 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248 			/* Bail if link is re-acquired */
1249 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1250 				return -E1000_ERR_PHY;
1251 
1252 			if (i++ == 100)
1253 				break;
1254 
1255 			msec_delay(50);
1256 		}
1257 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1258 			 (E1000_READ_REG(hw, E1000_FEXT) &
1259 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1260 			 i * 50);
1261 	}
1262 
1263 	ret_val = hw->phy.ops.acquire(hw);
1264 	if (ret_val)
1265 		goto out;
1266 
1267 	/* Force SMBus mode in PHY */
1268 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269 	if (ret_val)
1270 		goto release;
1271 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1272 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1273 
1274 	/* Force SMBus mode in MAC */
1275 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1277 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1278 
1279 	/* Set Inband ULP Exit, Reset to SMBus mode and
1280 	 * Disable SMBus Release on PERST# in PHY
1281 	 */
1282 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1283 	if (ret_val)
1284 		goto release;
1285 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1286 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1287 	if (to_sx) {
1288 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1289 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1290 
1291 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1292 	} else {
1293 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1294 	}
1295 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1296 
1297 	/* Set Disable SMBus Release on PERST# in MAC */
1298 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1299 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1300 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1301 
1302 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1303 	phy_reg |= I218_ULP_CONFIG1_START;
1304 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1305 release:
1306 	hw->phy.ops.release(hw);
1307 out:
1308 	if (ret_val)
1309 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1310 	else
1311 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1312 
1313 	return ret_val;
1314 }
1315 
1316 /**
1317  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1318  *  @hw: pointer to the HW structure
1319  *  @force: boolean indicating whether or not to force disabling ULP
1320  *
1321  *  Un-configure ULP mode when link is up, the system is transitioned from
1322  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1323  *  system, poll for an indication from ME that ULP has been un-configured.
1324  *  If not on an ME enabled system, un-configure the ULP mode by software.
1325  *
1326  *  During nominal operation, this function is called when link is acquired
1327  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1328  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1329  *  to forcibly disable ULP.
1330  */
1331 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1332 {
1333 	s32 ret_val = E1000_SUCCESS;
1334 	u32 mac_reg;
1335 	u16 phy_reg;
1336 	int i = 0;
1337 
1338 	if ((hw->mac.type < e1000_pch_lpt) ||
1339 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1340 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1341 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1342 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1343 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1344 		return 0;
1345 
1346 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1347 		if (force) {
1348 			/* Request ME un-configure ULP mode in the PHY */
1349 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1350 			mac_reg &= ~E1000_H2ME_ULP;
1351 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1352 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1353 		}
1354 
1355 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1356 		while (E1000_READ_REG(hw, E1000_FWSM) &
1357 		       E1000_FWSM_ULP_CFG_DONE) {
1358 			if (i++ == 10) {
1359 				ret_val = -E1000_ERR_PHY;
1360 				goto out;
1361 			}
1362 
1363 			msec_delay(10);
1364 		}
1365 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1366 
1367 		if (force) {
1368 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1369 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1370 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1371 		} else {
1372 			/* Clear H2ME.ULP after ME ULP configuration */
1373 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1374 			mac_reg &= ~E1000_H2ME_ULP;
1375 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1376 		}
1377 
1378 		goto out;
1379 	}
1380 
1381 	ret_val = hw->phy.ops.acquire(hw);
1382 	if (ret_val)
1383 		goto out;
1384 
1385 	if (force)
1386 		/* Toggle LANPHYPC Value bit */
1387 		e1000_toggle_lanphypc_pch_lpt(hw);
1388 
1389 	/* Unforce SMBus mode in PHY */
1390 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1391 	if (ret_val) {
1392 		/* The MAC might be in PCIe mode, so temporarily force to
1393 		 * SMBus mode in order to access the PHY.
1394 		 */
1395 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1396 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1397 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1398 
1399 		msec_delay(50);
1400 
1401 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1402 						       &phy_reg);
1403 		if (ret_val)
1404 			goto release;
1405 	}
1406 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1407 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1408 
1409 	/* Unforce SMBus mode in MAC */
1410 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1411 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1412 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1413 
1414 	/* When ULP mode was previously entered, K1 was disabled by the
1415 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1416 	 */
1417 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1418 	if (ret_val)
1419 		goto release;
1420 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1421 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1422 
1423 	/* Clear ULP enabled configuration */
1424 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1425 	if (ret_val)
1426 		goto release;
1427 		phy_reg &= ~(I218_ULP_CONFIG1_IND |
1428 			     I218_ULP_CONFIG1_STICKY_ULP |
1429 			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1430 			     I218_ULP_CONFIG1_WOL_HOST |
1431 			     I218_ULP_CONFIG1_INBAND_EXIT |
1432 			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1433 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1434 
1435 		/* Commit ULP changes by starting auto ULP configuration */
1436 		phy_reg |= I218_ULP_CONFIG1_START;
1437 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1438 
1439 		/* Clear Disable SMBus Release on PERST# in MAC */
1440 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1441 		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1442 		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1443 
1444 release:
1445 	hw->phy.ops.release(hw);
1446 	if (force) {
1447 		hw->phy.ops.reset(hw);
1448 		msec_delay(50);
1449 	}
1450 out:
1451 	if (ret_val)
1452 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1453 	else
1454 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1455 
1456 	return ret_val;
1457 }
1458 
1459 /**
1460  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1461  *  @hw: pointer to the HW structure
1462  *
1463  *  Checks to see of the link status of the hardware has changed.  If a
1464  *  change in link status has been detected, then we read the PHY registers
1465  *  to get the current speed/duplex if link exists.
1466  **/
1467 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1468 {
1469 	struct e1000_mac_info *mac = &hw->mac;
1470 	s32 ret_val;
1471 	bool link;
1472 	u16 phy_reg;
1473 
1474 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1475 
1476 	/* We only want to go out to the PHY registers to see if Auto-Neg
1477 	 * has completed and/or if our link status has changed.  The
1478 	 * get_link_status flag is set upon receiving a Link Status
1479 	 * Change or Rx Sequence Error interrupt.
1480 	 */
1481 	if (!mac->get_link_status)
1482 		return E1000_SUCCESS;
1483 
1484 		/* First we want to see if the MII Status Register reports
1485 		 * link.  If so, then we want to get the current speed/duplex
1486 		 * of the PHY.
1487 		 */
1488 		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1489 		if (ret_val)
1490 			return ret_val;
1491 
1492 	if (hw->mac.type == e1000_pchlan) {
1493 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1494 		if (ret_val)
1495 			return ret_val;
1496 	}
1497 
1498 	/* When connected at 10Mbps half-duplex, some parts are excessively
1499 	 * aggressive resulting in many collisions. To avoid this, increase
1500 	 * the IPG and reduce Rx latency in the PHY.
1501 	 */
1502 	if (((hw->mac.type == e1000_pch2lan) ||
1503 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1504 		u32 reg;
1505 		reg = E1000_READ_REG(hw, E1000_STATUS);
1506 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1507 			u16 emi_addr;
1508 
1509 			reg = E1000_READ_REG(hw, E1000_TIPG);
1510 			reg &= ~E1000_TIPG_IPGT_MASK;
1511 			reg |= 0xFF;
1512 			E1000_WRITE_REG(hw, E1000_TIPG, reg);
1513 
1514 			/* Reduce Rx latency in analog PHY */
1515 			ret_val = hw->phy.ops.acquire(hw);
1516 			if (ret_val)
1517 				return ret_val;
1518 
1519 			if (hw->mac.type == e1000_pch2lan)
1520 				emi_addr = I82579_RX_CONFIG;
1521 			else
1522 				emi_addr = I217_RX_CONFIG;
1523 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1524 
1525 			hw->phy.ops.release(hw);
1526 
1527 			if (ret_val)
1528 				return ret_val;
1529 		}
1530 	}
1531 
1532 	/* Work-around I218 hang issue */
1533 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1534 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1535 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1536 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1537 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1538 		if (ret_val)
1539 			return ret_val;
1540 	}
1541 	if (hw->mac.type == e1000_pch_lpt) {
1542 		/* Set platform power management values for
1543 		 * Latency Tolerance Reporting (LTR)
1544 		 * Optimized Buffer Flush/Fill (OBFF)
1545 		 */
1546 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1547 		if (ret_val)
1548 			return ret_val;
1549 	}
1550 
1551 	/* Clear link partner's EEE ability */
1552 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1553 
1554 	if (!link)
1555 		return E1000_SUCCESS; /* No link detected */
1556 
1557 	mac->get_link_status = FALSE;
1558 
1559 	switch (hw->mac.type) {
1560 	case e1000_pch2lan:
1561 		ret_val = e1000_k1_workaround_lv(hw);
1562 		if (ret_val)
1563 			return ret_val;
1564 		/* fall-thru */
1565 	case e1000_pchlan:
1566 		if (hw->phy.type == e1000_phy_82578) {
1567 			ret_val = e1000_link_stall_workaround_hv(hw);
1568 			if (ret_val)
1569 				return ret_val;
1570 		}
1571 
1572 		/* Workaround for PCHx parts in half-duplex:
1573 		 * Set the number of preambles removed from the packet
1574 		 * when it is passed from the PHY to the MAC to prevent
1575 		 * the MAC from misinterpreting the packet type.
1576 		 */
1577 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579 
1580 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1581 		    E1000_STATUS_FD)
1582 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1583 
1584 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1585 		break;
1586 	default:
1587 		break;
1588 	}
1589 
1590 	/* Check if there was DownShift, must be checked
1591 	 * immediately after link-up
1592 	 */
1593 	e1000_check_downshift_generic(hw);
1594 
1595 	/* Enable/Disable EEE after link up */
1596 	if (hw->phy.type > e1000_phy_82579) {
1597 		ret_val = e1000_set_eee_pchlan(hw);
1598 		if (ret_val)
1599 			return ret_val;
1600 	}
1601 
1602 	/* If we are forcing speed/duplex, then we simply return since
1603 	 * we have already determined whether we have link or not.
1604 	 */
1605 	if (!mac->autoneg)
1606 		return -E1000_ERR_CONFIG;
1607 
1608 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1609 	 * of MAC speed/duplex configuration.  So we only need to
1610 	 * configure Collision Distance in the MAC.
1611 	 */
1612 	mac->ops.config_collision_dist(hw);
1613 
1614 	/* Configure Flow Control now that Auto-Neg has completed.
1615 	 * First, we need to restore the desired flow control
1616 	 * settings because we may have had to re-autoneg with a
1617 	 * different link partner.
1618 	 */
1619 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1620 	if (ret_val)
1621 		DEBUGOUT("Error configuring flow control\n");
1622 
1623 	return ret_val;
1624 }
1625 
1626 /**
1627  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1628  *  @hw: pointer to the HW structure
1629  *
1630  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1631  **/
1632 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1633 {
1634 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1635 
1636 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1637 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1638 	switch (hw->mac.type) {
1639 	case e1000_ich8lan:
1640 	case e1000_ich9lan:
1641 	case e1000_ich10lan:
1642 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1643 		break;
1644 	case e1000_pchlan:
1645 	case e1000_pch2lan:
1646 	case e1000_pch_lpt:
1647 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1648 		break;
1649 	default:
1650 		break;
1651 	}
1652 }
1653 
1654 /**
1655  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1656  *  @hw: pointer to the HW structure
1657  *
1658  *  Acquires the mutex for performing NVM operations.
1659  **/
1660 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1661 {
1662 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1663 
1664 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1665 
1666 	return E1000_SUCCESS;
1667 }
1668 
1669 /**
1670  *  e1000_release_nvm_ich8lan - Release NVM mutex
1671  *  @hw: pointer to the HW structure
1672  *
1673  *  Releases the mutex used while performing NVM operations.
1674  **/
1675 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1676 {
1677 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1678 
1679 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1680 
1681 	return;
1682 }
1683 
1684 /**
1685  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  Acquires the software control flag for performing PHY and select
1689  *  MAC CSR accesses.
1690  **/
1691 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1692 {
1693 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1694 	s32 ret_val = E1000_SUCCESS;
1695 
1696 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1697 
1698 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1699 
1700 	while (timeout) {
1701 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1702 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1703 			break;
1704 
1705 		msec_delay_irq(1);
1706 		timeout--;
1707 	}
1708 
1709 	if (!timeout) {
1710 		DEBUGOUT("SW has already locked the resource.\n");
1711 		ret_val = -E1000_ERR_CONFIG;
1712 		goto out;
1713 	}
1714 
1715 	timeout = SW_FLAG_TIMEOUT;
1716 
1717 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1718 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719 
1720 	while (timeout) {
1721 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1722 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1723 			break;
1724 
1725 		msec_delay_irq(1);
1726 		timeout--;
1727 	}
1728 
1729 	if (!timeout) {
1730 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1731 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1732 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1733 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1734 		ret_val = -E1000_ERR_CONFIG;
1735 		goto out;
1736 	}
1737 
1738 out:
1739 	if (ret_val)
1740 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1741 
1742 	return ret_val;
1743 }
1744 
1745 /**
1746  *  e1000_release_swflag_ich8lan - Release software control flag
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  Releases the software control flag for performing PHY and select
1750  *  MAC CSR accesses.
1751  **/
1752 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1753 {
1754 	u32 extcnf_ctrl;
1755 
1756 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1757 
1758 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1759 
1760 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1761 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1763 	} else {
1764 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1765 	}
1766 
1767 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1768 
1769 	return;
1770 }
1771 
1772 /**
1773  *  e1000_check_mng_mode_ich8lan - Checks management mode
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  This checks if the adapter has any manageability enabled.
1777  *  This is a function pointer entry point only called by read/write
1778  *  routines for the PHY and NVM parts.
1779  **/
1780 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1781 {
1782 	u32 fwsm;
1783 
1784 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1785 
1786 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787 
1788 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1790 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791 }
1792 
1793 /**
1794  *  e1000_check_mng_mode_pchlan - Checks management mode
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  This checks if the adapter has iAMT enabled.
1798  *  This is a function pointer entry point only called by read/write
1799  *  routines for the PHY and NVM parts.
