xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 					      u8 *mc_addr_list,
86 					      u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91 					    bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93 					    bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95 				   u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97 			       u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99 				    u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104 					    u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113 					   u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127 					  u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129 					  u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131 					    u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133 					   u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135 					     u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137 						  u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139 					  u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141 						 u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149 
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153 	struct ich8_hsfsts {
154 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156 		u16 dael:1; /* bit 2 Direct Access error Log */
157 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159 		u16 reserved1:2; /* bit 13:6 Reserved */
160 		u16 reserved2:6; /* bit 13:6 Reserved */
161 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163 	} hsf_status;
164 	u16 regval;
165 };
166 
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170 	struct ich8_hsflctl {
171 		u16 flcgo:1;   /* 0 Flash Cycle Go */
172 		u16 flcycle:2;   /* 2:1 Flash Cycle */
173 		u16 reserved:5;   /* 7:3 Reserved  */
174 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175 		u16 flockdn:6;   /* 15:10 Reserved */
176 	} hsf_ctrl;
177 	u16 regval;
178 };
179 
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182 	struct ich8_flracc {
183 		u32 grra:8; /* 0:7 GbE region Read Access */
184 		u32 grwa:8; /* 8:15 GbE region Write Access */
185 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187 	} hsf_flregacc;
188 	u16 regval;
189 };
190 
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203 	u16 phy_reg = 0;
204 	u32 phy_id = 0;
205 	s32 ret_val = 0;
206 	u16 retry_count;
207 	u32 mac_reg = 0;
208 
209 	for (retry_count = 0; retry_count < 2; retry_count++) {
210 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211 		if (ret_val || (phy_reg == 0xFFFF))
212 			continue;
213 		phy_id = (u32)(phy_reg << 16);
214 
215 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216 		if (ret_val || (phy_reg == 0xFFFF)) {
217 			phy_id = 0;
218 			continue;
219 		}
220 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221 		break;
222 	}
223 
224 	if (hw->phy.id) {
225 		if  (hw->phy.id == phy_id)
226 			goto out;
227 	} else if (phy_id) {
228 		hw->phy.id = phy_id;
229 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230 		goto out;
231 	}
232 
233 	/* In case the PHY needs to be in mdio slow mode,
234 	 * set slow mode and try to get the PHY id again.
235 	 */
236 	if (hw->mac.type < e1000_pch_lpt) {
237 		hw->phy.ops.release(hw);
238 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239 		if (!ret_val)
240 			ret_val = e1000_get_phy_id(hw);
241 		hw->phy.ops.acquire(hw);
242 	}
243 
244 	if (ret_val)
245 		return false;
246 out:
247 	if (hw->mac.type >= e1000_pch_lpt) {
248 		/* Only unforce SMBus if ME is not active */
249 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250 		    E1000_ICH_FWSM_FW_VALID)) {
251 			/* Unforce SMBus mode in PHY */
252 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255 
256 			/* Unforce SMBus mode in MAC */
257 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260 		}
261 	}
262 
263 	return true;
264 }
265 
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275 	u32 mac_reg;
276 
277 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278 
279 	/* Set Phy Config Counter to 50msec */
280 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284 
285 	/* Toggle LANPHYPC Value bit */
286 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290 	E1000_WRITE_FLUSH(hw);
291 	msec_delay(1);
292 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294 	E1000_WRITE_FLUSH(hw);
295 
296 	if (hw->mac.type < e1000_pch_lpt) {
297 		msec_delay(50);
298 	} else {
299 		u16 count = 20;
300 
301 		do {
302 			msec_delay(5);
303 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304 			   E1000_CTRL_EXT_LPCD) && count--);
305 
306 		msec_delay(30);
307 	}
308 }
309 
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320 	s32 ret_val;
321 
322 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323 
324 	/* Gate automatic PHY configuration by hardware on managed and
325 	 * non-managed 82579 and newer adapters.
326 	 */
327 	e1000_gate_hw_phy_config_ich8lan(hw, true);
328 
329 	/* It is not possible to be certain of the current state of ULP
330 	 * so forcibly disable it.
331 	 */
332 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
334 	if (ret_val)
335 		ERROR_REPORT("Failed to disable ULP\n");
336 
337 	ret_val = hw->phy.ops.acquire(hw);
338 	if (ret_val) {
339 		DEBUGOUT("Failed to initialize PHY flow\n");
340 		goto out;
341 	}
342 
343 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
344 	 * inaccessible and resetting the PHY is not blocked, toggle the
345 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
346 	 */
347 	switch (hw->mac.type) {
348 	case e1000_pch_lpt:
349 	case e1000_pch_spt:
350 	case e1000_pch_cnp:
351 	case e1000_pch_tgp:
352 	case e1000_pch_adp:
353 	case e1000_pch_mtp:
354 	case e1000_pch_ptp:
355 		if (e1000_phy_is_accessible_pchlan(hw))
356 			break;
357 
358 		/* Before toggling LANPHYPC, see if PHY is accessible by
359 		 * forcing MAC to SMBus mode first.
360 		 */
361 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
362 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
363 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
364 
365 		/* Wait 50 milliseconds for MAC to finish any retries
366 		 * that it might be trying to perform from previous
367 		 * attempts to acknowledge any phy read requests.
368 		 */
369 		 msec_delay(50);
370 
371 		/* FALLTHROUGH */
372 	case e1000_pch2lan:
373 		if (e1000_phy_is_accessible_pchlan(hw))
374 			break;
375 
376 		/* FALLTHROUGH */
377 	case e1000_pchlan:
378 		if ((hw->mac.type == e1000_pchlan) &&
379 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
380 			break;
381 
382 		if (hw->phy.ops.check_reset_block(hw)) {
383 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
384 			ret_val = -E1000_ERR_PHY;
385 			break;
386 		}
387 
388 		/* Toggle LANPHYPC Value bit */
389 		e1000_toggle_lanphypc_pch_lpt(hw);
390 		if (hw->mac.type >= e1000_pch_lpt) {
391 			if (e1000_phy_is_accessible_pchlan(hw))
392 				break;
393 
394 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
395 			 * so ensure that the MAC is also out of SMBus mode
396 			 */
397 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
398 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
399 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
400 
401 			if (e1000_phy_is_accessible_pchlan(hw))
402 				break;
403 
404 			ret_val = -E1000_ERR_PHY;
405 		}
406 		break;
407 	default:
408 		break;
409 	}
410 
411 	hw->phy.ops.release(hw);
412 	if (!ret_val) {
413 
414 		/* Check to see if able to reset PHY.  Print error if not */
415 		if (hw->phy.ops.check_reset_block(hw)) {
416 			ERROR_REPORT("Reset blocked by ME\n");
417 			goto out;
418 		}
419 
420 		/* Reset the PHY before any access to it.  Doing so, ensures
421 		 * that the PHY is in a known good state before we read/write
422 		 * PHY registers.  The generic reset is sufficient here,
423 		 * because we haven't determined the PHY type yet.
424 		 */
425 		ret_val = e1000_phy_hw_reset_generic(hw);
426 		if (ret_val)
427 			goto out;
428 
429 		/* On a successful reset, possibly need to wait for the PHY
430 		 * to quiesce to an accessible state before returning control
431 		 * to the calling function.  If the PHY does not quiesce, then
432 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
433 		 *  the PHY is in.
434 		 */
435 		ret_val = hw->phy.ops.check_reset_block(hw);
436 		if (ret_val)
437 			ERROR_REPORT("ME blocked access to PHY after reset\n");
438 	}
439 
440 out:
441 	/* Ungate automatic PHY configuration on non-managed 82579 */
442 	if ((hw->mac.type == e1000_pch2lan) &&
443 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
444 		msec_delay(10);
445 		e1000_gate_hw_phy_config_ich8lan(hw, false);
446 	}
447 
448 	return ret_val;
449 }
450 
451 /**
452  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
453  *  @hw: pointer to the HW structure
454  *
455  *  Initialize family-specific PHY parameters and function pointers.
456  **/
457 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
458 {
459 	struct e1000_phy_info *phy = &hw->phy;
460 	s32 ret_val;
461 
462 	DEBUGFUNC("e1000_init_phy_params_pchlan");
463 
464 	phy->addr		= 1;
465 	phy->reset_delay_us	= 100;
466 
467 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
468 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
469 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
470 	phy->ops.set_page	= e1000_set_page_igp;
471 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
472 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
473 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
474 	phy->ops.release	= e1000_release_swflag_ich8lan;
475 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
476 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
477 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
478 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
479 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
480 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
481 	phy->ops.power_up	= e1000_power_up_phy_copper;
482 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
483 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
484 
485 	phy->id = e1000_phy_unknown;
486 
487 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
488 	if (ret_val)
489 		return ret_val;
490 
491 	if (phy->id == e1000_phy_unknown)
492 		switch (hw->mac.type) {
493 		default:
494 			ret_val = e1000_get_phy_id(hw);
495 			if (ret_val)
496 				return ret_val;
497 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
498 				break;
499 			/* FALLTHROUGH */
500 		case e1000_pch2lan:
501 		case e1000_pch_lpt:
502 		case e1000_pch_spt:
503 		case e1000_pch_cnp:
504 		case e1000_pch_tgp:
505 		case e1000_pch_adp:
506 		case e1000_pch_mtp:
507 		case e1000_pch_ptp:
508 			/* In case the PHY needs to be in mdio slow mode,
509 			 * set slow mode and try to get the PHY id again.
510 			 */
511 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
512 			if (ret_val)
513 				return ret_val;
514 			ret_val = e1000_get_phy_id(hw);
515 			if (ret_val)
516 				return ret_val;
517 			break;
518 		}
519 	phy->type = e1000_get_phy_type_from_id(phy->id);
520 
521 	switch (phy->type) {
522 	case e1000_phy_82577:
523 	case e1000_phy_82579:
524 	case e1000_phy_i217:
525 		phy->ops.check_polarity = e1000_check_polarity_82577;
526 		phy->ops.force_speed_duplex =
527 			e1000_phy_force_speed_duplex_82577;
528 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
529 		phy->ops.get_info = e1000_get_phy_info_82577;
530 		phy->ops.commit = e1000_phy_sw_reset_generic;
531 		break;
532 	case e1000_phy_82578:
533 		phy->ops.check_polarity = e1000_check_polarity_m88;
534 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
535 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
536 		phy->ops.get_info = e1000_get_phy_info_m88;
537 		break;
538 	default:
539 		ret_val = -E1000_ERR_PHY;
540 		break;
541 	}
542 
543 	return ret_val;
544 }
545 
546 /**
547  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
548  *  @hw: pointer to the HW structure
549  *
550  *  Initialize family-specific PHY parameters and function pointers.
551  **/
552 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
553 {
554 	struct e1000_phy_info *phy = &hw->phy;
555 	s32 ret_val;
556 	u16 i = 0;
557 
558 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
559 
560 	phy->addr		= 1;
561 	phy->reset_delay_us	= 100;
562 
563 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
564 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
565 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
566 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
567 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
568 	phy->ops.release	= e1000_release_swflag_ich8lan;
569 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
570 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
571 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
572 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
573 	phy->ops.power_up	= e1000_power_up_phy_copper;
574 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
575 
576 	/* We may need to do this twice - once for IGP and if that fails,
577 	 * we'll set BM func pointers and try again
578 	 */
579 	ret_val = e1000_determine_phy_address(hw);
580 	if (ret_val) {
581 		phy->ops.write_reg = e1000_write_phy_reg_bm;
582 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
583 		ret_val = e1000_determine_phy_address(hw);
584 		if (ret_val) {
585 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
586 			return ret_val;
587 		}
588 	}
589 
590 	phy->id = 0;
591 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
592 	       (i++ < 100)) {
593 		msec_delay(1);
594 		ret_val = e1000_get_phy_id(hw);
595 		if (ret_val)
596 			return ret_val;
597 	}
598 
599 	/* Verify phy id */
600 	switch (phy->id) {
601 	case IGP03E1000_E_PHY_ID:
602 		phy->type = e1000_phy_igp_3;
603 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
604 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
605 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
606 		phy->ops.get_info = e1000_get_phy_info_igp;
607 		phy->ops.check_polarity = e1000_check_polarity_igp;
608 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
609 		break;
610 	case IFE_E_PHY_ID:
611 	case IFE_PLUS_E_PHY_ID:
612 	case IFE_C_E_PHY_ID:
613 		phy->type = e1000_phy_ife;
614 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
615 		phy->ops.get_info = e1000_get_phy_info_ife;
616 		phy->ops.check_polarity = e1000_check_polarity_ife;
617 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
618 		break;
619 	case BME1000_E_PHY_ID:
620 		phy->type = e1000_phy_bm;
621 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
622 		phy->ops.read_reg = e1000_read_phy_reg_bm;
623 		phy->ops.write_reg = e1000_write_phy_reg_bm;
624 		phy->ops.commit = e1000_phy_sw_reset_generic;
625 		phy->ops.get_info = e1000_get_phy_info_m88;
626 		phy->ops.check_polarity = e1000_check_polarity_m88;
627 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
628 		break;
629 	default:
630 		return -E1000_ERR_PHY;
631 		break;
632 	}
633 
634 	return E1000_SUCCESS;
635 }
636 
637 /**
638  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
639  *  @hw: pointer to the HW structure
640  *
641  *  Initialize family-specific NVM parameters and function
642  *  pointers.
643  **/
644 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
645 {
646 	struct e1000_nvm_info *nvm = &hw->nvm;
647 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
648 	u32 gfpreg, sector_base_addr, sector_end_addr;
649 	u16 i;
650 	u32 nvm_size;
651 
652 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
653 
654 	nvm->type = e1000_nvm_flash_sw;
655 
656 	if (hw->mac.type >= e1000_pch_spt) {
657 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
658 		 * STRAP register. This is because in SPT the GbE Flash region
659 		 * is no longer accessed through the flash registers. Instead,
660 		 * the mechanism has changed, and the Flash region access
661 		 * registers are now implemented in GbE memory space.
662 		 */
663 		nvm->flash_base_addr = 0;
664 		nvm_size =
665 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
666 		    * NVM_SIZE_MULTIPLIER;
667 		nvm->flash_bank_size = nvm_size / 2;
668 		/* Adjust to word count */
669 		nvm->flash_bank_size /= sizeof(u16);
670 		/* Set the base address for flash register access */
671 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
672 	} else {
673 		/* Can't read flash registers if register set isn't mapped. */
674 		if (!hw->flash_address) {
675 			DEBUGOUT("ERROR: Flash registers not mapped\n");
676 			return -E1000_ERR_CONFIG;
677 		}
678 
679 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
680 
681 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
682 		 * Add 1 to sector_end_addr since this sector is included in
683 		 * the overall size.
