xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision 60eddb209b5ad13a549ca74a41b7cb38a31da5ef)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72 
73 #include "e1000_api.h"
74 
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 					      u8 *mc_addr_list,
86 					      u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91 					    bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93 					    bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95 				   u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97 			       u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99 				    u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104 					    u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113 					   u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129 					  u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131 					    u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133 					   u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135 					     u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137 						  u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139 					  u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141 						 u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153 	struct ich8_hsfsts {
154 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156 		u16 dael:1; /* bit 2 Direct Access error Log */
157 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159 		u16 reserved1:2; /* bit 13:6 Reserved */
160 		u16 reserved2:6; /* bit 13:6 Reserved */
161 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163 	} hsf_status;
164 	u16 regval;
165 };
166 
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170 	struct ich8_hsflctl {
171 		u16 flcgo:1;   /* 0 Flash Cycle Go */
172 		u16 flcycle:2;   /* 2:1 Flash Cycle */
173 		u16 reserved:5;   /* 7:3 Reserved  */
174 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175 		u16 flockdn:6;   /* 15:10 Reserved */
176 	} hsf_ctrl;
177 	u16 regval;
178 };
179 
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182 	struct ich8_flracc {
183 		u32 grra:8; /* 0:7 GbE region Read Access */
184 		u32 grwa:8; /* 8:15 GbE region Write Access */
185 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187 	} hsf_flregacc;
188 	u16 regval;
189 };
190 
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203 	u16 phy_reg = 0;
204 	u32 phy_id = 0;
205 	s32 ret_val = 0;
206 	u16 retry_count;
207 	u32 mac_reg = 0;
208 
209 	for (retry_count = 0; retry_count < 2; retry_count++) {
210 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211 		if (ret_val || (phy_reg == 0xFFFF))
212 			continue;
213 		phy_id = (u32)(phy_reg << 16);
214 
215 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216 		if (ret_val || (phy_reg == 0xFFFF)) {
217 			phy_id = 0;
218 			continue;
219 		}
220 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221 		break;
222 	}
223 
224 	if (hw->phy.id) {
225 		if  (hw->phy.id == phy_id)
226 			goto out;
227 	} else if (phy_id) {
228 		hw->phy.id = phy_id;
229 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230 		goto out;
231 	}
232 
233 	/* In case the PHY needs to be in mdio slow mode,
234 	 * set slow mode and try to get the PHY id again.
235 	 */
236 	if (hw->mac.type < e1000_pch_lpt) {
237 		hw->phy.ops.release(hw);
238 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239 		if (!ret_val)
240 			ret_val = e1000_get_phy_id(hw);
241 		hw->phy.ops.acquire(hw);
242 	}
243 
244 	if (ret_val)
245 		return FALSE;
246 out:
247 	if (hw->mac.type >= e1000_pch_lpt) {
248 		/* Only unforce SMBus if ME is not active */
249 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250 		    E1000_ICH_FWSM_FW_VALID)) {
251 			/* Unforce SMBus mode in PHY */
252 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 
256 			/* Unforce SMBus mode in MAC */
257 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260 		}
261 	}
262 
263 	return TRUE;
264 }
265 
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275 	u32 mac_reg;
276 
277 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 
279 	/* Set Phy Config Counter to 50msec */
280 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 
285 	/* Toggle LANPHYPC Value bit */
286 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290 	E1000_WRITE_FLUSH(hw);
291 	msec_delay(1);
292 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294 	E1000_WRITE_FLUSH(hw);
295 
296 	if (hw->mac.type < e1000_pch_lpt) {
297 		msec_delay(50);
298 	} else {
299 		u16 count = 20;
300 
301 		do {
302 			msec_delay(5);
303 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304 			   E1000_CTRL_EXT_LPCD) && count--);
305 
306 		msec_delay(30);
307 	}
308 }
309 
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320 	s32 ret_val;
321 
322 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 
324 	/* Gate automatic PHY configuration by hardware on managed and
325 	 * non-managed 82579 and newer adapters.
326 	 */
327 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328 
329 	/* It is not possible to be certain of the current state of ULP
330 	 * so forcibly disable it.
331 	 */
332 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333 	e1000_disable_ulp_lpt_lp(hw, TRUE);
334 
335 	ret_val = hw->phy.ops.acquire(hw);
336 	if (ret_val) {
337 		DEBUGOUT("Failed to initialize PHY flow\n");
338 		goto out;
339 	}
340 
341 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342 	 * inaccessible and resetting the PHY is not blocked, toggle the
343 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344 	 */
345 	switch (hw->mac.type) {
346 	case e1000_pch_lpt:
347 	case e1000_pch_spt:
348 	case e1000_pch_cnp:
349 		if (e1000_phy_is_accessible_pchlan(hw))
350 			break;
351 
352 		/* Before toggling LANPHYPC, see if PHY is accessible by
353 		 * forcing MAC to SMBus mode first.
354 		 */
355 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
356 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
357 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
358 
359 		/* Wait 50 milliseconds for MAC to finish any retries
360 		 * that it might be trying to perform from previous
361 		 * attempts to acknowledge any phy read requests.
362 		 */
363 		 msec_delay(50);
364 
365 		/* fall-through */
366 	case e1000_pch2lan:
367 		if (e1000_phy_is_accessible_pchlan(hw))
368 			break;
369 
370 		/* fall-through */
371 	case e1000_pchlan:
372 		if ((hw->mac.type == e1000_pchlan) &&
373 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
374 			break;
375 
376 		if (hw->phy.ops.check_reset_block(hw)) {
377 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
378 			ret_val = -E1000_ERR_PHY;
379 			break;
380 		}
381 
382 		/* Toggle LANPHYPC Value bit */
383 		e1000_toggle_lanphypc_pch_lpt(hw);
384 		if (hw->mac.type >= e1000_pch_lpt) {
385 			if (e1000_phy_is_accessible_pchlan(hw))
386 				break;
387 
388 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
389 			 * so ensure that the MAC is also out of SMBus mode
390 			 */
391 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
392 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
393 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
394 
395 			if (e1000_phy_is_accessible_pchlan(hw))
396 				break;
397 
398 			ret_val = -E1000_ERR_PHY;
399 		}
400 		break;
401 	default:
402 		break;
403 	}
404 
405 	hw->phy.ops.release(hw);
406 	if (!ret_val) {
407 
408 		/* Check to see if able to reset PHY.  Print error if not */
409 		if (hw->phy.ops.check_reset_block(hw)) {
410 			ERROR_REPORT("Reset blocked by ME\n");
411 			goto out;
412 		}
413 
414 		/* Reset the PHY before any access to it.  Doing so, ensures
415 		 * that the PHY is in a known good state before we read/write
416 		 * PHY registers.  The generic reset is sufficient here,
417 		 * because we haven't determined the PHY type yet.
418 		 */
419 		ret_val = e1000_phy_hw_reset_generic(hw);
420 		if (ret_val)
421 			goto out;
422 
423 		/* On a successful reset, possibly need to wait for the PHY
424 		 * to quiesce to an accessible state before returning control
425 		 * to the calling function.  If the PHY does not quiesce, then
426 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
427 		 *  the PHY is in.
428 		 */
429 		ret_val = hw->phy.ops.check_reset_block(hw);
430 		if (ret_val)
431 			ERROR_REPORT("ME blocked access to PHY after reset\n");
432 	}
433 
434 out:
435 	/* Ungate automatic PHY configuration on non-managed 82579 */
436 	if ((hw->mac.type == e1000_pch2lan) &&
437 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
438 		msec_delay(10);
439 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
440 	}
441 
442 	return ret_val;
443 }
444 
445 /**
446  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
447  *  @hw: pointer to the HW structure
448  *
449  *  Initialize family-specific PHY parameters and function pointers.
450  **/
451 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
452 {
453 	struct e1000_phy_info *phy = &hw->phy;
454 	s32 ret_val;
455 
456 	DEBUGFUNC("e1000_init_phy_params_pchlan");
457 
458 	phy->addr		= 1;
459 	phy->reset_delay_us	= 100;
460 
461 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
462 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
463 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
464 	phy->ops.set_page	= e1000_set_page_igp;
465 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
466 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
467 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
468 	phy->ops.release	= e1000_release_swflag_ich8lan;
469 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
470 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
471 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
472 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
473 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
474 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
475 	phy->ops.power_up	= e1000_power_up_phy_copper;
476 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
477 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
478 
479 	phy->id = e1000_phy_unknown;
480 
481 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
482 	if (ret_val)
483 		return ret_val;
484 
485 	if (phy->id == e1000_phy_unknown)
486 		switch (hw->mac.type) {
487 		default:
488 			ret_val = e1000_get_phy_id(hw);
489 			if (ret_val)
490 				return ret_val;
491 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
492 				break;
493 			/* fall-through */
494 		case e1000_pch2lan:
495 		case e1000_pch_lpt:
496 		case e1000_pch_spt:
497 		case e1000_pch_cnp:
498 			/* In case the PHY needs to be in mdio slow mode,
499 			 * set slow mode and try to get the PHY id again.
500 			 */
501 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
502 			if (ret_val)
503 				return ret_val;
504 			ret_val = e1000_get_phy_id(hw);
505 			if (ret_val)
506 				return ret_val;
507 			break;
508 		}
509 	phy->type = e1000_get_phy_type_from_id(phy->id);
510 
511 	switch (phy->type) {
512 	case e1000_phy_82577:
513 	case e1000_phy_82579:
514 	case e1000_phy_i217:
515 		phy->ops.check_polarity = e1000_check_polarity_82577;
516 		phy->ops.force_speed_duplex =
517 			e1000_phy_force_speed_duplex_82577;
518 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
519 		phy->ops.get_info = e1000_get_phy_info_82577;
520 		phy->ops.commit = e1000_phy_sw_reset_generic;
521 		break;
522 	case e1000_phy_82578:
523 		phy->ops.check_polarity = e1000_check_polarity_m88;
524 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
525 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
526 		phy->ops.get_info = e1000_get_phy_info_m88;
527 		break;
528 	default:
529 		ret_val = -E1000_ERR_PHY;
530 		break;
531 	}
532 
533 	return ret_val;
534 }
535 
536 /**
537  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
538  *  @hw: pointer to the HW structure
539  *
540  *  Initialize family-specific PHY parameters and function pointers.
541  **/
542 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
543 {
544 	struct e1000_phy_info *phy = &hw->phy;
545 	s32 ret_val;
546 	u16 i = 0;
547 
548 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
549 
550 	phy->addr		= 1;
551 	phy->reset_delay_us	= 100;
552 
553 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
554 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
555 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
556 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
557 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
558 	phy->ops.release	= e1000_release_swflag_ich8lan;
559 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
560 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
561 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
562 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
563 	phy->ops.power_up	= e1000_power_up_phy_copper;
564 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
565 
566 	/* We may need to do this twice - once for IGP and if that fails,
567 	 * we'll set BM func pointers and try again
568 	 */
569 	ret_val = e1000_determine_phy_address(hw);
570 	if (ret_val) {
571 		phy->ops.write_reg = e1000_write_phy_reg_bm;
572 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
573 		ret_val = e1000_determine_phy_address(hw);
574 		if (ret_val) {
575 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
576 			return ret_val;
577 		}
578 	}
579 
580 	phy->id = 0;
581 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
582 	       (i++ < 100)) {
583 		msec_delay(1);
584 		ret_val = e1000_get_phy_id(hw);
585 		if (ret_val)
586 			return ret_val;
587 	}
588 
589 	/* Verify phy id */
590 	switch (phy->id) {
591 	case IGP03E1000_E_PHY_ID:
592 		phy->type = e1000_phy_igp_3;
593 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
594 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
595 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
596 		phy->ops.get_info = e1000_get_phy_info_igp;
597 		phy->ops.check_polarity = e1000_check_polarity_igp;
598 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
599 		break;
600 	case IFE_E_PHY_ID:
601 	case IFE_PLUS_E_PHY_ID:
602 	case IFE_C_E_PHY_ID:
603 		phy->type = e1000_phy_ife;
604 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
605 		phy->ops.get_info = e1000_get_phy_info_ife;
606 		phy->ops.check_polarity = e1000_check_polarity_ife;
607 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
608 		break;
609 	case BME1000_E_PHY_ID:
610 		phy->type = e1000_phy_bm;
611 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
612 		phy->ops.read_reg = e1000_read_phy_reg_bm;
613 		phy->ops.write_reg = e1000_write_phy_reg_bm;
614 		phy->ops.commit = e1000_phy_sw_reset_generic;
615 		phy->ops.get_info = e1000_get_phy_info_m88;
616 		phy->ops.check_polarity = e1000_check_polarity_m88;
617 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
618 		break;
619 	default:
620 		return -E1000_ERR_PHY;
621 		break;
622 	}
623 
624 	return E1000_SUCCESS;
625 }
626 
627 /**
628  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
629  *  @hw: pointer to the HW structure
630  *
631  *  Initialize family-specific NVM parameters and function
632  *  pointers.
633  **/
634 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
635 {
636 	struct e1000_nvm_info *nvm = &hw->nvm;
637 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
638 	u32 gfpreg, sector_base_addr, sector_end_addr;
639 	u16 i;
640 	u32 nvm_size;
641 
642 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
643 
644 	nvm->type = e1000_nvm_flash_sw;
645 
646 	if (hw->mac.type >= e1000_pch_spt) {
647 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
648 		 * STRAP register. This is because in SPT the GbE Flash region
649 		 * is no longer accessed through the flash registers. Instead,
650 		 * the mechanism has changed, and the Flash region access
651 		 * registers are now implemented in GbE memory space.
652 		 */
653 		nvm->flash_base_addr = 0;
654 		nvm_size =
655 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
656 		    * NVM_SIZE_MULTIPLIER;
657 		nvm->flash_bank_size = nvm_size / 2;
658 		/* Adjust to word count */
659 		nvm->flash_bank_size /= sizeof(u16);
660 		/* Set the base address for flash register access */
661 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
662 	} else {
663 		/* Can't read flash registers if register set isn't mapped. */
664 		if (!hw->flash_address) {
665 			DEBUGOUT("ERROR: Flash registers not mapped\n");
666 			return -E1000_ERR_CONFIG;
667 		}
668 
669 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
670 
671 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
672 		 * Add 1 to sector_end_addr since this sector is included in
673 		 * the overall size.
674 		 */
675 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
676 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
677 
678 		/* flash_base_addr is byte-aligned */
679 		nvm->flash_base_addr = sector_base_addr
680 				       << FLASH_SECTOR_ADDR_SHIFT;
681 
682 		/* find total size of the NVM, then cut in half since the total
683 		 * size represents two separate NVM banks.
684 		 */
685 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
686 					<< FLASH_SECTOR_ADDR_SHIFT);
687 		nvm->flash_bank_size /= 2;
688 		/* Adjust to word count */
689 		nvm->flash_bank_size /= sizeof(u16);
690 	}
691 
692 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
693 
694 	/* Clear shadow ram */
695 	for (i = 0; i < nvm->word_size; i++) {
696 		dev_spec->shadow_ram[i].modified = FALSE;
697 		dev_spec->shadow_ram[i].value    = 0xFFFF;
698 	}
699 
700 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
701 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
702 
703 	/* Function Pointers */
704 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
705 	nvm->ops.release	= e1000_release_nvm_ich8lan;
706 	if (hw->mac.type >= e1000_pch_spt) {
707 		nvm->ops.read	= e1000_read_nvm_spt;
708 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
709 	} else {
710 		nvm->ops.read	= e1000_read_nvm_ich8lan;
711 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
712 	}
713 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
714 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
715 	nvm->ops.write		= e1000_write_nvm_ich8lan;
716 
717 	return E1000_SUCCESS;
718 }
719 
720 /**
721  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
722  *  @hw: pointer to the HW structure
723  *
724  *  Initialize family-specific MAC parameters and function
725  *  pointers.
726  **/
727 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
728 {
729 	struct e1000_mac_info *mac = &hw->mac;
730 
731 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
732 
733 	/* Set media type function pointer */
734 	hw->phy.media_type = e1000_media_type_copper;
735 
736 	/* Set mta register count */
737 	mac->mta_reg_count = 32;
738 	/* Set rar entry count */
739 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
740 	if (mac->type == e1000_ich8lan)
741 		mac->rar_entry_count--;
742 	/* Set if part includes ASF firmware */
743 	mac->asf_firmware_present = TRUE;
744 	/* FWSM register */
745 	mac->has_fwsm = TRUE;
746 	/* ARC subsystem not supported */
747 	mac->arc_subsystem_valid = FALSE;
748 	/* Adaptive IFS supported */
749 	mac->adaptive_ifs = TRUE;
750 
751 	/* Function pointers */
752 
753 	/* bus type/speed/width */
754 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
755 	/* function id */
756 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
757 	/* reset */
758 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
759 	/* hw initialization */
760 	mac->ops.init_hw = e1000_init_hw_ich8lan;
761 	/* link setup */
762 	mac->ops.setup_link = e1000_setup_link_ich8lan;
763 	/* physical interface setup */
764 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
765 	/* check for link */
766 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
767 	/* link info */
768 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
769 	/* multicast address update */
770 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
771 	/* clear hardware counters */
772 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
773 
774 	/* LED and other operations */
775 	switch (mac->type) {
776 	case e1000_ich8lan:
777 	case e1000_ich9lan:
778 	case e1000_ich10lan:
779 		/* check management mode */
780 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
781 		/* ID LED init */
782 		mac->ops.id_led_init = e1000_id_led_init_generic;
783 		/* blink LED */
784 		mac->ops.blink_led = e1000_blink_led_generic;
785 		/* setup LED */
786 		mac->ops.setup_led = e1000_setup_led_generic;
787 		/* cleanup LED */
788 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
789 		/* turn on/off LED */
790 		mac->ops.led_on = e1000_led_on_ich8lan;
791 		mac->ops.led_off = e1000_led_off_ich8lan;
792 		break;
793 	case e1000_pch2lan:
794 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
795 		mac->ops.rar_set = e1000_rar_set_pch2lan;
796 		/* fall-through */
797 	case e1000_pch_lpt:
798 	case e1000_pch_spt:
799 	case e1000_pch_cnp:
800 		/* multicast address update for pch2 */
801 		mac->ops.update_mc_addr_list =
802 			e1000_update_mc_addr_list_pch2lan;
803 		/* fall-through */
804 	case e1000_pchlan:
805 		/* check management mode */
806 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
807 		/* ID LED init */
808 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
809 		/* setup LED */
810 		mac->ops.setup_led = e1000_setup_led_pchlan;
811 		/* cleanup LED */
812 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
813 		/* turn on/off LED */
814 		mac->ops.led_on = e1000_led_on_pchlan;
815 		mac->ops.led_off = e1000_led_off_pchlan;
816 		break;
817 	default:
818 		break;
819 	}
820 
821 	if (mac->type >= e1000_pch_lpt) {
822 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
823 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
824 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
825 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
826 	}
827 
828 	/* Enable PCS Lock-loss workaround for ICH8 */
829 	if (mac->type == e1000_ich8lan)
830 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
831 
832 	return E1000_SUCCESS;
833 }
834 
835 /**
836  *  __e1000_access_emi_reg_locked - Read/write EMI register
837  *  @hw: pointer to the HW structure
838  *  @addr: EMI address to program
839  *  @data: pointer to value to read/write from/to the EMI address
840  *  @read: boolean flag to indicate read or write
841  *
842  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
843  **/
844 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
845 					 u16 *data, bool read)
846 {
847 	s32 ret_val;
848 
849 	DEBUGFUNC("__e1000_access_emi_reg_locked");
850 
851 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
852 	if (ret_val)
853 		return ret_val;
854 
855 	if (read)
856 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
857 						      data);
858 	else
859 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
860 						       *data);
861 
862 	return ret_val;
863 }
864 
865 /**
866  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
867  *  @hw: pointer to the HW structure
868  *  @addr: EMI address to program
869  *  @data: value to be read from the EMI address
870  *
871  *  Assumes the SW/FW/HW Semaphore is already acquired.
872  **/
873 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
874 {
875 	DEBUGFUNC("e1000_read_emi_reg_locked");
876 
877 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
878 }
879 
880 /**
881  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
882  *  @hw: pointer to the HW structure
883  *  @addr: EMI address to program
884  *  @data: value to be written to the EMI address
885  *
886  *  Assumes the SW/FW/HW Semaphore is already acquired.
887  **/
888 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
889 {
890 	DEBUGFUNC("e1000_read_emi_reg_locked");
891 
892 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
893 }
894 
895 /**
896  *  e1000_set_eee_pchlan - Enable/disable EEE support
897  *  @hw: pointer to the HW structure
898  *
899  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
900  *  the link and the EEE capabilities of the link partner.  The LPI Control
901  *  register bits will remain set only if/when link is up.