1800  **/
1801 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802 {
1803 	u32 fwsm;
1804 
1805 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1806 
1807 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1808 
1809 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812 
1813 /**
1814  *  e1000_rar_set_pch2lan - Set receive address register
1815  *  @hw: pointer to the HW structure
1816  *  @addr: pointer to the receive address
1817  *  @index: receive address array register
1818  *
1819  *  Sets the receive address array register at index to the address passed
1820  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1821  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822  *  Use SHRA[0-3] in place of those reserved for ME.
1823  **/
1824 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825 {
1826 	u32 rar_low, rar_high;
1827 
1828 	DEBUGFUNC("e1000_rar_set_pch2lan");
1829 
1830 	/* HW expects these in little endian so we reverse the byte order
1831 	 * from network order (big endian) to little endian
1832 	 */
1833 	rar_low = ((u32) addr[0] |
1834 		   ((u32) addr[1] << 8) |
1835 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1836 
1837 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1838 
1839 	/* If MAC address zero, no need to set the AV bit */
1840 	if (rar_low || rar_high)
1841 		rar_high |= E1000_RAH_AV;
1842 
1843 	if (index == 0) {
1844 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1845 		E1000_WRITE_FLUSH(hw);
1846 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1847 		E1000_WRITE_FLUSH(hw);
1848 		return E1000_SUCCESS;
1849 	}
1850 
1851 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1852 	 * next address into the SHRA register array.
1853 	 */
1854 	if (index < (u32) (hw->mac.rar_entry_count)) {
1855 		s32 ret_val;
1856 
1857 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1858 		if (ret_val)
1859 			goto out;
1860 
1861 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1862 		E1000_WRITE_FLUSH(hw);
1863 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1864 		E1000_WRITE_FLUSH(hw);
1865 
1866 		e1000_release_swflag_ich8lan(hw);
1867 
1868 		/* verify the register updates */
1869 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1870 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1871 			return E1000_SUCCESS;
1872 
1873 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1874 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1875 	}
1876 
1877 out:
1878 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1879 	return -E1000_ERR_CONFIG;
1880 }
1881 
1882 /**
1883  *  e1000_rar_set_pch_lpt - Set receive address registers
1884  *  @hw: pointer to the HW structure
1885  *  @addr: pointer to the receive address
1886  *  @index: receive address array register
1887  *
1888  *  Sets the receive address register array at index to the address passed
1889  *  in by addr. For LPT, RAR[0] is the base address register that is to
1890  *  contain the MAC address. SHRA[0-10] are the shared receive address
1891  *  registers that are shared between the Host and manageability engine (ME).
1892  **/
1893 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1894 {
1895 	u32 rar_low, rar_high;
1896 	u32 wlock_mac;
1897 
1898 	DEBUGFUNC("e1000_rar_set_pch_lpt");
1899 
1900 	/* HW expects these in little endian so we reverse the byte order
1901 	 * from network order (big endian) to little endian
1902 	 */
1903 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1904 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1905 
1906 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1907 
1908 	/* If MAC address zero, no need to set the AV bit */
1909 	if (rar_low || rar_high)
1910 		rar_high |= E1000_RAH_AV;
1911 
1912 	if (index == 0) {
1913 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1914 		E1000_WRITE_FLUSH(hw);
1915 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1916 		E1000_WRITE_FLUSH(hw);
1917 		return E1000_SUCCESS;
1918 	}
1919 
1920 	/* The manageability engine (ME) can lock certain SHRAR registers that
1921 	 * it is using - those registers are unavailable for use.
1922 	 */
1923 	if (index < hw->mac.rar_entry_count) {
1924 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1925 			    E1000_FWSM_WLOCK_MAC_MASK;
1926 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1927 
1928 		/* Check if all SHRAR registers are locked */
1929 		if (wlock_mac == 1)
1930 			goto out;
1931 
1932 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1933 			s32 ret_val;
1934 
1935 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1936 
1937 			if (ret_val)
1938 				goto out;
1939 
1940 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1941 					rar_low);
1942 			E1000_WRITE_FLUSH(hw);
1943 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1944 					rar_high);
1945 			E1000_WRITE_FLUSH(hw);
1946 
1947 			e1000_release_swflag_ich8lan(hw);
1948 
1949 			/* verify the register updates */
1950 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1951 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1952 				return E1000_SUCCESS;
1953 		}
1954 	}
1955 
1956 out:
1957 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
1958 	return -E1000_ERR_CONFIG;
1959 }
1960 
1961 /**
1962  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1963  *  @hw: pointer to the HW structure
1964  *  @mc_addr_list: array of multicast addresses to program
1965  *  @mc_addr_count: number of multicast addresses to program
1966  *
1967  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1968  *  The caller must have a packed mc_addr_list of multicast addresses.
1969  **/
1970 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1971 					      u8 *mc_addr_list,
1972 					      u32 mc_addr_count)
1973 {
1974 	u16 phy_reg = 0;
1975 	int i;
1976 	s32 ret_val;
1977 
1978 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1979 
1980 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1981 
1982 	ret_val = hw->phy.ops.acquire(hw);
1983 	if (ret_val)
1984 		return;
1985 
1986 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1987 	if (ret_val)
1988 		goto release;
1989 
1990 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
1991 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1992 					   (u16)(hw->mac.mta_shadow[i] &
1993 						 0xFFFF));
1994 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1995 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
1996 						 0xFFFF));
1997 	}
1998 
1999 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2000 
2001 release:
2002 	hw->phy.ops.release(hw);
2003 }
2004 
2005 /**
2006  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Checks if firmware is blocking the reset of the PHY.
2010  *  This is a function pointer entry point only called by
2011  *  reset routines.
2012  **/
2013 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014 {
2015 	u32 fwsm;
2016 	bool blocked = FALSE;
2017 	int i = 0;
2018 
2019 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2020 
2021 	do {
2022 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2023 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2024 			blocked = TRUE;
2025 			msec_delay(10);
2026 			continue;
2027 		}
2028 		blocked = FALSE;
2029 	} while (blocked && (i++ < 10));
2030 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2031 }
2032 
2033 /**
2034  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2035  *  @hw: pointer to the HW structure
2036  *
2037  *  Assumes semaphore already acquired.
2038  *
2039  **/
2040 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2041 {
2042 	u16 phy_data;
2043 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2044 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2045 		E1000_STRAP_SMT_FREQ_SHIFT;
2046 	s32 ret_val;
2047 
2048 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2049 
2050 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2051 	if (ret_val)
2052 		return ret_val;
2053 
2054 	phy_data &= ~HV_SMB_ADDR_MASK;
2055 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2056 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2057 
2058 	if (hw->phy.type == e1000_phy_i217) {
2059 		/* Restore SMBus frequency */
2060 		if (freq--) {
2061 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2062 			phy_data |= (freq & (1 << 0)) <<
2063 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2064 			phy_data |= (freq & (1 << 1)) <<
2065 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2066 		} else {
2067 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2068 		}
2069 	}
2070 
2071 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2072 }
2073 
2074 /**
2075  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2076  *  @hw:   pointer to the HW structure
2077  *
2078  *  SW should configure the LCD from the NVM extended configuration region
2079  *  as a workaround for certain parts.
2080  **/
2081 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2082 {
2083 	struct e1000_phy_info *phy = &hw->phy;
2084 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2085 	s32 ret_val = E1000_SUCCESS;
2086 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2087 
2088 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2089 
2090 	/* Initialize the PHY from the NVM on ICH platforms.  This
2091 	 * is needed due to an issue where the NVM configuration is
2092 	 * not properly autoloaded after power transitions.
2093 	 * Therefore, after each PHY reset, we will load the
2094 	 * configuration data out of the NVM manually.
2095 	 */
2096 	switch (hw->mac.type) {
2097 	case e1000_ich8lan:
2098 		if (phy->type != e1000_phy_igp_3)
2099 			return ret_val;
2100 
2101 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2102 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2103 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2104 			break;
2105 		}
2106 		/* Fall-thru */
2107 	case e1000_pchlan:
2108 	case e1000_pch2lan:
2109 	case e1000_pch_lpt:
2110 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111 		break;
2112 	default:
2113 		return ret_val;
2114 	}
2115 
2116 	ret_val = hw->phy.ops.acquire(hw);
2117 	if (ret_val)
2118 		return ret_val;
2119 
2120 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2121 	if (!(data & sw_cfg_mask))
2122 		goto release;
2123 
2124 	/* Make sure HW does not configure LCD from PHY
2125 	 * extended configuration before SW configuration
2126 	 */
2127 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2128 	if ((hw->mac.type < e1000_pch2lan) &&
2129 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130 			goto release;
2131 
2132 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2133 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135 	if (!cnf_size)
2136 		goto release;
2137 
2138 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140 
2141 	if (((hw->mac.type == e1000_pchlan) &&
2142 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143 	    (hw->mac.type > e1000_pchlan)) {
2144 		/* HW configures the SMBus address and LEDs when the
2145 		 * OEM and LCD Write Enable bits are set in the NVM.
2146 		 * When both NVM bits are cleared, SW will configure
2147 		 * them instead.
2148 		 */
2149 		ret_val = e1000_write_smbus_addr(hw);
2150 		if (ret_val)
2151 			goto release;
2152 
2153 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2154 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155 							(u16)data);
2156 		if (ret_val)
2157 			goto release;
2158 	}
2159 
2160 	/* Configure LCD from extended configuration region. */
2161 
2162 	/* cnf_base_addr is in DWORD */
2163 	word_addr = (u16)(cnf_base_addr << 1);
2164 
2165 	for (i = 0; i < cnf_size; i++) {
2166 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2167 					   &reg_data);
2168 		if (ret_val)
2169 			goto release;
2170 
2171 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2172 					   1, &reg_addr);
2173 		if (ret_val)
2174 			goto release;
2175 
2176 		/* Save off the PHY page for future writes. */
2177 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2178 			phy_page = reg_data;
2179 			continue;
2180 		}
2181 
2182 		reg_addr &= PHY_REG_MASK;
2183 		reg_addr |= phy_page;
2184 
2185 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2186 						    reg_data);
2187 		if (ret_val)
2188 			goto release;
2189 	}
2190 
2191 release:
2192 	hw->phy.ops.release(hw);
2193 	return ret_val;
2194 }
2195 
2196 /**
2197  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2198  *  @hw:   pointer to the HW structure
2199  *  @link: link up bool flag
2200  *
2201  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2202  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2203  *  If link is down, the function will restore the default K1 setting located
2204  *  in the NVM.
2205  **/
2206 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2207 {
2208 	s32 ret_val = E1000_SUCCESS;
2209 	u16 status_reg = 0;
2210 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2211 
2212 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2213 
2214 	if (hw->mac.type != e1000_pchlan)
2215 		return E1000_SUCCESS;
2216 
2217 	/* Wrap the whole flow with the sw flag */
2218 	ret_val = hw->phy.ops.acquire(hw);
2219 	if (ret_val)
2220 		return ret_val;
2221 
2222 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2223 	if (link) {
2224 		if (hw->phy.type == e1000_phy_82578) {
2225 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2226 							      &status_reg);
2227 			if (ret_val)
2228 				goto release;
2229 
2230 			status_reg &= (BM_CS_STATUS_LINK_UP |
2231 				       BM_CS_STATUS_RESOLVED |
2232 				       BM_CS_STATUS_SPEED_MASK);
2233 
2234 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2235 					   BM_CS_STATUS_RESOLVED |
2236 					   BM_CS_STATUS_SPEED_1000))
2237 				k1_enable = FALSE;
2238 		}
2239 
2240 		if (hw->phy.type == e1000_phy_82577) {
2241 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2242 							      &status_reg);
2243 			if (ret_val)
2244 				goto release;
2245 
2246 			status_reg &= (HV_M_STATUS_LINK_UP |
2247 				       HV_M_STATUS_AUTONEG_COMPLETE |
2248 				       HV_M_STATUS_SPEED_MASK);
2249 
2250 			if (status_reg == (HV_M_STATUS_LINK_UP |
2251 					   HV_M_STATUS_AUTONEG_COMPLETE |
2252 					   HV_M_STATUS_SPEED_1000))
2253 				k1_enable = FALSE;
2254 		}
2255 
2256 		/* Link stall fix for link up */
2257 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2258 						       0x0100);
2259 		if (ret_val)
2260 			goto release;
2261 
2262 	} else {
2263 		/* Link stall fix for link down */
2264 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2265 						       0x4100);
2266 		if (ret_val)
2267 			goto release;
2268 	}
2269 
2270 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2271 
2272 release:
2273 	hw->phy.ops.release(hw);
2274 
2275 	return ret_val;
2276 }
2277 
2278 /**
2279  *  e1000_configure_k1_ich8lan - Configure K1 power state
2280  *  @hw: pointer to the HW structure
2281  *  @enable: K1 state to configure
2282  *
2283  *  Configure the K1 power state based on the provided parameter.
2284  *  Assumes semaphore already acquired.