684 		 */
685 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
686 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
687 
688 		/* flash_base_addr is byte-aligned */
689 		nvm->flash_base_addr = sector_base_addr
690 				       << FLASH_SECTOR_ADDR_SHIFT;
691 
692 		/* find total size of the NVM, then cut in half since the total
693 		 * size represents two separate NVM banks.
694 		 */
695 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
696 					<< FLASH_SECTOR_ADDR_SHIFT);
697 		nvm->flash_bank_size /= 2;
698 		/* Adjust to word count */
699 		nvm->flash_bank_size /= sizeof(u16);
700 	}
701 
702 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
703 
704 	/* Clear shadow ram */
705 	for (i = 0; i < nvm->word_size; i++) {
706 		dev_spec->shadow_ram[i].modified = false;
707 		dev_spec->shadow_ram[i].value    = 0xFFFF;
708 	}
709 
710 	/* Function Pointers */
711 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
712 	nvm->ops.release	= e1000_release_nvm_ich8lan;
713 	if (hw->mac.type >= e1000_pch_spt) {
714 		nvm->ops.read	= e1000_read_nvm_spt;
715 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
716 	} else {
717 		nvm->ops.read	= e1000_read_nvm_ich8lan;
718 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
719 	}
720 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
721 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
722 	nvm->ops.write		= e1000_write_nvm_ich8lan;
723 
724 	return E1000_SUCCESS;
725 }
726 
727 /**
728  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
729  *  @hw: pointer to the HW structure
730  *
731  *  Initialize family-specific MAC parameters and function
732  *  pointers.
733  **/
734 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
735 {
736 	struct e1000_mac_info *mac = &hw->mac;
737 
738 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
739 
740 	/* Set media type function pointer */
741 	hw->phy.media_type = e1000_media_type_copper;
742 
743 	/* Set mta register count */
744 	mac->mta_reg_count = 32;
745 	/* Set rar entry count */
746 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
747 	if (mac->type == e1000_ich8lan)
748 		mac->rar_entry_count--;
749 	/* Set if part includes ASF firmware */
750 	mac->asf_firmware_present = true;
751 	/* FWSM register */
752 	mac->has_fwsm = true;
753 	/* ARC subsystem not supported */
754 	mac->arc_subsystem_valid = false;
755 	/* Adaptive IFS supported */
756 	mac->adaptive_ifs = true;
757 
758 	/* Function pointers */
759 
760 	/* bus type/speed/width */
761 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
762 	/* function id */
763 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
764 	/* reset */
765 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
766 	/* hw initialization */
767 	mac->ops.init_hw = e1000_init_hw_ich8lan;
768 	/* link setup */
769 	mac->ops.setup_link = e1000_setup_link_ich8lan;
770 	/* physical interface setup */
771 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
772 	/* check for link */
773 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
774 	/* link info */
775 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
776 	/* multicast address update */
777 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
778 	/* clear hardware counters */
779 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
780 
781 	/* LED and other operations */
782 	switch (mac->type) {
783 	case e1000_ich8lan:
784 	case e1000_ich9lan:
785 	case e1000_ich10lan:
786 		/* check management mode */
787 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
788 		/* ID LED init */
789 		mac->ops.id_led_init = e1000_id_led_init_generic;
790 		/* blink LED */
791 		mac->ops.blink_led = e1000_blink_led_generic;
792 		/* setup LED */
793 		mac->ops.setup_led = e1000_setup_led_generic;
794 		/* cleanup LED */
795 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
796 		/* turn on/off LED */
797 		mac->ops.led_on = e1000_led_on_ich8lan;
798 		mac->ops.led_off = e1000_led_off_ich8lan;
799 		break;
800 	case e1000_pch2lan:
801 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
802 		mac->ops.rar_set = e1000_rar_set_pch2lan;
803 		/* FALLTHROUGH */
804 	case e1000_pch_lpt:
805 	case e1000_pch_spt:
806 	case e1000_pch_cnp:
807 	case e1000_pch_tgp:
808 	case e1000_pch_adp:
809 	case e1000_pch_mtp:
810 	case e1000_pch_ptp:
811 		/* multicast address update for pch2 */
812 		mac->ops.update_mc_addr_list =
813 			e1000_update_mc_addr_list_pch2lan;
814 		/* FALLTHROUGH */
815 	case e1000_pchlan:
816 		/* check management mode */
817 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
818 		/* ID LED init */
819 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
820 		/* setup LED */
821 		mac->ops.setup_led = e1000_setup_led_pchlan;
822 		/* cleanup LED */
823 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
824 		/* turn on/off LED */
825 		mac->ops.led_on = e1000_led_on_pchlan;
826 		mac->ops.led_off = e1000_led_off_pchlan;
827 		break;
828 	default:
829 		break;
830 	}
831 
832 	if (mac->type >= e1000_pch_lpt) {
833 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
834 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
835 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
836 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
837 	}
838 
839 	/* Enable PCS Lock-loss workaround for ICH8 */
840 	if (mac->type == e1000_ich8lan)
841 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
842 
843 	return E1000_SUCCESS;
844 }
845 
846 /**
847  *  __e1000_access_emi_reg_locked - Read/write EMI register
848  *  @hw: pointer to the HW structure
849  *  @address: EMI address to program
850  *  @data: pointer to value to read/write from/to the EMI address
851  *  @read: boolean flag to indicate read or write
852  *
853  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
854  **/
855 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
856 					 u16 *data, bool read)
857 {
858 	s32 ret_val;
859 
860 	DEBUGFUNC("__e1000_access_emi_reg_locked");
861 
862 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
863 	if (ret_val)
864 		return ret_val;
865 
866 	if (read)
867 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
868 						      data);
869 	else
870 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
871 						       *data);
872 
873 	return ret_val;
874 }
875 
876 /**
877  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
878  *  @hw: pointer to the HW structure
879  *  @addr: EMI address to program
880  *  @data: value to be read from the EMI address
881  *
882  *  Assumes the SW/FW/HW Semaphore is already acquired.
883  **/
884 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
885 {
886 	DEBUGFUNC("e1000_read_emi_reg_locked");
887 
888 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
889 }
890 
891 /**
892  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
893  *  @hw: pointer to the HW structure
894  *  @addr: EMI address to program
895  *  @data: value to be written to the EMI address
896  *
897  *  Assumes the SW/FW/HW Semaphore is already acquired.
898  **/
899 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
900 {
901 	DEBUGFUNC("e1000_read_emi_reg_locked");
902 
903 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
904 }
905 
906 /**
907  *  e1000_set_eee_pchlan - Enable/disable EEE support
908  *  @hw: pointer to the HW structure
909  *
910  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
911  *  the link and the EEE capabilities of the link partner.  The LPI Control
912  *  register bits will remain set only if/when link is up.
913  *
914  *  EEE LPI must not be asserted earlier than one second after link is up.
915  *  On 82579, EEE LPI should not be enabled until such time otherwise there
916  *  can be link issues with some switches.  Other devices can have EEE LPI
917  *  enabled immediately upon link up since they have a timer in hardware which
918  *  prevents LPI from being asserted too early.
919  **/
920 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
921 {
922 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
923 	s32 ret_val;
924 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
925 
926 	DEBUGFUNC("e1000_set_eee_pchlan");
927 
928 	switch (hw->phy.type) {
929 	case e1000_phy_82579:
930 		lpa = I82579_EEE_LP_ABILITY;
931 		pcs_status = I82579_EEE_PCS_STATUS;
932 		adv_addr = I82579_EEE_ADVERTISEMENT;
933 		break;
934 	case e1000_phy_i217:
935 		lpa = I217_EEE_LP_ABILITY;
936 		pcs_status = I217_EEE_PCS_STATUS;
937 		adv_addr = I217_EEE_ADVERTISEMENT;
938 		break;
939 	default:
940 		return E1000_SUCCESS;
941 	}
942 
943 	ret_val = hw->phy.ops.acquire(hw);
944 	if (ret_val)
945 		return ret_val;
946 
947 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
948 	if (ret_val)
949 		goto release;
950 
951 	/* Clear bits that enable EEE in various speeds */
952 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
953 
954 	/* Enable EEE if not disabled by user */
955 	if (!dev_spec->eee_disable) {
956 		/* Save off link partner's EEE ability */
957 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
958 						    &dev_spec->eee_lp_ability);
959 		if (ret_val)
960 			goto release;
961 
962 		/* Read EEE advertisement */
963 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
964 		if (ret_val)
965 			goto release;
966 
967 		/* Enable EEE only for speeds in which the link partner is
968 		 * EEE capable and for which we advertise EEE.
969 		 */
970 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
971 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
972 
973 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
974 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
975 			if (data & NWAY_LPAR_100TX_FD_CAPS)
976 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
977 			else
978 				/* EEE is not supported in 100Half, so ignore
979 				 * partner's EEE in 100 ability if full-duplex
980 				 * is not advertised.
981 				 */
982 				dev_spec->eee_lp_ability &=
983 				    ~I82579_EEE_100_SUPPORTED;
984 		}
985 	}
986 
987 	if (hw->phy.type == e1000_phy_82579) {
988 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
989 						    &data);
990 		if (ret_val)
991 			goto release;
992 
993 		data &= ~I82579_LPI_100_PLL_SHUT;
994 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
995 						     data);
996 	}
997 
998 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
999 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
1000 	if (ret_val)
1001 		goto release;
1002 
1003 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
1004 release:
1005 	hw->phy.ops.release(hw);
1006 
1007 	return ret_val;
1008 }
1009 
1010 /**
1011  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1012  *  @hw:   pointer to the HW structure
1013  *  @link: link up bool flag
1014  *
1015  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1016  *  preventing further DMA write requests.  Workaround the issue by disabling
1017  *  the de-assertion of the clock request when in 1Gpbs mode.
1018  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1019  *  speeds in order to avoid Tx hangs.
1020  **/
1021 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1022 {
1023 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1024 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1025 	s32 ret_val = E1000_SUCCESS;
1026 	u16 reg;
1027 
1028 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1029 		ret_val = hw->phy.ops.acquire(hw);
1030 		if (ret_val)
1031 			return ret_val;
1032 
1033 		ret_val =
1034 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1035 					       &reg);
1036 		if (ret_val)
1037 			goto release;
1038 
1039 		ret_val =
1040 		    e1000_write_kmrn_reg_locked(hw,
1041 						E1000_KMRNCTRLSTA_K1_CONFIG,
1042 						reg &
1043 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1044 		if (ret_val)
1045 			goto release;
1046 
1047 		usec_delay(10);
1048 
1049 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1050 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1051 
1052 		ret_val =
1053 		    e1000_write_kmrn_reg_locked(hw,
1054 						E1000_KMRNCTRLSTA_K1_CONFIG,
1055 						reg);
1056 release:
1057 		hw->phy.ops.release(hw);
1058 	} else {
1059 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1060 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1061 
1062 		if ((hw->phy.revision > 5) || !link ||
1063 		    ((status & E1000_STATUS_SPEED_100) &&
1064 		     (status & E1000_STATUS_FD)))
1065 			goto update_fextnvm6;
1066 
1067 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1068 		if (ret_val)
1069 			return ret_val;
1070 
1071 		/* Clear link status transmit timeout */
1072 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1073 
1074 		if (status & E1000_STATUS_SPEED_100) {
1075 			/* Set inband Tx timeout to 5x10us for 100Half */
1076 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1077 
1078 			/* Do not extend the K1 entry latency for 100Half */
1079 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1080 		} else {
1081 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1082 			reg |= 50 <<
1083 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1084 
1085 			/* Extend the K1 entry latency for 10 Mbps */
1086 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1087 		}
1088 
1089 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1090 		if (ret_val)
1091 			return ret_val;
1092 
1093 update_fextnvm6:
1094 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1095 	}
1096 
1097 	return ret_val;
1098 }
1099 
1100 static u64 e1000_ltr2ns(u16 ltr)
1101 {
1102 	u32 value, scale;
1103 
1104 	/* Determine the latency in nsec based on the LTR value & scale */
1105 	value = ltr & E1000_LTRV_VALUE_MASK;
1106 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1107 
1108 	return value * (1ULL << (scale * E1000_LTRV_SCALE_FACTOR));
1109 }
1110 
1111 /**
1112  *  e1000_platform_pm_pch_lpt - Set platform power management values
1113  *  @hw: pointer to the HW structure
1114  *  @link: bool indicating link status
1115  *
1116  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1117  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1118  *  when link is up (which must not exceed the maximum latency supported
1119  *  by the platform), otherwise specify there is no LTR requirement.
1120  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1121  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1122  *  Capability register set, on this device LTR is set by writing the
1123  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1124  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1125  *  message to the PMC.
1126  *
1127  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1128  *  high-water mark.
1129  **/
1130 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1131 {
1132 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1133 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1134 	u16 lat_enc = 0;	/* latency encoded */
1135 	s32 obff_hwm = 0;
1136 
1137 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1138 
1139 	if (link) {
1140 		u16 speed, duplex, scale = 0;
1141 		u16 max_snoop, max_nosnoop;
1142 		u16 max_ltr_enc;	/* max LTR latency encoded */
1143 		s64 lat_ns;
1144 		s64 value;
1145 		u32 rxa;
1146 
1147 		if (!hw->mac.max_frame_size) {
1148 			DEBUGOUT("max_frame_size not set.\n");
1149 			return -E1000_ERR_CONFIG;
1150 		}
1151 
1152 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1153 		if (!speed) {
1154 			DEBUGOUT("Speed not set.\n");
1155 			return -E1000_ERR_CONFIG;
1156 		}
1157 
1158 		/* Rx Packet Buffer Allocation size (KB) */
1159 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1160 
1161 		/* Determine the maximum latency tolerated by the device.