902  *
903  *  EEE LPI must not be asserted earlier than one second after link is up.
904  *  On 82579, EEE LPI should not be enabled until such time otherwise there
905  *  can be link issues with some switches.  Other devices can have EEE LPI
906  *  enabled immediately upon link up since they have a timer in hardware which
907  *  prevents LPI from being asserted too early.
908  **/
909 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
910 {
911 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
912 	s32 ret_val;
913 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
914 
915 	DEBUGFUNC("e1000_set_eee_pchlan");
916 
917 	switch (hw->phy.type) {
918 	case e1000_phy_82579:
919 		lpa = I82579_EEE_LP_ABILITY;
920 		pcs_status = I82579_EEE_PCS_STATUS;
921 		adv_addr = I82579_EEE_ADVERTISEMENT;
922 		break;
923 	case e1000_phy_i217:
924 		lpa = I217_EEE_LP_ABILITY;
925 		pcs_status = I217_EEE_PCS_STATUS;
926 		adv_addr = I217_EEE_ADVERTISEMENT;
927 		break;
928 	default:
929 		return E1000_SUCCESS;
930 	}
931 
932 	ret_val = hw->phy.ops.acquire(hw);
933 	if (ret_val)
934 		return ret_val;
935 
936 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
937 	if (ret_val)
938 		goto release;
939 
940 	/* Clear bits that enable EEE in various speeds */
941 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
942 
943 	/* Enable EEE if not disabled by user */
944 	if (!dev_spec->eee_disable) {
945 		/* Save off link partner's EEE ability */
946 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
947 						    &dev_spec->eee_lp_ability);
948 		if (ret_val)
949 			goto release;
950 
951 		/* Read EEE advertisement */
952 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
953 		if (ret_val)
954 			goto release;
955 
956 		/* Enable EEE only for speeds in which the link partner is
957 		 * EEE capable and for which we advertise EEE.
958 		 */
959 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
960 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
961 
962 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
963 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
964 			if (data & NWAY_LPAR_100TX_FD_CAPS)
965 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
966 			else
967 				/* EEE is not supported in 100Half, so ignore
968 				 * partner's EEE in 100 ability if full-duplex
969 				 * is not advertised.
970 				 */
971 				dev_spec->eee_lp_ability &=
972 				    ~I82579_EEE_100_SUPPORTED;
973 		}
974 	}
975 
976 	if (hw->phy.type == e1000_phy_82579) {
977 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
978 						    &data);
979 		if (ret_val)
980 			goto release;
981 
982 		data &= ~I82579_LPI_100_PLL_SHUT;
983 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
984 						     data);
985 	}
986 
987 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
988 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
989 	if (ret_val)
990 		goto release;
991 
992 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
993 release:
994 	hw->phy.ops.release(hw);
995 
996 	return ret_val;
997 }
998 
999 /**
1000  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1001  *  @hw:   pointer to the HW structure
1002  *  @link: link up bool flag
1003  *
1004  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1005  *  preventing further DMA write requests.  Workaround the issue by disabling
1006  *  the de-assertion of the clock request when in 1Gpbs mode.
1007  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1008  *  speeds in order to avoid Tx hangs.
1009  **/
1010 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1011 {
1012 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1013 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1014 	s32 ret_val = E1000_SUCCESS;
1015 	u16 reg;
1016 
1017 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1018 		ret_val = hw->phy.ops.acquire(hw);
1019 		if (ret_val)
1020 			return ret_val;
1021 
1022 		ret_val =
1023 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1024 					       &reg);
1025 		if (ret_val)
1026 			goto release;
1027 
1028 		ret_val =
1029 		    e1000_write_kmrn_reg_locked(hw,
1030 						E1000_KMRNCTRLSTA_K1_CONFIG,
1031 						reg &
1032 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1033 		if (ret_val)
1034 			goto release;
1035 
1036 		usec_delay(10);
1037 
1038 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1039 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1040 
1041 		ret_val =
1042 		    e1000_write_kmrn_reg_locked(hw,
1043 						E1000_KMRNCTRLSTA_K1_CONFIG,
1044 						reg);
1045 release:
1046 		hw->phy.ops.release(hw);
1047 	} else {
1048 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1049 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1050 
1051 		if ((hw->phy.revision > 5) || !link ||
1052 		    ((status & E1000_STATUS_SPEED_100) &&
1053 		     (status & E1000_STATUS_FD)))
1054 			goto update_fextnvm6;
1055 
1056 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1057 		if (ret_val)
1058 			return ret_val;
1059 
1060 		/* Clear link status transmit timeout */
1061 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1062 
1063 		if (status & E1000_STATUS_SPEED_100) {
1064 			/* Set inband Tx timeout to 5x10us for 100Half */
1065 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1066 
1067 			/* Do not extend the K1 entry latency for 100Half */
1068 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1069 		} else {
1070 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1071 			reg |= 50 <<
1072 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1073 
1074 			/* Extend the K1 entry latency for 10 Mbps */
1075 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1076 		}
1077 
1078 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1079 		if (ret_val)
1080 			return ret_val;
1081 
1082 update_fextnvm6:
1083 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1084 	}
1085 
1086 	return ret_val;
1087 }
1088 
1089 static u64 e1000_ltr2ns(u16 ltr)
1090 {
1091 	u32 value, scale;
1092 
1093 	/* Determine the latency in nsec based on the LTR value & scale */
1094 	value = ltr & E1000_LTRV_VALUE_MASK;
1095 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1096 
1097 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1098 }
1099 
1100 /**
1101  *  e1000_platform_pm_pch_lpt - Set platform power management values
1102  *  @hw: pointer to the HW structure
1103  *  @link: bool indicating link status
1104  *
1105  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1106  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1107  *  when link is up (which must not exceed the maximum latency supported
1108  *  by the platform), otherwise specify there is no LTR requirement.
1109  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1110  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1111  *  Capability register set, on this device LTR is set by writing the
1112  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1113  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1114  *  message to the PMC.
1115  *
1116  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1117  *  high-water mark.
1118  **/
1119 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1120 {
1121 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1122 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1123 	u16 lat_enc = 0;	/* latency encoded */
1124 	s32 obff_hwm = 0;
1125 
1126 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1127 
1128 	if (link) {
1129 		u16 speed, duplex, scale = 0;
1130 		u16 max_snoop, max_nosnoop;
1131 		u16 max_ltr_enc;	/* max LTR latency encoded */
1132 		s64 lat_ns;
1133 		s64 value;
1134 		u32 rxa;
1135 
1136 		if (!hw->mac.max_frame_size) {
1137 			DEBUGOUT("max_frame_size not set.\n");
1138 			return -E1000_ERR_CONFIG;
1139 		}
1140 
1141 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1142 		if (!speed) {
1143 			DEBUGOUT("Speed not set.\n");
1144 			return -E1000_ERR_CONFIG;
1145 		}
1146 
1147 		/* Rx Packet Buffer Allocation size (KB) */
1148 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1149 
1150 		/* Determine the maximum latency tolerated by the device.
1151 		 *
1152 		 * Per the PCIe spec, the tolerated latencies are encoded as
1153 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1154 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1155 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1156 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1157 		 */
1158 		lat_ns = ((s64)rxa * 1024 -
1159 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1160 		if (lat_ns < 0)
1161 			lat_ns = 0;
1162 		else
1163 			lat_ns /= speed;
1164 		value = lat_ns;
1165 
1166 		while (value > E1000_LTRV_VALUE_MASK) {
1167 			scale++;
1168 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1169 		}
1170 		if (scale > E1000_LTRV_SCALE_MAX) {
1171 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1172 			return -E1000_ERR_CONFIG;
1173 		}
1174 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1175 
1176 		/* Determine the maximum latency tolerated by the platform */
1177 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1178 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1179 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1180 
1181 		if (lat_enc > max_ltr_enc) {
1182 			lat_enc = max_ltr_enc;
1183 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1184 		}
1185 
1186 		if (lat_ns) {
1187 			lat_ns *= speed * 1000;
1188 			lat_ns /= 8;
1189 			lat_ns /= 1000000000;
1190 			obff_hwm = (s32)(rxa - lat_ns);
1191 		}
1192 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1193 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1194 			return -E1000_ERR_CONFIG;
1195 		}
1196 	}
1197 
1198 	/* Set Snoop and No-Snoop latencies the same */
1199 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1200 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1201 
1202 	/* Set OBFF high water mark */
1203 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1204 	reg |= obff_hwm;
1205 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1206 
1207 	/* Enable OBFF */
1208 	reg = E1000_READ_REG(hw, E1000_SVCR);
1209 	reg |= E1000_SVCR_OFF_EN;
1210 	/* Always unblock interrupts to the CPU even when the system is
1211 	 * in OBFF mode. This ensures that small round-robin traffic
1212 	 * (like ping) does not get dropped or experience long latency.
1213 	 */
1214 	reg |= E1000_SVCR_OFF_MASKINT;
1215 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1216 
1217 	return E1000_SUCCESS;
1218 }
1219 
1220 /**
1221  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1222  *  @hw: pointer to the HW structure
1223  *  @itr: interrupt throttling rate
1224  *
1225  *  Configure OBFF with the updated interrupt rate.
1226  **/
1227 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1228 {
1229 	u32 svcr;
1230 	s32 timer;
1231 
1232 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1233 
1234 	/* Convert ITR value into microseconds for OBFF timer */
1235 	timer = itr & E1000_ITR_MASK;
1236 	timer = (timer * E1000_ITR_MULT) / 1000;
1237 
1238 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1239 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1240 		return -E1000_ERR_CONFIG;
1241 	}
1242 
1243 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1244 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1245 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1246 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1247 
1248 	return E1000_SUCCESS;
1249 }
1250 
1251 /**
1252  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1253  *  @hw: pointer to the HW structure
1254  *  @to_sx: boolean indicating a system power state transition to Sx
1255  *
1256  *  When link is down, configure ULP mode to significantly reduce the power
1257  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1258  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1259  *  system, configure the ULP mode by software.
1260  */
1261 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1262 {
1263 	u32 mac_reg;
1264 	s32 ret_val = E1000_SUCCESS;
1265 	u16 phy_reg;
1266 	u16 oem_reg = 0;
1267 
1268 	if ((hw->mac.type < e1000_pch_lpt) ||
1269 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1270 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1271 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1272 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1273 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1274 		return 0;
1275 
1276 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1277 		/* Request ME configure ULP mode in the PHY */
1278 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1279 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1280 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1281 
1282 		goto out;
1283 	}
1284 
1285 	if (!to_sx) {
1286 		int i = 0;
1287 
1288 		/* Poll up to 5 seconds for Cable Disconnected indication */
1289 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1290 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1291 			/* Bail if link is re-acquired */
1292 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1293 				return -E1000_ERR_PHY;
1294 
1295 			if (i++ == 100)
1296 				break;
1297 
1298 			msec_delay(50);
1299 		}
1300 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1301 			 (E1000_READ_REG(hw, E1000_FEXT) &
1302 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1303 			 i * 50);
1304 	}
1305 
1306 	ret_val = hw->phy.ops.acquire(hw);
1307 	if (ret_val)
1308 		goto out;
1309 
1310 	/* Force SMBus mode in PHY */
1311 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1312 	if (ret_val)
1313 		goto release;
1314 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1315 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1316 
1317 	/* Force SMBus mode in MAC */
1318 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1319 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1320 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1321 
1322 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1323 	 * LPLU and disable Gig speed when entering ULP
1324 	 */
1325 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1326 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1327 						       &oem_reg);
1328 		if (ret_val)
1329 			goto release;
1330 
1331 		phy_reg = oem_reg;
1332 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1333 
1334 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1335 							phy_reg);
1336 
1337 		if (ret_val)
1338 			goto release;
1339 	}
1340 
1341 	/* Set Inband ULP Exit, Reset to SMBus mode and
1342 	 * Disable SMBus Release on PERST# in PHY
1343 	 */
1344 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1345 	if (ret_val)
1346 		goto release;
1347 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1348 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1349 	if (to_sx) {
1350 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1351 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1352 		else
1353 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1354 
1355 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1356 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1357 	} else {
1358 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1359 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1360 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1361 	}
1362 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363 
1364 	/* Set Disable SMBus Release on PERST# in MAC */
1365 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1366 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1367 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1368 
1369 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1370 	phy_reg |= I218_ULP_CONFIG1_START;
1371 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1372 
1373 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1374 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1375 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1376 							oem_reg);
1377 		if (ret_val)
1378 			goto release;
1379 	}
1380 
1381 release:
1382 	hw->phy.ops.release(hw);
1383 out:
1384 	if (ret_val)
1385 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1386 	else
1387 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1388 
1389 	return ret_val;
1390 }
1391 
1392 /**
1393  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1394  *  @hw: pointer to the HW structure
1395  *  @force: boolean indicating whether or not to force disabling ULP
1396  *
1397  *  Un-configure ULP mode when link is up, the system is transitioned from
1398  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1399  *  system, poll for an indication from ME that ULP has been un-configured.
1400  *  If not on an ME enabled system, un-configure the ULP mode by software.
1401  *
1402  *  During nominal operation, this function is called when link is acquired
1403  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1404  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1405  *  to forcibly disable ULP.
1406  */
1407 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1408 {
1409 	s32 ret_val = E1000_SUCCESS;
1410 	u32 mac_reg;
1411 	u16 phy_reg;
1412 	int i = 0;
1413 
1414 	if ((hw->mac.type < e1000_pch_lpt) ||
1415 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1416 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1417 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1418 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1419 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1420 		return 0;
1421 
1422 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1423 		if (force) {
1424 			/* Request ME un-configure ULP mode in the PHY */
1425 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1426 			mac_reg &= ~E1000_H2ME_ULP;
1427 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1428 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1429 		}
1430 
1431 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1432 		while (E1000_READ_REG(hw, E1000_FWSM) &
1433 		       E1000_FWSM_ULP_CFG_DONE) {
1434 			if (i++ == 30) {
1435 				ret_val = -E1000_ERR_PHY;
1436 				goto out;
1437 			}
1438 
1439 			msec_delay(10);
1440 		}
1441 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1442 
1443 		if (force) {
1444 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1445 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1446 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1447 		} else {
1448 			/* Clear H2ME.ULP after ME ULP configuration */
1449 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1450 			mac_reg &= ~E1000_H2ME_ULP;
1451 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1452 		}
1453 
1454 		goto out;
1455 	}
1456 
1457 	ret_val = hw->phy.ops.acquire(hw);
1458 	if (ret_val)
1459 		goto out;
1460 
1461 	if (force)
1462 		/* Toggle LANPHYPC Value bit */
1463 		e1000_toggle_lanphypc_pch_lpt(hw);
1464 
1465 	/* Unforce SMBus mode in PHY */
1466 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1467 	if (ret_val) {
1468 		/* The MAC might be in PCIe mode, so temporarily force to
1469 		 * SMBus mode in order to access the PHY.
1470 		 */
1471 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1472 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1473 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1474 
1475 		msec_delay(50);
1476 
1477 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1478 						       &phy_reg);
1479 		if (ret_val)
1480 			goto release;
1481 	}
1482 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1483 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1484 
1485 	/* Unforce SMBus mode in MAC */
1486 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1487 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1488 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1489 
1490 	/* When ULP mode was previously entered, K1 was disabled by the
1491 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1492 	 */
1493 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1494 	if (ret_val)
1495 		goto release;
1496 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1497 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1498 
1499 	/* Clear ULP enabled configuration */
1500 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1501 	if (ret_val)
1502 		goto release;
1503 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1504 		     I218_ULP_CONFIG1_STICKY_ULP |
1505 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1506 		     I218_ULP_CONFIG1_WOL_HOST |
1507 		     I218_ULP_CONFIG1_INBAND_EXIT |
1508 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1509 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1510 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1511 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1512 
1513 	/* Commit ULP changes by starting auto ULP configuration */
1514 	phy_reg |= I218_ULP_CONFIG1_START;
1515 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1516 
1517 	/* Clear Disable SMBus Release on PERST# in MAC */
1518 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1519 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1520 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1521 
1522 release:
1523 	hw->phy.ops.release(hw);
1524 	if (force) {
1525 		hw->phy.ops.reset(hw);
1526 		msec_delay(50);
1527 	}
1528 out:
1529 	if (ret_val)
1530 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1531 	else
1532 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1533 
1534 	return ret_val;
1535 }
1536 
1537 /**
1538  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1539  *  @hw: pointer to the HW structure
1540  *
1541  *  Checks to see of the link status of the hardware has changed.  If a
1542  *  change in link status has been detected, then we read the PHY registers
1543  *  to get the current speed/duplex if link exists.
1544  **/
1545 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1546 {
1547 	struct e1000_mac_info *mac = &hw->mac;
1548 	s32 ret_val, tipg_reg = 0;
1549 	u16 emi_addr, emi_val = 0;
1550 	bool link;
1551 	u16 phy_reg;
1552 
1553 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1554 
1555 	/* We only want to go out to the PHY registers to see if Auto-Neg
1556 	 * has completed and/or if our link status has changed.  The
1557 	 * get_link_status flag is set upon receiving a Link Status
1558 	 * Change or Rx Sequence Error interrupt.
1559 	 */
1560 	if (!mac->get_link_status)
1561 		return E1000_SUCCESS;
1562 
1563 	/* First we want to see if the MII Status Register reports
1564 	 * link.  If so, then we want to get the current speed/duplex
1565 	 * of the PHY.
1566 	 */
1567 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1568 	if (ret_val)
1569 		return ret_val;
1570 
1571 	if (hw->mac.type == e1000_pchlan) {
1572 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1573 		if (ret_val)
1574 			return ret_val;
1575 	}
1576 
1577 	/* When connected at 10Mbps half-duplex, some parts are excessively
1578 	 * aggressive resulting in many collisions. To avoid this, increase
1579 	 * the IPG and reduce Rx latency in the PHY.
1580 	 */
1581 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1582 		u16 speed, duplex;
1583 
1584 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1585 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1586 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1587 
1588 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1589 			tipg_reg |= 0xFF;
1590 			/* Reduce Rx latency in analog PHY */
1591 			emi_val = 0;
1592 		} else if (hw->mac.type >= e1000_pch_spt &&
1593 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1594 			tipg_reg |= 0xC;
1595 			emi_val = 1;
1596 		} else {
1597 			/* Roll back the default values */
1598 			tipg_reg |= 0x08;
1599 			emi_val = 1;
1600 		}
1601 
1602 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1603 
1604 		ret_val = hw->phy.ops.acquire(hw);
1605 		if (ret_val)
1606 			return ret_val;
1607 
1608 		if (hw->mac.type == e1000_pch2lan)
1609 			emi_addr = I82579_RX_CONFIG;
1610 		else
1611 			emi_addr = I217_RX_CONFIG;
1612 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1613 
1614 
1615 		if (hw->mac.type >= e1000_pch_lpt) {
1616 			u16 phy_reg;
1617 
1618 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1619 						    &phy_reg);
1620 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1621 			if (speed == SPEED_100 || speed == SPEED_10)
1622 				phy_reg |= 0x3E8;
1623 			else
1624 				phy_reg |= 0xFA;
1625 			hw->phy.ops.write_reg_locked(hw,
1626 						     I217_PLL_CLOCK_GATE_REG,
1627 						     phy_reg);
1628 
1629 			if (speed == SPEED_1000) {
1630 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1631 							    &phy_reg);
1632 
1633 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1634 
1635 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1636 							     phy_reg);
1637 				}
1638 		 }
1639 		hw->phy.ops.release(hw);
1640 
1641 		if (ret_val)
1642 			return ret_val;
1643 
1644 		if (hw->mac.type >= e1000_pch_spt) {
1645 			u16 data;
1646 			u16 ptr_gap;
1647 
1648 			if (speed == SPEED_1000) {
1649 				ret_val = hw->phy.ops.acquire(hw);
1650 				if (ret_val)
1651 					return ret_val;
1652 
1653 				ret_val = hw->phy.ops.read_reg_locked(hw,
1654 							      PHY_REG(776, 20),
1655 							      &data);
1656 				if (ret_val) {
1657 					hw->phy.ops.release(hw);
1658 					return ret_val;
1659 				}
1660 
1661 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1662 				if (ptr_gap < 0x18) {
1663 					data &= ~(0x3FF << 2);
1664 					data |= (0x18 << 2);
1665 					ret_val =
1666 						hw->phy.ops.write_reg_locked(hw,
1667 							PHY_REG(776, 20), data);
1668 				}
1669 				hw->phy.ops.release(hw);
1670 				if (ret_val)
1671 					return ret_val;
1672 			} else {
1673 				ret_val = hw->phy.ops.acquire(hw);
1674 				if (ret_val)
1675 					return ret_val;
1676 
1677 				ret_val = hw->phy.ops.write_reg_locked(hw,
1678 							     PHY_REG(776, 20),
1679 							     0xC023);
1680 				hw->phy.ops.release(hw);
1681 				if (ret_val)
1682 					return ret_val;
1683 
1684 			}
1685 		}
1686 	}
1687 
1688 	/* I217 Packet Loss issue:
1689 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1690 	 * on power up.