2285  *
2286  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2287  **/
2288 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2289 {
2290 	s32 ret_val;
2291 	u32 ctrl_reg = 0;
2292 	u32 ctrl_ext = 0;
2293 	u32 reg = 0;
2294 	u16 kmrn_reg = 0;
2295 
2296 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2297 
2298 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2299 					     &kmrn_reg);
2300 	if (ret_val)
2301 		return ret_val;
2302 
2303 	if (k1_enable)
2304 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2305 	else
2306 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2307 
2308 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2309 					      kmrn_reg);
2310 	if (ret_val)
2311 		return ret_val;
2312 
2313 	usec_delay(20);
2314 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2315 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2316 
2317 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318 	reg |= E1000_CTRL_FRCSPD;
2319 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2320 
2321 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2322 	E1000_WRITE_FLUSH(hw);
2323 	usec_delay(20);
2324 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2325 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2326 	E1000_WRITE_FLUSH(hw);
2327 	usec_delay(20);
2328 
2329 	return E1000_SUCCESS;
2330 }
2331 
2332 /**
2333  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334  *  @hw:       pointer to the HW structure
2335  *  @d0_state: boolean if entering d0 or d3 device state
2336  *
2337  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2339  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2340  **/
2341 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2342 {
2343 	s32 ret_val = 0;
2344 	u32 mac_reg;
2345 	u16 oem_reg;
2346 
2347 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2348 
2349 	if (hw->mac.type < e1000_pchlan)
2350 		return ret_val;
2351 
2352 	ret_val = hw->phy.ops.acquire(hw);
2353 	if (ret_val)
2354 		return ret_val;
2355 
2356 	if (hw->mac.type == e1000_pchlan) {
2357 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2358 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359 			goto release;
2360 	}
2361 
2362 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2363 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 		goto release;
2365 
2366 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2367 
2368 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2369 	if (ret_val)
2370 		goto release;
2371 
2372 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373 
2374 	if (d0_state) {
2375 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2377 
2378 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379 			oem_reg |= HV_OEM_BITS_LPLU;
2380 	} else {
2381 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2384 
2385 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386 		    E1000_PHY_CTRL_NOND0A_LPLU))
2387 			oem_reg |= HV_OEM_BITS_LPLU;
2388 	}
2389 
2390 	/* Set Restart auto-neg to activate the bits */
2391 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392 	    !hw->phy.ops.check_reset_block(hw))
2393 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2394 
2395 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2396 
2397 release:
2398 	hw->phy.ops.release(hw);
2399 
2400 	return ret_val;
2401 }
2402 
2403 
2404 /**
2405  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2406  *  @hw:   pointer to the HW structure
2407  **/
2408 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2409 {
2410 	s32 ret_val;
2411 	u16 data;
2412 
2413 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2414 
2415 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2416 	if (ret_val)
2417 		return ret_val;
2418 
2419 	data |= HV_KMRN_MDIO_SLOW;
2420 
2421 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2422 
2423 	return ret_val;
2424 }
2425 
2426 /**
2427  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2428  *  done after every PHY reset.
2429  **/
2430 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2431 {
2432 	s32 ret_val = E1000_SUCCESS;
2433 	u16 phy_data;
2434 
2435 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2436 
2437 	if (hw->mac.type != e1000_pchlan)
2438 		return E1000_SUCCESS;
2439 
2440 	/* Set MDIO slow mode before any other MDIO access */
2441 	if (hw->phy.type == e1000_phy_82577) {
2442 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2443 		if (ret_val)
2444 			return ret_val;
2445 	}
2446 
2447 	if (((hw->phy.type == e1000_phy_82577) &&
2448 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2449 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2450 		/* Disable generation of early preamble */
2451 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2452 		if (ret_val)
2453 			return ret_val;
2454 
2455 		/* Preamble tuning for SSC */
2456 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2457 						0xA204);
2458 		if (ret_val)
2459 			return ret_val;
2460 	}
2461 
2462 	if (hw->phy.type == e1000_phy_82578) {
2463 		/* Return registers to default by doing a soft reset then
2464 		 * writing 0x3140 to the control register.
2465 		 */
2466 		if (hw->phy.revision < 2) {
2467 			e1000_phy_sw_reset_generic(hw);
2468 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2469 							0x3140);
2470 		}
2471 	}
2472 
2473 	/* Select page 0 */
2474 	ret_val = hw->phy.ops.acquire(hw);
2475 	if (ret_val)
2476 		return ret_val;
2477 
2478 	hw->phy.addr = 1;
2479 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2480 	hw->phy.ops.release(hw);
2481 	if (ret_val)
2482 		return ret_val;
2483 
2484 	/* Configure the K1 Si workaround during phy reset assuming there is
2485 	 * link so that it disables K1 if link is in 1Gbps.
2486 	 */
2487 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2488 	if (ret_val)
2489 		return ret_val;
2490 
2491 	/* Workaround for link disconnects on a busy hub in half duplex */
2492 	ret_val = hw->phy.ops.acquire(hw);
2493 	if (ret_val)
2494 		return ret_val;
2495 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2496 	if (ret_val)
2497 		goto release;
2498 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2499 					       phy_data & 0x00FF);
2500 	if (ret_val)
2501 		goto release;
2502 
2503 	/* set MSE higher to enable link to stay up when noise is high */
2504 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2505 release:
2506 	hw->phy.ops.release(hw);
2507 
2508 	return ret_val;
2509 }
2510 
2511 /**
2512  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2513  *  @hw:   pointer to the HW structure
2514  **/
2515 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2516 {
2517 	u32 mac_reg;
2518 	u16 i, phy_reg = 0;
2519 	s32 ret_val;
2520 
2521 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2522 
2523 	ret_val = hw->phy.ops.acquire(hw);
2524 	if (ret_val)
2525 		return;
2526 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2527 	if (ret_val)
2528 		goto release;
2529 
2530 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2531 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2532 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2533 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2534 					   (u16)(mac_reg & 0xFFFF));
2535 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2536 					   (u16)((mac_reg >> 16) & 0xFFFF));
2537 
2538 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2539 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2540 					   (u16)(mac_reg & 0xFFFF));
2541 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2542 					   (u16)((mac_reg & E1000_RAH_AV)
2543 						 >> 16));
2544 	}
2545 
2546 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547 
2548 release:
2549 	hw->phy.ops.release(hw);
2550 }
2551 
2552 static u32 e1000_calc_rx_da_crc(u8 mac[])
2553 {
2554 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2555 	u32 i, j, mask, crc;
2556 
2557 	DEBUGFUNC("e1000_calc_rx_da_crc");
2558 
2559 	crc = 0xffffffff;
2560 	for (i = 0; i < 6; i++) {
2561 		crc = crc ^ mac[i];
2562 		for (j = 8; j > 0; j--) {
2563 			mask = (crc & 1) * (-1);
2564 			crc = (crc >> 1) ^ (poly & mask);
2565 		}
2566 	}
2567 	return ~crc;
2568 }
2569 
2570 /**
2571  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572  *  with 82579 PHY
2573  *  @hw: pointer to the HW structure
2574  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575  **/
2576 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577 {
2578 	s32 ret_val = E1000_SUCCESS;
2579 	u16 phy_reg, data;
2580 	u32 mac_reg;
2581 	u16 i;
2582 
2583 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2584 
2585 	if (hw->mac.type < e1000_pch2lan)
2586 		return E1000_SUCCESS;
2587 
2588 	/* disable Rx path while enabling/disabling workaround */
2589 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2590 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2591 					phy_reg | (1 << 14));
2592 	if (ret_val)
2593 		return ret_val;
2594 
2595 	if (enable) {
2596 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2597 		 * SHRAL/H) and initial CRC values to the MAC
2598 		 */
2599 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2600 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2601 			u32 addr_high, addr_low;
2602 
2603 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2604 			if (!(addr_high & E1000_RAH_AV))
2605 				continue;
2606 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2607 			mac_addr[0] = (addr_low & 0xFF);
2608 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2609 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2610 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2611 			mac_addr[4] = (addr_high & 0xFF);
2612 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2613 
2614 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2615 					e1000_calc_rx_da_crc(mac_addr));
2616 		}
2617 
2618 		/* Write Rx addresses to the PHY */
2619 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2620 
2621 		/* Enable jumbo frame workaround in the MAC */
2622 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2623 		mac_reg &= ~(1 << 14);
2624 		mac_reg |= (7 << 15);
2625 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2626 
2627 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2628 		mac_reg |= E1000_RCTL_SECRC;
2629 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2630 
2631 		ret_val = e1000_read_kmrn_reg_generic(hw,
2632 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 						&data);
2634 		if (ret_val)
2635 			return ret_val;
2636 		ret_val = e1000_write_kmrn_reg_generic(hw,
2637 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 						data | (1 << 0));
2639 		if (ret_val)
2640 			return ret_val;
2641 		ret_val = e1000_read_kmrn_reg_generic(hw,
2642 						E1000_KMRNCTRLSTA_HD_CTRL,
2643 						&data);
2644 		if (ret_val)
2645 			return ret_val;
2646 		data &= ~(0xF << 8);
2647 		data |= (0xB << 8);
2648 		ret_val = e1000_write_kmrn_reg_generic(hw,
2649 						E1000_KMRNCTRLSTA_HD_CTRL,
2650 						data);
2651 		if (ret_val)
2652 			return ret_val;
2653 
2654 		/* Enable jumbo frame workaround in the PHY */
2655 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2656 		data &= ~(0x7F << 5);
2657 		data |= (0x37 << 5);
2658 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2659 		if (ret_val)
2660 			return ret_val;
2661 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2662 		data &= ~(1 << 13);
2663 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2664 		if (ret_val)
2665 			return ret_val;
2666 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2667 		data &= ~(0x3FF << 2);
2668 		data |= (E1000_TX_PTR_GAP << 2);
2669 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2670 		if (ret_val)
2671 			return ret_val;
2672 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2673 		if (ret_val)
2674 			return ret_val;
2675 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2676 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2677 						(1 << 10));
2678 		if (ret_val)
2679 			return ret_val;
2680 	} else {
2681 		/* Write MAC register values back to h/w defaults */
2682 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2683 		mac_reg &= ~(0xF << 14);
2684 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2685 
2686 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2687 		mac_reg &= ~E1000_RCTL_SECRC;
2688 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2689 
2690 		ret_val = e1000_read_kmrn_reg_generic(hw,
2691 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 						&data);
2693 		if (ret_val)
2694 			return ret_val;
2695 		ret_val = e1000_write_kmrn_reg_generic(hw,
2696 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697 						data & ~(1 << 0));
2698 		if (ret_val)
2699 			return ret_val;
2700 		ret_val = e1000_read_kmrn_reg_generic(hw,
2701 						E1000_KMRNCTRLSTA_HD_CTRL,
2702 						&data);
2703 		if (ret_val)
2704 			return ret_val;
2705 		data &= ~(0xF << 8);
2706 		data |= (0xB << 8);
2707 		ret_val = e1000_write_kmrn_reg_generic(hw,
2708 						E1000_KMRNCTRLSTA_HD_CTRL,
2709 						data);
2710 		if (ret_val)
2711 			return ret_val;
2712 
2713 		/* Write PHY register values back to h/w defaults */
2714 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2715 		data &= ~(0x7F << 5);
2716 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2717 		if (ret_val)
2718 			return ret_val;
2719 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2720 		data |= (1 << 13);
2721 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2722 		if (ret_val)
2723 			return ret_val;
2724 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2725 		data &= ~(0x3FF << 2);
2726 		data |= (0x8 << 2);
2727 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2728 		if (ret_val)
2729 			return ret_val;
2730 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2731 		if (ret_val)
2732 			return ret_val;
2733 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2734 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2735 						~(1 << 10));
2736 		if (ret_val)
2737 			return ret_val;
2738 	}
2739 
2740 	/* re-enable Rx path after enabling/disabling workaround */
2741 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2742 				     ~(1 << 14));
2743 }
2744 
2745 /**
2746  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2747  *  done after every PHY reset.
2748  **/
2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750 {
2751 	s32 ret_val = E1000_SUCCESS;
2752 
2753 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2754 
2755 	if (hw->mac.type != e1000_pch2lan)
2756 		return E1000_SUCCESS;
2757 
2758 	/* Set MDIO slow mode before any other MDIO access */
2759 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2760 	if (ret_val)
2761 		return ret_val;
2762 
2763 	ret_val = hw->phy.ops.acquire(hw);
2764 	if (ret_val)
2765 		return ret_val;
2766 	/* set MSE higher to enable link to stay up when noise is high */
2767 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2768 	if (ret_val)
2769 		goto release;
2770 	/* drop link after 5 times MSE threshold was reached */
2771 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2772 release:
2773 	hw->phy.ops.release(hw);
2774 
2775 	return ret_val;
2776 }
2777 
2778 /**
2779  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2780  *  @hw:   pointer to the HW structure
2781  *
2782  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2783  *  Disable K1 for 1000 and 100 speeds
2784  **/
2785 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2786 {
2787 	s32 ret_val = E1000_SUCCESS;
2788 	u16 status_reg = 0;
2789 
2790 	DEBUGFUNC("e1000_k1_workaround_lv");
2791 
2792 	if (hw->mac.type != e1000_pch2lan)
2793 		return E1000_SUCCESS;
2794 
2795 	/* Set K1 beacon duration based on 10Mbs speed */
2796 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2797 	if (ret_val)
2798 		return ret_val;
2799 
2800 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2801 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2802 		if (status_reg &
2803 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2804 			u16 pm_phy_reg;
2805 
2806 			/* LV 1G/100 Packet drop issue wa  */
2807 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2808 						       &pm_phy_reg);
2809 			if (ret_val)
2810 				return ret_val;
2811 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2812 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2813 							pm_phy_reg);
2814 			if (ret_val)
2815 				return ret_val;
2816 		} else {
2817 			u32 mac_reg;
2818 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2819 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2820 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2821 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2822 		}
2823 	}
2824 
2825 	return ret_val;
2826 }
2827 
2828 /**
2829  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2830  *  @hw:   pointer to the HW structure
2831  *  @gate: boolean set to TRUE to gate, FALSE to ungate
2832  *
2833  *  Gate/ungate the automatic PHY configuration via hardware; perform
2834  *  the configuration via software instead.
2835  **/
2836 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2837 {
2838 	u32 extcnf_ctrl;
2839 
2840 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2841 
2842 	if (hw->mac.type < e1000_pch2lan)
2843 		return;
2844 
2845 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2846 
2847 	if (gate)
2848 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2849 	else
2850 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2851 
2852 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2853 }
2854 
2855 /**
2856  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2857  *  @hw: pointer to the HW structure
2858  *
2859  *  Check the appropriate indication the MAC has finished configuring the
2860  *  PHY after a software reset.
2861  **/
2862 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2863 {
2864 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2865 
2866 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
2867 
2868 	/* Wait for basic configuration completes before proceeding */
2869 	do {
2870 		data = E1000_READ_REG(hw, E1000_STATUS);
2871 		data &= E1000_STATUS_LAN_INIT_DONE;
2872 		usec_delay(100);
2873 	} while ((!data) && --loop);
2874 
2875 	/* If basic configuration is incomplete before the above loop
2876 	 * count reaches 0, loading the configuration from NVM will
2877 	 * leave the PHY in a bad state possibly resulting in no link.