1162 		 *
1163 		 * Per the PCIe spec, the tolerated latencies are encoded as
1164 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1165 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1166 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1167 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1168 		 */
1169 		lat_ns = ((s64)rxa * 1024 -
1170 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1171 		if (lat_ns < 0)
1172 			lat_ns = 0;
1173 		else
1174 			lat_ns /= speed;
1175 		value = lat_ns;
1176 
1177 		while (value > E1000_LTRV_VALUE_MASK) {
1178 			scale++;
1179 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1180 		}
1181 		if (scale > E1000_LTRV_SCALE_MAX) {
1182 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1183 			return -E1000_ERR_CONFIG;
1184 		}
1185 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1186 
1187 		/* Determine the maximum latency tolerated by the platform */
1188 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1189 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1190 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1191 
1192 		if (lat_enc > max_ltr_enc) {
1193 			lat_enc = max_ltr_enc;
1194 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1195 		}
1196 
1197 		if (lat_ns) {
1198 			lat_ns *= speed * 1000;
1199 			lat_ns /= 8;
1200 			lat_ns /= 1000000000;
1201 			obff_hwm = (s32)(rxa - lat_ns);
1202 		}
1203 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1204 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1205 			return -E1000_ERR_CONFIG;
1206 		}
1207 	}
1208 
1209 	/* Set Snoop and No-Snoop latencies the same */
1210 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1211 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1212 
1213 	/* Set OBFF high water mark */
1214 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1215 	reg |= obff_hwm;
1216 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1217 
1218 	/* Enable OBFF */
1219 	reg = E1000_READ_REG(hw, E1000_SVCR);
1220 	reg |= E1000_SVCR_OFF_EN;
1221 	/* Always unblock interrupts to the CPU even when the system is
1222 	 * in OBFF mode. This ensures that small round-robin traffic
1223 	 * (like ping) does not get dropped or experience long latency.
1224 	 */
1225 	reg |= E1000_SVCR_OFF_MASKINT;
1226 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1227 
1228 	return E1000_SUCCESS;
1229 }
1230 
1231 /**
1232  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1233  *  @hw: pointer to the HW structure
1234  *  @itr: interrupt throttling rate
1235  *
1236  *  Configure OBFF with the updated interrupt rate.
1237  **/
1238 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1239 {
1240 	u32 svcr;
1241 	s32 timer;
1242 
1243 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1244 
1245 	/* Convert ITR value into microseconds for OBFF timer */
1246 	timer = itr & E1000_ITR_MASK;
1247 	timer = (timer * E1000_ITR_MULT) / 1000;
1248 
1249 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1250 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1251 		return -E1000_ERR_CONFIG;
1252 	}
1253 
1254 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1255 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1256 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1257 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1258 
1259 	return E1000_SUCCESS;
1260 }
1261 
1262 /**
1263  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1264  *  @hw: pointer to the HW structure
1265  *  @to_sx: boolean indicating a system power state transition to Sx
1266  *
1267  *  When link is down, configure ULP mode to significantly reduce the power
1268  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1269  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1270  *  system, configure the ULP mode by software.
1271  */
1272 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1273 {
1274 	u32 mac_reg;
1275 	s32 ret_val = E1000_SUCCESS;
1276 	u16 phy_reg;
1277 	u16 oem_reg = 0;
1278 
1279 	if ((hw->mac.type < e1000_pch_lpt) ||
1280 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1281 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1282 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1283 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1284 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1285 		return 0;
1286 
1287 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1288 		/* Request ME configure ULP mode in the PHY */
1289 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1290 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1291 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1292 
1293 		goto out;
1294 	}
1295 
1296 	if (!to_sx) {
1297 		int i = 0;
1298 		/* Poll up to 5 seconds for Cable Disconnected indication */
1299 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1300 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1301 			/* Bail if link is re-acquired */
1302 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1303 				return -E1000_ERR_PHY;
1304 			if (i++ == 100)
1305 				break;
1306 
1307 			msec_delay(50);
1308 		}
1309 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1310 			 (E1000_READ_REG(hw, E1000_FEXT) &
1311 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1312 			 i * 50);
1313 		if (!(E1000_READ_REG(hw, E1000_FEXT) &
1314 		    E1000_FEXT_PHY_CABLE_DISCONNECTED))
1315 			return 0;
1316 	}
1317 
1318 	ret_val = hw->phy.ops.acquire(hw);
1319 	if (ret_val)
1320 		goto out;
1321 
1322 	/* Force SMBus mode in PHY */
1323 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1324 	if (ret_val)
1325 		goto release;
1326 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1327 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1328 
1329 	/* Force SMBus mode in MAC */
1330 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1331 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1332 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1333 
1334 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1335 	 * LPLU and disable Gig speed when entering ULP
1336 	 */
1337 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1338 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1339 						       &oem_reg);
1340 		if (ret_val)
1341 			goto release;
1342 
1343 		phy_reg = oem_reg;
1344 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1345 
1346 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1347 							phy_reg);
1348 
1349 		if (ret_val)
1350 			goto release;
1351 	}
1352 
1353 	/* Set Inband ULP Exit, Reset to SMBus mode and
1354 	 * Disable SMBus Release on PERST# in PHY
1355 	 */
1356 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1357 	if (ret_val)
1358 		goto release;
1359 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1360 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1361 	if (to_sx) {
1362 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1363 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1364 		else
1365 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1366 
1367 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1368 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1369 	} else {
1370 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1371 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1372 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1373 	}
1374 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1375 
1376 	/* Set Disable SMBus Release on PERST# in MAC */
1377 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1378 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1379 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1380 
1381 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1382 	phy_reg |= I218_ULP_CONFIG1_START;
1383 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1384 
1385 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1386 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1387 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1388 							oem_reg);
1389 		if (ret_val)
1390 			goto release;
1391 	}
1392 
1393 release:
1394 	hw->phy.ops.release(hw);
1395 out:
1396 	if (ret_val)
1397 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1398 	else
1399 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1400 
1401 	return ret_val;
1402 }
1403 
1404 /**
1405  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1406  *  @hw: pointer to the HW structure
1407  *  @force: boolean indicating whether or not to force disabling ULP
1408  *
1409  *  Un-configure ULP mode when link is up, the system is transitioned from
1410  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1411  *  system, poll for an indication from ME that ULP has been un-configured.
1412  *  If not on an ME enabled system, un-configure the ULP mode by software.
1413  *
1414  *  During nominal operation, this function is called when link is acquired
1415  *  to disable ULP mode (force=false); otherwise, for example when unloading
1416  *  the driver or during Sx->S0 transitions, this is called with force=true
1417  *  to forcibly disable ULP.
1418  */
1419 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1420 {
1421 	s32 ret_val = E1000_SUCCESS;
1422 	u8 ulp_exit_timeout = 30;
1423 	u32 mac_reg;
1424 	u16 phy_reg;
1425 	int i = 0;
1426 
1427 	if ((hw->mac.type < e1000_pch_lpt) ||
1428 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1429 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1430 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1431 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1432 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1433 		return 0;
1434 
1435 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1436 		if (force) {
1437 			/* Request ME un-configure ULP mode in the PHY */
1438 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1439 			mac_reg &= ~E1000_H2ME_ULP;
1440 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1441 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1442 		}
1443 
1444 		if (hw->mac.type == e1000_pch_cnp)
1445 			ulp_exit_timeout = 100;
1446 
1447 		while (E1000_READ_REG(hw, E1000_FWSM) &
1448 		       E1000_FWSM_ULP_CFG_DONE) {
1449 			if (i++ == ulp_exit_timeout) {
1450 				ret_val = -E1000_ERR_PHY;
1451 				goto out;
1452 			}
1453 
1454 			msec_delay(10);
1455 		}
1456 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1457 
1458 		if (force) {
1459 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1460 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1461 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1462 		} else {
1463 			/* Clear H2ME.ULP after ME ULP configuration */
1464 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1465 			mac_reg &= ~E1000_H2ME_ULP;
1466 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1467 		}
1468 
1469 		goto out;
1470 	}
1471 
1472 	ret_val = hw->phy.ops.acquire(hw);
1473 	if (ret_val)
1474 		goto out;
1475 
1476 	if (force)
1477 		/* Toggle LANPHYPC Value bit */
1478 		e1000_toggle_lanphypc_pch_lpt(hw);
1479 
1480 	/* Unforce SMBus mode in PHY */
1481 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1482 	if (ret_val) {
1483 		/* The MAC might be in PCIe mode, so temporarily force to
1484 		 * SMBus mode in order to access the PHY.
1485 		 */
1486 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1487 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1488 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1489 
1490 		msec_delay(50);
1491 
1492 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1493 						       &phy_reg);
1494 		if (ret_val)
1495 			goto release;
1496 	}
1497 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1498 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1499 
1500 	/* Unforce SMBus mode in MAC */
1501 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1502 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1503 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1504 
1505 	/* When ULP mode was previously entered, K1 was disabled by the
1506 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1507 	 */
1508 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1509 	if (ret_val)
1510 		goto release;
1511 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1512 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1513 
1514 	/* Clear ULP enabled configuration */
1515 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1516 	if (ret_val)
1517 		goto release;
1518 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1519 		     I218_ULP_CONFIG1_STICKY_ULP |
1520 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1521 		     I218_ULP_CONFIG1_WOL_HOST |
1522 		     I218_ULP_CONFIG1_INBAND_EXIT |
1523 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1524 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1525 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1526 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1527 
1528 	/* Commit ULP changes by starting auto ULP configuration */
1529 	phy_reg |= I218_ULP_CONFIG1_START;
1530 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1531 
1532 	/* Clear Disable SMBus Release on PERST# in MAC */
1533 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1534 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1535 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1536 
1537 release:
1538 	hw->phy.ops.release(hw);
1539 	if (force) {
1540 		hw->phy.ops.reset(hw);
1541 		msec_delay(50);
1542 	}
1543 out:
1544 	if (ret_val)
1545 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1546 	else
1547 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1548 
1549 	return ret_val;
1550 }
1551 
1552 /**
1553  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1554  *  @hw: pointer to the HW structure
1555  *
1556  *  Checks to see of the link status of the hardware has changed.  If a
1557  *  change in link status has been detected, then we read the PHY registers
1558  *  to get the current speed/duplex if link exists.
1559  **/
1560 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1561 {
1562 	struct e1000_mac_info *mac = &hw->mac;
1563 	s32 ret_val, tipg_reg = 0;
1564 	u16 emi_addr, emi_val = 0;
1565 	bool link;
1566 	u16 phy_reg;
1567 
1568 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1569 
1570 	/* We only want to go out to the PHY registers to see if Auto-Neg
1571 	 * has completed and/or if our link status has changed.  The
1572 	 * get_link_status flag is set upon receiving a Link Status
1573 	 * Change or Rx Sequence Error interrupt.
1574 	 */
1575 	if (!mac->get_link_status)
1576 		return E1000_SUCCESS;
1577 
1578 	/* First we want to see if the MII Status Register reports
1579 	 * link.  If so, then we want to get the current speed/duplex
1580 	 * of the PHY.
1581 	 */
1582 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1583 	if (ret_val)
1584 		return ret_val;
1585 
1586 	if (hw->mac.type == e1000_pchlan) {
1587 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1588 		if (ret_val)
1589 			return ret_val;
1590 	}
1591 
1592 	/* When connected at 10Mbps half-duplex, some parts are excessively
1593 	 * aggressive resulting in many collisions. To avoid this, increase
1594 	 * the IPG and reduce Rx latency in the PHY.
1595 	 */
1596 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1597 		u16 speed, duplex;
1598 
1599 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1600 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1601 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1602 
1603 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1604 			tipg_reg |= 0xFF;
1605 			/* Reduce Rx latency in analog PHY */
1606 			emi_val = 0;
1607 		} else if (hw->mac.type >= e1000_pch_spt &&
1608 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1609 			tipg_reg |= 0xC;
1610 			emi_val = 1;
1611 		} else {
1612 			/* Roll back the default values */
1613 			tipg_reg |= 0x08;
1614 			emi_val = 1;
1615 		}
1616 
1617 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1618 
1619 		ret_val = hw->phy.ops.acquire(hw);
1620 		if (ret_val)
1621 			return ret_val;
1622 
1623 		if (hw->mac.type == e1000_pch2lan)
1624 			emi_addr = I82579_RX_CONFIG;
1625 		else
1626 			emi_addr = I217_RX_CONFIG;
1627 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1628 
1629 
1630 		if (hw->mac.type >= e1000_pch_lpt) {
1631 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1632 						    &phy_reg);
1633 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1634 			if (speed == SPEED_100 || speed == SPEED_10)
1635 				phy_reg |= 0x3E8;
1636 			else
1637 				phy_reg |= 0xFA;
1638 			hw->phy.ops.write_reg_locked(hw,
1639 						     I217_PLL_CLOCK_GATE_REG,
1640 						     phy_reg);
1641 
1642 			if (speed == SPEED_1000) {
1643 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1644 							    &phy_reg);
1645 
1646 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1647 
1648 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1649 							     phy_reg);
1650 				}
1651 		 }
1652 		hw->phy.ops.release(hw);
1653 
1654 		if (ret_val)
1655 			return ret_val;
1656 
1657 		if (hw->mac.type >= e1000_pch_spt) {
1658 			u16 data;
1659 			u16 ptr_gap;
1660 
1661 			if (speed == SPEED_1000) {
1662 				ret_val = hw->phy.ops.acquire(hw);
1663 				if (ret_val)
1664 					return ret_val;
1665 
1666 				ret_val = hw->phy.ops.read_reg_locked(hw,
1667 							      PHY_REG(776, 20),
1668 							      &data);
1669 				if (ret_val) {
1670 					hw->phy.ops.release(hw);
1671 					return ret_val;
1672 				}
1673 
1674 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1675 				if (ptr_gap < 0x18) {
1676 					data &= ~(0x3FF << 2);
1677 					data |= (0x18 << 2);
1678 					ret_val =
1679 						hw->phy.ops.write_reg_locked(hw,
1680 							PHY_REG(776, 20), data);
1681 				}
1682 				hw->phy.ops.release(hw);
1683 				if (ret_val)
1684 					return ret_val;
1685 			} else {
1686 				ret_val = hw->phy.ops.acquire(hw);
1687 				if (ret_val)
1688 					return ret_val;
1689 
1690 				ret_val = hw->phy.ops.write_reg_locked(hw,
1691 							     PHY_REG(776, 20),
1692 							     0xC023);
1693 				hw->phy.ops.release(hw);
1694 				if (ret_val)
1695 					return ret_val;
1696 
1697 			}
1698 		}
1699 	}
1700 
1701 	/* I217 Packet Loss issue:
1702 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1703 	 * on power up.