1691 	 * Set the Beacon Duration for I217 to 8 usec
1692 	 */
1693 	if (hw->mac.type >= e1000_pch_lpt) {
1694 		u32 mac_reg;
1695 
1696 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1697 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1698 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1699 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1700 	}
1701 
1702 	/* Work-around I218 hang issue */
1703 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1704 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1705 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1706 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1707 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1708 		if (ret_val)
1709 			return ret_val;
1710 	}
1711 	if (hw->mac.type >= e1000_pch_lpt) {
1712 		/* Set platform power management values for
1713 		 * Latency Tolerance Reporting (LTR)
1714 		 * Optimized Buffer Flush/Fill (OBFF)
1715 		 */
1716 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1717 		if (ret_val)
1718 			return ret_val;
1719 	}
1720 
1721 	/* Clear link partner's EEE ability */
1722 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1723 
1724 	if (hw->mac.type >= e1000_pch_lpt) {
1725 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1726 
1727 		if (hw->mac.type == e1000_pch_spt) {
1728 			/* FEXTNVM6 K1-off workaround - for SPT only */
1729 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1730 
1731 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1732 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1733 			else
1734 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1735 		}
1736 
1737 		if (hw->dev_spec.ich8lan.disable_k1_off == TRUE)
1738 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1739 
1740 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1741 	}
1742 
1743 	if (!link)
1744 		return E1000_SUCCESS; /* No link detected */
1745 
1746 	mac->get_link_status = FALSE;
1747 
1748 	switch (hw->mac.type) {
1749 	case e1000_pch2lan:
1750 		ret_val = e1000_k1_workaround_lv(hw);
1751 		if (ret_val)
1752 			return ret_val;
1753 		/* fall-thru */
1754 	case e1000_pchlan:
1755 		if (hw->phy.type == e1000_phy_82578) {
1756 			ret_val = e1000_link_stall_workaround_hv(hw);
1757 			if (ret_val)
1758 				return ret_val;
1759 		}
1760 
1761 		/* Workaround for PCHx parts in half-duplex:
1762 		 * Set the number of preambles removed from the packet
1763 		 * when it is passed from the PHY to the MAC to prevent
1764 		 * the MAC from misinterpreting the packet type.
1765 		 */
1766 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1767 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1768 
1769 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1770 		    E1000_STATUS_FD)
1771 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1772 
1773 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1774 		break;
1775 	default:
1776 		break;
1777 	}
1778 
1779 	/* Check if there was DownShift, must be checked
1780 	 * immediately after link-up
1781 	 */
1782 	e1000_check_downshift_generic(hw);
1783 
1784 	/* Enable/Disable EEE after link up */
1785 	if (hw->phy.type > e1000_phy_82579) {
1786 		ret_val = e1000_set_eee_pchlan(hw);
1787 		if (ret_val)
1788 			return ret_val;
1789 	}
1790 
1791 	/* If we are forcing speed/duplex, then we simply return since
1792 	 * we have already determined whether we have link or not.
1793 	 */
1794 	if (!mac->autoneg)
1795 		return -E1000_ERR_CONFIG;
1796 
1797 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1798 	 * of MAC speed/duplex configuration.  So we only need to
1799 	 * configure Collision Distance in the MAC.
1800 	 */
1801 	mac->ops.config_collision_dist(hw);
1802 
1803 	/* Configure Flow Control now that Auto-Neg has completed.
1804 	 * First, we need to restore the desired flow control
1805 	 * settings because we may have had to re-autoneg with a
1806 	 * different link partner.
1807 	 */
1808 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1809 	if (ret_val)
1810 		DEBUGOUT("Error configuring flow control\n");
1811 
1812 	return ret_val;
1813 }
1814 
1815 /**
1816  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1817  *  @hw: pointer to the HW structure
1818  *
1819  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1820  **/
1821 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1822 {
1823 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1824 
1825 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1826 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1827 	switch (hw->mac.type) {
1828 	case e1000_ich8lan:
1829 	case e1000_ich9lan:
1830 	case e1000_ich10lan:
1831 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1832 		break;
1833 	case e1000_pchlan:
1834 	case e1000_pch2lan:
1835 	case e1000_pch_lpt:
1836 	case e1000_pch_spt:
1837 	case e1000_pch_cnp:
1838 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1839 		break;
1840 	default:
1841 		break;
1842 	}
1843 }
1844 
1845 /**
1846  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1847  *  @hw: pointer to the HW structure
1848  *
1849  *  Acquires the mutex for performing NVM operations.
1850  **/
1851 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1852 {
1853 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1854 
1855 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1856 
1857 	return E1000_SUCCESS;
1858 }
1859 
1860 /**
1861  *  e1000_release_nvm_ich8lan - Release NVM mutex
1862  *  @hw: pointer to the HW structure
1863  *
1864  *  Releases the mutex used while performing NVM operations.
1865  **/
1866 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1867 {
1868 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1869 
1870 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1871 
1872 	return;
1873 }
1874 
1875 /**
1876  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1877  *  @hw: pointer to the HW structure
1878  *
1879  *  Acquires the software control flag for performing PHY and select
1880  *  MAC CSR accesses.
1881  **/
1882 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1883 {
1884 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1885 	s32 ret_val = E1000_SUCCESS;
1886 
1887 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1888 
1889 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1890 
1891 	while (timeout) {
1892 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1893 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1894 			break;
1895 
1896 		msec_delay_irq(1);
1897 		timeout--;
1898 	}
1899 
1900 	if (!timeout) {
1901 		DEBUGOUT("SW has already locked the resource.\n");
1902 		ret_val = -E1000_ERR_CONFIG;
1903 		goto out;
1904 	}
1905 
1906 	timeout = SW_FLAG_TIMEOUT;
1907 
1908 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1909 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1910 
1911 	while (timeout) {
1912 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1913 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1914 			break;
1915 
1916 		msec_delay_irq(1);
1917 		timeout--;
1918 	}
1919 
1920 	if (!timeout) {
1921 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1922 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1923 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1924 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1925 		ret_val = -E1000_ERR_CONFIG;
1926 		goto out;
1927 	}
1928 
1929 out:
1930 	if (ret_val)
1931 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1932 
1933 	return ret_val;
1934 }
1935 
1936 /**
1937  *  e1000_release_swflag_ich8lan - Release software control flag
1938  *  @hw: pointer to the HW structure
1939  *
1940  *  Releases the software control flag for performing PHY and select
1941  *  MAC CSR accesses.
1942  **/
1943 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1944 {
1945 	u32 extcnf_ctrl;
1946 
1947 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1948 
1949 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1950 
1951 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1952 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1953 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1954 	} else {
1955 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1956 	}
1957 
1958 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1959 
1960 	return;
1961 }
1962 
1963 /**
1964  *  e1000_check_mng_mode_ich8lan - Checks management mode
1965  *  @hw: pointer to the HW structure
1966  *
1967  *  This checks if the adapter has any manageability enabled.
1968  *  This is a function pointer entry point only called by read/write
1969  *  routines for the PHY and NVM parts.
1970  **/
1971 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1972 {
1973 	u32 fwsm;
1974 
1975 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1976 
1977 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1978 
1979 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1980 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1981 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1982 }
1983 
1984 /**
1985  *  e1000_check_mng_mode_pchlan - Checks management mode
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  This checks if the adapter has iAMT enabled.
1989  *  This is a function pointer entry point only called by read/write
1990  *  routines for the PHY and NVM parts.
1991  **/
1992 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1993 {
1994 	u32 fwsm;
1995 
1996 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1997 
1998 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1999 
2000 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2001 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2002 }
2003 
2004 /**
2005  *  e1000_rar_set_pch2lan - Set receive address register
2006  *  @hw: pointer to the HW structure
2007  *  @addr: pointer to the receive address
2008  *  @index: receive address array register
2009  *
2010  *  Sets the receive address array register at index to the address passed
2011  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2012  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2013  *  Use SHRA[0-3] in place of those reserved for ME.
2014  **/
2015 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2016 {
2017 	u32 rar_low, rar_high;
2018 
2019 	DEBUGFUNC("e1000_rar_set_pch2lan");
2020 
2021 	/* HW expects these in little endian so we reverse the byte order
2022 	 * from network order (big endian) to little endian
2023 	 */
2024 	rar_low = ((u32) addr[0] |
2025 		   ((u32) addr[1] << 8) |
2026 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2027 
2028 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2029 
2030 	/* If MAC address zero, no need to set the AV bit */
2031 	if (rar_low || rar_high)
2032 		rar_high |= E1000_RAH_AV;
2033 
2034 	if (index == 0) {
2035 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2036 		E1000_WRITE_FLUSH(hw);
2037 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2038 		E1000_WRITE_FLUSH(hw);
2039 		return E1000_SUCCESS;
2040 	}
2041 
2042 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2043 	 * next address into the SHRA register array.
2044 	 */
2045 	if (index < (u32) (hw->mac.rar_entry_count)) {
2046 		s32 ret_val;
2047 
2048 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2049 		if (ret_val)
2050 			goto out;
2051 
2052 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2053 		E1000_WRITE_FLUSH(hw);
2054 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2055 		E1000_WRITE_FLUSH(hw);
2056 
2057 		e1000_release_swflag_ich8lan(hw);
2058 
2059 		/* verify the register updates */
2060 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2061 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2062 			return E1000_SUCCESS;
2063 
2064 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2065 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2066 	}
2067 
2068 out:
2069 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2070 	return -E1000_ERR_CONFIG;
2071 }
2072 
2073 /**
2074  *  e1000_rar_set_pch_lpt - Set receive address registers
2075  *  @hw: pointer to the HW structure
2076  *  @addr: pointer to the receive address
2077  *  @index: receive address array register
2078  *
2079  *  Sets the receive address register array at index to the address passed
2080  *  in by addr. For LPT, RAR[0] is the base address register that is to
2081  *  contain the MAC address. SHRA[0-10] are the shared receive address
2082  *  registers that are shared between the Host and manageability engine (ME).
2083  **/
2084 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2085 {
2086 	u32 rar_low, rar_high;
2087 	u32 wlock_mac;
2088 
2089 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2090 
2091 	/* HW expects these in little endian so we reverse the byte order
2092 	 * from network order (big endian) to little endian
2093 	 */
2094 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2095 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2096 
2097 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2098 
2099 	/* If MAC address zero, no need to set the AV bit */
2100 	if (rar_low || rar_high)
2101 		rar_high |= E1000_RAH_AV;
2102 
2103 	if (index == 0) {
2104 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2105 		E1000_WRITE_FLUSH(hw);
2106 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2107 		E1000_WRITE_FLUSH(hw);
2108 		return E1000_SUCCESS;
2109 	}
2110 
2111 	/* The manageability engine (ME) can lock certain SHRAR registers that
2112 	 * it is using - those registers are unavailable for use.
2113 	 */
2114 	if (index < hw->mac.rar_entry_count) {
2115 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2116 			    E1000_FWSM_WLOCK_MAC_MASK;
2117 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2118 
2119 		/* Check if all SHRAR registers are locked */
2120 		if (wlock_mac == 1)
2121 			goto out;
2122 
2123 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2124 			s32 ret_val;
2125 
2126 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2127 
2128 			if (ret_val)
2129 				goto out;
2130 
2131 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2132 					rar_low);
2133 			E1000_WRITE_FLUSH(hw);
2134 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2135 					rar_high);
2136 			E1000_WRITE_FLUSH(hw);
2137 
2138 			e1000_release_swflag_ich8lan(hw);
2139 
2140 			/* verify the register updates */
2141 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2142 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2143 				return E1000_SUCCESS;
2144 		}
2145 	}
2146 
2147 out:
2148 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2149 	return -E1000_ERR_CONFIG;
2150 }
2151 
2152 /**
2153  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2154  *  @hw: pointer to the HW structure
2155  *  @mc_addr_list: array of multicast addresses to program
2156  *  @mc_addr_count: number of multicast addresses to program
2157  *
2158  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2159  *  The caller must have a packed mc_addr_list of multicast addresses.
2160  **/
2161 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2162 					      u8 *mc_addr_list,
2163 					      u32 mc_addr_count)
2164 {
2165 	u16 phy_reg = 0;
2166 	int i;
2167 	s32 ret_val;
2168 
2169 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2170 
2171 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2172 
2173 	ret_val = hw->phy.ops.acquire(hw);
2174 	if (ret_val)
2175 		return;
2176 
2177 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2178 	if (ret_val)
2179 		goto release;
2180 
2181 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2182 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2183 					   (u16)(hw->mac.mta_shadow[i] &
2184 						 0xFFFF));
2185 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2186 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2187 						 0xFFFF));
2188 	}
2189 
2190 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2191 
2192 release:
2193 	hw->phy.ops.release(hw);
2194 }
2195 
2196 /**
2197  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2198  *  @hw: pointer to the HW structure
2199  *
2200  *  Checks if firmware is blocking the reset of the PHY.
2201  *  This is a function pointer entry point only called by
2202  *  reset routines.
2203  **/
2204 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2205 {
2206 	u32 fwsm;
2207 	bool blocked = FALSE;
2208 	int i = 0;
2209 
2210 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2211 
2212 	do {
2213 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2214 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2215 			blocked = TRUE;
2216 			msec_delay(10);
2217 			continue;
2218 		}
2219 		blocked = FALSE;
2220 	} while (blocked && (i++ < 30));
2221 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2222 }
2223 
2224 /**
2225  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2226  *  @hw: pointer to the HW structure
2227  *
2228  *  Assumes semaphore already acquired.
2229  *
2230  **/
2231 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2232 {
2233 	u16 phy_data;
2234 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2235 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2236 		E1000_STRAP_SMT_FREQ_SHIFT;
2237 	s32 ret_val;
2238 
2239 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2240 
2241 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2242 	if (ret_val)
2243 		return ret_val;
2244 
2245 	phy_data &= ~HV_SMB_ADDR_MASK;
2246 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2247 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2248 
2249 	if (hw->phy.type == e1000_phy_i217) {
2250 		/* Restore SMBus frequency */
2251 		if (freq--) {
2252 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2253 			phy_data |= (freq & (1 << 0)) <<
2254 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2255 			phy_data |= (freq & (1 << 1)) <<
2256 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2257 		} else {
2258 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2259 		}
2260 	}
2261 
2262 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2263 }
2264 
2265 /**
2266  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2267  *  @hw:   pointer to the HW structure
2268  *
2269  *  SW should configure the LCD from the NVM extended configuration region
2270  *  as a workaround for certain parts.
2271  **/
2272 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2273 {
2274 	struct e1000_phy_info *phy = &hw->phy;
2275 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2276 	s32 ret_val = E1000_SUCCESS;
2277 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2278 
2279 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2280 
2281 	/* Initialize the PHY from the NVM on ICH platforms.  This
2282 	 * is needed due to an issue where the NVM configuration is
2283 	 * not properly autoloaded after power transitions.
2284 	 * Therefore, after each PHY reset, we will load the
2285 	 * configuration data out of the NVM manually.
2286 	 */
2287 	switch (hw->mac.type) {
2288 	case e1000_ich8lan:
2289 		if (phy->type != e1000_phy_igp_3)
2290 			return ret_val;
2291 
2292 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2293 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2294 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2295 			break;
2296 		}
2297 		/* Fall-thru */
2298 	case e1000_pchlan:
2299 	case e1000_pch2lan:
2300 	case e1000_pch_lpt:
2301 	case e1000_pch_spt:
2302 	case e1000_pch_cnp:
2303 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2304 		break;
2305 	default:
2306 		return ret_val;
2307 	}
2308 
2309 	ret_val = hw->phy.ops.acquire(hw);
2310 	if (ret_val)
2311 		return ret_val;
2312 
2313 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2314 	if (!(data & sw_cfg_mask))
2315 		goto release;
2316 
2317 	/* Make sure HW does not configure LCD from PHY
2318 	 * extended configuration before SW configuration
2319 	 */
2320 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2321 	if ((hw->mac.type < e1000_pch2lan) &&
2322 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2323 			goto release;
2324 
2325 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2326 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2327 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2328 	if (!cnf_size)
2329 		goto release;
2330 
2331 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2332 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2333 
2334 	if (((hw->mac.type == e1000_pchlan) &&
2335 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2336 	    (hw->mac.type > e1000_pchlan)) {
2337 		/* HW configures the SMBus address and LEDs when the
2338 		 * OEM and LCD Write Enable bits are set in the NVM.
2339 		 * When both NVM bits are cleared, SW will configure
2340 		 * them instead.
2341 		 */
2342 		ret_val = e1000_write_smbus_addr(hw);
2343 		if (ret_val)
2344 			goto release;
2345 
2346 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2347 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2348 							(u16)data);
2349 		if (ret_val)
2350 			goto release;
2351 	}
2352 
2353 	/* Configure LCD from extended configuration region. */
2354 
2355 	/* cnf_base_addr is in DWORD */
2356 	word_addr = (u16)(cnf_base_addr << 1);
2357 
2358 	for (i = 0; i < cnf_size; i++) {
2359 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2360 					   &reg_data);
2361 		if (ret_val)
2362 			goto release;
2363 
2364 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2365 					   1, &reg_addr);
2366 		if (ret_val)
2367 			goto release;
2368 
2369 		/* Save off the PHY page for future writes. */
2370 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2371 			phy_page = reg_data;
2372 			continue;
2373 		}
2374 
2375 		reg_addr &= PHY_REG_MASK;
2376 		reg_addr |= phy_page;
2377 
2378 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2379 						    reg_data);
2380 		if (ret_val)
2381 			goto release;
2382 	}
2383 
2384 release:
2385 	hw->phy.ops.release(hw);
2386 	return ret_val;
2387 }
2388 
2389 /**
2390  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2391  *  @hw:   pointer to the HW structure
2392  *  @link: link up bool flag
2393  *
2394  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2395  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2396  *  If link is down, the function will restore the default K1 setting located
2397  *  in the NVM.
2398  **/
2399 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2400 {
2401 	s32 ret_val = E1000_SUCCESS;
2402 	u16 status_reg = 0;
2403 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2404 
2405 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2406 
2407 	if (hw->mac.type != e1000_pchlan)
2408 		return E1000_SUCCESS;
2409 
2410 	/* Wrap the whole flow with the sw flag */
2411 	ret_val = hw->phy.ops.acquire(hw);
2412 	if (ret_val)
2413 		return ret_val;
2414 
2415 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2416 	if (link) {
2417 		if (hw->phy.type == e1000_phy_82578) {
2418 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2419 							      &status_reg);
2420 			if (ret_val)
2421 				goto release;
2422 
2423 			status_reg &= (BM_CS_STATUS_LINK_UP |
2424 				       BM_CS_STATUS_RESOLVED |
2425 				       BM_CS_STATUS_SPEED_MASK);
2426 
2427 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2428 					   BM_CS_STATUS_RESOLVED |
2429 					   BM_CS_STATUS_SPEED_1000))
2430 				k1_enable = FALSE;
2431 		}
2432 
2433 		if (hw->phy.type == e1000_phy_82577) {
2434 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2435 							      &status_reg);
2436 			if (ret_val)
2437 				goto release;
2438 
2439 			status_reg &= (HV_M_STATUS_LINK_UP |
2440 				       HV_M_STATUS_AUTONEG_COMPLETE |
2441 				       HV_M_STATUS_SPEED_MASK);
2442 
2443 			if (status_reg == (HV_M_STATUS_LINK_UP |
2444 					   HV_M_STATUS_AUTONEG_COMPLETE |
2445 					   HV_M_STATUS_SPEED_1000))
2446 				k1_enable = FALSE;
2447 		}
2448 
2449 		/* Link stall fix for link up */
2450 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2451 						       0x0100);
2452 		if (ret_val)
2453 			goto release;
2454 
2455 	} else {
2456 		/* Link stall fix for link down */
2457 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2458 						       0x4100);
2459 		if (ret_val)
2460 			goto release;
2461 	}
2462 
2463 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2464 
2465 release:
2466 	hw->phy.ops.release(hw);
2467 
2468 	return ret_val;
2469 }
2470 
2471 /**
2472  *  e1000_configure_k1_ich8lan - Configure K1 power state
2473  *  @hw: pointer to the HW structure
2474  *  @enable: K1 state to configure
2475  *
2476  *  Configure the K1 power state based on the provided parameter.