2878 	 */
2879 	if (loop == 0)
2880 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2881 
2882 	/* Clear the Init Done bit for the next init event */
2883 	data = E1000_READ_REG(hw, E1000_STATUS);
2884 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2885 	E1000_WRITE_REG(hw, E1000_STATUS, data);
2886 }
2887 
2888 /**
2889  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2890  *  @hw: pointer to the HW structure
2891  **/
2892 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2893 {
2894 	s32 ret_val = E1000_SUCCESS;
2895 	u16 reg;
2896 
2897 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2898 
2899 	if (hw->phy.ops.check_reset_block(hw))
2900 		return E1000_SUCCESS;
2901 
2902 	/* Allow time for h/w to get to quiescent state after reset */
2903 	msec_delay(10);
2904 
2905 	/* Perform any necessary post-reset workarounds */
2906 	switch (hw->mac.type) {
2907 	case e1000_pchlan:
2908 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2909 		if (ret_val)
2910 			return ret_val;
2911 		break;
2912 	case e1000_pch2lan:
2913 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2914 		if (ret_val)
2915 			return ret_val;
2916 		break;
2917 	default:
2918 		break;
2919 	}
2920 
2921 	/* Clear the host wakeup bit after lcd reset */
2922 	if (hw->mac.type >= e1000_pchlan) {
2923 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2924 		reg &= ~BM_WUC_HOST_WU_BIT;
2925 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2926 	}
2927 
2928 	/* Configure the LCD with the extended configuration region in NVM */
2929 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2930 	if (ret_val)
2931 		return ret_val;
2932 
2933 	/* Configure the LCD with the OEM bits in NVM */
2934 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2935 
2936 	if (hw->mac.type == e1000_pch2lan) {
2937 		/* Ungate automatic PHY configuration on non-managed 82579 */
2938 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
2939 		    E1000_ICH_FWSM_FW_VALID)) {
2940 			msec_delay(10);
2941 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2942 		}
2943 
2944 		/* Set EEE LPI Update Timer to 200usec */
2945 		ret_val = hw->phy.ops.acquire(hw);
2946 		if (ret_val)
2947 			return ret_val;
2948 		ret_val = e1000_write_emi_reg_locked(hw,
2949 						     I82579_LPI_UPDATE_TIMER,
2950 						     0x1387);
2951 		hw->phy.ops.release(hw);
2952 	}
2953 
2954 	return ret_val;
2955 }
2956 
2957 /**
2958  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2959  *  @hw: pointer to the HW structure
2960  *
2961  *  Resets the PHY
2962  *  This is a function pointer entry point called by drivers
2963  *  or other shared routines.
2964  **/
2965 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2966 {
2967 	s32 ret_val = E1000_SUCCESS;
2968 
2969 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2970 
2971 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2972 	if ((hw->mac.type == e1000_pch2lan) &&
2973 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2974 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2975 
2976 	ret_val = e1000_phy_hw_reset_generic(hw);
2977 	if (ret_val)
2978 		return ret_val;
2979 
2980 	return e1000_post_phy_reset_ich8lan(hw);
2981 }
2982 
2983 /**
2984  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2985  *  @hw: pointer to the HW structure
2986  *  @active: TRUE to enable LPLU, FALSE to disable
2987  *
2988  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2989  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2990  *  the phy speed. This function will manually set the LPLU bit and restart
2991  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2992  *  since it configures the same bit.
2993  **/
2994 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2995 {
2996 	s32 ret_val;
2997 	u16 oem_reg;
2998 
2999 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3000 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3001 	if (ret_val)
3002 		return ret_val;
3003 
3004 	if (active)
3005 		oem_reg |= HV_OEM_BITS_LPLU;
3006 	else
3007 		oem_reg &= ~HV_OEM_BITS_LPLU;
3008 
3009 	if (!hw->phy.ops.check_reset_block(hw))
3010 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3011 
3012 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3013 }
3014 
3015 /**
3016  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3017  *  @hw: pointer to the HW structure
3018  *  @active: TRUE to enable LPLU, FALSE to disable
3019  *
3020  *  Sets the LPLU D0 state according to the active flag.  When
3021  *  activating LPLU this function also disables smart speed
3022  *  and vice versa.  LPLU will not be activated unless the
3023  *  device autonegotiation advertisement meets standards of
3024  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3025  *  This is a function pointer entry point only called by
3026  *  PHY setup routines.
3027  **/
3028 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3029 {
3030 	struct e1000_phy_info *phy = &hw->phy;
3031 	u32 phy_ctrl;
3032 	s32 ret_val = E1000_SUCCESS;
3033 	u16 data;
3034 
3035 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3036 
3037 	if (phy->type == e1000_phy_ife)
3038 		return E1000_SUCCESS;
3039 
3040 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3041 
3042 	if (active) {
3043 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3044 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3045 
3046 		if (phy->type != e1000_phy_igp_3)
3047 			return E1000_SUCCESS;
3048 
3049 		/* Call gig speed drop workaround on LPLU before accessing
3050 		 * any PHY registers
3051 		 */
3052 		if (hw->mac.type == e1000_ich8lan)
3053 			e1000_gig_downshift_workaround_ich8lan(hw);
3054 
3055 		/* When LPLU is enabled, we should disable SmartSpeed */
3056 		ret_val = phy->ops.read_reg(hw,
3057 					    IGP01E1000_PHY_PORT_CONFIG,
3058 					    &data);
3059 		if (ret_val)
3060 			return ret_val;
3061 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3062 		ret_val = phy->ops.write_reg(hw,
3063 					     IGP01E1000_PHY_PORT_CONFIG,
3064 					     data);
3065 		if (ret_val)
3066 			return ret_val;
3067 	} else {
3068 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3069 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3070 
3071 		if (phy->type != e1000_phy_igp_3)
3072 			return E1000_SUCCESS;
3073 
3074 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3075 		 * during Dx states where the power conservation is most
3076 		 * important.  During driver activity we should enable
3077 		 * SmartSpeed, so performance is maintained.
3078 		 */
3079 		if (phy->smart_speed == e1000_smart_speed_on) {
3080 			ret_val = phy->ops.read_reg(hw,
3081 						    IGP01E1000_PHY_PORT_CONFIG,
3082 						    &data);
3083 			if (ret_val)
3084 				return ret_val;
3085 
3086 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3087 			ret_val = phy->ops.write_reg(hw,
3088 						     IGP01E1000_PHY_PORT_CONFIG,
3089 						     data);
3090 			if (ret_val)
3091 				return ret_val;
3092 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3093 			ret_val = phy->ops.read_reg(hw,
3094 						    IGP01E1000_PHY_PORT_CONFIG,
3095 						    &data);
3096 			if (ret_val)
3097 				return ret_val;
3098 
3099 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3100 			ret_val = phy->ops.write_reg(hw,
3101 						     IGP01E1000_PHY_PORT_CONFIG,
3102 						     data);
3103 			if (ret_val)
3104 				return ret_val;
3105 		}
3106 	}
3107 
3108 	return E1000_SUCCESS;
3109 }
3110 
3111 /**
3112  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3113  *  @hw: pointer to the HW structure
3114  *  @active: TRUE to enable LPLU, FALSE to disable
3115  *
3116  *  Sets the LPLU D3 state according to the active flag.  When
3117  *  activating LPLU this function also disables smart speed
3118  *  and vice versa.  LPLU will not be activated unless the
3119  *  device autonegotiation advertisement meets standards of
3120  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3121  *  This is a function pointer entry point only called by
3122  *  PHY setup routines.
3123  **/
3124 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3125 {
3126 	struct e1000_phy_info *phy = &hw->phy;
3127 	u32 phy_ctrl;
3128 	s32 ret_val = E1000_SUCCESS;
3129 	u16 data;
3130 
3131 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3132 
3133 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3134 
3135 	if (!active) {
3136 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3137 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3138 
3139 		if (phy->type != e1000_phy_igp_3)
3140 			return E1000_SUCCESS;
3141 
3142 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3143 		 * during Dx states where the power conservation is most
3144 		 * important.  During driver activity we should enable
3145 		 * SmartSpeed, so performance is maintained.
3146 		 */
3147 		if (phy->smart_speed == e1000_smart_speed_on) {
3148 			ret_val = phy->ops.read_reg(hw,
3149 						    IGP01E1000_PHY_PORT_CONFIG,
3150 						    &data);
3151 			if (ret_val)
3152 				return ret_val;
3153 
3154 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3155 			ret_val = phy->ops.write_reg(hw,
3156 						     IGP01E1000_PHY_PORT_CONFIG,
3157 						     data);
3158 			if (ret_val)
3159 				return ret_val;
3160 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3161 			ret_val = phy->ops.read_reg(hw,
3162 						    IGP01E1000_PHY_PORT_CONFIG,
3163 						    &data);
3164 			if (ret_val)
3165 				return ret_val;
3166 
3167 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3168 			ret_val = phy->ops.write_reg(hw,
3169 						     IGP01E1000_PHY_PORT_CONFIG,
3170 						     data);
3171 			if (ret_val)
3172 				return ret_val;
3173 		}
3174 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3175 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3176 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3177 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3178 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3179 
3180 		if (phy->type != e1000_phy_igp_3)
3181 			return E1000_SUCCESS;
3182 
3183 		/* Call gig speed drop workaround on LPLU before accessing
3184 		 * any PHY registers
3185 		 */
3186 		if (hw->mac.type == e1000_ich8lan)
3187 			e1000_gig_downshift_workaround_ich8lan(hw);
3188 
3189 		/* When LPLU is enabled, we should disable SmartSpeed */
3190 		ret_val = phy->ops.read_reg(hw,
3191 					    IGP01E1000_PHY_PORT_CONFIG,
3192 					    &data);
3193 		if (ret_val)
3194 			return ret_val;
3195 
3196 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3197 		ret_val = phy->ops.write_reg(hw,
3198 					     IGP01E1000_PHY_PORT_CONFIG,
3199 					     data);
3200 	}
3201 
3202 	return ret_val;
3203 }
3204 
3205 /**
3206  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3207  *  @hw: pointer to the HW structure
3208  *  @bank:  pointer to the variable that returns the active bank
3209  *
3210  *  Reads signature byte from the NVM using the flash access registers.
3211  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3212  **/
3213 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3214 {
3215 	u32 eecd;
3216 	struct e1000_nvm_info *nvm = &hw->nvm;
3217 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3218 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3219 	u8 sig_byte = 0;
3220 	s32 ret_val;
3221 
3222 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3223 
3224 	switch (hw->mac.type) {
3225 	case e1000_ich8lan:
3226 	case e1000_ich9lan:
3227 		eecd = E1000_READ_REG(hw, E1000_EECD);
3228 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3229 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3230 			if (eecd & E1000_EECD_SEC1VAL)
3231 				*bank = 1;
3232 			else
3233 				*bank = 0;
3234 
3235 			return E1000_SUCCESS;
3236 		}
3237 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3238 		/* fall-thru */
3239 	default:
3240 		/* set bank to 0 in case flash read fails */
3241 		*bank = 0;
3242 
3243 		/* Check bank 0 */
3244 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3245 							&sig_byte);
3246 		if (ret_val)
3247 			return ret_val;
3248 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3249 		    E1000_ICH_NVM_SIG_VALUE) {
3250 			*bank = 0;
3251 			return E1000_SUCCESS;
3252 		}
3253 
3254 		/* Check bank 1 */
3255 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3256 							bank1_offset,
3257 							&sig_byte);
3258 		if (ret_val)
3259 			return ret_val;
3260 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3261 		    E1000_ICH_NVM_SIG_VALUE) {
3262 			*bank = 1;
3263 			return E1000_SUCCESS;
3264 		}
3265 
3266 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3267 		return -E1000_ERR_NVM;
3268 	}
3269 }
3270 
3271 /**
3272  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3273  *  @hw: pointer to the HW structure
3274  *  @offset: The offset (in bytes) of the word(s) to read.
3275  *  @words: Size of data to read in words
3276  *  @data: Pointer to the word(s) to read at offset.
3277  *
3278  *  Reads a word(s) from the NVM using the flash access registers.
3279  **/
3280 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3281 				  u16 *data)
3282 {
3283 	struct e1000_nvm_info *nvm = &hw->nvm;
3284 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3285 	u32 act_offset;
3286 	s32 ret_val = E1000_SUCCESS;
3287 	u32 bank = 0;
3288 	u16 i, word;
3289 
3290 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3291 
3292 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3293 	    (words == 0)) {
3294 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3295 		ret_val = -E1000_ERR_NVM;
3296 		goto out;
3297 	}
3298 
3299 	nvm->ops.acquire(hw);
3300 
3301 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3302 	if (ret_val != E1000_SUCCESS) {
3303 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3304 		bank = 0;
3305 	}
3306 
3307 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3308 	act_offset += offset;
3309 
3310 	ret_val = E1000_SUCCESS;
3311 	for (i = 0; i < words; i++) {
3312 		if (dev_spec->shadow_ram[offset+i].modified) {
3313 			data[i] = dev_spec->shadow_ram[offset+i].value;
3314 		} else {
3315 			ret_val = e1000_read_flash_word_ich8lan(hw,
3316 								act_offset + i,
3317 								&word);
3318 			if (ret_val)
3319 				break;
3320 			data[i] = word;
3321 		}
3322 	}
3323 
3324 	nvm->ops.release(hw);
3325 
3326 out:
3327 	if (ret_val)
3328 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3329 
3330 	return ret_val;
3331 }
3332 
3333 /**
3334  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3335  *  @hw: pointer to the HW structure
3336  *
3337  *  This function does initial flash setup so that a new read/write/erase cycle
3338  *  can be started.
3339  **/
3340 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3341 {
3342 	union ich8_hws_flash_status hsfsts;
3343 	s32 ret_val = -E1000_ERR_NVM;
3344 
3345 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3346 
3347 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3348 
3349 	/* Check if the flash descriptor is valid */
3350 	if (!hsfsts.hsf_status.fldesvalid) {
3351 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3352 		return -E1000_ERR_NVM;
3353 	}
3354 
3355 	/* Clear FCERR and DAEL in hw status by writing 1 */
3356 	hsfsts.hsf_status.flcerr = 1;
3357 	hsfsts.hsf_status.dael = 1;
3358 	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3359 
3360 	/* Either we should have a hardware SPI cycle in progress
3361 	 * bit to check against, in order to start a new cycle or
3362 	 * FDONE bit should be changed in the hardware so that it
3363 	 * is 1 after hardware reset, which can then be used as an
3364 	 * indication whether a cycle is in progress or has been
3365 	 * completed.