1704 	 * Set the Beacon Duration for I217 to 8 usec
1705 	 */
1706 	if (hw->mac.type >= e1000_pch_lpt) {
1707 		u32 mac_reg;
1708 
1709 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1710 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1711 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1712 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1713 	}
1714 
1715 	/* Work-around I218 hang issue */
1716 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1717 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1718 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1719 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1720 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1721 		if (ret_val)
1722 			return ret_val;
1723 	}
1724 	if (hw->mac.type >= e1000_pch_lpt) {
1725 		/* Set platform power management values for
1726 		 * Latency Tolerance Reporting (LTR)
1727 		 * Optimized Buffer Flush/Fill (OBFF)
1728 		 */
1729 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1730 		if (ret_val)
1731 			return ret_val;
1732 	}
1733 	/* Clear link partner's EEE ability */
1734 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1735 
1736 	if (hw->mac.type >= e1000_pch_lpt) {
1737 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1738 
1739 		if (hw->mac.type == e1000_pch_spt) {
1740 			/* FEXTNVM6 K1-off workaround - for SPT only */
1741 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1742 
1743 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1744 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1745 			else
1746 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1747 		}
1748 
1749 		if (hw->dev_spec.ich8lan.disable_k1_off == true)
1750 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1751 
1752 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1753 
1754 		/* Configure K0s minimum time */
1755 		e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1756 	}
1757 
1758 	if (!link)
1759 		return E1000_SUCCESS; /* No link detected */
1760 
1761 	mac->get_link_status = false;
1762 
1763 	switch (hw->mac.type) {
1764 	case e1000_pch2lan:
1765 		ret_val = e1000_k1_workaround_lv(hw);
1766 		if (ret_val)
1767 			return ret_val;
1768 		/* FALLTHROUGH */
1769 	case e1000_pchlan:
1770 		if (hw->phy.type == e1000_phy_82578) {
1771 			ret_val = e1000_link_stall_workaround_hv(hw);
1772 			if (ret_val)
1773 				return ret_val;
1774 		}
1775 
1776 		/* Workaround for PCHx parts in half-duplex:
1777 		 * Set the number of preambles removed from the packet
1778 		 * when it is passed from the PHY to the MAC to prevent
1779 		 * the MAC from misinterpreting the packet type.
1780 		 */
1781 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1782 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1783 
1784 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1785 		    E1000_STATUS_FD)
1786 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1787 
1788 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1789 		break;
1790 	default:
1791 		break;
1792 	}
1793 
1794 	/* Check if there was DownShift, must be checked
1795 	 * immediately after link-up
1796 	 */
1797 	e1000_check_downshift_generic(hw);
1798 
1799 	/* Enable/Disable EEE after link up */
1800 	if (hw->phy.type > e1000_phy_82579) {
1801 		ret_val = e1000_set_eee_pchlan(hw);
1802 		if (ret_val)
1803 			return ret_val;
1804 	}
1805 
1806 	/* If we are forcing speed/duplex, then we simply return since
1807 	 * we have already determined whether we have link or not.
1808 	 */
1809 	if (!mac->autoneg)
1810 		return -E1000_ERR_CONFIG;
1811 
1812 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1813 	 * of MAC speed/duplex configuration.  So we only need to
1814 	 * configure Collision Distance in the MAC.
1815 	 */
1816 	mac->ops.config_collision_dist(hw);
1817 
1818 	/* Configure Flow Control now that Auto-Neg has completed.
1819 	 * First, we need to restore the desired flow control
1820 	 * settings because we may have had to re-autoneg with a
1821 	 * different link partner.
1822 	 */
1823 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1824 	if (ret_val)
1825 		DEBUGOUT("Error configuring flow control\n");
1826 
1827 	return ret_val;
1828 }
1829 
1830 /**
1831  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1832  *  @hw: pointer to the HW structure
1833  *
1834  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1835  **/
1836 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1837 {
1838 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1839 
1840 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1841 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1842 	switch (hw->mac.type) {
1843 	case e1000_ich8lan:
1844 	case e1000_ich9lan:
1845 	case e1000_ich10lan:
1846 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1847 		break;
1848 	case e1000_pchlan:
1849 	case e1000_pch2lan:
1850 	case e1000_pch_lpt:
1851 	case e1000_pch_spt:
1852 	case e1000_pch_cnp:
1853 	case e1000_pch_tgp:
1854 	case e1000_pch_adp:
1855 	case e1000_pch_mtp:
1856 	case e1000_pch_ptp:
1857 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1858 		break;
1859 	default:
1860 		break;
1861 	}
1862 }
1863 
1864 /**
1865  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1866  *  @hw: pointer to the HW structure
1867  *
1868  *  Acquires the mutex for performing NVM operations.
1869  **/
1870 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1871 {
1872 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1873 
1874 	ASSERT_CTX_LOCK_HELD(hw);
1875 
1876 	return E1000_SUCCESS;
1877 }
1878 
1879 /**
1880  *  e1000_release_nvm_ich8lan - Release NVM mutex
1881  *  @hw: pointer to the HW structure
1882  *
1883  *  Releases the mutex used while performing NVM operations.
1884  **/
1885 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1886 {
1887 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1888 
1889 	ASSERT_CTX_LOCK_HELD(hw);
1890 }
1891 
1892 /**
1893  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1894  *  @hw: pointer to the HW structure
1895  *
1896  *  Acquires the software control flag for performing PHY and select
1897  *  MAC CSR accesses.
1898  **/
1899 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1900 {
1901 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1902 	s32 ret_val = E1000_SUCCESS;
1903 
1904 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1905 
1906 	ASSERT_CTX_LOCK_HELD(hw);
1907 
1908 	while (timeout) {
1909 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1910 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1911 			break;
1912 
1913 		msec_delay_irq(1);
1914 		timeout--;
1915 	}
1916 
1917 	if (!timeout) {
1918 		DEBUGOUT("SW has already locked the resource.\n");
1919 		ret_val = -E1000_ERR_CONFIG;
1920 		goto out;
1921 	}
1922 
1923 	timeout = SW_FLAG_TIMEOUT;
1924 
1925 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1926 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1927 
1928 	while (timeout) {
1929 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1930 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1931 			break;
1932 
1933 		msec_delay_irq(1);
1934 		timeout--;
1935 	}
1936 
1937 	if (!timeout) {
1938 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1939 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1940 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1941 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1942 		ret_val = -E1000_ERR_CONFIG;
1943 		goto out;
1944 	}
1945 
1946 out:
1947 	return ret_val;
1948 }
1949 
1950 /**
1951  *  e1000_release_swflag_ich8lan - Release software control flag
1952  *  @hw: pointer to the HW structure
1953  *
1954  *  Releases the software control flag for performing PHY and select
1955  *  MAC CSR accesses.
1956  **/
1957 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1958 {
1959 	u32 extcnf_ctrl;
1960 
1961 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1962 
1963 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1964 
1965 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1966 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1967 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1968 	} else {
1969 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1970 	}
1971 }
1972 
1973 /**
1974  *  e1000_check_mng_mode_ich8lan - Checks management mode
1975  *  @hw: pointer to the HW structure
1976  *
1977  *  This checks if the adapter has any manageability enabled.
1978  *  This is a function pointer entry point only called by read/write
1979  *  routines for the PHY and NVM parts.
1980  **/
1981 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1982 {
1983 	u32 fwsm;
1984 
1985 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1986 
1987 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1988 
1989 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1990 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1991 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1992 }
1993 
1994 /**
1995  *  e1000_check_mng_mode_pchlan - Checks management mode
1996  *  @hw: pointer to the HW structure
1997  *
1998  *  This checks if the adapter has iAMT enabled.
1999  *  This is a function pointer entry point only called by read/write
2000  *  routines for the PHY and NVM parts.
2001  **/
2002 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
2003 {
2004 	u32 fwsm;
2005 
2006 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
2007 
2008 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
2009 
2010 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2011 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2012 }
2013 
2014 /**
2015  *  e1000_rar_set_pch2lan - Set receive address register
2016  *  @hw: pointer to the HW structure
2017  *  @addr: pointer to the receive address
2018  *  @index: receive address array register
2019  *
2020  *  Sets the receive address array register at index to the address passed
2021  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2022  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2023  *  Use SHRA[0-3] in place of those reserved for ME.
2024  **/
2025 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2026 {
2027 	u32 rar_low, rar_high;
2028 
2029 	DEBUGFUNC("e1000_rar_set_pch2lan");
2030 
2031 	/* HW expects these in little endian so we reverse the byte order
2032 	 * from network order (big endian) to little endian
2033 	 */
2034 	rar_low = ((u32) addr[0] |
2035 		   ((u32) addr[1] << 8) |
2036 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2037 
2038 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2039 
2040 	/* If MAC address zero, no need to set the AV bit */
2041 	if (rar_low || rar_high)
2042 		rar_high |= E1000_RAH_AV;
2043 
2044 	if (index == 0) {
2045 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2046 		E1000_WRITE_FLUSH(hw);
2047 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2048 		E1000_WRITE_FLUSH(hw);
2049 		return E1000_SUCCESS;
2050 	}
2051 
2052 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2053 	 * next address into the SHRA register array.
2054 	 */
2055 	if (index < (u32) (hw->mac.rar_entry_count)) {
2056 		s32 ret_val;
2057 
2058 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2059 		if (ret_val)
2060 			goto out;
2061 
2062 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2063 		E1000_WRITE_FLUSH(hw);
2064 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2065 		E1000_WRITE_FLUSH(hw);
2066 
2067 		e1000_release_swflag_ich8lan(hw);
2068 
2069 		/* verify the register updates */
2070 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2071 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2072 			return E1000_SUCCESS;
2073 
2074 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2075 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2076 	}
2077 
2078 out:
2079 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2080 	return -E1000_ERR_CONFIG;
2081 }
2082 
2083 /**
2084  *  e1000_rar_set_pch_lpt - Set receive address registers
2085  *  @hw: pointer to the HW structure
2086  *  @addr: pointer to the receive address
2087  *  @index: receive address array register
2088  *
2089  *  Sets the receive address register array at index to the address passed
2090  *  in by addr. For LPT, RAR[0] is the base address register that is to
2091  *  contain the MAC address. SHRA[0-10] are the shared receive address
2092  *  registers that are shared between the Host and manageability engine (ME).
2093  **/
2094 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2095 {
2096 	u32 rar_low, rar_high;
2097 	u32 wlock_mac;
2098 
2099 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2100 
2101 	/* HW expects these in little endian so we reverse the byte order
2102 	 * from network order (big endian) to little endian
2103 	 */
2104 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2105 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2106 
2107 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2108 
2109 	/* If MAC address zero, no need to set the AV bit */
2110 	if (rar_low || rar_high)
2111 		rar_high |= E1000_RAH_AV;
2112 
2113 	if (index == 0) {
2114 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2115 		E1000_WRITE_FLUSH(hw);
2116 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2117 		E1000_WRITE_FLUSH(hw);
2118 		return E1000_SUCCESS;
2119 	}
2120 
2121 	/* The manageability engine (ME) can lock certain SHRAR registers that
2122 	 * it is using - those registers are unavailable for use.
2123 	 */
2124 	if (index < hw->mac.rar_entry_count) {
2125 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2126 			    E1000_FWSM_WLOCK_MAC_MASK;
2127 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2128 
2129 		/* Check if all SHRAR registers are locked */
2130 		if (wlock_mac == 1)
2131 			goto out;
2132 
2133 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2134 			s32 ret_val;
2135 
2136 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2137 
2138 			if (ret_val)
2139 				goto out;
2140 
2141 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2142 					rar_low);
2143 			E1000_WRITE_FLUSH(hw);
2144 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2145 					rar_high);
2146 			E1000_WRITE_FLUSH(hw);
2147 
2148 			e1000_release_swflag_ich8lan(hw);
2149 
2150 			/* verify the register updates */
2151 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2152 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2153 				return E1000_SUCCESS;
2154 		}
2155 	}
2156 
2157 out:
2158 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2159 	return -E1000_ERR_CONFIG;
2160 }
2161 
2162 /**
2163  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2164  *  @hw: pointer to the HW structure
2165  *  @mc_addr_list: array of multicast addresses to program
2166  *  @mc_addr_count: number of multicast addresses to program
2167  *
2168  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2169  *  The caller must have a packed mc_addr_list of multicast addresses.
2170  **/
2171 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2172 					      u8 *mc_addr_list,
2173 					      u32 mc_addr_count)
2174 {
2175 	u16 phy_reg = 0;
2176 	int i;
2177 	s32 ret_val;
2178 
2179 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2180 
2181 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2182 
2183 	ret_val = hw->phy.ops.acquire(hw);
2184 	if (ret_val)
2185 		return;
2186 
2187 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2188 	if (ret_val)
2189 		goto release;
2190 
2191 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2192 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2193 					   (u16)(hw->mac.mta_shadow[i] &
2194 						 0xFFFF));
2195 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2196 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2197 						 0xFFFF));
2198 	}
2199 
2200 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2201 
2202 release:
2203 	hw->phy.ops.release(hw);
2204 }
2205 
2206 /**
2207  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2208  *  @hw: pointer to the HW structure
2209  *
2210  *  Checks if firmware is blocking the reset of the PHY.
2211  *  This is a function pointer entry point only called by
2212  *  reset routines.
2213  **/
2214 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2215 {
2216 	u32 fwsm;
2217 	bool blocked = false;
2218 	int i = 0;
2219 
2220 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2221 
2222 	do {
2223 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2224 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2225 			blocked = true;
2226 			msec_delay(10);
2227 			continue;
2228 		}
2229 		blocked = false;
2230 	} while (blocked && (i++ < 30));
2231 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2232 }
2233 
2234 /**
2235  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2236  *  @hw: pointer to the HW structure
2237  *
2238  *  Assumes semaphore already acquired.
2239  *
2240  **/
2241 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2242 {
2243 	u16 phy_data;
2244 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2245 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2246 		E1000_STRAP_SMT_FREQ_SHIFT;
2247 	s32 ret_val;
2248 
2249 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2250 
2251 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2252 	if (ret_val)
2253 		return ret_val;
2254 
2255 	phy_data &= ~HV_SMB_ADDR_MASK;
2256 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2257 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2258 
2259 	if (hw->phy.type == e1000_phy_i217) {
2260 		/* Restore SMBus frequency */
2261 		if (freq--) {
2262 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2263 			phy_data |= (freq & (1 << 0)) <<
2264 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2265 			phy_data |= (freq & (1 << 1)) <<
2266 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2267 		} else {
2268 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2269 		}
2270 	}
2271 
2272 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2273 }
2274 
2275 /**
2276  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2277  *  @hw:   pointer to the HW structure
2278  *
2279  *  SW should configure the LCD from the NVM extended configuration region
2280  *  as a workaround for certain parts.
2281  **/
2282 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2283 {
2284 	struct e1000_phy_info *phy = &hw->phy;
2285 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2286 	s32 ret_val = E1000_SUCCESS;
2287 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2288 
2289 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2290 
2291 	/* Initialize the PHY from the NVM on ICH platforms.  This
2292 	 * is needed due to an issue where the NVM configuration is
2293 	 * not properly autoloaded after power transitions.