2477  *  Assumes semaphore already acquired.
2478  *
2479  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2480  **/
2481 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2482 {
2483 	s32 ret_val;
2484 	u32 ctrl_reg = 0;
2485 	u32 ctrl_ext = 0;
2486 	u32 reg = 0;
2487 	u16 kmrn_reg = 0;
2488 
2489 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2490 
2491 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2492 					     &kmrn_reg);
2493 	if (ret_val)
2494 		return ret_val;
2495 
2496 	if (k1_enable)
2497 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2498 	else
2499 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2500 
2501 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2502 					      kmrn_reg);
2503 	if (ret_val)
2504 		return ret_val;
2505 
2506 	usec_delay(20);
2507 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2508 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2509 
2510 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2511 	reg |= E1000_CTRL_FRCSPD;
2512 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2513 
2514 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2515 	E1000_WRITE_FLUSH(hw);
2516 	usec_delay(20);
2517 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2518 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2519 	E1000_WRITE_FLUSH(hw);
2520 	usec_delay(20);
2521 
2522 	return E1000_SUCCESS;
2523 }
2524 
2525 /**
2526  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2527  *  @hw:       pointer to the HW structure
2528  *  @d0_state: boolean if entering d0 or d3 device state
2529  *
2530  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2531  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2532  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2533  **/
2534 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2535 {
2536 	s32 ret_val = 0;
2537 	u32 mac_reg;
2538 	u16 oem_reg;
2539 
2540 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2541 
2542 	if (hw->mac.type < e1000_pchlan)
2543 		return ret_val;
2544 
2545 	ret_val = hw->phy.ops.acquire(hw);
2546 	if (ret_val)
2547 		return ret_val;
2548 
2549 	if (hw->mac.type == e1000_pchlan) {
2550 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2551 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2552 			goto release;
2553 	}
2554 
2555 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2556 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2557 		goto release;
2558 
2559 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2560 
2561 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2562 	if (ret_val)
2563 		goto release;
2564 
2565 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2566 
2567 	if (d0_state) {
2568 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2569 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2570 
2571 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2572 			oem_reg |= HV_OEM_BITS_LPLU;
2573 	} else {
2574 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2575 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2576 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2577 
2578 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2579 		    E1000_PHY_CTRL_NOND0A_LPLU))
2580 			oem_reg |= HV_OEM_BITS_LPLU;
2581 	}
2582 
2583 	/* Set Restart auto-neg to activate the bits */
2584 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2585 	    !hw->phy.ops.check_reset_block(hw))
2586 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2587 
2588 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2589 
2590 release:
2591 	hw->phy.ops.release(hw);
2592 
2593 	return ret_val;
2594 }
2595 
2596 
2597 /**
2598  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2599  *  @hw:   pointer to the HW structure
2600  **/
2601 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2602 {
2603 	s32 ret_val;
2604 	u16 data;
2605 
2606 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2607 
2608 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2609 	if (ret_val)
2610 		return ret_val;
2611 
2612 	data |= HV_KMRN_MDIO_SLOW;
2613 
2614 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2615 
2616 	return ret_val;
2617 }
2618 
2619 /**
2620  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2621  *  done after every PHY reset.
2622  **/
2623 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2624 {
2625 	s32 ret_val = E1000_SUCCESS;
2626 	u16 phy_data;
2627 
2628 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2629 
2630 	if (hw->mac.type != e1000_pchlan)
2631 		return E1000_SUCCESS;
2632 
2633 	/* Set MDIO slow mode before any other MDIO access */
2634 	if (hw->phy.type == e1000_phy_82577) {
2635 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2636 		if (ret_val)
2637 			return ret_val;
2638 	}
2639 
2640 	if (((hw->phy.type == e1000_phy_82577) &&
2641 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2642 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2643 		/* Disable generation of early preamble */
2644 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2645 		if (ret_val)
2646 			return ret_val;
2647 
2648 		/* Preamble tuning for SSC */
2649 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2650 						0xA204);
2651 		if (ret_val)
2652 			return ret_val;
2653 	}
2654 
2655 	if (hw->phy.type == e1000_phy_82578) {
2656 		/* Return registers to default by doing a soft reset then
2657 		 * writing 0x3140 to the control register.
2658 		 */
2659 		if (hw->phy.revision < 2) {
2660 			e1000_phy_sw_reset_generic(hw);
2661 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2662 							0x3140);
2663 			if (ret_val)
2664 				return ret_val;
2665 		}
2666 	}
2667 
2668 	/* Select page 0 */
2669 	ret_val = hw->phy.ops.acquire(hw);
2670 	if (ret_val)
2671 		return ret_val;
2672 
2673 	hw->phy.addr = 1;
2674 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2675 	hw->phy.ops.release(hw);
2676 	if (ret_val)
2677 		return ret_val;
2678 
2679 	/* Configure the K1 Si workaround during phy reset assuming there is
2680 	 * link so that it disables K1 if link is in 1Gbps.
2681 	 */
2682 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2683 	if (ret_val)
2684 		return ret_val;
2685 
2686 	/* Workaround for link disconnects on a busy hub in half duplex */
2687 	ret_val = hw->phy.ops.acquire(hw);
2688 	if (ret_val)
2689 		return ret_val;
2690 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2691 	if (ret_val)
2692 		goto release;
2693 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2694 					       phy_data & 0x00FF);
2695 	if (ret_val)
2696 		goto release;
2697 
2698 	/* set MSE higher to enable link to stay up when noise is high */
2699 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2700 release:
2701 	hw->phy.ops.release(hw);
2702 
2703 	return ret_val;
2704 }
2705 
2706 /**
2707  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2708  *  @hw:   pointer to the HW structure
2709  **/
2710 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2711 {
2712 	u32 mac_reg;
2713 	u16 i, phy_reg = 0;
2714 	s32 ret_val;
2715 
2716 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2717 
2718 	ret_val = hw->phy.ops.acquire(hw);
2719 	if (ret_val)
2720 		return;
2721 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2722 	if (ret_val)
2723 		goto release;
2724 
2725 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2726 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2727 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2728 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2729 					   (u16)(mac_reg & 0xFFFF));
2730 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2731 					   (u16)((mac_reg >> 16) & 0xFFFF));
2732 
2733 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2734 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2735 					   (u16)(mac_reg & 0xFFFF));
2736 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2737 					   (u16)((mac_reg & E1000_RAH_AV)
2738 						 >> 16));
2739 	}
2740 
2741 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2742 
2743 release:
2744 	hw->phy.ops.release(hw);
2745 }
2746 
2747 static u32 e1000_calc_rx_da_crc(u8 mac[])
2748 {
2749 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2750 	u32 i, j, mask, crc;
2751 
2752 	DEBUGFUNC("e1000_calc_rx_da_crc");
2753 
2754 	crc = 0xffffffff;
2755 	for (i = 0; i < 6; i++) {
2756 		crc = crc ^ mac[i];
2757 		for (j = 8; j > 0; j--) {
2758 			mask = (crc & 1) * (-1);
2759 			crc = (crc >> 1) ^ (poly & mask);
2760 		}
2761 	}
2762 	return ~crc;
2763 }
2764 
2765 /**
2766  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2767  *  with 82579 PHY
2768  *  @hw: pointer to the HW structure
2769  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2770  **/
2771 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2772 {
2773 	s32 ret_val = E1000_SUCCESS;
2774 	u16 phy_reg, data;
2775 	u32 mac_reg;
2776 	u16 i;
2777 
2778 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2779 
2780 	if (hw->mac.type < e1000_pch2lan)
2781 		return E1000_SUCCESS;
2782 
2783 	/* disable Rx path while enabling/disabling workaround */
2784 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2785 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2786 					phy_reg | (1 << 14));
2787 	if (ret_val)
2788 		return ret_val;
2789 
2790 	if (enable) {
2791 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2792 		 * SHRAL/H) and initial CRC values to the MAC
2793 		 */
2794 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2795 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2796 			u32 addr_high, addr_low;
2797 
2798 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2799 			if (!(addr_high & E1000_RAH_AV))
2800 				continue;
2801 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2802 			mac_addr[0] = (addr_low & 0xFF);
2803 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2804 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2805 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2806 			mac_addr[4] = (addr_high & 0xFF);
2807 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2808 
2809 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2810 					e1000_calc_rx_da_crc(mac_addr));
2811 		}
2812 
2813 		/* Write Rx addresses to the PHY */
2814 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2815 
2816 		/* Enable jumbo frame workaround in the MAC */
2817 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2818 		mac_reg &= ~(1 << 14);
2819 		mac_reg |= (7 << 15);
2820 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2821 
2822 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2823 		mac_reg |= E1000_RCTL_SECRC;
2824 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2825 
2826 		ret_val = e1000_read_kmrn_reg_generic(hw,
2827 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2828 						&data);
2829 		if (ret_val)
2830 			return ret_val;
2831 		ret_val = e1000_write_kmrn_reg_generic(hw,
2832 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2833 						data | (1 << 0));
2834 		if (ret_val)
2835 			return ret_val;
2836 		ret_val = e1000_read_kmrn_reg_generic(hw,
2837 						E1000_KMRNCTRLSTA_HD_CTRL,
2838 						&data);
2839 		if (ret_val)
2840 			return ret_val;
2841 		data &= ~(0xF << 8);
2842 		data |= (0xB << 8);
2843 		ret_val = e1000_write_kmrn_reg_generic(hw,
2844 						E1000_KMRNCTRLSTA_HD_CTRL,
2845 						data);
2846 		if (ret_val)
2847 			return ret_val;
2848 
2849 		/* Enable jumbo frame workaround in the PHY */
2850 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2851 		data &= ~(0x7F << 5);
2852 		data |= (0x37 << 5);
2853 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2854 		if (ret_val)
2855 			return ret_val;
2856 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2857 		data &= ~(1 << 13);
2858 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2859 		if (ret_val)
2860 			return ret_val;
2861 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2862 		data &= ~(0x3FF << 2);
2863 		data |= (E1000_TX_PTR_GAP << 2);
2864 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2865 		if (ret_val)
2866 			return ret_val;
2867 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2868 		if (ret_val)
2869 			return ret_val;
2870 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2871 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2872 						(1 << 10));
2873 		if (ret_val)
2874 			return ret_val;
2875 	} else {
2876 		/* Write MAC register values back to h/w defaults */
2877 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2878 		mac_reg &= ~(0xF << 14);
2879 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2880 
2881 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2882 		mac_reg &= ~E1000_RCTL_SECRC;
2883 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2884 
2885 		ret_val = e1000_read_kmrn_reg_generic(hw,
2886 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2887 						&data);
2888 		if (ret_val)
2889 			return ret_val;
2890 		ret_val = e1000_write_kmrn_reg_generic(hw,
2891 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2892 						data & ~(1 << 0));
2893 		if (ret_val)
2894 			return ret_val;
2895 		ret_val = e1000_read_kmrn_reg_generic(hw,
2896 						E1000_KMRNCTRLSTA_HD_CTRL,
2897 						&data);
2898 		if (ret_val)
2899 			return ret_val;
2900 		data &= ~(0xF << 8);
2901 		data |= (0xB << 8);
2902 		ret_val = e1000_write_kmrn_reg_generic(hw,
2903 						E1000_KMRNCTRLSTA_HD_CTRL,
2904 						data);
2905 		if (ret_val)
2906 			return ret_val;
2907 
2908 		/* Write PHY register values back to h/w defaults */
2909 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2910 		data &= ~(0x7F << 5);
2911 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2912 		if (ret_val)
2913 			return ret_val;
2914 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2915 		data |= (1 << 13);
2916 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2917 		if (ret_val)
2918 			return ret_val;
2919 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2920 		data &= ~(0x3FF << 2);
2921 		data |= (0x8 << 2);
2922 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2923 		if (ret_val)
2924 			return ret_val;
2925 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2926 		if (ret_val)
2927 			return ret_val;
2928 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2929 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2930 						~(1 << 10));
2931 		if (ret_val)
2932 			return ret_val;
2933 	}
2934 
2935 	/* re-enable Rx path after enabling/disabling workaround */
2936 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2937 				     ~(1 << 14));
2938 }
2939 
2940 /**
2941  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2942  *  done after every PHY reset.
2943  **/
2944 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2945 {
2946 	s32 ret_val = E1000_SUCCESS;
2947 
2948 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2949 
2950 	if (hw->mac.type != e1000_pch2lan)
2951 		return E1000_SUCCESS;
2952 
2953 	/* Set MDIO slow mode before any other MDIO access */
2954 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2955 	if (ret_val)
2956 		return ret_val;
2957 
2958 	ret_val = hw->phy.ops.acquire(hw);
2959 	if (ret_val)
2960 		return ret_val;
2961 	/* set MSE higher to enable link to stay up when noise is high */
2962 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2963 	if (ret_val)
2964 		goto release;
2965 	/* drop link after 5 times MSE threshold was reached */
2966 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2967 release:
2968 	hw->phy.ops.release(hw);
2969 
2970 	return ret_val;
2971 }
2972 
2973 /**
2974  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2975  *  @hw:   pointer to the HW structure
2976  *
2977  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2978  *  Disable K1 for 1000 and 100 speeds
2979  **/
2980 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2981 {
2982 	s32 ret_val = E1000_SUCCESS;
2983 	u16 status_reg = 0;
2984 
2985 	DEBUGFUNC("e1000_k1_workaround_lv");
2986 
2987 	if (hw->mac.type != e1000_pch2lan)
2988 		return E1000_SUCCESS;
2989 
2990 	/* Set K1 beacon duration based on 10Mbs speed */
2991 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2992 	if (ret_val)
2993 		return ret_val;
2994 
2995 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2996 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2997 		if (status_reg &
2998 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2999 			u16 pm_phy_reg;
3000 
3001 			/* LV 1G/100 Packet drop issue wa  */
3002 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3003 						       &pm_phy_reg);
3004 			if (ret_val)
3005 				return ret_val;
3006 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3007 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3008 							pm_phy_reg);
3009 			if (ret_val)
3010 				return ret_val;
3011 		} else {
3012 			u32 mac_reg;
3013 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3014 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3015 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3016 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3017 		}
3018 	}
3019 
3020 	return ret_val;
3021 }
3022 
3023 /**
3024  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3025  *  @hw:   pointer to the HW structure
3026  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3027  *
3028  *  Gate/ungate the automatic PHY configuration via hardware; perform
3029  *  the configuration via software instead.
3030  **/
3031 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3032 {
3033 	u32 extcnf_ctrl;
3034 
3035 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3036 
3037 	if (hw->mac.type < e1000_pch2lan)
3038 		return;
3039 
3040 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3041 
3042 	if (gate)
3043 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3044 	else
3045 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3046 
3047 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3048 }
3049 
3050 /**
3051  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3052  *  @hw: pointer to the HW structure
3053  *
3054  *  Check the appropriate indication the MAC has finished configuring the
3055  *  PHY after a software reset.
3056  **/
3057 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3058 {
3059 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3060 
3061 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3062 
3063 	/* Wait for basic configuration completes before proceeding */
3064 	do {
3065 		data = E1000_READ_REG(hw, E1000_STATUS);
3066 		data &= E1000_STATUS_LAN_INIT_DONE;
3067 		usec_delay(100);
3068 	} while ((!data) && --loop);
3069 
3070 	/* If basic configuration is incomplete before the above loop
3071 	 * count reaches 0, loading the configuration from NVM will
3072 	 * leave the PHY in a bad state possibly resulting in no link.
3073 	 */
3074 	if (loop == 0)
3075 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3076 
3077 	/* Clear the Init Done bit for the next init event */
3078 	data = E1000_READ_REG(hw, E1000_STATUS);
3079 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3080 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3081 }
3082 
3083 /**
3084  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3085  *  @hw: pointer to the HW structure
3086  **/
3087 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3088 {
3089 	s32 ret_val = E1000_SUCCESS;
3090 	u16 reg;
3091 
3092 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3093 
3094 	if (hw->phy.ops.check_reset_block(hw))
3095 		return E1000_SUCCESS;
3096 
3097 	/* Allow time for h/w to get to quiescent state after reset */
3098 	msec_delay(10);
3099 
3100 	/* Perform any necessary post-reset workarounds */
3101 	switch (hw->mac.type) {
3102 	case e1000_pchlan:
3103 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3104 		if (ret_val)
3105 			return ret_val;
3106 		break;
3107 	case e1000_pch2lan:
3108 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3109 		if (ret_val)
3110 			return ret_val;
3111 		break;
3112 	default:
3113 		break;
3114 	}
3115 
3116 	/* Clear the host wakeup bit after lcd reset */
3117 	if (hw->mac.type >= e1000_pchlan) {
3118 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3119 		reg &= ~BM_WUC_HOST_WU_BIT;
3120 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3121 	}
3122 
3123 	/* Configure the LCD with the extended configuration region in NVM */
3124 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3125 	if (ret_val)
3126 		return ret_val;
3127 
3128 	/* Configure the LCD with the OEM bits in NVM */
3129 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3130 
3131 	if (hw->mac.type == e1000_pch2lan) {
3132 		/* Ungate automatic PHY configuration on non-managed 82579 */
3133 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3134 		    E1000_ICH_FWSM_FW_VALID)) {
3135 			msec_delay(10);
3136 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3137 		}
3138 
3139 		/* Set EEE LPI Update Timer to 200usec */
3140 		ret_val = hw->phy.ops.acquire(hw);
3141 		if (ret_val)
3142 			return ret_val;
3143 		ret_val = e1000_write_emi_reg_locked(hw,
3144 						     I82579_LPI_UPDATE_TIMER,
3145 						     0x1387);
3146 		hw->phy.ops.release(hw);
3147 	}
3148 
3149 	return ret_val;
3150 }
3151 
3152 /**
3153  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3154  *  @hw: pointer to the HW structure
3155  *
3156  *  Resets the PHY
3157  *  This is a function pointer entry point called by drivers
3158  *  or other shared routines.
3159  **/
3160 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3161 {
3162 	s32 ret_val = E1000_SUCCESS;
3163 
3164 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3165 
3166 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3167 	if ((hw->mac.type == e1000_pch2lan) &&
3168 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3169 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3170 
3171 	ret_val = e1000_phy_hw_reset_generic(hw);
3172 	if (ret_val)
3173 		return ret_val;
3174 
3175 	return e1000_post_phy_reset_ich8lan(hw);
3176 }
3177 
3178 /**
3179  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3180  *  @hw: pointer to the HW structure
3181  *  @active: TRUE to enable LPLU, FALSE to disable
3182  *
3183  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3184  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3185  *  the phy speed. This function will manually set the LPLU bit and restart
3186  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3187  *  since it configures the same bit.
3188  **/
3189 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3190 {
3191 	s32 ret_val;
3192 	u16 oem_reg;
3193 
3194 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3195 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3196 	if (ret_val)
3197 		return ret_val;
3198 
3199 	if (active)
3200 		oem_reg |= HV_OEM_BITS_LPLU;
3201 	else
3202 		oem_reg &= ~HV_OEM_BITS_LPLU;
3203 
3204 	if (!hw->phy.ops.check_reset_block(hw))
3205 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3206 
3207 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3208 }
3209 
3210 /**
3211  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3212  *  @hw: pointer to the HW structure
3213  *  @active: TRUE to enable LPLU, FALSE to disable
3214  *
3215  *  Sets the LPLU D0 state according to the active flag.  When
3216  *  activating LPLU this function also disables smart speed
3217  *  and vice versa.  LPLU will not be activated unless the
3218  *  device autonegotiation advertisement meets standards of
3219  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3220  *  This is a function pointer entry point only called by
3221  *  PHY setup routines.
3222  **/
3223 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3224 {
3225 	struct e1000_phy_info *phy = &hw->phy;
3226 	u32 phy_ctrl;
3227 	s32 ret_val = E1000_SUCCESS;
3228 	u16 data;
3229 
3230 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3231 
3232 	if (phy->type == e1000_phy_ife)
3233 		return E1000_SUCCESS;
3234 
3235 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3236 
3237 	if (active) {
3238 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3239 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3240 
3241 		if (phy->type != e1000_phy_igp_3)
3242 			return E1000_SUCCESS;
3243 
3244 		/* Call gig speed drop workaround on LPLU before accessing
3245 		 * any PHY registers
3246 		 */
3247 		if (hw->mac.type == e1000_ich8lan)
3248 			e1000_gig_downshift_workaround_ich8lan(hw);
3249 
3250 		/* When LPLU is enabled, we should disable SmartSpeed */
3251 		ret_val = phy->ops.read_reg(hw,
3252 					    IGP01E1000_PHY_PORT_CONFIG,
3253 					    &data);
3254 		if (ret_val)
3255 			return ret_val;
3256 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3257 		ret_val = phy->ops.write_reg(hw,
3258 					     IGP01E1000_PHY_PORT_CONFIG,
3259 					     data);
3260 		if (ret_val)
3261 			return ret_val;
3262 	} else {
3263 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3264 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3265 
3266 		if (phy->type != e1000_phy_igp_3)
3267 			return E1000_SUCCESS;
3268 
3269 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3270 		 * during Dx states where the power conservation is most
3271 		 * important.  During driver activity we should enable
3272 		 * SmartSpeed, so performance is maintained.