3366 	 */
3367 
3368 	if (!hsfsts.hsf_status.flcinprog) {
3369 		/* There is no cycle running at present,
3370 		 * so we can start a cycle.
3371 		 * Begin by setting Flash Cycle Done.
3372 		 */
3373 		hsfsts.hsf_status.flcdone = 1;
3374 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3375 		ret_val = E1000_SUCCESS;
3376 	} else {
3377 		s32 i;
3378 
3379 		/* Otherwise poll for sometime so the current
3380 		 * cycle has a chance to end before giving up.
3381 		 */
3382 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3383 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3384 							      ICH_FLASH_HSFSTS);
3385 			if (!hsfsts.hsf_status.flcinprog) {
3386 				ret_val = E1000_SUCCESS;
3387 				break;
3388 			}
3389 			usec_delay(1);
3390 		}
3391 		if (ret_val == E1000_SUCCESS) {
3392 			/* Successful in waiting for previous cycle to timeout,
3393 			 * now set the Flash Cycle Done.
3394 			 */
3395 			hsfsts.hsf_status.flcdone = 1;
3396 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3397 						hsfsts.regval);
3398 		} else {
3399 			DEBUGOUT("Flash controller busy, cannot get access\n");
3400 		}
3401 	}
3402 
3403 	return ret_val;
3404 }
3405 
3406 /**
3407  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3408  *  @hw: pointer to the HW structure
3409  *  @timeout: maximum time to wait for completion
3410  *
3411  *  This function starts a flash cycle and waits for its completion.
3412  **/
3413 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3414 {
3415 	union ich8_hws_flash_ctrl hsflctl;
3416 	union ich8_hws_flash_status hsfsts;
3417 	u32 i = 0;
3418 
3419 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3420 
3421 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3422 	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3423 	hsflctl.hsf_ctrl.flcgo = 1;
3424 
3425 	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3426 
3427 	/* wait till FDONE bit is set to 1 */
3428 	do {
3429 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3430 		if (hsfsts.hsf_status.flcdone)
3431 			break;
3432 		usec_delay(1);
3433 	} while (i++ < timeout);
3434 
3435 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3436 		return E1000_SUCCESS;
3437 
3438 	return -E1000_ERR_NVM;
3439 }
3440 
3441 /**
3442  *  e1000_read_flash_word_ich8lan - Read word from flash
3443  *  @hw: pointer to the HW structure
3444  *  @offset: offset to data location
3445  *  @data: pointer to the location for storing the data
3446  *
3447  *  Reads the flash word at offset into data.  Offset is converted
3448  *  to bytes before read.
3449  **/
3450 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3451 					 u16 *data)
3452 {
3453 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3454 
3455 	if (!data)
3456 		return -E1000_ERR_NVM;
3457 
3458 	/* Must convert offset into bytes. */
3459 	offset <<= 1;
3460 
3461 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3462 }
3463 
3464 /**
3465  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3466  *  @hw: pointer to the HW structure
3467  *  @offset: The offset of the byte to read.
3468  *  @data: Pointer to a byte to store the value read.
3469  *
3470  *  Reads a single byte from the NVM using the flash access registers.
3471  **/
3472 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3473 					 u8 *data)
3474 {
3475 	s32 ret_val;
3476 	u16 word = 0;
3477 
3478 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3479 
3480 	if (ret_val)
3481 		return ret_val;
3482 
3483 	*data = (u8)word;
3484 
3485 	return E1000_SUCCESS;
3486 }
3487 
3488 /**
3489  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3490  *  @hw: pointer to the HW structure
3491  *  @offset: The offset (in bytes) of the byte or word to read.
3492  *  @size: Size of data to read, 1=byte 2=word
3493  *  @data: Pointer to the word to store the value read.
3494  *
3495  *  Reads a byte or word from the NVM using the flash access registers.
3496  **/
3497 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3498 					 u8 size, u16 *data)
3499 {
3500 	union ich8_hws_flash_status hsfsts;
3501 	union ich8_hws_flash_ctrl hsflctl;
3502 	u32 flash_linear_addr;
3503 	u32 flash_data = 0;
3504 	s32 ret_val = -E1000_ERR_NVM;
3505 	u8 count = 0;
3506 
3507 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3508 
3509 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3510 		return -E1000_ERR_NVM;
3511 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3512 			     hw->nvm.flash_base_addr);
3513 
3514 	do {
3515 		usec_delay(1);
3516 		/* Steps */
3517 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3518 		if (ret_val != E1000_SUCCESS)
3519 			break;
3520 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3521 
3522 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3523 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3524 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3525 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3526 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3527 
3528 		ret_val = e1000_flash_cycle_ich8lan(hw,
3529 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3530 
3531 		/* Check if FCERR is set to 1, if set to 1, clear it
3532 		 * and try the whole sequence a few more times, else
3533 		 * read in (shift in) the Flash Data0, the order is
3534 		 * least significant byte first msb to lsb
3535 		 */
3536 		if (ret_val == E1000_SUCCESS) {
3537 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3538 			if (size == 1)
3539 				*data = (u8)(flash_data & 0x000000FF);
3540 			else if (size == 2)
3541 				*data = (u16)(flash_data & 0x0000FFFF);
3542 			break;
3543 		} else {
3544 			/* If we've gotten here, then things are probably
3545 			 * completely hosed, but if the error condition is
3546 			 * detected, it won't hurt to give it another try...
3547 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3548 			 */
3549 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3550 							      ICH_FLASH_HSFSTS);
3551 			if (hsfsts.hsf_status.flcerr) {
3552 				/* Repeat for some time before giving up. */
3553 				continue;
3554 			} else if (!hsfsts.hsf_status.flcdone) {
3555 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3556 				break;
3557 			}
3558 		}
3559 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3560 
3561 	return ret_val;
3562 }
3563 
3564 
3565 /**
3566  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3567  *  @hw: pointer to the HW structure
3568  *  @offset: The offset (in bytes) of the word(s) to write.
3569  *  @words: Size of data to write in words
3570  *  @data: Pointer to the word(s) to write at offset.
3571  *
3572  *  Writes a byte or word to the NVM using the flash access registers.
3573  **/
3574 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3575 				   u16 *data)
3576 {
3577 	struct e1000_nvm_info *nvm = &hw->nvm;
3578 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3579 	u16 i;
3580 
3581 	DEBUGFUNC("e1000_write_nvm_ich8lan");
3582 
3583 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3584 	    (words == 0)) {
3585 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3586 		return -E1000_ERR_NVM;
3587 	}
3588 
3589 	nvm->ops.acquire(hw);
3590 
3591 	for (i = 0; i < words; i++) {
3592 		dev_spec->shadow_ram[offset+i].modified = TRUE;
3593 		dev_spec->shadow_ram[offset+i].value = data[i];
3594 	}
3595 
3596 	nvm->ops.release(hw);
3597 
3598 	return E1000_SUCCESS;
3599 }
3600 
3601 /**
3602  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3603  *  @hw: pointer to the HW structure
3604  *
3605  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3606  *  which writes the checksum to the shadow ram.  The changes in the shadow
3607  *  ram are then committed to the EEPROM by processing each bank at a time
3608  *  checking for the modified bit and writing only the pending changes.
3609  *  After a successful commit, the shadow ram is cleared and is ready for
3610  *  future writes.
3611  **/
3612 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3613 {
3614 	struct e1000_nvm_info *nvm = &hw->nvm;
3615 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3616 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3617 	s32 ret_val;
3618 	u16 data = 0;
3619 
3620 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3621 
3622 	ret_val = e1000_update_nvm_checksum_generic(hw);
3623 	if (ret_val)
3624 		goto out;
3625 
3626 	if (nvm->type != e1000_nvm_flash_sw)
3627 		goto out;
3628 
3629 	nvm->ops.acquire(hw);
3630 
3631 	/* We're writing to the opposite bank so if we're on bank 1,
3632 	 * write to bank 0 etc.  We also need to erase the segment that
3633 	 * is going to be written
3634 	 */
3635 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3636 	if (ret_val != E1000_SUCCESS) {
3637 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3638 		bank = 0;
3639 	}
3640 
3641 	if (bank == 0) {
3642 		new_bank_offset = nvm->flash_bank_size;
3643 		old_bank_offset = 0;
3644 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3645 		if (ret_val)
3646 			goto release;
3647 	} else {
3648 		old_bank_offset = nvm->flash_bank_size;
3649 		new_bank_offset = 0;
3650 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3651 		if (ret_val)
3652 			goto release;
3653 	}
3654 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3655 		if (dev_spec->shadow_ram[i].modified) {
3656 			data = dev_spec->shadow_ram[i].value;
3657 		} else {
3658 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3659 								old_bank_offset,
3660 								&data);
3661 			if (ret_val)
3662 				break;
3663 		}
3664 		/* If the word is 0x13, then make sure the signature bits
3665 		 * (15:14) are 11b until the commit has completed.
3666 		 * This will allow us to write 10b which indicates the
3667 		 * signature is valid.  We want to do this after the write
3668 		 * has completed so that we don't mark the segment valid
3669 		 * while the write is still in progress
3670 		 */
3671 		if (i == E1000_ICH_NVM_SIG_WORD)
3672 			data |= E1000_ICH_NVM_SIG_MASK;
3673 
3674 		/* Convert offset to bytes. */
3675 		act_offset = (i + new_bank_offset) << 1;
3676 
3677 		usec_delay(100);
3678 
3679 		/* Write the bytes to the new bank. */
3680 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3681 							       act_offset,
3682 							       (u8)data);
3683 		if (ret_val)
3684 			break;
3685 
3686 		usec_delay(100);
3687 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3688 							  act_offset + 1,
3689 							  (u8)(data >> 8));
3690 		if (ret_val)
3691 			break;
3692 	 }
3693 
3694 	/* Don't bother writing the segment valid bits if sector
3695 	 * programming failed.
3696 	 */
3697 	if (ret_val) {
3698 		DEBUGOUT("Flash commit failed.\n");
3699 		goto release;
3700 	}
3701 
3702 	/* Finally validate the new segment by setting bit 15:14
3703 	 * to 10b in word 0x13 , this can be done without an
3704 	 * erase as well since these bits are 11 to start with
3705 	 * and we need to change bit 14 to 0b
3706 	 */
3707 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3708 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3709 	if (ret_val)
3710 		goto release;
3711 
3712 	data &= 0xBFFF;
3713 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3714 						       (u8)(data >> 8));
3715 	if (ret_val)
3716 		goto release;
3717 
3718 	/* And invalidate the previously valid segment by setting
3719 	 * its signature word (0x13) high_byte to 0b. This can be
3720 	 * done without an erase because flash erase sets all bits
3721 	 * to 1's. We can write 1's to 0's without an erase
3722 	 */
3723 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3724 
3725 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3726 
3727 	if (ret_val)
3728 		goto release;
3729 
3730 	/* Great!  Everything worked, we can now clear the cached entries. */
3731 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3732 		dev_spec->shadow_ram[i].modified = FALSE;
3733 		dev_spec->shadow_ram[i].value = 0xFFFF;
3734 	}
3735 
3736 release:
3737 	nvm->ops.release(hw);
3738 
3739 	/* Reload the EEPROM, or else modifications will not appear
3740 	 * until after the next adapter reset.
3741 	 */
3742 	if (!ret_val) {
3743 		nvm->ops.reload(hw);
3744 		msec_delay(10);
3745 	}
3746 
3747 out:
3748 	if (ret_val)
3749 		DEBUGOUT1("NVM update error: %d\n", ret_val);
3750 
3751 	return ret_val;
3752 }
3753 
3754 /**
3755  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3756  *  @hw: pointer to the HW structure
3757  *
3758  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3759  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3760  *  calculated, in which case we need to calculate the checksum and set bit 6.
3761  **/
3762 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3763 {
3764 	s32 ret_val;
3765 	u16 data;
3766 	u16 word;
3767 	u16 valid_csum_mask;
3768 
3769 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3770 
3771 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3772 	 * the checksum needs to be fixed.  This bit is an indication that
3773 	 * the NVM was prepared by OEM software and did not calculate
3774 	 * the checksum...a likely scenario.
3775 	 */
3776 	switch (hw->mac.type) {
3777 	case e1000_pch_lpt:
3778 		word = NVM_COMPAT;
3779 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3780 		break;
3781 	default:
3782 		word = NVM_FUTURE_INIT_WORD1;
3783 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3784 		break;
3785 	}
3786 
3787 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3788 	if (ret_val)
3789 		return ret_val;
3790 
3791 	if (!(data & valid_csum_mask)) {
3792 		data |= valid_csum_mask;
3793 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3794 		if (ret_val)
3795 			return ret_val;
3796 		ret_val = hw->nvm.ops.update(hw);
3797 		if (ret_val)
3798 			return ret_val;
3799 	}
3800 
3801 	return e1000_validate_nvm_checksum_generic(hw);
3802 }
3803 
3804 /**
3805  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3806  *  @hw: pointer to the HW structure
3807  *  @offset: The offset (in bytes) of the byte/word to read.
3808  *  @size: Size of data to read, 1=byte 2=word
3809  *  @data: The byte(s) to write to the NVM.
3810  *
3811  *  Writes one/two bytes to the NVM using the flash access registers.
3812  **/
3813 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3814 					  u8 size, u16 data)
3815 {
3816 	union ich8_hws_flash_status hsfsts;
3817 	union ich8_hws_flash_ctrl hsflctl;
3818 	u32 flash_linear_addr;
3819 	u32 flash_data = 0;
3820 	s32 ret_val;
3821 	u8 count = 0;
3822 
3823 	DEBUGFUNC("e1000_write_ich8_data");
3824 
3825 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3826 		return -E1000_ERR_NVM;
3827 
3828 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3829 			     hw->nvm.flash_base_addr);
3830 
3831 	do {
3832 		usec_delay(1);
3833 		/* Steps */
3834 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3835 		if (ret_val != E1000_SUCCESS)
3836 			break;
3837 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3838 
3839 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3840 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3841 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3842 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3843 
3844 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3845 
3846 		if (size == 1)
3847 			flash_data = (u32)data & 0x00FF;
3848 		else
3849 			flash_data = (u32)data;
3850 
3851 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3852 
3853 		/* check if FCERR is set to 1 , if set to 1, clear it
3854 		 * and try the whole sequence a few more times else done
3855 		 */
3856 		ret_val =
3857 		    e1000_flash_cycle_ich8lan(hw,
3858 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3859 		if (ret_val == E1000_SUCCESS)
3860 			break;
3861 
3862 		/* If we're here, then things are most likely
3863 		 * completely hosed, but if the error condition
3864 		 * is detected, it won't hurt to give it another
3865 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3866 		 */
3867 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3868 		if (hsfsts.hsf_status.flcerr)
3869 			/* Repeat for some time before giving up. */
3870 			continue;
3871 		if (!hsfsts.hsf_status.flcdone) {
3872 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3873 			break;
3874 		}
3875 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3876 
3877 	return ret_val;
3878 }
3879 
3880 
3881 /**
3882  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3883  *  @hw: pointer to the HW structure
3884  *  @offset: The index of the byte to read.