2294 	 * Therefore, after each PHY reset, we will load the
2295 	 * configuration data out of the NVM manually.
2296 	 */
2297 	switch (hw->mac.type) {
2298 	case e1000_ich8lan:
2299 		if (phy->type != e1000_phy_igp_3)
2300 			return ret_val;
2301 
2302 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2303 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2304 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2305 			break;
2306 		}
2307 		/* FALLTHROUGH */
2308 	case e1000_pchlan:
2309 	case e1000_pch2lan:
2310 	case e1000_pch_lpt:
2311 	case e1000_pch_spt:
2312 	case e1000_pch_cnp:
2313 	case e1000_pch_tgp:
2314 	case e1000_pch_adp:
2315 	case e1000_pch_mtp:
2316 	case e1000_pch_ptp:
2317 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2318 		break;
2319 	default:
2320 		return ret_val;
2321 	}
2322 
2323 	ret_val = hw->phy.ops.acquire(hw);
2324 	if (ret_val)
2325 		return ret_val;
2326 
2327 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2328 	if (!(data & sw_cfg_mask))
2329 		goto release;
2330 
2331 	/* Make sure HW does not configure LCD from PHY
2332 	 * extended configuration before SW configuration
2333 	 */
2334 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2335 	if ((hw->mac.type < e1000_pch2lan) &&
2336 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2337 			goto release;
2338 
2339 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2340 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2341 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2342 	if (!cnf_size)
2343 		goto release;
2344 
2345 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2346 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2347 
2348 	if (((hw->mac.type == e1000_pchlan) &&
2349 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2350 	    (hw->mac.type > e1000_pchlan)) {
2351 		/* HW configures the SMBus address and LEDs when the
2352 		 * OEM and LCD Write Enable bits are set in the NVM.
2353 		 * When both NVM bits are cleared, SW will configure
2354 		 * them instead.
2355 		 */
2356 		ret_val = e1000_write_smbus_addr(hw);
2357 		if (ret_val)
2358 			goto release;
2359 
2360 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2361 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2362 							(u16)data);
2363 		if (ret_val)
2364 			goto release;
2365 	}
2366 
2367 	/* Configure LCD from extended configuration region. */
2368 
2369 	/* cnf_base_addr is in DWORD */
2370 	word_addr = (u16)(cnf_base_addr << 1);
2371 
2372 	for (i = 0; i < cnf_size; i++) {
2373 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2374 					   &reg_data);
2375 		if (ret_val)
2376 			goto release;
2377 
2378 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2379 					   1, &reg_addr);
2380 		if (ret_val)
2381 			goto release;
2382 
2383 		/* Save off the PHY page for future writes. */
2384 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2385 			phy_page = reg_data;
2386 			continue;
2387 		}
2388 
2389 		reg_addr &= PHY_REG_MASK;
2390 		reg_addr |= phy_page;
2391 
2392 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2393 						    reg_data);
2394 		if (ret_val)
2395 			goto release;
2396 	}
2397 
2398 release:
2399 	hw->phy.ops.release(hw);
2400 	return ret_val;
2401 }
2402 
2403 /**
2404  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2405  *  @hw:   pointer to the HW structure
2406  *  @link: link up bool flag
2407  *
2408  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2409  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2410  *  If link is down, the function will restore the default K1 setting located
2411  *  in the NVM.
2412  **/
2413 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2414 {
2415 	s32 ret_val = E1000_SUCCESS;
2416 	u16 status_reg = 0;
2417 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2418 
2419 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2420 
2421 	if (hw->mac.type != e1000_pchlan)
2422 		return E1000_SUCCESS;
2423 
2424 	/* Wrap the whole flow with the sw flag */
2425 	ret_val = hw->phy.ops.acquire(hw);
2426 	if (ret_val)
2427 		return ret_val;
2428 
2429 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2430 	if (link) {
2431 		if (hw->phy.type == e1000_phy_82578) {
2432 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2433 							      &status_reg);
2434 			if (ret_val)
2435 				goto release;
2436 
2437 			status_reg &= (BM_CS_STATUS_LINK_UP |
2438 				       BM_CS_STATUS_RESOLVED |
2439 				       BM_CS_STATUS_SPEED_MASK);
2440 
2441 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2442 					   BM_CS_STATUS_RESOLVED |
2443 					   BM_CS_STATUS_SPEED_1000))
2444 				k1_enable = false;
2445 		}
2446 
2447 		if (hw->phy.type == e1000_phy_82577) {
2448 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2449 							      &status_reg);
2450 			if (ret_val)
2451 				goto release;
2452 
2453 			status_reg &= (HV_M_STATUS_LINK_UP |
2454 				       HV_M_STATUS_AUTONEG_COMPLETE |
2455 				       HV_M_STATUS_SPEED_MASK);
2456 
2457 			if (status_reg == (HV_M_STATUS_LINK_UP |
2458 					   HV_M_STATUS_AUTONEG_COMPLETE |
2459 					   HV_M_STATUS_SPEED_1000))
2460 				k1_enable = false;
2461 		}
2462 
2463 		/* Link stall fix for link up */
2464 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2465 						       0x0100);
2466 		if (ret_val)
2467 			goto release;
2468 
2469 	} else {
2470 		/* Link stall fix for link down */
2471 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2472 						       0x4100);
2473 		if (ret_val)
2474 			goto release;
2475 	}
2476 
2477 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2478 
2479 release:
2480 	hw->phy.ops.release(hw);
2481 
2482 	return ret_val;
2483 }
2484 
2485 /**
2486  *  e1000_configure_k1_ich8lan - Configure K1 power state
2487  *  @hw: pointer to the HW structure
2488  *  @k1_enable: K1 state to configure
2489  *
2490  *  Configure the K1 power state based on the provided parameter.
2491  *  Assumes semaphore already acquired.
2492  *
2493  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2494  **/
2495 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2496 {
2497 	s32 ret_val;
2498 	u32 ctrl_reg = 0;
2499 	u32 ctrl_ext = 0;
2500 	u32 reg = 0;
2501 	u16 kmrn_reg = 0;
2502 
2503 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2504 
2505 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2506 					     &kmrn_reg);
2507 	if (ret_val)
2508 		return ret_val;
2509 
2510 	if (k1_enable)
2511 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2512 	else
2513 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2514 
2515 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2516 					      kmrn_reg);
2517 	if (ret_val)
2518 		return ret_val;
2519 
2520 	usec_delay(20);
2521 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2522 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2523 
2524 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2525 	reg |= E1000_CTRL_FRCSPD;
2526 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2527 
2528 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2529 	E1000_WRITE_FLUSH(hw);
2530 	usec_delay(20);
2531 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2532 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2533 	E1000_WRITE_FLUSH(hw);
2534 	usec_delay(20);
2535 
2536 	return E1000_SUCCESS;
2537 }
2538 
2539 /**
2540  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2541  *  @hw:       pointer to the HW structure
2542  *  @d0_state: boolean if entering d0 or d3 device state
2543  *
2544  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2545  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2546  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2547  **/
2548 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2549 {
2550 	s32 ret_val = 0;
2551 	u32 mac_reg;
2552 	u16 oem_reg;
2553 
2554 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2555 
2556 	if (hw->mac.type < e1000_pchlan)
2557 		return ret_val;
2558 
2559 	ret_val = hw->phy.ops.acquire(hw);
2560 	if (ret_val)
2561 		return ret_val;
2562 
2563 	if (hw->mac.type == e1000_pchlan) {
2564 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2565 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2566 			goto release;
2567 	}
2568 
2569 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2570 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2571 		goto release;
2572 
2573 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2574 
2575 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2576 	if (ret_val)
2577 		goto release;
2578 
2579 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2580 
2581 	if (d0_state) {
2582 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2583 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2584 
2585 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2586 			oem_reg |= HV_OEM_BITS_LPLU;
2587 	} else {
2588 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2589 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2590 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2591 
2592 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2593 		    E1000_PHY_CTRL_NOND0A_LPLU))
2594 			oem_reg |= HV_OEM_BITS_LPLU;
2595 	}
2596 
2597 	/* Set Restart auto-neg to activate the bits */
2598 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2599 	    !hw->phy.ops.check_reset_block(hw))
2600 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2601 
2602 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2603 
2604 release:
2605 	hw->phy.ops.release(hw);
2606 
2607 	return ret_val;
2608 }
2609 
2610 
2611 /**
2612  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2613  *  @hw:   pointer to the HW structure
2614  **/
2615 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2616 {
2617 	s32 ret_val;
2618 	u16 data;
2619 
2620 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2621 
2622 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2623 	if (ret_val)
2624 		return ret_val;
2625 
2626 	data |= HV_KMRN_MDIO_SLOW;
2627 
2628 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2629 
2630 	return ret_val;
2631 }
2632 
2633 /**
2634  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2635  *  done after every PHY reset.
2636  *  @hw: pointer to the HW structure
2637  **/
2638 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2639 {
2640 	s32 ret_val = E1000_SUCCESS;
2641 	u16 phy_data;
2642 
2643 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2644 
2645 	if (hw->mac.type != e1000_pchlan)
2646 		return E1000_SUCCESS;
2647 
2648 	/* Set MDIO slow mode before any other MDIO access */
2649 	if (hw->phy.type == e1000_phy_82577) {
2650 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2651 		if (ret_val)
2652 			return ret_val;
2653 	}
2654 
2655 	if (((hw->phy.type == e1000_phy_82577) &&
2656 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2657 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2658 		/* Disable generation of early preamble */
2659 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2660 		if (ret_val)
2661 			return ret_val;
2662 
2663 		/* Preamble tuning for SSC */
2664 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2665 						0xA204);
2666 		if (ret_val)
2667 			return ret_val;
2668 	}
2669 
2670 	if (hw->phy.type == e1000_phy_82578) {
2671 		/* Return registers to default by doing a soft reset then
2672 		 * writing 0x3140 to the control register.
2673 		 */
2674 		if (hw->phy.revision < 2) {
2675 			e1000_phy_sw_reset_generic(hw);
2676 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2677 							0x3140);
2678 			if (ret_val)
2679 				return ret_val;
2680 		}
2681 	}
2682 
2683 	/* Select page 0 */
2684 	ret_val = hw->phy.ops.acquire(hw);
2685 	if (ret_val)
2686 		return ret_val;
2687 
2688 	hw->phy.addr = 1;
2689 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2690 	hw->phy.ops.release(hw);
2691 	if (ret_val)
2692 		return ret_val;
2693 
2694 	/* Configure the K1 Si workaround during phy reset assuming there is
2695 	 * link so that it disables K1 if link is in 1Gbps.
2696 	 */
2697 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2698 	if (ret_val)
2699 		return ret_val;
2700 
2701 	/* Workaround for link disconnects on a busy hub in half duplex */
2702 	ret_val = hw->phy.ops.acquire(hw);
2703 	if (ret_val)
2704 		return ret_val;
2705 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2706 	if (ret_val)
2707 		goto release;
2708 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2709 					       phy_data & 0x00FF);
2710 	if (ret_val)
2711 		goto release;
2712 
2713 	/* set MSE higher to enable link to stay up when noise is high */
2714 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2715 release:
2716 	hw->phy.ops.release(hw);
2717 
2718 	return ret_val;
2719 }
2720 
2721 /**
2722  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2723  *  @hw:   pointer to the HW structure
2724  **/
2725 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2726 {
2727 	u32 mac_reg;
2728 	u16 i, phy_reg = 0;
2729 	s32 ret_val;
2730 
2731 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2732 
2733 	ret_val = hw->phy.ops.acquire(hw);
2734 	if (ret_val)
2735 		return;
2736 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2737 	if (ret_val)
2738 		goto release;
2739 
2740 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2741 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2742 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2743 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2744 					   (u16)(mac_reg & 0xFFFF));
2745 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2746 					   (u16)((mac_reg >> 16) & 0xFFFF));
2747 
2748 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2749 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2750 					   (u16)(mac_reg & 0xFFFF));
2751 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2752 					   (u16)((mac_reg & E1000_RAH_AV)
2753 						 >> 16));
2754 	}
2755 
2756 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2757 
2758 release:
2759 	hw->phy.ops.release(hw);
2760 }
2761 
2762 static u32 e1000_calc_rx_da_crc(u8 mac[])
2763 {
2764 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2765 	u32 i, j, mask, crc;
2766 
2767 	DEBUGFUNC("e1000_calc_rx_da_crc");
2768 
2769 	crc = 0xffffffff;
2770 	for (i = 0; i < 6; i++) {
2771 		crc = crc ^ mac[i];
2772 		for (j = 8; j > 0; j--) {
2773 			mask = (crc & 1) * (-1);
2774 			crc = (crc >> 1) ^ (poly & mask);
2775 		}
2776 	}
2777 	return ~crc;
2778 }
2779 
2780 /**
2781  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2782  *  with 82579 PHY
2783  *  @hw: pointer to the HW structure
2784  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2785  **/
2786 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2787 {
2788 	s32 ret_val = E1000_SUCCESS;
2789 	u16 phy_reg, data;
2790 	u32 mac_reg;
2791 	u16 i;
2792 
2793 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2794 
2795 	if (hw->mac.type < e1000_pch2lan)
2796 		return E1000_SUCCESS;
2797 
2798 	/* disable Rx path while enabling/disabling workaround */
2799 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2800 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2801 					phy_reg | (1 << 14));
2802 	if (ret_val)
2803 		return ret_val;
2804 
2805 	if (enable) {
2806 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2807 		 * SHRAL/H) and initial CRC values to the MAC
2808 		 */
2809 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2810 			u8 mac_addr[ETHER_ADDR_LEN] = {0};
2811 			u32 addr_high, addr_low;
2812 
2813 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2814 			if (!(addr_high & E1000_RAH_AV))
2815 				continue;
2816 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2817 			mac_addr[0] = (addr_low & 0xFF);
2818 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2819 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2820 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2821 			mac_addr[4] = (addr_high & 0xFF);
2822 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2823 
2824 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2825 					e1000_calc_rx_da_crc(mac_addr));
2826 		}
2827 
2828 		/* Write Rx addresses to the PHY */
2829 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2830 
2831 		/* Enable jumbo frame workaround in the MAC */
2832 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2833 		mac_reg &= ~(1 << 14);
2834 		mac_reg |= (7 << 15);
2835 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2836 
2837 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2838 		mac_reg |= E1000_RCTL_SECRC;
2839 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2840 
2841 		ret_val = e1000_read_kmrn_reg_generic(hw,
2842 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2843 						&data);
2844 		if (ret_val)
2845 			return ret_val;
2846 		ret_val = e1000_write_kmrn_reg_generic(hw,
2847 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2848 						data | (1 << 0));
2849 		if (ret_val)
2850 			return ret_val;
2851 		ret_val = e1000_read_kmrn_reg_generic(hw,
2852 						E1000_KMRNCTRLSTA_HD_CTRL,
2853 						&data);
2854 		if (ret_val)
2855 			return ret_val;
2856 		data &= ~(0xF << 8);
2857 		data |= (0xB << 8);
2858 		ret_val = e1000_write_kmrn_reg_generic(hw,
2859 						E1000_KMRNCTRLSTA_HD_CTRL,
2860 						data);
2861 		if (ret_val)
2862 			return ret_val;
2863 
2864 		/* Enable jumbo frame workaround in the PHY */
2865 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2866 		data &= ~(0x7F << 5);
2867 		data |= (0x37 << 5);
2868 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2869 		if (ret_val)
2870 			return ret_val;
2871 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2872 		data &= ~(1 << 13);
2873 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2874 		if (ret_val)
2875 			return ret_val;
2876 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2877 		data &= ~(0x3FF << 2);
2878 		data |= (E1000_TX_PTR_GAP << 2);
2879 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2880 		if (ret_val)
2881 			return ret_val;
2882 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2883 		if (ret_val)
2884 			return ret_val;
2885 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2886 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2887 						(1 << 10));
2888 		if (ret_val)
2889 			return ret_val;
2890 	} else {
2891 		/* Write MAC register values back to h/w defaults */
2892 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2893 		mac_reg &= ~(0xF << 14);
2894 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2895 
2896 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2897 		mac_reg &= ~E1000_RCTL_SECRC;
2898 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2899 
2900 		ret_val = e1000_read_kmrn_reg_generic(hw,
2901 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2902 						&data);
2903 		if (ret_val)
2904 			return ret_val;
2905 		ret_val = e1000_write_kmrn_reg_generic(hw,
2906 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2907 						data & ~(1 << 0));
2908 		if (ret_val)
2909 			return ret_val;
2910 		ret_val = e1000_read_kmrn_reg_generic(hw,
2911 						E1000_KMRNCTRLSTA_HD_CTRL,
2912 						&data);
2913 		if (ret_val)
2914 			return ret_val;
2915 		data &= ~(0xF << 8);
2916 		data |= (0xB << 8);
2917 		ret_val = e1000_write_kmrn_reg_generic(hw,
2918 						E1000_KMRNCTRLSTA_HD_CTRL,
2919 						data);
2920 		if (ret_val)
2921 			return ret_val;
2922 
2923 		/* Write PHY register values back to h/w defaults */
2924 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2925 		data &= ~(0x7F << 5);
2926 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2927 		if (ret_val)
2928 			return ret_val;
2929 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2930 		data |= (1 << 13);
2931 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2932 		if (ret_val)
2933 			return ret_val;
2934 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2935 		data &= ~(0x3FF << 2);
2936 		data |= (0x8 << 2);
2937 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2938 		if (ret_val)
2939 			return ret_val;
2940 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2941 		if (ret_val)
2942 			return ret_val;
2943 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2944 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2945 						~(1 << 10));
2946 		if (ret_val)
2947 			return ret_val;
2948 	}
2949 
2950 	/* re-enable Rx path after enabling/disabling workaround */
2951 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2952 				     ~(1 << 14));
2953 }
2954 
2955 /**
2956  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2957  *  done after every PHY reset.