3273 		 */
3274 		if (phy->smart_speed == e1000_smart_speed_on) {
3275 			ret_val = phy->ops.read_reg(hw,
3276 						    IGP01E1000_PHY_PORT_CONFIG,
3277 						    &data);
3278 			if (ret_val)
3279 				return ret_val;
3280 
3281 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3282 			ret_val = phy->ops.write_reg(hw,
3283 						     IGP01E1000_PHY_PORT_CONFIG,
3284 						     data);
3285 			if (ret_val)
3286 				return ret_val;
3287 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3288 			ret_val = phy->ops.read_reg(hw,
3289 						    IGP01E1000_PHY_PORT_CONFIG,
3290 						    &data);
3291 			if (ret_val)
3292 				return ret_val;
3293 
3294 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3295 			ret_val = phy->ops.write_reg(hw,
3296 						     IGP01E1000_PHY_PORT_CONFIG,
3297 						     data);
3298 			if (ret_val)
3299 				return ret_val;
3300 		}
3301 	}
3302 
3303 	return E1000_SUCCESS;
3304 }
3305 
3306 /**
3307  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3308  *  @hw: pointer to the HW structure
3309  *  @active: TRUE to enable LPLU, FALSE to disable
3310  *
3311  *  Sets the LPLU D3 state according to the active flag.  When
3312  *  activating LPLU this function also disables smart speed
3313  *  and vice versa.  LPLU will not be activated unless the
3314  *  device autonegotiation advertisement meets standards of
3315  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3316  *  This is a function pointer entry point only called by
3317  *  PHY setup routines.
3318  **/
3319 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3320 {
3321 	struct e1000_phy_info *phy = &hw->phy;
3322 	u32 phy_ctrl;
3323 	s32 ret_val = E1000_SUCCESS;
3324 	u16 data;
3325 
3326 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3327 
3328 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3329 
3330 	if (!active) {
3331 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3332 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3333 
3334 		if (phy->type != e1000_phy_igp_3)
3335 			return E1000_SUCCESS;
3336 
3337 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3338 		 * during Dx states where the power conservation is most
3339 		 * important.  During driver activity we should enable
3340 		 * SmartSpeed, so performance is maintained.
3341 		 */
3342 		if (phy->smart_speed == e1000_smart_speed_on) {
3343 			ret_val = phy->ops.read_reg(hw,
3344 						    IGP01E1000_PHY_PORT_CONFIG,
3345 						    &data);
3346 			if (ret_val)
3347 				return ret_val;
3348 
3349 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3350 			ret_val = phy->ops.write_reg(hw,
3351 						     IGP01E1000_PHY_PORT_CONFIG,
3352 						     data);
3353 			if (ret_val)
3354 				return ret_val;
3355 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3356 			ret_val = phy->ops.read_reg(hw,
3357 						    IGP01E1000_PHY_PORT_CONFIG,
3358 						    &data);
3359 			if (ret_val)
3360 				return ret_val;
3361 
3362 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3363 			ret_val = phy->ops.write_reg(hw,
3364 						     IGP01E1000_PHY_PORT_CONFIG,
3365 						     data);
3366 			if (ret_val)
3367 				return ret_val;
3368 		}
3369 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3370 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3371 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3372 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3373 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3374 
3375 		if (phy->type != e1000_phy_igp_3)
3376 			return E1000_SUCCESS;
3377 
3378 		/* Call gig speed drop workaround on LPLU before accessing
3379 		 * any PHY registers
3380 		 */
3381 		if (hw->mac.type == e1000_ich8lan)
3382 			e1000_gig_downshift_workaround_ich8lan(hw);
3383 
3384 		/* When LPLU is enabled, we should disable SmartSpeed */
3385 		ret_val = phy->ops.read_reg(hw,
3386 					    IGP01E1000_PHY_PORT_CONFIG,
3387 					    &data);
3388 		if (ret_val)
3389 			return ret_val;
3390 
3391 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3392 		ret_val = phy->ops.write_reg(hw,
3393 					     IGP01E1000_PHY_PORT_CONFIG,
3394 					     data);
3395 	}
3396 
3397 	return ret_val;
3398 }
3399 
3400 /**
3401  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3402  *  @hw: pointer to the HW structure
3403  *  @bank:  pointer to the variable that returns the active bank
3404  *
3405  *  Reads signature byte from the NVM using the flash access registers.
3406  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3407  **/
3408 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3409 {
3410 	u32 eecd;
3411 	struct e1000_nvm_info *nvm = &hw->nvm;
3412 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3413 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3414 	u32 nvm_dword = 0;
3415 	u8 sig_byte = 0;
3416 	s32 ret_val;
3417 
3418 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3419 
3420 	switch (hw->mac.type) {
3421 	case e1000_pch_spt:
3422 	case e1000_pch_cnp:
3423 		bank1_offset = nvm->flash_bank_size;
3424 		act_offset = E1000_ICH_NVM_SIG_WORD;
3425 
3426 		/* set bank to 0 in case flash read fails */
3427 		*bank = 0;
3428 
3429 		/* Check bank 0 */
3430 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3431 							 &nvm_dword);
3432 		if (ret_val)
3433 			return ret_val;
3434 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3435 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3436 		    E1000_ICH_NVM_SIG_VALUE) {
3437 			*bank = 0;
3438 			return E1000_SUCCESS;
3439 		}
3440 
3441 		/* Check bank 1 */
3442 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3443 							 bank1_offset,
3444 							 &nvm_dword);
3445 		if (ret_val)
3446 			return ret_val;
3447 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3448 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3449 		    E1000_ICH_NVM_SIG_VALUE) {
3450 			*bank = 1;
3451 			return E1000_SUCCESS;
3452 		}
3453 
3454 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3455 		return -E1000_ERR_NVM;
3456 	case e1000_ich8lan:
3457 	case e1000_ich9lan:
3458 		eecd = E1000_READ_REG(hw, E1000_EECD);
3459 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3460 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3461 			if (eecd & E1000_EECD_SEC1VAL)
3462 				*bank = 1;
3463 			else
3464 				*bank = 0;
3465 
3466 			return E1000_SUCCESS;
3467 		}
3468 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3469 		/* fall-thru */
3470 	default:
3471 		/* set bank to 0 in case flash read fails */
3472 		*bank = 0;
3473 
3474 		/* Check bank 0 */
3475 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3476 							&sig_byte);
3477 		if (ret_val)
3478 			return ret_val;
3479 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3480 		    E1000_ICH_NVM_SIG_VALUE) {
3481 			*bank = 0;
3482 			return E1000_SUCCESS;
3483 		}
3484 
3485 		/* Check bank 1 */
3486 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3487 							bank1_offset,
3488 							&sig_byte);
3489 		if (ret_val)
3490 			return ret_val;
3491 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3492 		    E1000_ICH_NVM_SIG_VALUE) {
3493 			*bank = 1;
3494 			return E1000_SUCCESS;
3495 		}
3496 
3497 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3498 		return -E1000_ERR_NVM;
3499 	}
3500 }
3501 
3502 /**
3503  *  e1000_read_nvm_spt - NVM access for SPT
3504  *  @hw: pointer to the HW structure
3505  *  @offset: The offset (in bytes) of the word(s) to read.
3506  *  @words: Size of data to read in words.
3507  *  @data: pointer to the word(s) to read at offset.
3508  *
3509  *  Reads a word(s) from the NVM
3510  **/
3511 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3512 			      u16 *data)
3513 {
3514 	struct e1000_nvm_info *nvm = &hw->nvm;
3515 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3516 	u32 act_offset;
3517 	s32 ret_val = E1000_SUCCESS;
3518 	u32 bank = 0;
3519 	u32 dword = 0;
3520 	u16 offset_to_read;
3521 	u16 i;
3522 
3523 	DEBUGFUNC("e1000_read_nvm_spt");
3524 
3525 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3526 	    (words == 0)) {
3527 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3528 		ret_val = -E1000_ERR_NVM;
3529 		goto out;
3530 	}
3531 
3532 	nvm->ops.acquire(hw);
3533 
3534 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3535 	if (ret_val != E1000_SUCCESS) {
3536 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3537 		bank = 0;
3538 	}
3539 
3540 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3541 	act_offset += offset;
3542 
3543 	ret_val = E1000_SUCCESS;
3544 
3545 	for (i = 0; i < words; i += 2) {
3546 		if (words - i == 1) {
3547 			if (dev_spec->shadow_ram[offset+i].modified) {
3548 				data[i] = dev_spec->shadow_ram[offset+i].value;
3549 			} else {
3550 				offset_to_read = act_offset + i -
3551 						 ((act_offset + i) % 2);
3552 				ret_val =
3553 				   e1000_read_flash_dword_ich8lan(hw,
3554 								 offset_to_read,
3555 								 &dword);
3556 				if (ret_val)
3557 					break;
3558 				if ((act_offset + i) % 2 == 0)
3559 					data[i] = (u16)(dword & 0xFFFF);
3560 				else
3561 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3562 			}
3563 		} else {
3564 			offset_to_read = act_offset + i;
3565 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3566 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3567 				ret_val =
3568 				   e1000_read_flash_dword_ich8lan(hw,
3569 								 offset_to_read,
3570 								 &dword);
3571 				if (ret_val)
3572 					break;
3573 			}
3574 			if (dev_spec->shadow_ram[offset+i].modified)
3575 				data[i] = dev_spec->shadow_ram[offset+i].value;
3576 			else
3577 				data[i] = (u16) (dword & 0xFFFF);
3578 			if (dev_spec->shadow_ram[offset+i].modified)
3579 				data[i+1] =
3580 				   dev_spec->shadow_ram[offset+i+1].value;
3581 			else
3582 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3583 		}
3584 	}
3585 
3586 	nvm->ops.release(hw);
3587 
3588 out:
3589 	if (ret_val)
3590 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3591 
3592 	return ret_val;
3593 }
3594 
3595 /**
3596  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3597  *  @hw: pointer to the HW structure
3598  *  @offset: The offset (in bytes) of the word(s) to read.
3599  *  @words: Size of data to read in words
3600  *  @data: Pointer to the word(s) to read at offset.
3601  *
3602  *  Reads a word(s) from the NVM using the flash access registers.
3603  **/
3604 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3605 				  u16 *data)
3606 {
3607 	struct e1000_nvm_info *nvm = &hw->nvm;
3608 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3609 	u32 act_offset;
3610 	s32 ret_val = E1000_SUCCESS;
3611 	u32 bank = 0;
3612 	u16 i, word;
3613 
3614 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3615 
3616 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3617 	    (words == 0)) {
3618 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3619 		ret_val = -E1000_ERR_NVM;
3620 		goto out;
3621 	}
3622 
3623 	nvm->ops.acquire(hw);
3624 
3625 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3626 	if (ret_val != E1000_SUCCESS) {
3627 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3628 		bank = 0;
3629 	}
3630 
3631 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3632 	act_offset += offset;
3633 
3634 	ret_val = E1000_SUCCESS;
3635 	for (i = 0; i < words; i++) {
3636 		if (dev_spec->shadow_ram[offset+i].modified) {
3637 			data[i] = dev_spec->shadow_ram[offset+i].value;
3638 		} else {
3639 			ret_val = e1000_read_flash_word_ich8lan(hw,
3640 								act_offset + i,
3641 								&word);
3642 			if (ret_val)
3643 				break;
3644 			data[i] = word;
3645 		}
3646 	}
3647 
3648 	nvm->ops.release(hw);
3649 
3650 out:
3651 	if (ret_val)
3652 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3653 
3654 	return ret_val;
3655 }
3656 
3657 /**
3658  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3659  *  @hw: pointer to the HW structure
3660  *
3661  *  This function does initial flash setup so that a new read/write/erase cycle
3662  *  can be started.
3663  **/
3664 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3665 {
3666 	union ich8_hws_flash_status hsfsts;
3667 	s32 ret_val = -E1000_ERR_NVM;
3668 
3669 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3670 
3671 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3672 
3673 	/* Check if the flash descriptor is valid */
3674 	if (!hsfsts.hsf_status.fldesvalid) {
3675 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3676 		return -E1000_ERR_NVM;
3677 	}
3678 
3679 	/* Clear FCERR and DAEL in hw status by writing 1 */
3680 	hsfsts.hsf_status.flcerr = 1;
3681 	hsfsts.hsf_status.dael = 1;
3682 	if (hw->mac.type >= e1000_pch_spt)
3683 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3684 				      hsfsts.regval & 0xFFFF);
3685 	else
3686 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3687 
3688 	/* Either we should have a hardware SPI cycle in progress
3689 	 * bit to check against, in order to start a new cycle or
3690 	 * FDONE bit should be changed in the hardware so that it
3691 	 * is 1 after hardware reset, which can then be used as an
3692 	 * indication whether a cycle is in progress or has been
3693 	 * completed.
3694 	 */
3695 
3696 	if (!hsfsts.hsf_status.flcinprog) {
3697 		/* There is no cycle running at present,
3698 		 * so we can start a cycle.
3699 		 * Begin by setting Flash Cycle Done.
3700 		 */
3701 		hsfsts.hsf_status.flcdone = 1;
3702 		if (hw->mac.type >= e1000_pch_spt)
3703 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3704 					      hsfsts.regval & 0xFFFF);
3705 		else
3706 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3707 						hsfsts.regval);
3708 		ret_val = E1000_SUCCESS;
3709 	} else {
3710 		s32 i;
3711 
3712 		/* Otherwise poll for sometime so the current
3713 		 * cycle has a chance to end before giving up.
3714 		 */
3715 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3716 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3717 							      ICH_FLASH_HSFSTS);
3718 			if (!hsfsts.hsf_status.flcinprog) {
3719 				ret_val = E1000_SUCCESS;
3720 				break;
3721 			}
3722 			usec_delay(1);
3723 		}
3724 		if (ret_val == E1000_SUCCESS) {
3725 			/* Successful in waiting for previous cycle to timeout,
3726 			 * now set the Flash Cycle Done.
3727 			 */
3728 			hsfsts.hsf_status.flcdone = 1;
3729 			if (hw->mac.type >= e1000_pch_spt)
3730 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3731 						      hsfsts.regval & 0xFFFF);
3732 			else
3733 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3734 							hsfsts.regval);
3735 		} else {
3736 			DEBUGOUT("Flash controller busy, cannot get access\n");
3737 		}
3738 	}
3739 
3740 	return ret_val;
3741 }
3742 
3743 /**
3744  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3745  *  @hw: pointer to the HW structure
3746  *  @timeout: maximum time to wait for completion
3747  *
3748  *  This function starts a flash cycle and waits for its completion.
3749  **/
3750 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3751 {
3752 	union ich8_hws_flash_ctrl hsflctl;
3753 	union ich8_hws_flash_status hsfsts;
3754 	u32 i = 0;
3755 
3756 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3757 
3758 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3759 	if (hw->mac.type >= e1000_pch_spt)
3760 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3761 	else
3762 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3763 	hsflctl.hsf_ctrl.flcgo = 1;
3764 
3765 	if (hw->mac.type >= e1000_pch_spt)
3766 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3767 				      hsflctl.regval << 16);
3768 	else
3769 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3770 
3771 	/* wait till FDONE bit is set to 1 */
3772 	do {
3773 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3774 		if (hsfsts.hsf_status.flcdone)
3775 			break;
3776 		usec_delay(1);
3777 	} while (i++ < timeout);
3778 
3779 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3780 		return E1000_SUCCESS;
3781 
3782 	return -E1000_ERR_NVM;
3783 }
3784 
3785 /**
3786  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3787  *  @hw: pointer to the HW structure
3788  *  @offset: offset to data location
3789  *  @data: pointer to the location for storing the data
3790  *
3791  *  Reads the flash dword at offset into data.  Offset is converted
3792  *  to bytes before read.
3793  **/
3794 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3795 					  u32 *data)
3796 {
3797 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3798 
3799 	if (!data)
3800 		return -E1000_ERR_NVM;
3801 
3802 	/* Must convert word offset into bytes. */
3803 	offset <<= 1;
3804 
3805 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3806 }
3807 
3808 /**
3809  *  e1000_read_flash_word_ich8lan - Read word from flash
3810  *  @hw: pointer to the HW structure
3811  *  @offset: offset to data location
3812  *  @data: pointer to the location for storing the data
3813  *
3814  *  Reads the flash word at offset into data.  Offset is converted
3815  *  to bytes before read.
3816  **/
3817 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3818 					 u16 *data)
3819 {
3820 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3821 
3822 	if (!data)
3823 		return -E1000_ERR_NVM;
3824 
3825 	/* Must convert offset into bytes. */
3826 	offset <<= 1;
3827 
3828 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3829 }
3830 
3831 /**
3832  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3833  *  @hw: pointer to the HW structure
3834  *  @offset: The offset of the byte to read.
3835  *  @data: Pointer to a byte to store the value read.
3836  *
3837  *  Reads a single byte from the NVM using the flash access registers.
3838  **/
3839 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3840 					 u8 *data)
3841 {
3842 	s32 ret_val;
3843 	u16 word = 0;
3844 
3845 	/* In SPT, only 32 bits access is supported,
3846 	 * so this function should not be called.
3847 	 */
3848 	if (hw->mac.type >= e1000_pch_spt)
3849 		return -E1000_ERR_NVM;
3850 	else
3851 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3852 
3853 	if (ret_val)
3854 		return ret_val;
3855 
3856 	*data = (u8)word;
3857 
3858 	return E1000_SUCCESS;
3859 }
3860 
3861 /**
3862  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3863  *  @hw: pointer to the HW structure
3864  *  @offset: The offset (in bytes) of the byte or word to read.
3865  *  @size: Size of data to read, 1=byte 2=word
3866  *  @data: Pointer to the word to store the value read.
3867  *
3868  *  Reads a byte or word from the NVM using the flash access registers.
3869  **/
3870 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3871 					 u8 size, u16 *data)
3872 {
3873 	union ich8_hws_flash_status hsfsts;
3874 	union ich8_hws_flash_ctrl hsflctl;
3875 	u32 flash_linear_addr;
3876 	u32 flash_data = 0;
3877 	s32 ret_val = -E1000_ERR_NVM;
3878 	u8 count = 0;
3879 
3880 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3881 
3882 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3883 		return -E1000_ERR_NVM;
3884 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3885 			     hw->nvm.flash_base_addr);
3886 
3887 	do {
3888 		usec_delay(1);
3889 		/* Steps */
3890 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3891 		if (ret_val != E1000_SUCCESS)
3892 			break;
3893 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3894 
3895 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3896 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3897 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3898 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3899 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3900 
3901 		ret_val = e1000_flash_cycle_ich8lan(hw,
3902 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3903 
3904 		/* Check if FCERR is set to 1, if set to 1, clear it
3905 		 * and try the whole sequence a few more times, else
3906 		 * read in (shift in) the Flash Data0, the order is
3907 		 * least significant byte first msb to lsb
3908 		 */
3909 		if (ret_val == E1000_SUCCESS) {
3910 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3911 			if (size == 1)
3912 				*data = (u8)(flash_data & 0x000000FF);
3913 			else if (size == 2)
3914 				*data = (u16)(flash_data & 0x0000FFFF);
3915 			break;
3916 		} else {
3917 			/* If we've gotten here, then things are probably
3918 			 * completely hosed, but if the error condition is
3919 			 * detected, it won't hurt to give it another try...
3920 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3921 			 */
3922 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3923 							      ICH_FLASH_HSFSTS);
3924 			if (hsfsts.hsf_status.flcerr) {
3925 				/* Repeat for some time before giving up. */
3926 				continue;
3927 			} else if (!hsfsts.hsf_status.flcdone) {
3928 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3929 				break;
3930 			}
3931 		}
3932 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3933 
3934 	return ret_val;
3935 }
3936 
3937 /**
3938  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3939  *  @hw: pointer to the HW structure
3940  *  @offset: The offset (in bytes) of the dword to read.
3941  *  @data: Pointer to the dword to store the value read.
3942  *
3943  *  Reads a byte or word from the NVM using the flash access registers.