3885  *  @data: The byte to write to the NVM.
3886  *
3887  *  Writes a single byte to the NVM using the flash access registers.
3888  **/
3889 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3890 					  u8 data)
3891 {
3892 	u16 word = (u16)data;
3893 
3894 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3895 
3896 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3897 }
3898 
3899 
3900 
3901 /**
3902  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3903  *  @hw: pointer to the HW structure
3904  *  @offset: The offset of the byte to write.
3905  *  @byte: The byte to write to the NVM.
3906  *
3907  *  Writes a single byte to the NVM using the flash access registers.
3908  *  Goes through a retry algorithm before giving up.
3909  **/
3910 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3911 						u32 offset, u8 byte)
3912 {
3913 	s32 ret_val;
3914 	u16 program_retries;
3915 
3916 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3917 
3918 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3919 	if (!ret_val)
3920 		return ret_val;
3921 
3922 	for (program_retries = 0; program_retries < 100; program_retries++) {
3923 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3924 		usec_delay(100);
3925 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3926 		if (ret_val == E1000_SUCCESS)
3927 			break;
3928 	}
3929 	if (program_retries == 100)
3930 		return -E1000_ERR_NVM;
3931 
3932 	return E1000_SUCCESS;
3933 }
3934 
3935 /**
3936  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3937  *  @hw: pointer to the HW structure
3938  *  @bank: 0 for first bank, 1 for second bank, etc.
3939  *
3940  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3941  *  bank N is 4096 * N + flash_reg_addr.
3942  **/
3943 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3944 {
3945 	struct e1000_nvm_info *nvm = &hw->nvm;
3946 	union ich8_hws_flash_status hsfsts;
3947 	union ich8_hws_flash_ctrl hsflctl;
3948 	u32 flash_linear_addr;
3949 	/* bank size is in 16bit words - adjust to bytes */
3950 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3951 	s32 ret_val;
3952 	s32 count = 0;
3953 	s32 j, iteration, sector_size;
3954 
3955 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3956 
3957 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3958 
3959 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3960 	 * register
3961 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3962 	 *     consecutive sectors.  The start index for the nth Hw sector
3963 	 *     can be calculated as = bank * 4096 + n * 256
3964 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3965 	 *     The start index for the nth Hw sector can be calculated
3966 	 *     as = bank * 4096
3967 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3968 	 *     (ich9 only, otherwise error condition)
3969 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3970 	 */
3971 	switch (hsfsts.hsf_status.berasesz) {
3972 	case 0:
3973 		/* Hw sector size 256 */
3974 		sector_size = ICH_FLASH_SEG_SIZE_256;
3975 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3976 		break;
3977 	case 1:
3978 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3979 		iteration = 1;
3980 		break;
3981 	case 2:
3982 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3983 		iteration = 1;
3984 		break;
3985 	case 3:
3986 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3987 		iteration = 1;
3988 		break;
3989 	default:
3990 		return -E1000_ERR_NVM;
3991 	}
3992 
3993 	/* Start with the base address, then add the sector offset. */
3994 	flash_linear_addr = hw->nvm.flash_base_addr;
3995 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3996 
3997 	for (j = 0; j < iteration; j++) {
3998 		do {
3999 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4000 
4001 			/* Steps */
4002 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4003 			if (ret_val)
4004 				return ret_val;
4005 
4006 			/* Write a value 11 (block Erase) in Flash
4007 			 * Cycle field in hw flash control
4008 			 */
4009 			hsflctl.regval =
4010 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4011 
4012 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4013 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4014 						hsflctl.regval);
4015 
4016 			/* Write the last 24 bits of an index within the
4017 			 * block into Flash Linear address field in Flash
4018 			 * Address.
4019 			 */
4020 			flash_linear_addr += (j * sector_size);
4021 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4022 					      flash_linear_addr);
4023 
4024 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4025 			if (ret_val == E1000_SUCCESS)
4026 				break;
4027 
4028 			/* Check if FCERR is set to 1.  If 1,
4029 			 * clear it and try the whole sequence
4030 			 * a few more times else Done
4031 			 */
4032 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4033 						      ICH_FLASH_HSFSTS);
4034 			if (hsfsts.hsf_status.flcerr)
4035 				/* repeat for some time before giving up */
4036 				continue;
4037 			else if (!hsfsts.hsf_status.flcdone)
4038 				return ret_val;
4039 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4040 	}
4041 
4042 	return E1000_SUCCESS;
4043 }
4044 
4045 /**
4046  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4047  *  @hw: pointer to the HW structure
4048  *  @data: Pointer to the LED settings
4049  *
4050  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4051  *  settings is all 0's or F's, set the LED default to a valid LED default
4052  *  setting.
4053  **/
4054 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4055 {
4056 	s32 ret_val;
4057 
4058 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4059 
4060 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4061 	if (ret_val) {
4062 		DEBUGOUT("NVM Read Error\n");
4063 		return ret_val;
4064 	}
4065 
4066 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4067 		*data = ID_LED_DEFAULT_ICH8LAN;
4068 
4069 	return E1000_SUCCESS;
4070 }
4071 
4072 /**
4073  *  e1000_id_led_init_pchlan - store LED configurations
4074  *  @hw: pointer to the HW structure
4075  *
4076  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4077  *  the PHY LED configuration register.
4078  *
4079  *  PCH also does not have an "always on" or "always off" mode which
4080  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4081  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4082  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4083  *  link based on logic in e1000_led_[on|off]_pchlan().
4084  **/
4085 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4086 {
4087 	struct e1000_mac_info *mac = &hw->mac;
4088 	s32 ret_val;
4089 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4090 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4091 	u16 data, i, temp, shift;
4092 
4093 	DEBUGFUNC("e1000_id_led_init_pchlan");
4094 
4095 	/* Get default ID LED modes */
4096 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4097 	if (ret_val)
4098 		return ret_val;
4099 
4100 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4101 	mac->ledctl_mode1 = mac->ledctl_default;
4102 	mac->ledctl_mode2 = mac->ledctl_default;
4103 
4104 	for (i = 0; i < 4; i++) {
4105 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4106 		shift = (i * 5);
4107 		switch (temp) {
4108 		case ID_LED_ON1_DEF2:
4109 		case ID_LED_ON1_ON2:
4110 		case ID_LED_ON1_OFF2:
4111 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4112 			mac->ledctl_mode1 |= (ledctl_on << shift);
4113 			break;
4114 		case ID_LED_OFF1_DEF2:
4115 		case ID_LED_OFF1_ON2:
4116 		case ID_LED_OFF1_OFF2:
4117 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4118 			mac->ledctl_mode1 |= (ledctl_off << shift);
4119 			break;
4120 		default:
4121 			/* Do nothing */
4122 			break;
4123 		}
4124 		switch (temp) {
4125 		case ID_LED_DEF1_ON2:
4126 		case ID_LED_ON1_ON2:
4127 		case ID_LED_OFF1_ON2:
4128 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4129 			mac->ledctl_mode2 |= (ledctl_on << shift);
4130 			break;
4131 		case ID_LED_DEF1_OFF2:
4132 		case ID_LED_ON1_OFF2:
4133 		case ID_LED_OFF1_OFF2:
4134 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4135 			mac->ledctl_mode2 |= (ledctl_off << shift);
4136 			break;
4137 		default:
4138 			/* Do nothing */
4139 			break;
4140 		}
4141 	}
4142 
4143 	return E1000_SUCCESS;
4144 }
4145 
4146 /**
4147  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4148  *  @hw: pointer to the HW structure
4149  *
4150  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4151  *  register, so the the bus width is hard coded.
4152  **/
4153 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4154 {
4155 	struct e1000_bus_info *bus = &hw->bus;
4156 	s32 ret_val;
4157 
4158 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4159 
4160 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4161 
4162 	/* ICH devices are "PCI Express"-ish.  They have
4163 	 * a configuration space, but do not contain
4164 	 * PCI Express Capability registers, so bus width
4165 	 * must be hardcoded.
4166 	 */
4167 	if (bus->width == e1000_bus_width_unknown)
4168 		bus->width = e1000_bus_width_pcie_x1;
4169 
4170 	return ret_val;
4171 }
4172 
4173 /**
4174  *  e1000_reset_hw_ich8lan - Reset the hardware
4175  *  @hw: pointer to the HW structure
4176  *
4177  *  Does a full reset of the hardware which includes a reset of the PHY and
4178  *  MAC.
4179  **/
4180 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4181 {
4182 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4183 	u16 kum_cfg;
4184 	u32 ctrl, reg;
4185 	s32 ret_val;
4186 
4187 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4188 
4189 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4190 	 * on the last TLP read/write transaction when MAC is reset.
4191 	 */
4192 	ret_val = e1000_disable_pcie_master_generic(hw);
4193 	if (ret_val)
4194 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4195 
4196 	DEBUGOUT("Masking off all interrupts\n");
4197 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4198 
4199 	/* Disable the Transmit and Receive units.  Then delay to allow
4200 	 * any pending transactions to complete before we hit the MAC
4201 	 * with the global reset.
4202 	 */
4203 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4204 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4205 	E1000_WRITE_FLUSH(hw);
4206 
4207 	msec_delay(10);
4208 
4209 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4210 	if (hw->mac.type == e1000_ich8lan) {
4211 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4212 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4213 		/* Set Packet Buffer Size to 16k. */
4214 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4215 	}
4216 
4217 	if (hw->mac.type == e1000_pchlan) {
4218 		/* Save the NVM K1 bit setting*/
4219 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4220 		if (ret_val)
4221 			return ret_val;
4222 
4223 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4224 			dev_spec->nvm_k1_enabled = TRUE;
4225 		else
4226 			dev_spec->nvm_k1_enabled = FALSE;
4227 	}
4228 
4229 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4230 
4231 	if (!hw->phy.ops.check_reset_block(hw)) {
4232 		/* Full-chip reset requires MAC and PHY reset at the same
4233 		 * time to make sure the interface between MAC and the
4234 		 * external PHY is reset.
4235 		 */
4236 		ctrl |= E1000_CTRL_PHY_RST;
4237 
4238 		/* Gate automatic PHY configuration by hardware on
4239 		 * non-managed 82579
4240 		 */
4241 		if ((hw->mac.type == e1000_pch2lan) &&
4242 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4243 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4244 	}
4245 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4246 	DEBUGOUT("Issuing a global reset to ich8lan\n");
4247 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4248 	/* cannot issue a flush here because it hangs the hardware */
4249 	msec_delay(20);
4250 
4251 	/* Set Phy Config Counter to 50msec */
4252 	if (hw->mac.type == e1000_pch2lan) {
4253 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4254 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4255 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4256 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4257 	}
4258 
4259 	if (!ret_val)
4260 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4261 
4262 	if (ctrl & E1000_CTRL_PHY_RST) {
4263 		ret_val = hw->phy.ops.get_cfg_done(hw);
4264 		if (ret_val)
4265 			return ret_val;
4266 
4267 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4268 		if (ret_val)
4269 			return ret_val;
4270 	}
4271 
4272 	/* For PCH, this write will make sure that any noise
4273 	 * will be detected as a CRC error and be dropped rather than show up
4274 	 * as a bad packet to the DMA engine.
4275 	 */
4276 	if (hw->mac.type == e1000_pchlan)
4277 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4278 
4279 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4280 	E1000_READ_REG(hw, E1000_ICR);
4281 
4282 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
4283 	reg |= E1000_KABGTXD_BGSQLBIAS;
4284 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4285 
4286 	return E1000_SUCCESS;
4287 }
4288 
4289 /**
4290  *  e1000_init_hw_ich8lan - Initialize the hardware
4291  *  @hw: pointer to the HW structure
4292  *
4293  *  Prepares the hardware for transmit and receive by doing the following:
4294  *   - initialize hardware bits
4295  *   - initialize LED identification
4296  *   - setup receive address registers
4297  *   - setup flow control
4298  *   - setup transmit descriptors
4299  *   - clear statistics
4300  **/
4301 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4302 {
4303 	struct e1000_mac_info *mac = &hw->mac;
4304 	u32 ctrl_ext, txdctl, snoop;
4305 	s32 ret_val;
4306 	u16 i;
4307 
4308 	DEBUGFUNC("e1000_init_hw_ich8lan");
4309 
4310 	e1000_initialize_hw_bits_ich8lan(hw);
4311 
4312 	/* Initialize identification LED */
4313 	ret_val = mac->ops.id_led_init(hw);
4314 	/* An error is not fatal and we should not stop init due to this */
4315 	if (ret_val)
4316 		DEBUGOUT("Error initializing identification LED\n");
4317 
4318 	/* Setup the receive address. */
4319 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4320 
4321 	/* Zero out the Multicast HASH table */
4322 	DEBUGOUT("Zeroing the MTA\n");
4323 	for (i = 0; i < mac->mta_reg_count; i++)
4324 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4325 
4326 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4327 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4328 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4329 	 */
4330 	if (hw->phy.type == e1000_phy_82578) {
4331 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4332 		i &= ~BM_WUC_HOST_WU_BIT;
4333 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4334 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4335 		if (ret_val)
4336 			return ret_val;
4337 	}
4338 
4339 	/* Setup link and flow control */
4340 	ret_val = mac->ops.setup_link(hw);
4341 
4342 	/* Set the transmit descriptor write-back policy for both queues */
4343 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4344 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4345 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4346 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4347 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4348 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4349 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4350 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4351 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4352 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4353 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4354 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4355 
4356 	/* ICH8 has opposite polarity of no_snoop bits.