2958  *  @hw: pointer to the HW structure
2959  **/
2960 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2961 {
2962 	s32 ret_val = E1000_SUCCESS;
2963 
2964 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2965 
2966 	if (hw->mac.type != e1000_pch2lan)
2967 		return E1000_SUCCESS;
2968 
2969 	/* Set MDIO slow mode before any other MDIO access */
2970 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2971 	if (ret_val)
2972 		return ret_val;
2973 
2974 	ret_val = hw->phy.ops.acquire(hw);
2975 	if (ret_val)
2976 		return ret_val;
2977 	/* set MSE higher to enable link to stay up when noise is high */
2978 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2979 	if (ret_val)
2980 		goto release;
2981 	/* drop link after 5 times MSE threshold was reached */
2982 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2983 release:
2984 	hw->phy.ops.release(hw);
2985 
2986 	return ret_val;
2987 }
2988 
2989 /**
2990  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2991  *  @hw:   pointer to the HW structure
2992  *
2993  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2994  *  Disable K1 for 1000 and 100 speeds
2995  **/
2996 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2997 {
2998 	s32 ret_val = E1000_SUCCESS;
2999 	u16 status_reg = 0;
3000 
3001 	DEBUGFUNC("e1000_k1_workaround_lv");
3002 
3003 	if (hw->mac.type != e1000_pch2lan)
3004 		return E1000_SUCCESS;
3005 
3006 	/* Set K1 beacon duration based on 10Mbs speed */
3007 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
3008 	if (ret_val)
3009 		return ret_val;
3010 
3011 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
3012 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
3013 		if (status_reg &
3014 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
3015 			u16 pm_phy_reg;
3016 
3017 			/* LV 1G/100 Packet drop issue wa  */
3018 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3019 						       &pm_phy_reg);
3020 			if (ret_val)
3021 				return ret_val;
3022 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3023 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3024 							pm_phy_reg);
3025 			if (ret_val)
3026 				return ret_val;
3027 		} else {
3028 			u32 mac_reg;
3029 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3030 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3031 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3032 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3033 		}
3034 	}
3035 
3036 	return ret_val;
3037 }
3038 
3039 /**
3040  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3041  *  @hw:   pointer to the HW structure
3042  *  @gate: boolean set to true to gate, false to ungate
3043  *
3044  *  Gate/ungate the automatic PHY configuration via hardware; perform
3045  *  the configuration via software instead.
3046  **/
3047 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3048 {
3049 	u32 extcnf_ctrl;
3050 
3051 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3052 
3053 	if (hw->mac.type < e1000_pch2lan)
3054 		return;
3055 
3056 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3057 
3058 	if (gate)
3059 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3060 	else
3061 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3062 
3063 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3064 }
3065 
3066 /**
3067  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3068  *  @hw: pointer to the HW structure
3069  *
3070  *  Check the appropriate indication the MAC has finished configuring the
3071  *  PHY after a software reset.
3072  **/
3073 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3074 {
3075 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3076 
3077 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3078 
3079 	/* Wait for basic configuration completes before proceeding */
3080 	do {
3081 		data = E1000_READ_REG(hw, E1000_STATUS);
3082 		data &= E1000_STATUS_LAN_INIT_DONE;
3083 		usec_delay(100);
3084 	} while ((!data) && --loop);
3085 
3086 	/* If basic configuration is incomplete before the above loop
3087 	 * count reaches 0, loading the configuration from NVM will
3088 	 * leave the PHY in a bad state possibly resulting in no link.
3089 	 */
3090 	if (loop == 0)
3091 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3092 
3093 	/* Clear the Init Done bit for the next init event */
3094 	data = E1000_READ_REG(hw, E1000_STATUS);
3095 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3096 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3097 }
3098 
3099 /**
3100  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3101  *  @hw: pointer to the HW structure
3102  **/
3103 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3104 {
3105 	s32 ret_val = E1000_SUCCESS;
3106 	u16 reg;
3107 
3108 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3109 
3110 	if (hw->phy.ops.check_reset_block(hw))
3111 		return E1000_SUCCESS;
3112 
3113 	/* Allow time for h/w to get to quiescent state after reset */
3114 	msec_delay(10);
3115 
3116 	/* Perform any necessary post-reset workarounds */
3117 	switch (hw->mac.type) {
3118 	case e1000_pchlan:
3119 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3120 		if (ret_val)
3121 			return ret_val;
3122 		break;
3123 	case e1000_pch2lan:
3124 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3125 		if (ret_val)
3126 			return ret_val;
3127 		break;
3128 	default:
3129 		break;
3130 	}
3131 
3132 	/* Clear the host wakeup bit after lcd reset */
3133 	if (hw->mac.type >= e1000_pchlan) {
3134 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3135 		reg &= ~BM_WUC_HOST_WU_BIT;
3136 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3137 	}
3138 
3139 	/* Configure the LCD with the extended configuration region in NVM */
3140 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3141 	if (ret_val)
3142 		return ret_val;
3143 
3144 	/* Configure the LCD with the OEM bits in NVM */
3145 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3146 
3147 	if (hw->mac.type == e1000_pch2lan) {
3148 		/* Ungate automatic PHY configuration on non-managed 82579 */
3149 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3150 		    E1000_ICH_FWSM_FW_VALID)) {
3151 			msec_delay(10);
3152 			e1000_gate_hw_phy_config_ich8lan(hw, false);
3153 		}
3154 
3155 		/* Set EEE LPI Update Timer to 200usec */
3156 		ret_val = hw->phy.ops.acquire(hw);
3157 		if (ret_val)
3158 			return ret_val;
3159 		ret_val = e1000_write_emi_reg_locked(hw,
3160 						     I82579_LPI_UPDATE_TIMER,
3161 						     0x1387);
3162 		hw->phy.ops.release(hw);
3163 	}
3164 
3165 	return ret_val;
3166 }
3167 
3168 /**
3169  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3170  *  @hw: pointer to the HW structure
3171  *
3172  *  Resets the PHY
3173  *  This is a function pointer entry point called by drivers
3174  *  or other shared routines.
3175  **/
3176 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3177 {
3178 	s32 ret_val = E1000_SUCCESS;
3179 
3180 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3181 
3182 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3183 	if ((hw->mac.type == e1000_pch2lan) &&
3184 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3185 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3186 
3187 	ret_val = e1000_phy_hw_reset_generic(hw);
3188 	if (ret_val)
3189 		return ret_val;
3190 
3191 	return e1000_post_phy_reset_ich8lan(hw);
3192 }
3193 
3194 /**
3195  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3196  *  @hw: pointer to the HW structure
3197  *  @active: true to enable LPLU, false to disable
3198  *
3199  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3200  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3201  *  the phy speed. This function will manually set the LPLU bit and restart
3202  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3203  *  since it configures the same bit.
3204  **/
3205 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3206 {
3207 	s32 ret_val;
3208 	u16 oem_reg;
3209 
3210 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3211 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3212 	if (ret_val)
3213 		return ret_val;
3214 
3215 	if (active)
3216 		oem_reg |= HV_OEM_BITS_LPLU;
3217 	else
3218 		oem_reg &= ~HV_OEM_BITS_LPLU;
3219 
3220 	if (!hw->phy.ops.check_reset_block(hw))
3221 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3222 
3223 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3224 }
3225 
3226 /**
3227  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3228  *  @hw: pointer to the HW structure
3229  *  @active: true to enable LPLU, false to disable
3230  *
3231  *  Sets the LPLU D0 state according to the active flag.  When
3232  *  activating LPLU this function also disables smart speed
3233  *  and vice versa.  LPLU will not be activated unless the
3234  *  device autonegotiation advertisement meets standards of
3235  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3236  *  This is a function pointer entry point only called by
3237  *  PHY setup routines.
3238  **/
3239 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3240 {
3241 	struct e1000_phy_info *phy = &hw->phy;
3242 	u32 phy_ctrl;
3243 	s32 ret_val = E1000_SUCCESS;
3244 	u16 data;
3245 
3246 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3247 
3248 	if (phy->type == e1000_phy_ife)
3249 		return E1000_SUCCESS;
3250 
3251 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3252 
3253 	if (active) {
3254 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3255 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3256 
3257 		if (phy->type != e1000_phy_igp_3)
3258 			return E1000_SUCCESS;
3259 
3260 		/* Call gig speed drop workaround on LPLU before accessing
3261 		 * any PHY registers
3262 		 */
3263 		if (hw->mac.type == e1000_ich8lan)
3264 			e1000_gig_downshift_workaround_ich8lan(hw);
3265 
3266 		/* When LPLU is enabled, we should disable SmartSpeed */
3267 		ret_val = phy->ops.read_reg(hw,
3268 					    IGP01E1000_PHY_PORT_CONFIG,
3269 					    &data);
3270 		if (ret_val)
3271 			return ret_val;
3272 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3273 		ret_val = phy->ops.write_reg(hw,
3274 					     IGP01E1000_PHY_PORT_CONFIG,
3275 					     data);
3276 		if (ret_val)
3277 			return ret_val;
3278 	} else {
3279 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3280 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3281 
3282 		if (phy->type != e1000_phy_igp_3)
3283 			return E1000_SUCCESS;
3284 
3285 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3286 		 * during Dx states where the power conservation is most
3287 		 * important.  During driver activity we should enable
3288 		 * SmartSpeed, so performance is maintained.
3289 		 */
3290 		if (phy->smart_speed == e1000_smart_speed_on) {
3291 			ret_val = phy->ops.read_reg(hw,
3292 						    IGP01E1000_PHY_PORT_CONFIG,
3293 						    &data);
3294 			if (ret_val)
3295 				return ret_val;
3296 
3297 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3298 			ret_val = phy->ops.write_reg(hw,
3299 						     IGP01E1000_PHY_PORT_CONFIG,
3300 						     data);
3301 			if (ret_val)
3302 				return ret_val;
3303 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3304 			ret_val = phy->ops.read_reg(hw,
3305 						    IGP01E1000_PHY_PORT_CONFIG,
3306 						    &data);
3307 			if (ret_val)
3308 				return ret_val;
3309 
3310 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3311 			ret_val = phy->ops.write_reg(hw,
3312 						     IGP01E1000_PHY_PORT_CONFIG,
3313 						     data);
3314 			if (ret_val)
3315 				return ret_val;
3316 		}
3317 	}
3318 
3319 	return E1000_SUCCESS;
3320 }
3321 
3322 /**
3323  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3324  *  @hw: pointer to the HW structure
3325  *  @active: true to enable LPLU, false to disable
3326  *
3327  *  Sets the LPLU D3 state according to the active flag.  When
3328  *  activating LPLU this function also disables smart speed
3329  *  and vice versa.  LPLU will not be activated unless the
3330  *  device autonegotiation advertisement meets standards of
3331  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3332  *  This is a function pointer entry point only called by
3333  *  PHY setup routines.