3944  **/
3945 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3946 					   u32 *data)
3947 {
3948 	union ich8_hws_flash_status hsfsts;
3949 	union ich8_hws_flash_ctrl hsflctl;
3950 	u32 flash_linear_addr;
3951 	s32 ret_val = -E1000_ERR_NVM;
3952 	u8 count = 0;
3953 
3954 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3955 
3956 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3957 		    hw->mac.type < e1000_pch_spt)
3958 			return -E1000_ERR_NVM;
3959 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3960 			     hw->nvm.flash_base_addr);
3961 
3962 	do {
3963 		usec_delay(1);
3964 		/* Steps */
3965 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3966 		if (ret_val != E1000_SUCCESS)
3967 			break;
3968 		/* In SPT, This register is in Lan memory space, not flash.
3969 		 * Therefore, only 32 bit access is supported
3970 		 */
3971 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3972 
3973 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3974 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3975 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3976 		/* In SPT, This register is in Lan memory space, not flash.
3977 		 * Therefore, only 32 bit access is supported
3978 		 */
3979 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3980 				      (u32)hsflctl.regval << 16);
3981 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3982 
3983 		ret_val = e1000_flash_cycle_ich8lan(hw,
3984 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3985 
3986 		/* Check if FCERR is set to 1, if set to 1, clear it
3987 		 * and try the whole sequence a few more times, else
3988 		 * read in (shift in) the Flash Data0, the order is
3989 		 * least significant byte first msb to lsb
3990 		 */
3991 		if (ret_val == E1000_SUCCESS) {
3992 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3993 			break;
3994 		} else {
3995 			/* If we've gotten here, then things are probably
3996 			 * completely hosed, but if the error condition is
3997 			 * detected, it won't hurt to give it another try...
3998 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3999 			 */
4000 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4001 							      ICH_FLASH_HSFSTS);
4002 			if (hsfsts.hsf_status.flcerr) {
4003 				/* Repeat for some time before giving up. */
4004 				continue;
4005 			} else if (!hsfsts.hsf_status.flcdone) {
4006 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4007 				break;
4008 			}
4009 		}
4010 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4011 
4012 	return ret_val;
4013 }
4014 
4015 /**
4016  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4017  *  @hw: pointer to the HW structure
4018  *  @offset: The offset (in bytes) of the word(s) to write.
4019  *  @words: Size of data to write in words
4020  *  @data: Pointer to the word(s) to write at offset.
4021  *
4022  *  Writes a byte or word to the NVM using the flash access registers.
4023  **/
4024 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4025 				   u16 *data)
4026 {
4027 	struct e1000_nvm_info *nvm = &hw->nvm;
4028 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029 	u16 i;
4030 
4031 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4032 
4033 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4034 	    (words == 0)) {
4035 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4036 		return -E1000_ERR_NVM;
4037 	}
4038 
4039 	nvm->ops.acquire(hw);
4040 
4041 	for (i = 0; i < words; i++) {
4042 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4043 		dev_spec->shadow_ram[offset+i].value = data[i];
4044 	}
4045 
4046 	nvm->ops.release(hw);
4047 
4048 	return E1000_SUCCESS;
4049 }
4050 
4051 /**
4052  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4053  *  @hw: pointer to the HW structure
4054  *
4055  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4056  *  which writes the checksum to the shadow ram.  The changes in the shadow
4057  *  ram are then committed to the EEPROM by processing each bank at a time
4058  *  checking for the modified bit and writing only the pending changes.
4059  *  After a successful commit, the shadow ram is cleared and is ready for
4060  *  future writes.
4061  **/
4062 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4063 {
4064 	struct e1000_nvm_info *nvm = &hw->nvm;
4065 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4066 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4067 	s32 ret_val;
4068 	u32 dword = 0;
4069 
4070 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4071 
4072 	ret_val = e1000_update_nvm_checksum_generic(hw);
4073 	if (ret_val)
4074 		goto out;
4075 
4076 	if (nvm->type != e1000_nvm_flash_sw)
4077 		goto out;
4078 
4079 	nvm->ops.acquire(hw);
4080 
4081 	/* We're writing to the opposite bank so if we're on bank 1,
4082 	 * write to bank 0 etc.  We also need to erase the segment that
4083 	 * is going to be written
4084 	 */
4085 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4086 	if (ret_val != E1000_SUCCESS) {
4087 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4088 		bank = 0;
4089 	}
4090 
4091 	if (bank == 0) {
4092 		new_bank_offset = nvm->flash_bank_size;
4093 		old_bank_offset = 0;
4094 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4095 		if (ret_val)
4096 			goto release;
4097 	} else {
4098 		old_bank_offset = nvm->flash_bank_size;
4099 		new_bank_offset = 0;
4100 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4101 		if (ret_val)
4102 			goto release;
4103 	}
4104 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4105 		/* Determine whether to write the value stored
4106 		 * in the other NVM bank or a modified value stored
4107 		 * in the shadow RAM
4108 		 */
4109 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4110 							 i + old_bank_offset,
4111 							 &dword);
4112 
4113 		if (dev_spec->shadow_ram[i].modified) {
4114 			dword &= 0xffff0000;
4115 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4116 		}
4117 		if (dev_spec->shadow_ram[i + 1].modified) {
4118 			dword &= 0x0000ffff;
4119 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4120 				  << 16);
4121 		}
4122 		if (ret_val)
4123 			break;
4124 
4125 		/* If the word is 0x13, then make sure the signature bits
4126 		 * (15:14) are 11b until the commit has completed.
4127 		 * This will allow us to write 10b which indicates the
4128 		 * signature is valid.  We want to do this after the write
4129 		 * has completed so that we don't mark the segment valid
4130 		 * while the write is still in progress
4131 		 */
4132 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4133 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4134 
4135 		/* Convert offset to bytes. */
4136 		act_offset = (i + new_bank_offset) << 1;
4137 
4138 		usec_delay(100);
4139 
4140 		/* Write the data to the new bank. Offset in words*/
4141 		act_offset = i + new_bank_offset;
4142 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4143 								dword);
4144 		if (ret_val)
4145 			break;
4146 	 }
4147 
4148 	/* Don't bother writing the segment valid bits if sector
4149 	 * programming failed.
4150 	 */
4151 	if (ret_val) {
4152 		DEBUGOUT("Flash commit failed.\n");
4153 		goto release;
4154 	}
4155 
4156 	/* Finally validate the new segment by setting bit 15:14
4157 	 * to 10b in word 0x13 , this can be done without an
4158 	 * erase as well since these bits are 11 to start with
4159 	 * and we need to change bit 14 to 0b
4160 	 */
4161 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4162 
4163 	/*offset in words but we read dword*/
4164 	--act_offset;
4165 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4166 
4167 	if (ret_val)
4168 		goto release;
4169 
4170 	dword &= 0xBFFFFFFF;
4171 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4172 
4173 	if (ret_val)
4174 		goto release;
4175 
4176 	/* And invalidate the previously valid segment by setting
4177 	 * its signature word (0x13) high_byte to 0b. This can be
4178 	 * done without an erase because flash erase sets all bits
4179 	 * to 1's. We can write 1's to 0's without an erase
4180 	 */
4181 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4182 
4183 	/* offset in words but we read dword*/
4184 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4185 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4186 
4187 	if (ret_val)
4188 		goto release;
4189 
4190 	dword &= 0x00FFFFFF;
4191 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4192 
4193 	if (ret_val)
4194 		goto release;
4195 
4196 	/* Great!  Everything worked, we can now clear the cached entries. */
4197 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4198 		dev_spec->shadow_ram[i].modified = FALSE;
4199 		dev_spec->shadow_ram[i].value = 0xFFFF;
4200 	}
4201 
4202 release:
4203 	nvm->ops.release(hw);
4204 
4205 	/* Reload the EEPROM, or else modifications will not appear
4206 	 * until after the next adapter reset.
4207 	 */
4208 	if (!ret_val) {
4209 		nvm->ops.reload(hw);
4210 		msec_delay(10);
4211 	}
4212 
4213 out:
4214 	if (ret_val)
4215 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4216 
4217 	return ret_val;
4218 }
4219 
4220 /**
4221  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4222  *  @hw: pointer to the HW structure
4223  *
4224  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4225  *  which writes the checksum to the shadow ram.  The changes in the shadow
4226  *  ram are then committed to the EEPROM by processing each bank at a time
4227  *  checking for the modified bit and writing only the pending changes.
4228  *  After a successful commit, the shadow ram is cleared and is ready for
4229  *  future writes.
4230  **/
4231 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4232 {
4233 	struct e1000_nvm_info *nvm = &hw->nvm;
4234 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4235 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4236 	s32 ret_val;
4237 	u16 data = 0;
4238 
4239 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4240 
4241 	ret_val = e1000_update_nvm_checksum_generic(hw);
4242 	if (ret_val)
4243 		goto out;
4244 
4245 	if (nvm->type != e1000_nvm_flash_sw)
4246 		goto out;
4247 
4248 	nvm->ops.acquire(hw);
4249 
4250 	/* We're writing to the opposite bank so if we're on bank 1,
4251 	 * write to bank 0 etc.  We also need to erase the segment that
4252 	 * is going to be written
4253 	 */
4254 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4255 	if (ret_val != E1000_SUCCESS) {
4256 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4257 		bank = 0;
4258 	}
4259 
4260 	if (bank == 0) {
4261 		new_bank_offset = nvm->flash_bank_size;
4262 		old_bank_offset = 0;
4263 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4264 		if (ret_val)
4265 			goto release;
4266 	} else {
4267 		old_bank_offset = nvm->flash_bank_size;
4268 		new_bank_offset = 0;
4269 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4270 		if (ret_val)
4271 			goto release;
4272 	}
4273 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4274 		if (dev_spec->shadow_ram[i].modified) {
4275 			data = dev_spec->shadow_ram[i].value;
4276 		} else {
4277 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4278 								old_bank_offset,
4279 								&data);
4280 			if (ret_val)
4281 				break;
4282 		}
4283 		/* If the word is 0x13, then make sure the signature bits
4284 		 * (15:14) are 11b until the commit has completed.
4285 		 * This will allow us to write 10b which indicates the
4286 		 * signature is valid.  We want to do this after the write
4287 		 * has completed so that we don't mark the segment valid
4288 		 * while the write is still in progress
4289 		 */
4290 		if (i == E1000_ICH_NVM_SIG_WORD)
4291 			data |= E1000_ICH_NVM_SIG_MASK;
4292 
4293 		/* Convert offset to bytes. */
4294 		act_offset = (i + new_bank_offset) << 1;
4295 
4296 		usec_delay(100);
4297 
4298 		/* Write the bytes to the new bank. */
4299 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4300 							       act_offset,
4301 							       (u8)data);
4302 		if (ret_val)
4303 			break;
4304 
4305 		usec_delay(100);
4306 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4307 							  act_offset + 1,
4308 							  (u8)(data >> 8));
4309 		if (ret_val)
4310 			break;
4311 	 }
4312 
4313 	/* Don't bother writing the segment valid bits if sector
4314 	 * programming failed.
4315 	 */
4316 	if (ret_val) {
4317 		DEBUGOUT("Flash commit failed.\n");
4318 		goto release;
4319 	}
4320 
4321 	/* Finally validate the new segment by setting bit 15:14
4322 	 * to 10b in word 0x13 , this can be done without an
4323 	 * erase as well since these bits are 11 to start with
4324 	 * and we need to change bit 14 to 0b
4325 	 */
4326 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4327 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4328 	if (ret_val)
4329 		goto release;
4330 
4331 	data &= 0xBFFF;
4332 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4333 						       (u8)(data >> 8));
4334 	if (ret_val)
4335 		goto release;
4336 
4337 	/* And invalidate the previously valid segment by setting
4338 	 * its signature word (0x13) high_byte to 0b. This can be
4339 	 * done without an erase because flash erase sets all bits
4340 	 * to 1's. We can write 1's to 0's without an erase
4341 	 */
4342 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4343 
4344 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4345 
4346 	if (ret_val)
4347 		goto release;
4348 
4349 	/* Great!  Everything worked, we can now clear the cached entries. */
4350 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4351 		dev_spec->shadow_ram[i].modified = FALSE;
4352 		dev_spec->shadow_ram[i].value = 0xFFFF;
4353 	}
4354 
4355 release:
4356 	nvm->ops.release(hw);
4357 
4358 	/* Reload the EEPROM, or else modifications will not appear
4359 	 * until after the next adapter reset.
4360 	 */
4361 	if (!ret_val) {
4362 		nvm->ops.reload(hw);
4363 		msec_delay(10);
4364 	}
4365 
4366 out:
4367 	if (ret_val)
4368 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4369 
4370 	return ret_val;
4371 }
4372 
4373 /**
4374  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4375  *  @hw: pointer to the HW structure
4376  *
4377  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4378  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4379  *  calculated, in which case we need to calculate the checksum and set bit 6.
4380  **/
4381 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4382 {
4383 	s32 ret_val;
4384 	u16 data;
4385 	u16 word;
4386 	u16 valid_csum_mask;
4387 
4388 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4389 
4390 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4391 	 * the checksum needs to be fixed.  This bit is an indication that
4392 	 * the NVM was prepared by OEM software and did not calculate
4393 	 * the checksum...a likely scenario.
4394 	 */
4395 	switch (hw->mac.type) {
4396 	case e1000_pch_lpt:
4397 	case e1000_pch_spt:
4398 	case e1000_pch_cnp:
4399 		word = NVM_COMPAT;
4400 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4401 		break;
4402 	default:
4403 		word = NVM_FUTURE_INIT_WORD1;
4404 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4405 		break;
4406 	}
4407 
4408 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4409 	if (ret_val)
4410 		return ret_val;
4411 
4412 	if (!(data & valid_csum_mask)) {
4413 		data |= valid_csum_mask;
4414 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4415 		if (ret_val)
4416 			return ret_val;
4417 		ret_val = hw->nvm.ops.update(hw);
4418 		if (ret_val)
4419 			return ret_val;
4420 	}
4421 
4422 	return e1000_validate_nvm_checksum_generic(hw);
4423 }
4424 
4425 /**
4426  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4427  *  @hw: pointer to the HW structure
4428  *  @offset: The offset (in bytes) of the byte/word to read.
4429  *  @size: Size of data to read, 1=byte 2=word
4430  *  @data: The byte(s) to write to the NVM.
4431  *
4432  *  Writes one/two bytes to the NVM using the flash access registers.
4433  **/
4434 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4435 					  u8 size, u16 data)
4436 {
4437 	union ich8_hws_flash_status hsfsts;
4438 	union ich8_hws_flash_ctrl hsflctl;
4439 	u32 flash_linear_addr;
4440 	u32 flash_data = 0;
4441 	s32 ret_val;
4442 	u8 count = 0;
4443 
4444 	DEBUGFUNC("e1000_write_ich8_data");
4445 
4446 	if (hw->mac.type >= e1000_pch_spt) {
4447 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4448 			return -E1000_ERR_NVM;
4449 	} else {
4450 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4451 			return -E1000_ERR_NVM;
4452 	}
4453 
4454 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4455 			     hw->nvm.flash_base_addr);
4456 
4457 	do {
4458 		usec_delay(1);
4459 		/* Steps */
4460 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461 		if (ret_val != E1000_SUCCESS)
4462 			break;
4463 		/* In SPT, This register is in Lan memory space, not
4464 		 * flash.  Therefore, only 32 bit access is supported
4465 		 */
4466 		if (hw->mac.type >= e1000_pch_spt)
4467 			hsflctl.regval =
4468 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4469 		else
4470 			hsflctl.regval =
4471 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4472 
4473 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4474 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4475 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4476 		/* In SPT, This register is in Lan memory space,
4477 		 * not flash.  Therefore, only 32 bit access is
4478 		 * supported
4479 		 */
4480 		if (hw->mac.type >= e1000_pch_spt)
4481 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4482 					      hsflctl.regval << 16);
4483 		else
4484 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4485 						hsflctl.regval);
4486 
4487 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4488 
4489 		if (size == 1)
4490 			flash_data = (u32)data & 0x00FF;
4491 		else
4492 			flash_data = (u32)data;
4493 
4494 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4495 
4496 		/* check if FCERR is set to 1 , if set to 1, clear it
4497 		 * and try the whole sequence a few more times else done
4498 		 */
4499 		ret_val =
4500 		    e1000_flash_cycle_ich8lan(hw,
4501 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4502 		if (ret_val == E1000_SUCCESS)
4503 			break;
4504 
4505 		/* If we're here, then things are most likely
4506 		 * completely hosed, but if the error condition
4507 		 * is detected, it won't hurt to give it another
4508 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4509 		 */
4510 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4511 		if (hsfsts.hsf_status.flcerr)
4512 			/* Repeat for some time before giving up. */
4513 			continue;
4514 		if (!hsfsts.hsf_status.flcdone) {
4515 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4516 			break;
4517 		}
4518 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4519 
4520 	return ret_val;
4521 }
4522 
4523 /**
4524 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4525 *  @hw: pointer to the HW structure
4526 *  @offset: The offset (in bytes) of the dwords to read.
4527 *  @data: The 4 bytes to write to the NVM.
4528 *
4529 *  Writes one/two/four bytes to the NVM using the flash access registers.
4530 **/
4531 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4532 					    u32 data)
4533 {
4534 	union ich8_hws_flash_status hsfsts;
4535 	union ich8_hws_flash_ctrl hsflctl;
4536 	u32 flash_linear_addr;
4537 	s32 ret_val;
4538 	u8 count = 0;
4539 
4540 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4541 
4542 	if (hw->mac.type >= e1000_pch_spt) {
4543 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4544 			return -E1000_ERR_NVM;
4545 	}
4546 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4547 			     hw->nvm.flash_base_addr);
4548 	do {
4549 		usec_delay(1);
4550 		/* Steps */
4551 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4552 		if (ret_val != E1000_SUCCESS)
4553 			break;
4554 
4555 		/* In SPT, This register is in Lan memory space, not
4556 		 * flash.  Therefore, only 32 bit access is supported
4557 		 */
4558 		if (hw->mac.type >= e1000_pch_spt)
4559 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4560 							      ICH_FLASH_HSFSTS)
4561 					 >> 16;
4562 		else
4563 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4564 							      ICH_FLASH_HSFCTL);
4565 
4566 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4567 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4568 
4569 		/* In SPT, This register is in Lan memory space,
4570 		 * not flash.  Therefore, only 32 bit access is
4571 		 * supported
4572 		 */
4573 		if (hw->mac.type >= e1000_pch_spt)
4574 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4575 					      hsflctl.regval << 16);
4576 		else
4577 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4578 						hsflctl.regval);
4579 
4580 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4581 
4582 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4583 
4584 		/* check if FCERR is set to 1 , if set to 1, clear it
4585 		 * and try the whole sequence a few more times else done
4586 		 */
4587 		ret_val = e1000_flash_cycle_ich8lan(hw,
4588 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4589 
4590 		if (ret_val == E1000_SUCCESS)
4591 			break;
4592 
4593 		/* If we're here, then things are most likely
4594 		 * completely hosed, but if the error condition
4595 		 * is detected, it won't hurt to give it another
4596 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4597 		 */
4598 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4599 
4600 		if (hsfsts.hsf_status.flcerr)
4601 			/* Repeat for some time before giving up. */
4602 			continue;
4603 		if (!hsfsts.hsf_status.flcdone) {
4604 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4605 			break;
4606 		}
4607 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4608 
4609 	return ret_val;
4610 }
4611 
4612 /**
4613  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4614  *  @hw: pointer to the HW structure
4615  *  @offset: The index of the byte to read.
4616  *  @data: The byte to write to the NVM.
4617  *
4618  *  Writes a single byte to the NVM using the flash access registers.
4619  **/
4620 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4621 					  u8 data)
4622 {
4623 	u16 word = (u16)data;
4624 
4625 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4626 
4627 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4628 }
4629 
4630 /**
4631 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4632 *  @hw: pointer to the HW structure
4633 *  @offset: The offset of the word to write.
4634 *  @dword: The dword to write to the NVM.
4635 *
4636 *  Writes a single dword to the NVM using the flash access registers.
4637 *  Goes through a retry algorithm before giving up.
4638 **/
4639 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4640 						 u32 offset, u32 dword)
4641 {
4642 	s32 ret_val;
4643 	u16 program_retries;
4644 
4645 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4646 
4647 	/* Must convert word offset into bytes. */
4648 	offset <<= 1;
4649 
4650 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4651 
4652 	if (!ret_val)
4653 		return ret_val;
4654 	for (program_retries = 0; program_retries < 100; program_retries++) {
4655 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4656 		usec_delay(100);
4657 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4658 		if (ret_val == E1000_SUCCESS)
4659 			break;
4660 	}
4661 	if (program_retries == 100)
4662 		return -E1000_ERR_NVM;
4663 
4664 	return E1000_SUCCESS;
4665 }
4666 
4667 /**
4668  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4669  *  @hw: pointer to the HW structure
4670  *  @offset: The offset of the byte to write.