4357 	 * By default, we should use snoop behavior.
4358 	 */
4359 	if (mac->type == e1000_ich8lan)
4360 		snoop = PCIE_ICH8_SNOOP_ALL;
4361 	else
4362 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4363 	e1000_set_pcie_no_snoop_generic(hw, snoop);
4364 
4365 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4366 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4367 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4368 
4369 	/* Clear all of the statistics registers (clear on read).  It is
4370 	 * important that we do this after we have tried to establish link
4371 	 * because the symbol error count will increment wildly if there
4372 	 * is no link.
4373 	 */
4374 	e1000_clear_hw_cntrs_ich8lan(hw);
4375 
4376 	return ret_val;
4377 }
4378 
4379 /**
4380  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4381  *  @hw: pointer to the HW structure
4382  *
4383  *  Sets/Clears required hardware bits necessary for correctly setting up the
4384  *  hardware for transmit and receive.
4385  **/
4386 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4387 {
4388 	u32 reg;
4389 
4390 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4391 
4392 	/* Extended Device Control */
4393 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4394 	reg |= (1 << 22);
4395 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4396 	if (hw->mac.type >= e1000_pchlan)
4397 		reg |= E1000_CTRL_EXT_PHYPDEN;
4398 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4399 
4400 	/* Transmit Descriptor Control 0 */
4401 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4402 	reg |= (1 << 22);
4403 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4404 
4405 	/* Transmit Descriptor Control 1 */
4406 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4407 	reg |= (1 << 22);
4408 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4409 
4410 	/* Transmit Arbitration Control 0 */
4411 	reg = E1000_READ_REG(hw, E1000_TARC(0));
4412 	if (hw->mac.type == e1000_ich8lan)
4413 		reg |= (1 << 28) | (1 << 29);
4414 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4415 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4416 
4417 	/* Transmit Arbitration Control 1 */
4418 	reg = E1000_READ_REG(hw, E1000_TARC(1));
4419 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4420 		reg &= ~(1 << 28);
4421 	else
4422 		reg |= (1 << 28);
4423 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4424 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4425 
4426 	/* Device Status */
4427 	if (hw->mac.type == e1000_ich8lan) {
4428 		reg = E1000_READ_REG(hw, E1000_STATUS);
4429 		reg &= ~(1 << 31);
4430 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
4431 	}
4432 
4433 	/* work-around descriptor data corruption issue during nfs v2 udp
4434 	 * traffic, just disable the nfs filtering capability
4435 	 */
4436 	reg = E1000_READ_REG(hw, E1000_RFCTL);
4437 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4438 
4439 	/* Disable IPv6 extension header parsing because some malformed
4440 	 * IPv6 headers can hang the Rx.
4441 	 */
4442 	if (hw->mac.type == e1000_ich8lan)
4443 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4444 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4445 
4446 	/* Enable ECC on Lynxpoint */
4447 	if (hw->mac.type == e1000_pch_lpt) {
4448 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4449 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4450 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4451 
4452 		reg = E1000_READ_REG(hw, E1000_CTRL);
4453 		reg |= E1000_CTRL_MEHE;
4454 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
4455 	}
4456 
4457 	return;
4458 }
4459 
4460 /**
4461  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4462  *  @hw: pointer to the HW structure
4463  *
4464  *  Determines which flow control settings to use, then configures flow
4465  *  control.  Calls the appropriate media-specific link configuration
4466  *  function.  Assuming the adapter has a valid link partner, a valid link
4467  *  should be established.  Assumes the hardware has previously been reset
4468  *  and the transmitter and receiver are not enabled.
4469  **/
4470 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4471 {
4472 	s32 ret_val;
4473 
4474 	DEBUGFUNC("e1000_setup_link_ich8lan");
4475 
4476 	if (hw->phy.ops.check_reset_block(hw))
4477 		return E1000_SUCCESS;
4478 
4479 	/* ICH parts do not have a word in the NVM to determine
4480 	 * the default flow control setting, so we explicitly
4481 	 * set it to full.
4482 	 */
4483 	if (hw->fc.requested_mode == e1000_fc_default)
4484 		hw->fc.requested_mode = e1000_fc_full;
4485 
4486 	/* Save off the requested flow control mode for use later.  Depending
4487 	 * on the link partner's capabilities, we may or may not use this mode.
4488 	 */
4489 	hw->fc.current_mode = hw->fc.requested_mode;
4490 
4491 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4492 		hw->fc.current_mode);
4493 
4494 	/* Continue to configure the copper link. */
4495 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4496 	if (ret_val)
4497 		return ret_val;
4498 
4499 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4500 	if ((hw->phy.type == e1000_phy_82578) ||
4501 	    (hw->phy.type == e1000_phy_82579) ||
4502 	    (hw->phy.type == e1000_phy_i217) ||
4503 	    (hw->phy.type == e1000_phy_82577)) {
4504 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4505 
4506 		ret_val = hw->phy.ops.write_reg(hw,
4507 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
4508 					     hw->fc.pause_time);
4509 		if (ret_val)
4510 			return ret_val;
4511 	}
4512 
4513 	return e1000_set_fc_watermarks_generic(hw);
4514 }
4515 
4516 /**
4517  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4518  *  @hw: pointer to the HW structure
4519  *
4520  *  Configures the kumeran interface to the PHY to wait the appropriate time
4521  *  when polling the PHY, then call the generic setup_copper_link to finish
4522  *  configuring the copper link.
4523  **/
4524 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4525 {
4526 	u32 ctrl;
4527 	s32 ret_val;
4528 	u16 reg_data;
4529 
4530 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4531 
4532 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4533 	ctrl |= E1000_CTRL_SLU;
4534 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4535 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4536 
4537 	/* Set the mac to wait the maximum time between each iteration
4538 	 * and increase the max iterations when polling the phy;
4539 	 * this fixes erroneous timeouts at 10Mbps.
4540 	 */
4541 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4542 					       0xFFFF);
4543 	if (ret_val)
4544 		return ret_val;
4545 	ret_val = e1000_read_kmrn_reg_generic(hw,
4546 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
4547 					      &reg_data);
4548 	if (ret_val)
4549 		return ret_val;
4550 	reg_data |= 0x3F;
4551 	ret_val = e1000_write_kmrn_reg_generic(hw,
4552 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
4553 					       reg_data);
4554 	if (ret_val)
4555 		return ret_val;
4556 
4557 	switch (hw->phy.type) {
4558 	case e1000_phy_igp_3:
4559 		ret_val = e1000_copper_link_setup_igp(hw);
4560 		if (ret_val)
4561 			return ret_val;
4562 		break;
4563 	case e1000_phy_bm:
4564 	case e1000_phy_82578:
4565 		ret_val = e1000_copper_link_setup_m88(hw);
4566 		if (ret_val)
4567 			return ret_val;
4568 		break;
4569 	case e1000_phy_82577:
4570 	case e1000_phy_82579:
4571 		ret_val = e1000_copper_link_setup_82577(hw);
4572 		if (ret_val)
4573 			return ret_val;
4574 		break;
4575 	case e1000_phy_ife:
4576 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4577 					       &reg_data);
4578 		if (ret_val)
4579 			return ret_val;
4580 
4581 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4582 
4583 		switch (hw->phy.mdix) {
4584 		case 1:
4585 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4586 			break;
4587 		case 2:
4588 			reg_data |= IFE_PMC_FORCE_MDIX;
4589 			break;
4590 		case 0:
4591 		default:
4592 			reg_data |= IFE_PMC_AUTO_MDIX;
4593 			break;
4594 		}
4595 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4596 						reg_data);
4597 		if (ret_val)
4598 			return ret_val;
4599 		break;
4600 	default:
4601 		break;
4602 	}
4603 
4604 	return e1000_setup_copper_link_generic(hw);
4605 }
4606 
4607 /**
4608  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4609  *  @hw: pointer to the HW structure
4610  *
4611  *  Calls the PHY specific link setup function and then calls the
4612  *  generic setup_copper_link to finish configuring the link for
4613  *  Lynxpoint PCH devices
4614  **/
4615 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4616 {
4617 	u32 ctrl;
4618 	s32 ret_val;
4619 
4620 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4621 
4622 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4623 	ctrl |= E1000_CTRL_SLU;
4624 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4625 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4626 
4627 	ret_val = e1000_copper_link_setup_82577(hw);
4628 	if (ret_val)
4629 		return ret_val;
4630 
4631 	return e1000_setup_copper_link_generic(hw);
4632 }
4633 
4634 /**
4635  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4636  *  @hw: pointer to the HW structure
4637  *  @speed: pointer to store current link speed
4638  *  @duplex: pointer to store the current link duplex
4639  *
4640  *  Calls the generic get_speed_and_duplex to retrieve the current link
4641  *  information and then calls the Kumeran lock loss workaround for links at
4642  *  gigabit speeds.
4643  **/
4644 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4645 					  u16 *duplex)
4646 {
4647 	s32 ret_val;
4648 
4649 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4650 
4651 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4652 	if (ret_val)
4653 		return ret_val;
4654 
4655 	if ((hw->mac.type == e1000_ich8lan) &&
4656 	    (hw->phy.type == e1000_phy_igp_3) &&
4657 	    (*speed == SPEED_1000)) {
4658 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4659 	}
4660 
4661 	return ret_val;
4662 }
4663 
4664 /**
4665  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4666  *  @hw: pointer to the HW structure
4667  *
4668  *  Work-around for 82566 Kumeran PCS lock loss:
4669  *  On link status change (i.e. PCI reset, speed change) and link is up and
4670  *  speed is gigabit-
4671  *    0) if workaround is optionally disabled do nothing
4672  *    1) wait 1ms for Kumeran link to come up
4673  *    2) check Kumeran Diagnostic register PCS lock loss bit
4674  *    3) if not set the link is locked (all is good), otherwise...
4675  *    4) reset the PHY
4676  *    5) repeat up to 10 times
4677  *  Note: this is only called for IGP3 copper when speed is 1gb.
4678  **/
4679 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4680 {
4681 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4682 	u32 phy_ctrl;
4683 	s32 ret_val;
4684 	u16 i, data;
4685 	bool link;
4686 
4687 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4688 
4689 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4690 		return E1000_SUCCESS;
4691 
4692 	/* Make sure link is up before proceeding.  If not just return.
4693 	 * Attempting this while link is negotiating fouled up link
4694 	 * stability
4695 	 */
4696 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4697 	if (!link)
4698 		return E1000_SUCCESS;
4699 
4700 	for (i = 0; i < 10; i++) {
4701 		/* read once to clear */
4702 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4703 		if (ret_val)
4704 			return ret_val;
4705 		/* and again to get new status */
4706 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4707 		if (ret_val)
4708 			return ret_val;
4709 
4710 		/* check for PCS lock */
4711 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4712 			return E1000_SUCCESS;
4713 
4714 		/* Issue PHY reset */
4715 		hw->phy.ops.reset(hw);
4716 		msec_delay_irq(5);
4717 	}
4718 	/* Disable GigE link negotiation */
4719 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4720 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4721 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4722 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4723 
4724 	/* Call gig speed drop workaround on Gig disable before accessing
4725 	 * any PHY registers
4726 	 */
4727 	e1000_gig_downshift_workaround_ich8lan(hw);
4728 
4729 	/* unable to acquire PCS lock */
4730 	return -E1000_ERR_PHY;
4731 }
4732 
4733 /**
4734  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4735  *  @hw: pointer to the HW structure
4736  *  @state: boolean value used to set the current Kumeran workaround state
4737  *
4738  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
4739  *  /disabled - FALSE).
4740  **/
4741 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4742 						 bool state)
4743 {
4744 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4745 
4746 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4747 
4748 	if (hw->mac.type != e1000_ich8lan) {
4749 		DEBUGOUT("Workaround applies to ICH8 only.\n");
4750 		return;
4751 	}
4752 
4753 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4754 
4755 	return;
4756 }
4757 
4758 /**
4759  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4760  *  @hw: pointer to the HW structure
4761  *
4762  *  Workaround for 82566 power-down on D3 entry:
4763  *    1) disable gigabit link
4764  *    2) write VR power-down enable
4765  *    3) read it back
4766  *  Continue if successful, else issue LCD reset and repeat
4767  **/
4768 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4769 {
4770 	u32 reg;
4771 	u16 data;
4772 	u8  retry = 0;
4773 
4774 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4775 
4776 	if (hw->phy.type != e1000_phy_igp_3)
4777 		return;
4778 
4779 	/* Try the workaround twice (if needed) */
4780 	do {
4781 		/* Disable link */
4782 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4783 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4784 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4785 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4786 
4787 		/* Call gig speed drop workaround on Gig disable before
4788 		 * accessing any PHY registers
4789 		 */
4790 		if (hw->mac.type == e1000_ich8lan)
4791 			e1000_gig_downshift_workaround_ich8lan(hw);
4792 
4793 		/* Write VR power-down enable */
4794 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4795 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4796 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4797 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4798 
4799 		/* Read it back and test */
4800 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4801 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4802 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4803 			break;
4804 
4805 		/* Issue PHY reset and repeat at most one more time */
4806 		reg = E1000_READ_REG(hw, E1000_CTRL);
4807 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4808 		retry++;
4809 	} while (retry);
4810 }
4811 
4812 /**
4813  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4814  *  @hw: pointer to the HW structure
4815  *
4816  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4817  *  LPLU, Gig disable, MDIC PHY reset):
4818  *    1) Set Kumeran Near-end loopback
4819  *    2) Clear Kumeran Near-end loopback
4820  *  Should only be called for ICH8[m] devices with any 1G Phy.
4821  **/
4822 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4823 {
4824 	s32 ret_val;
4825 	u16 reg_data;
4826 
4827 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4828 
4829 	if ((hw->mac.type != e1000_ich8lan) ||
4830 	    (hw->phy.type == e1000_phy_ife))
4831 		return;
4832 
4833 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4834 					      &reg_data);
4835 	if (ret_val)
4836 		return;
4837 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4838 	ret_val = e1000_write_kmrn_reg_generic(hw,
4839 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
4840 					       reg_data);
4841 	if (ret_val)
4842 		return;
4843 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4844 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4845 				     reg_data);
4846 }
4847 
4848 /**
4849  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4850  *  @hw: pointer to the HW structure
4851  *
4852  *  During S0 to Sx transition, it is possible the link remains at gig
4853  *  instead of negotiating to a lower speed.  Before going to Sx, set
4854  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4855  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4856  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4857  *  needs to be written.