3334  **/
3335 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3336 {
3337 	struct e1000_phy_info *phy = &hw->phy;
3338 	u32 phy_ctrl;
3339 	s32 ret_val = E1000_SUCCESS;
3340 	u16 data;
3341 
3342 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3343 
3344 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3345 
3346 	if (!active) {
3347 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3348 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3349 
3350 		if (phy->type != e1000_phy_igp_3)
3351 			return E1000_SUCCESS;
3352 
3353 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3354 		 * during Dx states where the power conservation is most
3355 		 * important.  During driver activity we should enable
3356 		 * SmartSpeed, so performance is maintained.
3357 		 */
3358 		if (phy->smart_speed == e1000_smart_speed_on) {
3359 			ret_val = phy->ops.read_reg(hw,
3360 						    IGP01E1000_PHY_PORT_CONFIG,
3361 						    &data);
3362 			if (ret_val)
3363 				return ret_val;
3364 
3365 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3366 			ret_val = phy->ops.write_reg(hw,
3367 						     IGP01E1000_PHY_PORT_CONFIG,
3368 						     data);
3369 			if (ret_val)
3370 				return ret_val;
3371 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3372 			ret_val = phy->ops.read_reg(hw,
3373 						    IGP01E1000_PHY_PORT_CONFIG,
3374 						    &data);
3375 			if (ret_val)
3376 				return ret_val;
3377 
3378 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3379 			ret_val = phy->ops.write_reg(hw,
3380 						     IGP01E1000_PHY_PORT_CONFIG,
3381 						     data);
3382 			if (ret_val)
3383 				return ret_val;
3384 		}
3385 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3386 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3387 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3388 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3389 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3390 
3391 		if (phy->type != e1000_phy_igp_3)
3392 			return E1000_SUCCESS;
3393 
3394 		/* Call gig speed drop workaround on LPLU before accessing
3395 		 * any PHY registers
3396 		 */
3397 		if (hw->mac.type == e1000_ich8lan)
3398 			e1000_gig_downshift_workaround_ich8lan(hw);
3399 
3400 		/* When LPLU is enabled, we should disable SmartSpeed */
3401 		ret_val = phy->ops.read_reg(hw,
3402 					    IGP01E1000_PHY_PORT_CONFIG,
3403 					    &data);
3404 		if (ret_val)
3405 			return ret_val;
3406 
3407 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3408 		ret_val = phy->ops.write_reg(hw,
3409 					     IGP01E1000_PHY_PORT_CONFIG,
3410 					     data);
3411 	}
3412 
3413 	return ret_val;
3414 }
3415 
3416 /**
3417  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3418  *  @hw: pointer to the HW structure
3419  *  @bank:  pointer to the variable that returns the active bank
3420  *
3421  *  Reads signature byte from the NVM using the flash access registers.
3422  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3423  **/
3424 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3425 {
3426 	u32 eecd;
3427 	struct e1000_nvm_info *nvm = &hw->nvm;
3428 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3429 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3430 	u32 nvm_dword = 0;
3431 	u8 sig_byte = 0;
3432 	s32 ret_val;
3433 
3434 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3435 
3436 	switch (hw->mac.type) {
3437 	case e1000_pch_spt:
3438 	case e1000_pch_cnp:
3439 	case e1000_pch_tgp:
3440 	case e1000_pch_adp:
3441 	case e1000_pch_mtp:
3442 	case e1000_pch_ptp:
3443 		bank1_offset = nvm->flash_bank_size;
3444 		act_offset = E1000_ICH_NVM_SIG_WORD;
3445 
3446 		/* set bank to 0 in case flash read fails */
3447 		*bank = 0;
3448 
3449 		/* Check bank 0 */
3450 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3451 							 &nvm_dword);
3452 		if (ret_val)
3453 			return ret_val;
3454 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3455 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3456 		    E1000_ICH_NVM_SIG_VALUE) {
3457 			*bank = 0;
3458 			return E1000_SUCCESS;
3459 		}
3460 
3461 		/* Check bank 1 */
3462 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3463 							 bank1_offset,
3464 							 &nvm_dword);
3465 		if (ret_val)
3466 			return ret_val;
3467 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3468 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3469 		    E1000_ICH_NVM_SIG_VALUE) {
3470 			*bank = 1;
3471 			return E1000_SUCCESS;
3472 		}
3473 
3474 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3475 		return -E1000_ERR_NVM;
3476 	case e1000_ich8lan:
3477 	case e1000_ich9lan:
3478 		eecd = E1000_READ_REG(hw, E1000_EECD);
3479 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3480 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3481 			if (eecd & E1000_EECD_SEC1VAL)
3482 				*bank = 1;
3483 			else
3484 				*bank = 0;
3485 
3486 			return E1000_SUCCESS;
3487 		}
3488 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3489 		/* FALLTHROUGH */
3490 	default:
3491 		/* set bank to 0 in case flash read fails */
3492 		*bank = 0;
3493 
3494 		/* Check bank 0 */
3495 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3496 							&sig_byte);
3497 		if (ret_val)
3498 			return ret_val;
3499 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3500 		    E1000_ICH_NVM_SIG_VALUE) {
3501 			*bank = 0;
3502 			return E1000_SUCCESS;
3503 		}
3504 
3505 		/* Check bank 1 */
3506 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3507 							bank1_offset,
3508 							&sig_byte);
3509 		if (ret_val)
3510 			return ret_val;
3511 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3512 		    E1000_ICH_NVM_SIG_VALUE) {
3513 			*bank = 1;
3514 			return E1000_SUCCESS;
3515 		}
3516 
3517 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3518 		return -E1000_ERR_NVM;
3519 	}
3520 }
3521 
3522 /**
3523  *  e1000_read_nvm_spt - NVM access for SPT
3524  *  @hw: pointer to the HW structure
3525  *  @offset: The offset (in bytes) of the word(s) to read.
3526  *  @words: Size of data to read in words.
3527  *  @data: pointer to the word(s) to read at offset.
3528  *
3529  *  Reads a word(s) from the NVM
3530  **/
3531 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3532 			      u16 *data)
3533 {
3534 	struct e1000_nvm_info *nvm = &hw->nvm;
3535 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3536 	u32 act_offset;
3537 	s32 ret_val = E1000_SUCCESS;
3538 	u32 bank = 0;
3539 	u32 dword = 0;
3540 	u16 offset_to_read;
3541 	u16 i;
3542 
3543 	DEBUGFUNC("e1000_read_nvm_spt");
3544 
3545 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3546 	    (words == 0)) {
3547 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3548 		ret_val = -E1000_ERR_NVM;
3549 		goto out;
3550 	}
3551 
3552 	nvm->ops.acquire(hw);
3553 
3554 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3555 	if (ret_val != E1000_SUCCESS) {
3556 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3557 		bank = 0;
3558 	}
3559 
3560 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3561 	act_offset += offset;
3562 
3563 	ret_val = E1000_SUCCESS;
3564 
3565 	for (i = 0; i < words; i += 2) {
3566 		if (words - i == 1) {
3567 			if (dev_spec->shadow_ram[offset + i].modified) {
3568 				data[i] =
3569 				    dev_spec->shadow_ram[offset + i].value;
3570 			} else {
3571 				offset_to_read = act_offset + i -
3572 						 ((act_offset + i) % 2);
3573 				ret_val =
3574 				   e1000_read_flash_dword_ich8lan(hw,
3575 								 offset_to_read,
3576 								 &dword);
3577 				if (ret_val)
3578 					break;
3579 				if ((act_offset + i) % 2 == 0)
3580 					data[i] = (u16)(dword & 0xFFFF);
3581 				else
3582 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3583 			}
3584 		} else {
3585 			offset_to_read = act_offset + i;
3586 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3587 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3588 				ret_val =
3589 				   e1000_read_flash_dword_ich8lan(hw,
3590 								 offset_to_read,
3591 								 &dword);
3592 				if (ret_val)
3593 					break;
3594 			}
3595 			if (dev_spec->shadow_ram[offset + i].modified)
3596 				data[i] =
3597 				    dev_spec->shadow_ram[offset + i].value;
3598 			else
3599 				data[i] = (u16)(dword & 0xFFFF);
3600 			if (dev_spec->shadow_ram[offset + i + 1].modified)
3601 				data[i + 1] =
3602 				   dev_spec->shadow_ram[offset + i + 1].value;
3603 			else
3604 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3605 		}
3606 	}
3607 
3608 	nvm->ops.release(hw);
3609 
3610 out:
3611 	if (ret_val)
3612 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3613 
3614 	return ret_val;
3615 }
3616 
3617 /**
3618  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3619  *  @hw: pointer to the HW structure
3620  *  @offset: The offset (in bytes) of the word(s) to read.
3621  *  @words: Size of data to read in words
3622  *  @data: Pointer to the word(s) to read at offset.
3623  *
3624  *  Reads a word(s) from the NVM using the flash access registers.
3625  **/
3626 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3627 				  u16 *data)
3628 {
3629 	struct e1000_nvm_info *nvm = &hw->nvm;
3630 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3631 	u32 act_offset;
3632 	s32 ret_val = E1000_SUCCESS;
3633 	u32 bank = 0;
3634 	u16 i, word;
3635 
3636 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3637 
3638 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3639 	    (words == 0)) {
3640 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3641 		ret_val = -E1000_ERR_NVM;
3642 		goto out;
3643 	}
3644 
3645 	nvm->ops.acquire(hw);
3646 
3647 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3648 	if (ret_val != E1000_SUCCESS) {
3649 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3650 		bank = 0;
3651 	}
3652 
3653 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3654 	act_offset += offset;
3655 
3656 	ret_val = E1000_SUCCESS;
3657 	for (i = 0; i < words; i++) {
3658 		if (dev_spec->shadow_ram[offset + i].modified) {
3659 			data[i] = dev_spec->shadow_ram[offset + i].value;
3660 		} else {
3661 			ret_val = e1000_read_flash_word_ich8lan(hw,
3662 								act_offset + i,
3663 								&word);
3664 			if (ret_val)
3665 				break;
3666 			data[i] = word;
3667 		}
3668 	}
3669 
3670 	nvm->ops.release(hw);
3671 
3672 out:
3673 	if (ret_val)
3674 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3675 
3676 	return ret_val;
3677 }
3678 
3679 /**
3680  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3681  *  @hw: pointer to the HW structure
3682  *
3683  *  This function does initial flash setup so that a new read/write/erase cycle
3684  *  can be started.
3685  **/
3686 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3687 {
3688 	union ich8_hws_flash_status hsfsts;
3689 	s32 ret_val = -E1000_ERR_NVM;
3690 
3691 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3692 
3693 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3694 
3695 	/* Check if the flash descriptor is valid */
3696 	if (!hsfsts.hsf_status.fldesvalid) {
3697 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3698 		return -E1000_ERR_NVM;
3699 	}
3700 
3701 	/* Clear FCERR and DAEL in hw status by writing 1 */
3702 	hsfsts.hsf_status.flcerr = 1;
3703 	hsfsts.hsf_status.dael = 1;
3704 	if (hw->mac.type >= e1000_pch_spt)
3705 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3706 				      hsfsts.regval & 0xFFFF);
3707 	else
3708 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3709 
3710 	/* Either we should have a hardware SPI cycle in progress
3711 	 * bit to check against, in order to start a new cycle or
3712 	 * FDONE bit should be changed in the hardware so that it
3713 	 * is 1 after hardware reset, which can then be used as an
3714 	 * indication whether a cycle is in progress or has been
3715 	 * completed.
3716 	 */
3717 
3718 	if (!hsfsts.hsf_status.flcinprog) {
3719 		/* There is no cycle running at present,
3720 		 * so we can start a cycle.
3721 		 * Begin by setting Flash Cycle Done.
3722 		 */
3723 		hsfsts.hsf_status.flcdone = 1;
3724 		if (hw->mac.type >= e1000_pch_spt)
3725 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3726 					      hsfsts.regval & 0xFFFF);
3727 		else
3728 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3729 						hsfsts.regval);
3730 		ret_val = E1000_SUCCESS;
3731 	} else {
3732 		s32 i;
3733 
3734 		/* Otherwise poll for sometime so the current
3735 		 * cycle has a chance to end before giving up.
3736 		 */
3737 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3738 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3739 							      ICH_FLASH_HSFSTS);
3740 			if (!hsfsts.hsf_status.flcinprog) {
3741 				ret_val = E1000_SUCCESS;
3742 				break;
3743 			}
3744 			usec_delay(1);
3745 		}
3746 		if (ret_val == E1000_SUCCESS) {
3747 			/* Successful in waiting for previous cycle to timeout,
3748 			 * now set the Flash Cycle Done.
3749 			 */
3750 			hsfsts.hsf_status.flcdone = 1;
3751 			if (hw->mac.type >= e1000_pch_spt)
3752 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3753 						      hsfsts.regval & 0xFFFF);
3754 			else
3755 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3756 							hsfsts.regval);
3757 		} else {
3758 			DEBUGOUT("Flash controller busy, cannot get access\n");
3759 		}
3760 	}
3761 
3762 	return ret_val;
3763 }
3764 
3765 /**
3766  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3767  *  @hw: pointer to the HW structure
3768  *  @timeout: maximum time to wait for completion
3769  *
3770  *  This function starts a flash cycle and waits for its completion.
3771  **/
3772 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3773 {
3774 	union ich8_hws_flash_ctrl hsflctl;
3775 	union ich8_hws_flash_status hsfsts;
3776 	u32 i = 0;
3777 
3778 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3779 
3780 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3781 	if (hw->mac.type >= e1000_pch_spt)
3782 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3783 	else
3784 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3785 	hsflctl.hsf_ctrl.flcgo = 1;
3786 
3787 	if (hw->mac.type >= e1000_pch_spt)
3788 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3789 				      hsflctl.regval << 16);
3790 	else
3791 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3792 
3793 	/* wait till FDONE bit is set to 1 */
3794 	do {
3795 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3796 		if (hsfsts.hsf_status.flcdone)
3797 			break;
3798 		usec_delay(1);
3799 	} while (i++ < timeout);
3800 
3801 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3802 		return E1000_SUCCESS;
3803 
3804 	return -E1000_ERR_NVM;
3805 }
3806 
3807 /**
3808  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3809  *  @hw: pointer to the HW structure
3810  *  @offset: offset to data location
3811  *  @data: pointer to the location for storing the data
3812  *
3813  *  Reads the flash dword at offset into data.  Offset is converted
3814  *  to bytes before read.
3815  **/
3816 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3817 					  u32 *data)
3818 {
3819 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3820 
3821 	if (!data)
3822 		return -E1000_ERR_NVM;
3823 
3824 	/* Must convert word offset into bytes. */
3825 	offset <<= 1;
3826 
3827 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3828 }
3829 
3830 /**
3831  *  e1000_read_flash_word_ich8lan - Read word from flash
3832  *  @hw: pointer to the HW structure
3833  *  @offset: offset to data location
3834  *  @data: pointer to the location for storing the data
3835  *
3836  *  Reads the flash word at offset into data.  Offset is converted
3837  *  to bytes before read.