4671  *  @byte: The byte to write to the NVM.
4672  *
4673  *  Writes a single byte to the NVM using the flash access registers.
4674  *  Goes through a retry algorithm before giving up.
4675  **/
4676 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4677 						u32 offset, u8 byte)
4678 {
4679 	s32 ret_val;
4680 	u16 program_retries;
4681 
4682 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4683 
4684 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4685 	if (!ret_val)
4686 		return ret_val;
4687 
4688 	for (program_retries = 0; program_retries < 100; program_retries++) {
4689 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4690 		usec_delay(100);
4691 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4692 		if (ret_val == E1000_SUCCESS)
4693 			break;
4694 	}
4695 	if (program_retries == 100)
4696 		return -E1000_ERR_NVM;
4697 
4698 	return E1000_SUCCESS;
4699 }
4700 
4701 /**
4702  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4703  *  @hw: pointer to the HW structure
4704  *  @bank: 0 for first bank, 1 for second bank, etc.
4705  *
4706  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4707  *  bank N is 4096 * N + flash_reg_addr.
4708  **/
4709 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4710 {
4711 	struct e1000_nvm_info *nvm = &hw->nvm;
4712 	union ich8_hws_flash_status hsfsts;
4713 	union ich8_hws_flash_ctrl hsflctl;
4714 	u32 flash_linear_addr;
4715 	/* bank size is in 16bit words - adjust to bytes */
4716 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4717 	s32 ret_val;
4718 	s32 count = 0;
4719 	s32 j, iteration, sector_size;
4720 
4721 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4722 
4723 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4724 
4725 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4726 	 * register
4727 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4728 	 *     consecutive sectors.  The start index for the nth Hw sector
4729 	 *     can be calculated as = bank * 4096 + n * 256
4730 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4731 	 *     The start index for the nth Hw sector can be calculated
4732 	 *     as = bank * 4096
4733 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4734 	 *     (ich9 only, otherwise error condition)
4735 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4736 	 */
4737 	switch (hsfsts.hsf_status.berasesz) {
4738 	case 0:
4739 		/* Hw sector size 256 */
4740 		sector_size = ICH_FLASH_SEG_SIZE_256;
4741 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4742 		break;
4743 	case 1:
4744 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4745 		iteration = 1;
4746 		break;
4747 	case 2:
4748 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4749 		iteration = 1;
4750 		break;
4751 	case 3:
4752 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4753 		iteration = 1;
4754 		break;
4755 	default:
4756 		return -E1000_ERR_NVM;
4757 	}
4758 
4759 	/* Start with the base address, then add the sector offset. */
4760 	flash_linear_addr = hw->nvm.flash_base_addr;
4761 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4762 
4763 	for (j = 0; j < iteration; j++) {
4764 		do {
4765 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4766 
4767 			/* Steps */
4768 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4769 			if (ret_val)
4770 				return ret_val;
4771 
4772 			/* Write a value 11 (block Erase) in Flash
4773 			 * Cycle field in hw flash control
4774 			 */
4775 			if (hw->mac.type >= e1000_pch_spt)
4776 				hsflctl.regval =
4777 				    E1000_READ_FLASH_REG(hw,
4778 							 ICH_FLASH_HSFSTS)>>16;
4779 			else
4780 				hsflctl.regval =
4781 				    E1000_READ_FLASH_REG16(hw,
4782 							   ICH_FLASH_HSFCTL);
4783 
4784 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4785 			if (hw->mac.type >= e1000_pch_spt)
4786 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4787 						      hsflctl.regval << 16);
4788 			else
4789 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4790 							hsflctl.regval);
4791 
4792 			/* Write the last 24 bits of an index within the
4793 			 * block into Flash Linear address field in Flash
4794 			 * Address.
4795 			 */
4796 			flash_linear_addr += (j * sector_size);
4797 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4798 					      flash_linear_addr);
4799 
4800 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4801 			if (ret_val == E1000_SUCCESS)
4802 				break;
4803 
4804 			/* Check if FCERR is set to 1.  If 1,
4805 			 * clear it and try the whole sequence
4806 			 * a few more times else Done
4807 			 */
4808 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4809 						      ICH_FLASH_HSFSTS);
4810 			if (hsfsts.hsf_status.flcerr)
4811 				/* repeat for some time before giving up */
4812 				continue;
4813 			else if (!hsfsts.hsf_status.flcdone)
4814 				return ret_val;
4815 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4816 	}
4817 
4818 	return E1000_SUCCESS;
4819 }
4820 
4821 /**
4822  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4823  *  @hw: pointer to the HW structure
4824  *  @data: Pointer to the LED settings
4825  *
4826  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4827  *  settings is all 0's or F's, set the LED default to a valid LED default
4828  *  setting.
4829  **/
4830 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4831 {
4832 	s32 ret_val;
4833 
4834 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4835 
4836 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4837 	if (ret_val) {
4838 		DEBUGOUT("NVM Read Error\n");
4839 		return ret_val;
4840 	}
4841 
4842 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4843 		*data = ID_LED_DEFAULT_ICH8LAN;
4844 
4845 	return E1000_SUCCESS;
4846 }
4847 
4848 /**
4849  *  e1000_id_led_init_pchlan - store LED configurations
4850  *  @hw: pointer to the HW structure
4851  *
4852  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4853  *  the PHY LED configuration register.
4854  *
4855  *  PCH also does not have an "always on" or "always off" mode which
4856  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4857  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4858  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4859  *  link based on logic in e1000_led_[on|off]_pchlan().
4860  **/
4861 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4862 {
4863 	struct e1000_mac_info *mac = &hw->mac;
4864 	s32 ret_val;
4865 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4866 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4867 	u16 data, i, temp, shift;
4868 
4869 	DEBUGFUNC("e1000_id_led_init_pchlan");
4870 
4871 	/* Get default ID LED modes */
4872 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4873 	if (ret_val)
4874 		return ret_val;
4875 
4876 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4877 	mac->ledctl_mode1 = mac->ledctl_default;
4878 	mac->ledctl_mode2 = mac->ledctl_default;
4879 
4880 	for (i = 0; i < 4; i++) {
4881 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4882 		shift = (i * 5);
4883 		switch (temp) {
4884 		case ID_LED_ON1_DEF2:
4885 		case ID_LED_ON1_ON2:
4886 		case ID_LED_ON1_OFF2:
4887 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4888 			mac->ledctl_mode1 |= (ledctl_on << shift);
4889 			break;
4890 		case ID_LED_OFF1_DEF2:
4891 		case ID_LED_OFF1_ON2:
4892 		case ID_LED_OFF1_OFF2:
4893 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4894 			mac->ledctl_mode1 |= (ledctl_off << shift);
4895 			break;
4896 		default:
4897 			/* Do nothing */
4898 			break;
4899 		}
4900 		switch (temp) {
4901 		case ID_LED_DEF1_ON2:
4902 		case ID_LED_ON1_ON2:
4903 		case ID_LED_OFF1_ON2:
4904 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4905 			mac->ledctl_mode2 |= (ledctl_on << shift);
4906 			break;
4907 		case ID_LED_DEF1_OFF2:
4908 		case ID_LED_ON1_OFF2:
4909 		case ID_LED_OFF1_OFF2:
4910 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4911 			mac->ledctl_mode2 |= (ledctl_off << shift);
4912 			break;
4913 		default:
4914 			/* Do nothing */
4915 			break;
4916 		}
4917 	}
4918 
4919 	return E1000_SUCCESS;
4920 }
4921 
4922 /**
4923  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4924  *  @hw: pointer to the HW structure
4925  *
4926  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4927  *  register, so the bus width is hard coded.
4928  **/
4929 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4930 {
4931 	struct e1000_bus_info *bus = &hw->bus;
4932 	s32 ret_val;
4933 
4934 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4935 
4936 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4937 
4938 	/* ICH devices are "PCI Express"-ish.  They have
4939 	 * a configuration space, but do not contain
4940 	 * PCI Express Capability registers, so bus width
4941 	 * must be hardcoded.
4942 	 */
4943 	if (bus->width == e1000_bus_width_unknown)
4944 		bus->width = e1000_bus_width_pcie_x1;
4945 
4946 	return ret_val;
4947 }
4948 
4949 /**
4950  *  e1000_reset_hw_ich8lan - Reset the hardware
4951  *  @hw: pointer to the HW structure
4952  *
4953  *  Does a full reset of the hardware which includes a reset of the PHY and
4954  *  MAC.
4955  **/
4956 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4957 {
4958 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4959 	u16 kum_cfg;
4960 	u32 ctrl, reg;
4961 	s32 ret_val;
4962 
4963 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4964 
4965 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4966 	 * on the last TLP read/write transaction when MAC is reset.
4967 	 */
4968 	ret_val = e1000_disable_pcie_master_generic(hw);
4969 	if (ret_val)
4970 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4971 
4972 	DEBUGOUT("Masking off all interrupts\n");
4973 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4974 
4975 	/* Disable the Transmit and Receive units.  Then delay to allow
4976 	 * any pending transactions to complete before we hit the MAC
4977 	 * with the global reset.
4978 	 */
4979 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4980 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4981 	E1000_WRITE_FLUSH(hw);
4982 
4983 	msec_delay(10);
4984 
4985 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4986 	if (hw->mac.type == e1000_ich8lan) {
4987 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4988 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4989 		/* Set Packet Buffer Size to 16k. */
4990 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4991 	}
4992 
4993 	if (hw->mac.type == e1000_pchlan) {
4994 		/* Save the NVM K1 bit setting*/
4995 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4996 		if (ret_val)
4997 			return ret_val;
4998 
4999 		if (kum_cfg & E1000_NVM_K1_ENABLE)
5000 			dev_spec->nvm_k1_enabled = TRUE;
5001 		else
5002 			dev_spec->nvm_k1_enabled = FALSE;
5003 	}
5004 
5005 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5006 
5007 	if (!hw->phy.ops.check_reset_block(hw)) {
5008 		/* Full-chip reset requires MAC and PHY reset at the same
5009 		 * time to make sure the interface between MAC and the
5010 		 * external PHY is reset.
5011 		 */
5012 		ctrl |= E1000_CTRL_PHY_RST;
5013 
5014 		/* Gate automatic PHY configuration by hardware on
5015 		 * non-managed 82579
5016 		 */
5017 		if ((hw->mac.type == e1000_pch2lan) &&
5018 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5019 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5020 	}
5021 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5022 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5023 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5024 	/* cannot issue a flush here because it hangs the hardware */
5025 	msec_delay(20);
5026 
5027 	/* Set Phy Config Counter to 50msec */
5028 	if (hw->mac.type == e1000_pch2lan) {
5029 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5030 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5031 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5032 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5033 	}
5034 
5035 	if (!ret_val)
5036 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5037 
5038 	if (ctrl & E1000_CTRL_PHY_RST) {
5039 		ret_val = hw->phy.ops.get_cfg_done(hw);
5040 		if (ret_val)
5041 			return ret_val;
5042 
5043 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5044 		if (ret_val)
5045 			return ret_val;
5046 	}
5047 
5048 	/* For PCH, this write will make sure that any noise
5049 	 * will be detected as a CRC error and be dropped rather than show up
5050 	 * as a bad packet to the DMA engine.
5051 	 */
5052 	if (hw->mac.type == e1000_pchlan)
5053 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5054 
5055 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5056 	E1000_READ_REG(hw, E1000_ICR);
5057 
5058 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5059 	reg |= E1000_KABGTXD_BGSQLBIAS;
5060 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5061 
5062 	return E1000_SUCCESS;
5063 }
5064 
5065 /**
5066  *  e1000_init_hw_ich8lan - Initialize the hardware
5067  *  @hw: pointer to the HW structure
5068  *
5069  *  Prepares the hardware for transmit and receive by doing the following:
5070  *   - initialize hardware bits
5071  *   - initialize LED identification
5072  *   - setup receive address registers
5073  *   - setup flow control
5074  *   - setup transmit descriptors
5075  *   - clear statistics
5076  **/
5077 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5078 {
5079 	struct e1000_mac_info *mac = &hw->mac;
5080 	u32 ctrl_ext, txdctl, snoop;
5081 	s32 ret_val;
5082 	u16 i;
5083 
5084 	DEBUGFUNC("e1000_init_hw_ich8lan");
5085 
5086 	e1000_initialize_hw_bits_ich8lan(hw);
5087 
5088 	/* Initialize identification LED */
5089 	ret_val = mac->ops.id_led_init(hw);
5090 	/* An error is not fatal and we should not stop init due to this */
5091 	if (ret_val)
5092 		DEBUGOUT("Error initializing identification LED\n");
5093 
5094 	/* Setup the receive address. */
5095 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5096 
5097 	/* Zero out the Multicast HASH table */
5098 	DEBUGOUT("Zeroing the MTA\n");
5099 	for (i = 0; i < mac->mta_reg_count; i++)
5100 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5101 
5102 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5103 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5104 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5105 	 */
5106 	if (hw->phy.type == e1000_phy_82578) {
5107 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5108 		i &= ~BM_WUC_HOST_WU_BIT;
5109 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5110 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5111 		if (ret_val)
5112 			return ret_val;
5113 	}
5114 
5115 	/* Setup link and flow control */
5116 	ret_val = mac->ops.setup_link(hw);
5117 
5118 	/* Set the transmit descriptor write-back policy for both queues */
5119 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5120 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5121 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5122 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5123 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5124 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5125 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5126 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5127 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5128 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5129 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5130 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5131 
5132 	/* ICH8 has opposite polarity of no_snoop bits.
5133 	 * By default, we should use snoop behavior.
5134 	 */
5135 	if (mac->type == e1000_ich8lan)
5136 		snoop = PCIE_ICH8_SNOOP_ALL;
5137 	else
5138 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5139 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5140 
5141 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5142 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5143 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5144 
5145 	/* Clear all of the statistics registers (clear on read).  It is
5146 	 * important that we do this after we have tried to establish link
5147 	 * because the symbol error count will increment wildly if there
5148 	 * is no link.
5149 	 */
5150 	e1000_clear_hw_cntrs_ich8lan(hw);
5151 
5152 	return ret_val;
5153 }
5154 
5155 /**
5156  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5157  *  @hw: pointer to the HW structure
5158  *
5159  *  Sets/Clears required hardware bits necessary for correctly setting up the
5160  *  hardware for transmit and receive.
5161  **/
5162 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5163 {
5164 	u32 reg;
5165 
5166 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5167 
5168 	/* Extended Device Control */
5169 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5170 	reg |= (1 << 22);
5171 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5172 	if (hw->mac.type >= e1000_pchlan)
5173 		reg |= E1000_CTRL_EXT_PHYPDEN;
5174 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5175 
5176 	/* Transmit Descriptor Control 0 */
5177 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5178 	reg |= (1 << 22);
5179 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5180 
5181 	/* Transmit Descriptor Control 1 */
5182 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5183 	reg |= (1 << 22);
5184 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5185 
5186 	/* Transmit Arbitration Control 0 */
5187 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5188 	if (hw->mac.type == e1000_ich8lan)
5189 		reg |= (1 << 28) | (1 << 29);
5190 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5191 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5192 
5193 	/* Transmit Arbitration Control 1 */
5194 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5195 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5196 		reg &= ~(1 << 28);
5197 	else
5198 		reg |= (1 << 28);
5199 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5200 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5201 
5202 	/* Device Status */
5203 	if (hw->mac.type == e1000_ich8lan) {
5204 		reg = E1000_READ_REG(hw, E1000_STATUS);
5205 		reg &= ~(1 << 31);
5206 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5207 	}
5208 
5209 	/* work-around descriptor data corruption issue during nfs v2 udp
5210 	 * traffic, just disable the nfs filtering capability
5211 	 */
5212 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5213 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5214 
5215 	/* Disable IPv6 extension header parsing because some malformed
5216 	 * IPv6 headers can hang the Rx.
5217 	 */
5218 	if (hw->mac.type == e1000_ich8lan)
5219 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5220 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5221 
5222 	/* Enable ECC on Lynxpoint */
5223 	if (hw->mac.type >= e1000_pch_lpt) {
5224 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5225 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5226 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5227 
5228 		reg = E1000_READ_REG(hw, E1000_CTRL);
5229 		reg |= E1000_CTRL_MEHE;
5230 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5231 	}
5232 
5233 	return;
5234 }
5235 
5236 /**
5237  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5238  *  @hw: pointer to the HW structure
5239  *
5240  *  Determines which flow control settings to use, then configures flow
5241  *  control.  Calls the appropriate media-specific link configuration
5242  *  function.  Assuming the adapter has a valid link partner, a valid link
5243  *  should be established.  Assumes the hardware has previously been reset
5244  *  and the transmitter and receiver are not enabled.
5245  **/
5246 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5247 {
5248 	s32 ret_val;
5249 
5250 	DEBUGFUNC("e1000_setup_link_ich8lan");
5251 
5252 	if (hw->phy.ops.check_reset_block(hw))
5253 		return E1000_SUCCESS;
5254 
5255 	/* ICH parts do not have a word in the NVM to determine
5256 	 * the default flow control setting, so we explicitly
5257 	 * set it to full.
5258 	 */
5259 	if (hw->fc.requested_mode == e1000_fc_default)
5260 		hw->fc.requested_mode = e1000_fc_full;
5261 
5262 	/* Save off the requested flow control mode for use later.  Depending
5263 	 * on the link partner's capabilities, we may or may not use this mode.
5264 	 */
5265 	hw->fc.current_mode = hw->fc.requested_mode;
5266 
5267 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5268 		hw->fc.current_mode);
5269 
5270 	/* Continue to configure the copper link. */
5271 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5272 	if (ret_val)
5273 		return ret_val;
5274 
5275 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5276 	if ((hw->phy.type == e1000_phy_82578) ||
5277 	    (hw->phy.type == e1000_phy_82579) ||
5278 	    (hw->phy.type == e1000_phy_i217) ||
5279 	    (hw->phy.type == e1000_phy_82577)) {
5280 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5281 
5282 		ret_val = hw->phy.ops.write_reg(hw,
5283 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5284 					     hw->fc.pause_time);
5285 		if (ret_val)
5286 			return ret_val;
5287 	}
5288 
5289 	return e1000_set_fc_watermarks_generic(hw);
5290 }
5291 
5292 /**
5293  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5294  *  @hw: pointer to the HW structure
5295  *
5296  *  Configures the kumeran interface to the PHY to wait the appropriate time
5297  *  when polling the PHY, then call the generic setup_copper_link to finish
5298  *  configuring the copper link.
5299  **/
5300 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5301 {
5302 	u32 ctrl;
5303 	s32 ret_val;
5304 	u16 reg_data;
5305 
5306 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5307 
5308 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5309 	ctrl |= E1000_CTRL_SLU;
5310 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5311 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5312 
5313 	/* Set the mac to wait the maximum time between each iteration
5314 	 * and increase the max iterations when polling the phy;
5315 	 * this fixes erroneous timeouts at 10Mbps.
5316 	 */
5317 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5318 					       0xFFFF);
5319 	if (ret_val)
5320 		return ret_val;
5321 	ret_val = e1000_read_kmrn_reg_generic(hw,
5322 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5323 					      &reg_data);
5324 	if (ret_val)
5325 		return ret_val;
5326 	reg_data |= 0x3F;
5327 	ret_val = e1000_write_kmrn_reg_generic(hw,
5328 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5329 					       reg_data);
5330 	if (ret_val)
5331 		return ret_val;
5332 
5333 	switch (hw->phy.type) {
5334 	case e1000_phy_igp_3:
5335 		ret_val = e1000_copper_link_setup_igp(hw);
5336 		if (ret_val)
5337 			return ret_val;
5338 		break;
5339 	case e1000_phy_bm:
5340 	case e1000_phy_82578:
5341 		ret_val = e1000_copper_link_setup_m88(hw);
5342 		if (ret_val)
5343 			return ret_val;
5344 		break;
5345 	case e1000_phy_82577:
5346 	case e1000_phy_82579:
5347 		ret_val = e1000_copper_link_setup_82577(hw);
5348 		if (ret_val)
5349 			return ret_val;
5350 		break;
5351 	case e1000_phy_ife:
5352 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5353 					       &reg_data);
5354 		if (ret_val)
5355 			return ret_val;
5356 
5357 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5358 
5359 		switch (hw->phy.mdix) {
5360 		case 1:
5361 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5362 			break;
5363 		case 2:
5364 			reg_data |= IFE_PMC_FORCE_MDIX;
5365 			break;
5366 		case 0:
5367 		default:
5368 			reg_data |= IFE_PMC_AUTO_MDIX;
5369 			break;
5370 		}
5371 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5372 						reg_data);
5373 		if (ret_val)
5374 			return ret_val;
5375 		break;
5376 	default:
5377 		break;
5378 	}
5379 
5380 	return e1000_setup_copper_link_generic(hw);
5381 }
5382 
5383 /**
5384  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5385  *  @hw: pointer to the HW structure
5386  *
5387  *  Calls the PHY specific link setup function and then calls the
5388  *  generic setup_copper_link to finish configuring the link for
5389  *  Lynxpoint PCH devices
5390  **/
5391 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5392 {
5393 	u32 ctrl;
5394 	s32 ret_val;
5395 
5396 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5397 
5398 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5399 	ctrl |= E1000_CTRL_SLU;
5400 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5401 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5402 
5403 	ret_val = e1000_copper_link_setup_82577(hw);
5404 	if (ret_val)
5405 		return ret_val;
5406 
5407 	return e1000_setup_copper_link_generic(hw);
5408 }
5409 
5410 /**
5411  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5412  *  @hw: pointer to the HW structure
5413  *  @speed: pointer to store current link speed
5414  *  @duplex: pointer to store the current link duplex
5415  *
5416  *  Calls the generic get_speed_and_duplex to retrieve the current link
5417  *  information and then calls the Kumeran lock loss workaround for links at
5418  *  gigabit speeds.