4858  *  Parts that support (and are linked to a partner which support) EEE in
4859  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4860  *  than 10Mbps w/o EEE.
4861  **/
4862 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4863 {
4864 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4865 	u32 phy_ctrl;
4866 	s32 ret_val;
4867 
4868 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4869 
4870 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4871 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4872 
4873 	if (hw->phy.type == e1000_phy_i217) {
4874 		u16 phy_reg, device_id = hw->device_id;
4875 
4876 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4877 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4878 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4879 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4880 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4881 
4882 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4883 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4884 		}
4885 
4886 		ret_val = hw->phy.ops.acquire(hw);
4887 		if (ret_val)
4888 			goto out;
4889 
4890 		if (!dev_spec->eee_disable) {
4891 			u16 eee_advert;
4892 
4893 			ret_val =
4894 			    e1000_read_emi_reg_locked(hw,
4895 						      I217_EEE_ADVERTISEMENT,
4896 						      &eee_advert);
4897 			if (ret_val)
4898 				goto release;
4899 
4900 			/* Disable LPLU if both link partners support 100BaseT
4901 			 * EEE and 100Full is advertised on both ends of the
4902 			 * link, and enable Auto Enable LPI since there will
4903 			 * be no driver to enable LPI while in Sx.
4904 			 */
4905 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4906 			    (dev_spec->eee_lp_ability &
4907 			     I82579_EEE_100_SUPPORTED) &&
4908 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4909 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4910 					      E1000_PHY_CTRL_NOND0A_LPLU);
4911 
4912 				/* Set Auto Enable LPI after link up */
4913 				hw->phy.ops.read_reg_locked(hw,
4914 							    I217_LPI_GPIO_CTRL,
4915 							    &phy_reg);
4916 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4917 				hw->phy.ops.write_reg_locked(hw,
4918 							     I217_LPI_GPIO_CTRL,
4919 							     phy_reg);
4920 			}
4921 		}
4922 
4923 		/* For i217 Intel Rapid Start Technology support,
4924 		 * when the system is going into Sx and no manageability engine
4925 		 * is present, the driver must configure proxy to reset only on
4926 		 * power good.  LPI (Low Power Idle) state must also reset only
4927 		 * on power good, as well as the MTA (Multicast table array).
4928 		 * The SMBus release must also be disabled on LCD reset.
4929 		 */
4930 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
4931 		      E1000_ICH_FWSM_FW_VALID)) {
4932 			/* Enable proxy to reset only on power good. */
4933 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4934 						    &phy_reg);
4935 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4936 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4937 						     phy_reg);
4938 
4939 			/* Set bit enable LPI (EEE) to reset only on
4940 			 * power good.
4941 			*/
4942 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4943 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4944 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4945 
4946 			/* Disable the SMB release on LCD reset. */
4947 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4948 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4949 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4950 		}
4951 
4952 		/* Enable MTA to reset for Intel Rapid Start Technology
4953 		 * Support
4954 		 */
4955 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4956 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4957 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4958 
4959 release:
4960 		hw->phy.ops.release(hw);
4961 	}
4962 out:
4963 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4964 
4965 	if (hw->mac.type == e1000_ich8lan)
4966 		e1000_gig_downshift_workaround_ich8lan(hw);
4967 
4968 	if (hw->mac.type >= e1000_pchlan) {
4969 		e1000_oem_bits_config_ich8lan(hw, FALSE);
4970 
4971 		/* Reset PHY to activate OEM bits on 82577/8 */
4972 		if (hw->mac.type == e1000_pchlan)
4973 			e1000_phy_hw_reset_generic(hw);
4974 
4975 		ret_val = hw->phy.ops.acquire(hw);
4976 		if (ret_val)
4977 			return;
4978 		e1000_write_smbus_addr(hw);
4979 		hw->phy.ops.release(hw);
4980 	}
4981 
4982 	return;
4983 }
4984 
4985 /**
4986  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4987  *  @hw: pointer to the HW structure
4988  *
4989  *  During Sx to S0 transitions on non-managed devices or managed devices
4990  *  on which PHY resets are not blocked, if the PHY registers cannot be
4991  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4992  *  the PHY.
4993  *  On i217, setup Intel Rapid Start Technology.
4994  **/
4995 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4996 {
4997 	s32 ret_val;
4998 
4999 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5000 	if (hw->mac.type < e1000_pch2lan)
5001 		return;
5002 
5003 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5004 	if (ret_val) {
5005 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5006 		return;
5007 	}
5008 
5009 	/* For i217 Intel Rapid Start Technology support when the system
5010 	 * is transitioning from Sx and no manageability engine is present
5011 	 * configure SMBus to restore on reset, disable proxy, and enable
5012 	 * the reset on MTA (Multicast table array).
5013 	 */
5014 	if (hw->phy.type == e1000_phy_i217) {
5015 		u16 phy_reg;
5016 
5017 		ret_val = hw->phy.ops.acquire(hw);
5018 		if (ret_val) {
5019 			DEBUGOUT("Failed to setup iRST\n");
5020 			return;
5021 		}
5022 
5023 		/* Clear Auto Enable LPI after link up */
5024 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5025 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5026 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5027 
5028 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5029 		    E1000_ICH_FWSM_FW_VALID)) {
5030 			/* Restore clear on SMB if no manageability engine
5031 			 * is present
5032 			 */
5033 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5034 							      &phy_reg);
5035 			if (ret_val)
5036 				goto release;
5037 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5038 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5039 
5040 			/* Disable Proxy */
5041 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5042 		}
5043 		/* Enable reset on MTA */
5044 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5045 						      &phy_reg);
5046 		if (ret_val)
5047 			goto release;
5048 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5049 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5050 release:
5051 		if (ret_val)
5052 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5053 		hw->phy.ops.release(hw);
5054 	}
5055 }
5056 
5057 /**
5058  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5059  *  @hw: pointer to the HW structure
5060  *
5061  *  Return the LED back to the default configuration.
5062  **/
5063 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5064 {
5065 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5066 
5067 	if (hw->phy.type == e1000_phy_ife)
5068 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5069 					     0);
5070 
5071 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5072 	return E1000_SUCCESS;
5073 }
5074 
5075 /**
5076  *  e1000_led_on_ich8lan - Turn LEDs on
5077  *  @hw: pointer to the HW structure
5078  *
5079  *  Turn on the LEDs.
5080  **/
5081 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5082 {
5083 	DEBUGFUNC("e1000_led_on_ich8lan");
5084 
5085 	if (hw->phy.type == e1000_phy_ife)
5086 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5087 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5088 
5089 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5090 	return E1000_SUCCESS;
5091 }
5092 
5093 /**
5094  *  e1000_led_off_ich8lan - Turn LEDs off
5095  *  @hw: pointer to the HW structure
5096  *
5097  *  Turn off the LEDs.
5098  **/
5099 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5100 {
5101 	DEBUGFUNC("e1000_led_off_ich8lan");
5102 
5103 	if (hw->phy.type == e1000_phy_ife)
5104 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5105 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5106 
5107 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5108 	return E1000_SUCCESS;
5109 }
5110 
5111 /**
5112  *  e1000_setup_led_pchlan - Configures SW controllable LED
5113  *  @hw: pointer to the HW structure
5114  *
5115  *  This prepares the SW controllable LED for use.
5116  **/
5117 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5118 {
5119 	DEBUGFUNC("e1000_setup_led_pchlan");
5120 
5121 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5122 				     (u16)hw->mac.ledctl_mode1);
5123 }
5124 
5125 /**
5126  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5127  *  @hw: pointer to the HW structure
5128  *
5129  *  Return the LED back to the default configuration.
5130  **/
5131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5132 {
5133 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5134 
5135 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5136 				     (u16)hw->mac.ledctl_default);
5137 }
5138 
5139 /**
5140  *  e1000_led_on_pchlan - Turn LEDs on
5141  *  @hw: pointer to the HW structure
5142  *
5143  *  Turn on the LEDs.
5144  **/
5145 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5146 {
5147 	u16 data = (u16)hw->mac.ledctl_mode2;
5148 	u32 i, led;
5149 
5150 	DEBUGFUNC("e1000_led_on_pchlan");
5151 
5152 	/* If no link, then turn LED on by setting the invert bit
5153 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5154 	 */
5155 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5156 		for (i = 0; i < 3; i++) {
5157 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5158 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5159 			    E1000_LEDCTL_MODE_LINK_UP)
5160 				continue;
5161 			if (led & E1000_PHY_LED0_IVRT)
5162 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5163 			else
5164 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5165 		}
5166 	}
5167 
5168 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5169 }
5170 
5171 /**
5172  *  e1000_led_off_pchlan - Turn LEDs off
5173  *  @hw: pointer to the HW structure
5174  *
5175  *  Turn off the LEDs.
5176  **/
5177 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5178 {
5179 	u16 data = (u16)hw->mac.ledctl_mode1;
5180 	u32 i, led;
5181 
5182 	DEBUGFUNC("e1000_led_off_pchlan");
5183 
5184 	/* If no link, then turn LED off by clearing the invert bit
5185 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5186 	 */
5187 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5188 		for (i = 0; i < 3; i++) {
5189 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5190 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5191 			    E1000_LEDCTL_MODE_LINK_UP)
5192 				continue;
5193 			if (led & E1000_PHY_LED0_IVRT)
5194 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5195 			else
5196 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5197 		}
5198 	}
5199 
5200 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5201 }
5202 
5203 /**
5204  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5205  *  @hw: pointer to the HW structure
5206  *
5207  *  Read appropriate register for the config done bit for completion status
5208  *  and configure the PHY through s/w for EEPROM-less parts.
5209  *
5210  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5211  *  config done bit, so only an error is logged and continues.  If we were
5212  *  to return with error, EEPROM-less silicon would not be able to be reset
5213  *  or change link.
5214  **/
5215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5216 {
5217 	s32 ret_val = E1000_SUCCESS;
5218 	u32 bank = 0;
5219 	u32 status;
5220 
5221 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5222 
5223 	e1000_get_cfg_done_generic(hw);
5224 
5225 	/* Wait for indication from h/w that it has completed basic config */
5226 	if (hw->mac.type >= e1000_ich10lan) {
5227 		e1000_lan_init_done_ich8lan(hw);
5228 	} else {
5229 		ret_val = e1000_get_auto_rd_done_generic(hw);
5230 		if (ret_val) {
5231 			/* When auto config read does not complete, do not
5232 			 * return with an error. This can happen in situations
5233 			 * where there is no eeprom and prevents getting link.
5234 			 */
5235 			DEBUGOUT("Auto Read Done did not complete\n");
5236 			ret_val = E1000_SUCCESS;
5237 		}
5238 	}
5239 
5240 	/* Clear PHY Reset Asserted bit */
5241 	status = E1000_READ_REG(hw, E1000_STATUS);
5242 	if (status & E1000_STATUS_PHYRA)
5243 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5244 	else
5245 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5246 
5247 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5248 	if (hw->mac.type <= e1000_ich9lan) {
5249 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5250 		    (hw->phy.type == e1000_phy_igp_3)) {
5251 			e1000_phy_init_script_igp3(hw);
5252 		}
5253 	} else {
5254 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5255 			/* Maybe we should do a basic PHY config */
5256 			DEBUGOUT("EEPROM not present\n");
5257 			ret_val = -E1000_ERR_CONFIG;
5258 		}
5259 	}
5260 
5261 	return ret_val;
5262 }
5263 
5264 /**
5265  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5266  * @hw: pointer to the HW structure
5267  *
5268  * In the case of a PHY power down to save power, or to turn off link during a
5269  * driver unload, or wake on lan is not enabled, remove the link.
5270  **/
5271 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5272 {
5273 	/* If the management interface is not enabled, then power down */
5274 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5275 	      hw->phy.ops.check_reset_block(hw)))
5276 		e1000_power_down_phy_copper(hw);
5277 
5278 	return;
5279 }
5280 
5281 /**
5282  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5283  *  @hw: pointer to the HW structure
5284  *
5285  *  Clears hardware counters specific to the silicon family and calls
5286  *  clear_hw_cntrs_generic to clear all general purpose counters.
5287  **/
5288 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5289 {
5290 	u16 phy_data;
5291 	s32 ret_val;
5292 
5293 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5294 
5295 	e1000_clear_hw_cntrs_base_generic(hw);
5296 
5297 	E1000_READ_REG(hw, E1000_ALGNERRC);
5298 	E1000_READ_REG(hw, E1000_RXERRC);
5299 	E1000_READ_REG(hw, E1000_TNCRS);
5300 	E1000_READ_REG(hw, E1000_CEXTERR);
5301 	E1000_READ_REG(hw, E1000_TSCTC);
5302 	E1000_READ_REG(hw, E1000_TSCTFC);
5303 
5304 	E1000_READ_REG(hw, E1000_MGTPRC);
5305 	E1000_READ_REG(hw, E1000_MGTPDC);
5306 	E1000_READ_REG(hw, E1000_MGTPTC);
5307 
5308 	E1000_READ_REG(hw, E1000_IAC);
5309 	E1000_READ_REG(hw, E1000_ICRXOC);
5310 
5311 	/* Clear PHY statistics registers */
5312 	if ((hw->phy.type == e1000_phy_82578) ||
5313 	    (hw->phy.type == e1000_phy_82579) ||
5314 	    (hw->phy.type == e1000_phy_i217) ||
5315 	    (hw->phy.type == e1000_phy_82577)) {
5316 		ret_val = hw->phy.ops.acquire(hw);
5317 		if (ret_val)
5318 			return;
5319 		ret_val = hw->phy.ops.set_page(hw,
5320 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5321 		if (ret_val)
5322 			goto release;
5323 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5324 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5325 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5326 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5327 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5328 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5329 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5330 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5331 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5332 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5333 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5334 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5335 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5336 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5337 release:
5338 		hw->phy.ops.release(hw);
5339 	}
5340 }
5341 
5342