5419  **/
5420 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5421 					  u16 *duplex)
5422 {
5423 	s32 ret_val;
5424 
5425 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5426 
5427 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5428 	if (ret_val)
5429 		return ret_val;
5430 
5431 	if ((hw->mac.type == e1000_ich8lan) &&
5432 	    (hw->phy.type == e1000_phy_igp_3) &&
5433 	    (*speed == SPEED_1000)) {
5434 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5435 	}
5436 
5437 	return ret_val;
5438 }
5439 
5440 /**
5441  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5442  *  @hw: pointer to the HW structure
5443  *
5444  *  Work-around for 82566 Kumeran PCS lock loss:
5445  *  On link status change (i.e. PCI reset, speed change) and link is up and
5446  *  speed is gigabit-
5447  *    0) if workaround is optionally disabled do nothing
5448  *    1) wait 1ms for Kumeran link to come up
5449  *    2) check Kumeran Diagnostic register PCS lock loss bit
5450  *    3) if not set the link is locked (all is good), otherwise...
5451  *    4) reset the PHY
5452  *    5) repeat up to 10 times
5453  *  Note: this is only called for IGP3 copper when speed is 1gb.
5454  **/
5455 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5456 {
5457 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5458 	u32 phy_ctrl;
5459 	s32 ret_val;
5460 	u16 i, data;
5461 	bool link;
5462 
5463 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5464 
5465 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5466 		return E1000_SUCCESS;
5467 
5468 	/* Make sure link is up before proceeding.  If not just return.
5469 	 * Attempting this while link is negotiating fouled up link
5470 	 * stability
5471 	 */
5472 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5473 	if (!link)
5474 		return E1000_SUCCESS;
5475 
5476 	for (i = 0; i < 10; i++) {
5477 		/* read once to clear */
5478 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5479 		if (ret_val)
5480 			return ret_val;
5481 		/* and again to get new status */
5482 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5483 		if (ret_val)
5484 			return ret_val;
5485 
5486 		/* check for PCS lock */
5487 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5488 			return E1000_SUCCESS;
5489 
5490 		/* Issue PHY reset */
5491 		hw->phy.ops.reset(hw);
5492 		msec_delay_irq(5);
5493 	}
5494 	/* Disable GigE link negotiation */
5495 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5496 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5497 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5498 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5499 
5500 	/* Call gig speed drop workaround on Gig disable before accessing
5501 	 * any PHY registers
5502 	 */
5503 	e1000_gig_downshift_workaround_ich8lan(hw);
5504 
5505 	/* unable to acquire PCS lock */
5506 	return -E1000_ERR_PHY;
5507 }
5508 
5509 /**
5510  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5511  *  @hw: pointer to the HW structure
5512  *  @state: boolean value used to set the current Kumeran workaround state
5513  *
5514  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5515  *  /disabled - FALSE).
5516  **/
5517 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5518 						 bool state)
5519 {
5520 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5521 
5522 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5523 
5524 	if (hw->mac.type != e1000_ich8lan) {
5525 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5526 		return;
5527 	}
5528 
5529 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5530 
5531 	return;
5532 }
5533 
5534 /**
5535  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5536  *  @hw: pointer to the HW structure
5537  *
5538  *  Workaround for 82566 power-down on D3 entry:
5539  *    1) disable gigabit link
5540  *    2) write VR power-down enable
5541  *    3) read it back
5542  *  Continue if successful, else issue LCD reset and repeat
5543  **/
5544 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5545 {
5546 	u32 reg;
5547 	u16 data;
5548 	u8  retry = 0;
5549 
5550 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5551 
5552 	if (hw->phy.type != e1000_phy_igp_3)
5553 		return;
5554 
5555 	/* Try the workaround twice (if needed) */
5556 	do {
5557 		/* Disable link */
5558 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5559 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5560 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5561 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5562 
5563 		/* Call gig speed drop workaround on Gig disable before
5564 		 * accessing any PHY registers
5565 		 */
5566 		if (hw->mac.type == e1000_ich8lan)
5567 			e1000_gig_downshift_workaround_ich8lan(hw);
5568 
5569 		/* Write VR power-down enable */
5570 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5571 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5572 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5573 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5574 
5575 		/* Read it back and test */
5576 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5577 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5578 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5579 			break;
5580 
5581 		/* Issue PHY reset and repeat at most one more time */
5582 		reg = E1000_READ_REG(hw, E1000_CTRL);
5583 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5584 		retry++;
5585 	} while (retry);
5586 }
5587 
5588 /**
5589  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5590  *  @hw: pointer to the HW structure
5591  *
5592  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5593  *  LPLU, Gig disable, MDIC PHY reset):
5594  *    1) Set Kumeran Near-end loopback
5595  *    2) Clear Kumeran Near-end loopback
5596  *  Should only be called for ICH8[m] devices with any 1G Phy.
5597  **/
5598 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5599 {
5600 	s32 ret_val;
5601 	u16 reg_data;
5602 
5603 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5604 
5605 	if ((hw->mac.type != e1000_ich8lan) ||
5606 	    (hw->phy.type == e1000_phy_ife))
5607 		return;
5608 
5609 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5610 					      &reg_data);
5611 	if (ret_val)
5612 		return;
5613 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5614 	ret_val = e1000_write_kmrn_reg_generic(hw,
5615 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5616 					       reg_data);
5617 	if (ret_val)
5618 		return;
5619 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5620 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5621 				     reg_data);
5622 }
5623 
5624 /**
5625  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5626  *  @hw: pointer to the HW structure
5627  *
5628  *  During S0 to Sx transition, it is possible the link remains at gig
5629  *  instead of negotiating to a lower speed.  Before going to Sx, set
5630  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5631  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5632  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5633  *  needs to be written.
5634  *  Parts that support (and are linked to a partner which support) EEE in
5635  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5636  *  than 10Mbps w/o EEE.
5637  **/
5638 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5639 {
5640 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5641 	u32 phy_ctrl;
5642 	s32 ret_val;
5643 
5644 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5645 
5646 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5647 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5648 
5649 	if (hw->phy.type == e1000_phy_i217) {
5650 		u16 phy_reg, device_id = hw->device_id;
5651 
5652 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5653 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5654 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5655 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5656 		    (hw->mac.type >= e1000_pch_spt)) {
5657 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5658 
5659 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5660 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5661 		}
5662 
5663 		ret_val = hw->phy.ops.acquire(hw);
5664 		if (ret_val)
5665 			goto out;
5666 
5667 		if (!dev_spec->eee_disable) {
5668 			u16 eee_advert;
5669 
5670 			ret_val =
5671 			    e1000_read_emi_reg_locked(hw,
5672 						      I217_EEE_ADVERTISEMENT,
5673 						      &eee_advert);
5674 			if (ret_val)
5675 				goto release;
5676 
5677 			/* Disable LPLU if both link partners support 100BaseT
5678 			 * EEE and 100Full is advertised on both ends of the
5679 			 * link, and enable Auto Enable LPI since there will
5680 			 * be no driver to enable LPI while in Sx.
5681 			 */
5682 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5683 			    (dev_spec->eee_lp_ability &
5684 			     I82579_EEE_100_SUPPORTED) &&
5685 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5686 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5687 					      E1000_PHY_CTRL_NOND0A_LPLU);
5688 
5689 				/* Set Auto Enable LPI after link up */
5690 				hw->phy.ops.read_reg_locked(hw,
5691 							    I217_LPI_GPIO_CTRL,
5692 							    &phy_reg);
5693 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5694 				hw->phy.ops.write_reg_locked(hw,
5695 							     I217_LPI_GPIO_CTRL,
5696 							     phy_reg);
5697 			}
5698 		}
5699 
5700 		/* For i217 Intel Rapid Start Technology support,
5701 		 * when the system is going into Sx and no manageability engine
5702 		 * is present, the driver must configure proxy to reset only on
5703 		 * power good.  LPI (Low Power Idle) state must also reset only
5704 		 * on power good, as well as the MTA (Multicast table array).
5705 		 * The SMBus release must also be disabled on LCD reset.
5706 		 */
5707 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5708 		      E1000_ICH_FWSM_FW_VALID)) {
5709 			/* Enable proxy to reset only on power good. */
5710 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5711 						    &phy_reg);
5712 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5713 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5714 						     phy_reg);
5715 
5716 			/* Set bit enable LPI (EEE) to reset only on
5717 			 * power good.
5718 			*/
5719 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5720 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5721 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5722 
5723 			/* Disable the SMB release on LCD reset. */
5724 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5725 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5726 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5727 		}
5728 
5729 		/* Enable MTA to reset for Intel Rapid Start Technology
5730 		 * Support
5731 		 */
5732 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5733 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5734 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5735 
5736 release:
5737 		hw->phy.ops.release(hw);
5738 	}
5739 out:
5740 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5741 
5742 	if (hw->mac.type == e1000_ich8lan)
5743 		e1000_gig_downshift_workaround_ich8lan(hw);
5744 
5745 	if (hw->mac.type >= e1000_pchlan) {
5746 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5747 
5748 		/* Reset PHY to activate OEM bits on 82577/8 */
5749 		if (hw->mac.type == e1000_pchlan)
5750 			e1000_phy_hw_reset_generic(hw);
5751 
5752 		ret_val = hw->phy.ops.acquire(hw);
5753 		if (ret_val)
5754 			return;
5755 		e1000_write_smbus_addr(hw);
5756 		hw->phy.ops.release(hw);
5757 	}
5758 
5759 	return;
5760 }
5761 
5762 /**
5763  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5764  *  @hw: pointer to the HW structure
5765  *
5766  *  During Sx to S0 transitions on non-managed devices or managed devices
5767  *  on which PHY resets are not blocked, if the PHY registers cannot be
5768  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5769  *  the PHY.
5770  *  On i217, setup Intel Rapid Start Technology.
5771  **/
5772 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5773 {
5774 	s32 ret_val;
5775 
5776 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5777 	if (hw->mac.type < e1000_pch2lan)
5778 		return E1000_SUCCESS;
5779 
5780 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5781 	if (ret_val) {
5782 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5783 		return ret_val;
5784 	}
5785 
5786 	/* For i217 Intel Rapid Start Technology support when the system
5787 	 * is transitioning from Sx and no manageability engine is present
5788 	 * configure SMBus to restore on reset, disable proxy, and enable
5789 	 * the reset on MTA (Multicast table array).
5790 	 */
5791 	if (hw->phy.type == e1000_phy_i217) {
5792 		u16 phy_reg;
5793 
5794 		ret_val = hw->phy.ops.acquire(hw);
5795 		if (ret_val) {
5796 			DEBUGOUT("Failed to setup iRST\n");
5797 			return ret_val;
5798 		}
5799 
5800 		/* Clear Auto Enable LPI after link up */
5801 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5802 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5803 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5804 
5805 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5806 		    E1000_ICH_FWSM_FW_VALID)) {
5807 			/* Restore clear on SMB if no manageability engine
5808 			 * is present
5809 			 */
5810 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5811 							      &phy_reg);
5812 			if (ret_val)
5813 				goto release;
5814 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5815 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5816 
5817 			/* Disable Proxy */
5818 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5819 		}
5820 		/* Enable reset on MTA */
5821 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5822 						      &phy_reg);
5823 		if (ret_val)
5824 			goto release;
5825 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5826 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5827 release:
5828 		if (ret_val)
5829 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5830 		hw->phy.ops.release(hw);
5831 		return ret_val;
5832 	}
5833 	return E1000_SUCCESS;
5834 }
5835 
5836 /**
5837  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5838  *  @hw: pointer to the HW structure
5839  *
5840  *  Return the LED back to the default configuration.
5841  **/
5842 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5843 {
5844 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5845 
5846 	if (hw->phy.type == e1000_phy_ife)
5847 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5848 					     0);
5849 
5850 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5851 	return E1000_SUCCESS;
5852 }
5853 
5854 /**
5855  *  e1000_led_on_ich8lan - Turn LEDs on
5856  *  @hw: pointer to the HW structure
5857  *
5858  *  Turn on the LEDs.
5859  **/
5860 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5861 {
5862 	DEBUGFUNC("e1000_led_on_ich8lan");
5863 
5864 	if (hw->phy.type == e1000_phy_ife)
5865 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5866 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5867 
5868 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5869 	return E1000_SUCCESS;
5870 }
5871 
5872 /**
5873  *  e1000_led_off_ich8lan - Turn LEDs off
5874  *  @hw: pointer to the HW structure
5875  *
5876  *  Turn off the LEDs.
5877  **/
5878 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5879 {
5880 	DEBUGFUNC("e1000_led_off_ich8lan");
5881 
5882 	if (hw->phy.type == e1000_phy_ife)
5883 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5884 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5885 
5886 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5887 	return E1000_SUCCESS;
5888 }
5889 
5890 /**
5891  *  e1000_setup_led_pchlan - Configures SW controllable LED
5892  *  @hw: pointer to the HW structure
5893  *
5894  *  This prepares the SW controllable LED for use.
5895  **/
5896 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5897 {
5898 	DEBUGFUNC("e1000_setup_led_pchlan");
5899 
5900 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5901 				     (u16)hw->mac.ledctl_mode1);
5902 }
5903 
5904 /**
5905  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5906  *  @hw: pointer to the HW structure
5907  *
5908  *  Return the LED back to the default configuration.
5909  **/
5910 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5911 {
5912 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5913 
5914 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5915 				     (u16)hw->mac.ledctl_default);
5916 }
5917 
5918 /**
5919  *  e1000_led_on_pchlan - Turn LEDs on
5920  *  @hw: pointer to the HW structure
5921  *
5922  *  Turn on the LEDs.
5923  **/
5924 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5925 {
5926 	u16 data = (u16)hw->mac.ledctl_mode2;
5927 	u32 i, led;
5928 
5929 	DEBUGFUNC("e1000_led_on_pchlan");
5930 
5931 	/* If no link, then turn LED on by setting the invert bit
5932 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5933 	 */
5934 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5935 		for (i = 0; i < 3; i++) {
5936 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5937 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5938 			    E1000_LEDCTL_MODE_LINK_UP)
5939 				continue;
5940 			if (led & E1000_PHY_LED0_IVRT)
5941 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5942 			else
5943 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5944 		}
5945 	}
5946 
5947 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5948 }
5949 
5950 /**
5951  *  e1000_led_off_pchlan - Turn LEDs off
5952  *  @hw: pointer to the HW structure
5953  *
5954  *  Turn off the LEDs.
5955  **/
5956 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5957 {
5958 	u16 data = (u16)hw->mac.ledctl_mode1;
5959 	u32 i, led;
5960 
5961 	DEBUGFUNC("e1000_led_off_pchlan");
5962 
5963 	/* If no link, then turn LED off by clearing the invert bit
5964 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5965 	 */
5966 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5967 		for (i = 0; i < 3; i++) {
5968 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5969 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5970 			    E1000_LEDCTL_MODE_LINK_UP)
5971 				continue;
5972 			if (led & E1000_PHY_LED0_IVRT)
5973 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5974 			else
5975 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5976 		}
5977 	}
5978 
5979 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5980 }
5981 
5982 /**
5983  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5984  *  @hw: pointer to the HW structure
5985  *
5986  *  Read appropriate register for the config done bit for completion status
5987  *  and configure the PHY through s/w for EEPROM-less parts.
5988  *
5989  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5990  *  config done bit, so only an error is logged and continues.  If we were
5991  *  to return with error, EEPROM-less silicon would not be able to be reset
5992  *  or change link.
5993  **/
5994 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5995 {
5996 	s32 ret_val = E1000_SUCCESS;
5997 	u32 bank = 0;
5998 	u32 status;
5999 
6000 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6001 
6002 	e1000_get_cfg_done_generic(hw);
6003 
6004 	/* Wait for indication from h/w that it has completed basic config */
6005 	if (hw->mac.type >= e1000_ich10lan) {
6006 		e1000_lan_init_done_ich8lan(hw);
6007 	} else {
6008 		ret_val = e1000_get_auto_rd_done_generic(hw);
6009 		if (ret_val) {
6010 			/* When auto config read does not complete, do not
6011 			 * return with an error. This can happen in situations
6012 			 * where there is no eeprom and prevents getting link.
6013 			 */
6014 			DEBUGOUT("Auto Read Done did not complete\n");
6015 			ret_val = E1000_SUCCESS;
6016 		}
6017 	}
6018 
6019 	/* Clear PHY Reset Asserted bit */
6020 	status = E1000_READ_REG(hw, E1000_STATUS);
6021 	if (status & E1000_STATUS_PHYRA)
6022 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6023 	else
6024 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6025 
6026 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6027 	if (hw->mac.type <= e1000_ich9lan) {
6028 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6029 		    (hw->phy.type == e1000_phy_igp_3)) {
6030 			e1000_phy_init_script_igp3(hw);
6031 		}
6032 	} else {
6033 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6034 			/* Maybe we should do a basic PHY config */
6035 			DEBUGOUT("EEPROM not present\n");
6036 			ret_val = -E1000_ERR_CONFIG;
6037 		}
6038 	}
6039 
6040 	return ret_val;
6041 }
6042 
6043 /**
6044  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6045  * @hw: pointer to the HW structure
6046  *
6047  * In the case of a PHY power down to save power, or to turn off link during a
6048  * driver unload, or wake on lan is not enabled, remove the link.
6049  **/
6050 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6051 {
6052 	/* If the management interface is not enabled, then power down */
6053 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6054 	      hw->phy.ops.check_reset_block(hw)))
6055 		e1000_power_down_phy_copper(hw);
6056 
6057 	return;
6058 }
6059 
6060 /**
6061  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6062  *  @hw: pointer to the HW structure
6063  *
6064  *  Clears hardware counters specific to the silicon family and calls
6065  *  clear_hw_cntrs_generic to clear all general purpose counters.
6066  **/
6067 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6068 {
6069 	u16 phy_data;
6070 	s32 ret_val;
6071 
6072 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6073 
6074 	e1000_clear_hw_cntrs_base_generic(hw);
6075 
6076 	E1000_READ_REG(hw, E1000_ALGNERRC);
6077 	E1000_READ_REG(hw, E1000_RXERRC);
6078 	E1000_READ_REG(hw, E1000_TNCRS);
6079 	E1000_READ_REG(hw, E1000_CEXTERR);
6080 	E1000_READ_REG(hw, E1000_TSCTC);
6081 	E1000_READ_REG(hw, E1000_TSCTFC);
6082 
6083 	E1000_READ_REG(hw, E1000_MGTPRC);
6084 	E1000_READ_REG(hw, E1000_MGTPDC);
6085 	E1000_READ_REG(hw, E1000_MGTPTC);
6086 
6087 	E1000_READ_REG(hw, E1000_IAC);
6088 	E1000_READ_REG(hw, E1000_ICRXOC);
6089 
6090 	/* Clear PHY statistics registers */
6091 	if ((hw->phy.type == e1000_phy_82578) ||
6092 	    (hw->phy.type == e1000_phy_82579) ||
6093 	    (hw->phy.type == e1000_phy_i217) ||
6094 	    (hw->phy.type == e1000_phy_82577)) {
6095 		ret_val = hw->phy.ops.acquire(hw);
6096 		if (ret_val)
6097 			return;
6098 		ret_val = hw->phy.ops.set_page(hw,
6099 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6100 		if (ret_val)
6101 			goto release;
6102 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6103 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6104 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6105 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6106 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6107 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6108 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6109 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6110 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6111 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6112 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6113 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6114 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6115 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6116 release:
6117 		hw->phy.ops.release(hw);
6118 	}
6119 }
6120 
6121