3838  **/
3839 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3840 					 u16 *data)
3841 {
3842 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3843 
3844 	if (!data)
3845 		return -E1000_ERR_NVM;
3846 
3847 	/* Must convert offset into bytes. */
3848 	offset <<= 1;
3849 
3850 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3851 }
3852 
3853 /**
3854  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3855  *  @hw: pointer to the HW structure
3856  *  @offset: The offset of the byte to read.
3857  *  @data: Pointer to a byte to store the value read.
3858  *
3859  *  Reads a single byte from the NVM using the flash access registers.
3860  **/
3861 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3862 					 u8 *data)
3863 {
3864 	s32 ret_val;
3865 	u16 word = 0;
3866 
3867 	/* In SPT, only 32 bits access is supported,
3868 	 * so this function should not be called.
3869 	 */
3870 	if (hw->mac.type >= e1000_pch_spt)
3871 		return -E1000_ERR_NVM;
3872 	else
3873 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3874 
3875 	if (ret_val)
3876 		return ret_val;
3877 
3878 	*data = (u8)word;
3879 
3880 	return E1000_SUCCESS;
3881 }
3882 
3883 /**
3884  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3885  *  @hw: pointer to the HW structure
3886  *  @offset: The offset (in bytes) of the byte or word to read.
3887  *  @size: Size of data to read, 1=byte 2=word
3888  *  @data: Pointer to the word to store the value read.
3889  *
3890  *  Reads a byte or word from the NVM using the flash access registers.
3891  **/
3892 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3893 					 u8 size, u16 *data)
3894 {
3895 	union ich8_hws_flash_status hsfsts;
3896 	union ich8_hws_flash_ctrl hsflctl;
3897 	u32 flash_linear_addr;
3898 	u32 flash_data = 0;
3899 	s32 ret_val = -E1000_ERR_NVM;
3900 	u8 count = 0;
3901 
3902 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3903 
3904 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3905 		return -E1000_ERR_NVM;
3906 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3907 			     hw->nvm.flash_base_addr);
3908 
3909 	do {
3910 		usec_delay(1);
3911 		/* Steps */
3912 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3913 		if (ret_val != E1000_SUCCESS)
3914 			break;
3915 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3916 
3917 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3918 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3919 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3920 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3921 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3922 
3923 		ret_val = e1000_flash_cycle_ich8lan(hw,
3924 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3925 
3926 		/* Check if FCERR is set to 1, if set to 1, clear it
3927 		 * and try the whole sequence a few more times, else
3928 		 * read in (shift in) the Flash Data0, the order is
3929 		 * least significant byte first msb to lsb
3930 		 */
3931 		if (ret_val == E1000_SUCCESS) {
3932 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3933 			if (size == 1)
3934 				*data = (u8)(flash_data & 0x000000FF);
3935 			else if (size == 2)
3936 				*data = (u16)(flash_data & 0x0000FFFF);
3937 			break;
3938 		} else {
3939 			/* If we've gotten here, then things are probably
3940 			 * completely hosed, but if the error condition is
3941 			 * detected, it won't hurt to give it another try...
3942 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3943 			 */
3944 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3945 							      ICH_FLASH_HSFSTS);
3946 			if (hsfsts.hsf_status.flcerr) {
3947 				/* Repeat for some time before giving up. */
3948 				continue;
3949 			} else if (!hsfsts.hsf_status.flcdone) {
3950 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3951 				break;
3952 			}
3953 		}
3954 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3955 
3956 	return ret_val;
3957 }
3958 
3959 /**
3960  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3961  *  @hw: pointer to the HW structure
3962  *  @offset: The offset (in bytes) of the dword to read.
3963  *  @data: Pointer to the dword to store the value read.
3964  *
3965  *  Reads a byte or word from the NVM using the flash access registers.
3966  **/
3967 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3968 					   u32 *data)
3969 {
3970 	union ich8_hws_flash_status hsfsts;
3971 	union ich8_hws_flash_ctrl hsflctl;
3972 	u32 flash_linear_addr;
3973 	s32 ret_val = -E1000_ERR_NVM;
3974 	u8 count = 0;
3975 
3976 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3977 
3978 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3979 		    hw->mac.type < e1000_pch_spt)
3980 			return -E1000_ERR_NVM;
3981 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3982 			     hw->nvm.flash_base_addr);
3983 
3984 	do {
3985 		usec_delay(1);
3986 		/* Steps */
3987 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3988 		if (ret_val != E1000_SUCCESS)
3989 			break;
3990 		/* In SPT, This register is in Lan memory space, not flash.
3991 		 * Therefore, only 32 bit access is supported
3992 		 */
3993 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3994 
3995 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3996 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3997 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3998 		/* In SPT, This register is in Lan memory space, not flash.
3999 		 * Therefore, only 32 bit access is supported
4000 		 */
4001 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4002 				      (u32)hsflctl.regval << 16);
4003 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4004 
4005 		ret_val = e1000_flash_cycle_ich8lan(hw,
4006 						ICH_FLASH_READ_COMMAND_TIMEOUT);
4007 
4008 		/* Check if FCERR is set to 1, if set to 1, clear it
4009 		 * and try the whole sequence a few more times, else
4010 		 * read in (shift in) the Flash Data0, the order is
4011 		 * least significant byte first msb to lsb
4012 		 */
4013 		if (ret_val == E1000_SUCCESS) {
4014 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
4015 			break;
4016 		} else {
4017 			/* If we've gotten here, then things are probably
4018 			 * completely hosed, but if the error condition is
4019 			 * detected, it won't hurt to give it another try...
4020 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
4021 			 */
4022 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4023 							      ICH_FLASH_HSFSTS);
4024 			if (hsfsts.hsf_status.flcerr) {
4025 				/* Repeat for some time before giving up. */
4026 				continue;
4027 			} else if (!hsfsts.hsf_status.flcdone) {
4028 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4029 				break;
4030 			}
4031 		}
4032 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4033 
4034 	return ret_val;
4035 }
4036 
4037 /**
4038  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4039  *  @hw: pointer to the HW structure
4040  *  @offset: The offset (in bytes) of the word(s) to write.
4041  *  @words: Size of data to write in words
4042  *  @data: Pointer to the word(s) to write at offset.
4043  *
4044  *  Writes a byte or word to the NVM using the flash access registers.
4045  **/
4046 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4047 				   u16 *data)
4048 {
4049 	struct e1000_nvm_info *nvm = &hw->nvm;
4050 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4051 	u16 i;
4052 
4053 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4054 
4055 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4056 	    (words == 0)) {
4057 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4058 		return -E1000_ERR_NVM;
4059 	}
4060 
4061 	nvm->ops.acquire(hw);
4062 
4063 	for (i = 0; i < words; i++) {
4064 		dev_spec->shadow_ram[offset + i].modified = true;
4065 		dev_spec->shadow_ram[offset + i].value = data[i];
4066 	}
4067 
4068 	nvm->ops.release(hw);
4069 
4070 	return E1000_SUCCESS;
4071 }
4072 
4073 /**
4074  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4075  *  @hw: pointer to the HW structure
4076  *
4077  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4078  *  which writes the checksum to the shadow ram.  The changes in the shadow
4079  *  ram are then committed to the EEPROM by processing each bank at a time
4080  *  checking for the modified bit and writing only the pending changes.
4081  *  After a successful commit, the shadow ram is cleared and is ready for
4082  *  future writes.
4083  **/
4084 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4085 {
4086 	struct e1000_nvm_info *nvm = &hw->nvm;
4087 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4088 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4089 	s32 ret_val;
4090 	u32 dword = 0;
4091 
4092 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4093 
4094 	ret_val = e1000_update_nvm_checksum_generic(hw);
4095 	if (ret_val)
4096 		goto out;
4097 
4098 	if (nvm->type != e1000_nvm_flash_sw)
4099 		goto out;
4100 
4101 	nvm->ops.acquire(hw);
4102 
4103 	/* We're writing to the opposite bank so if we're on bank 1,
4104 	 * write to bank 0 etc.  We also need to erase the segment that
4105 	 * is going to be written
4106 	 */
4107 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4108 	if (ret_val != E1000_SUCCESS) {
4109 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4110 		bank = 0;
4111 	}
4112 
4113 	if (bank == 0) {
4114 		new_bank_offset = nvm->flash_bank_size;
4115 		old_bank_offset = 0;
4116 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4117 		if (ret_val)
4118 			goto release;
4119 	} else {
4120 		old_bank_offset = nvm->flash_bank_size;
4121 		new_bank_offset = 0;
4122 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4123 		if (ret_val)
4124 			goto release;
4125 	}
4126 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4127 		/* Determine whether to write the value stored
4128 		 * in the other NVM bank or a modified value stored
4129 		 * in the shadow RAM
4130 		 */
4131 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4132 							 i + old_bank_offset,
4133 							 &dword);
4134 
4135 		if (dev_spec->shadow_ram[i].modified) {
4136 			dword &= 0xffff0000;
4137 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4138 		}
4139 		if (dev_spec->shadow_ram[i + 1].modified) {
4140 			dword &= 0x0000ffff;
4141 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4142 				  << 16);
4143 		}
4144 		if (ret_val)
4145 			break;
4146 
4147 		/* If the word is 0x13, then make sure the signature bits
4148 		 * (15:14) are 11b until the commit has completed.
4149 		 * This will allow us to write 10b which indicates the
4150 		 * signature is valid.  We want to do this after the write
4151 		 * has completed so that we don't mark the segment valid
4152 		 * while the write is still in progress
4153 		 */
4154 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4155 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4156 
4157 		/* Convert offset to bytes. */
4158 		act_offset = (i + new_bank_offset) << 1;
4159 
4160 		usec_delay(100);
4161 
4162 		/* Write the data to the new bank. Offset in words*/
4163 		act_offset = i + new_bank_offset;
4164 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4165 								dword);
4166 		if (ret_val)
4167 			break;
4168 	 }
4169 
4170 	/* Don't bother writing the segment valid bits if sector
4171 	 * programming failed.
4172 	 */
4173 	if (ret_val) {
4174 		DEBUGOUT("Flash commit failed.\n");
4175 		goto release;
4176 	}
4177 
4178 	/* Finally validate the new segment by setting bit 15:14
4179 	 * to 10b in word 0x13 , this can be done without an
4180 	 * erase as well since these bits are 11 to start with
4181 	 * and we need to change bit 14 to 0b
4182 	 */
4183 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4184 
4185 	/*offset in words but we read dword*/
4186 	--act_offset;
4187 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4188 
4189 	if (ret_val)
4190 		goto release;
4191 
4192 	dword &= 0xBFFFFFFF;
4193 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4194 
4195 	if (ret_val)
4196 		goto release;
4197 
4198 	/* offset in words but we read dword*/
4199 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4200 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4201 
4202 	if (ret_val)
4203 		goto release;
4204 
4205 	dword &= 0x00FFFFFF;
4206 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4207 
4208 	if (ret_val)
4209 		goto release;
4210 
4211 	/* Great!  Everything worked, we can now clear the cached entries. */
4212 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4213 		dev_spec->shadow_ram[i].modified = false;
4214 		dev_spec->shadow_ram[i].value = 0xFFFF;
4215 	}
4216 
4217 release:
4218 	nvm->ops.release(hw);
4219 
4220 	/* Reload the EEPROM, or else modifications will not appear
4221 	 * until after the next adapter reset.
4222 	 */
4223 	if (!ret_val) {
4224 		nvm->ops.reload(hw);
4225 		msec_delay(10);
4226 	}
4227 
4228 out:
4229 	if (ret_val)
4230 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4231 
4232 	return ret_val;
4233 }
4234 
4235 /**
4236  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4237  *  @hw: pointer to the HW structure
4238  *
4239  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4240  *  which writes the checksum to the shadow ram.  The changes in the shadow
4241  *  ram are then committed to the EEPROM by processing each bank at a time
4242  *  checking for the modified bit and writing only the pending changes.
4243  *  After a successful commit, the shadow ram is cleared and is ready for
4244  *  future writes.
4245  **/
4246 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4247 {
4248 	struct e1000_nvm_info *nvm = &hw->nvm;
4249 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4250 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4251 	s32 ret_val;
4252 	u16 data = 0;
4253 
4254 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4255 
4256 	ret_val = e1000_update_nvm_checksum_generic(hw);
4257 	if (ret_val)
4258 		goto out;
4259 
4260 	if (nvm->type != e1000_nvm_flash_sw)
4261 		goto out;
4262 
4263 	nvm->ops.acquire(hw);
4264 
4265 	/* We're writing to the opposite bank so if we're on bank 1,
4266 	 * write to bank 0 etc.  We also need to erase the segment that
4267 	 * is going to be written
4268 	 */
4269 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4270 	if (ret_val != E1000_SUCCESS) {
4271 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4272 		bank = 0;
4273 	}
4274 
4275 	if (bank == 0) {
4276 		new_bank_offset = nvm->flash_bank_size;
4277 		old_bank_offset = 0;
4278 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4279 		if (ret_val)
4280 			goto release;
4281 	} else {
4282 		old_bank_offset = nvm->flash_bank_size;
4283 		new_bank_offset = 0;
4284 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4285 		if (ret_val)
4286 			goto release;
4287 	}
4288 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4289 		if (dev_spec->shadow_ram[i].modified) {
4290 			data = dev_spec->shadow_ram[i].value;
4291 		} else {
4292 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4293 								old_bank_offset,
4294 								&data);
4295 			if (ret_val)
4296 				break;
4297 		}
4298 		/* If the word is 0x13, then make sure the signature bits
4299 		 * (15:14) are 11b until the commit has completed.
4300 		 * This will allow us to write 10b which indicates the
4301 		 * signature is valid.  We want to do this after the write
4302 		 * has completed so that we don't mark the segment valid
4303 		 * while the write is still in progress
4304 		 */
4305 		if (i == E1000_ICH_NVM_SIG_WORD)
4306 			data |= E1000_ICH_NVM_SIG_MASK;
4307 
4308 		/* Convert offset to bytes. */
4309 		act_offset = (i + new_bank_offset) << 1;
4310 
4311 		usec_delay(100);
4312 
4313 		/* Write the bytes to the new bank. */
4314 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4315 							       act_offset,
4316 							       (u8)data);
4317 		if (ret_val)
4318 			break;
4319 
4320 		usec_delay(100);
4321 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4322 							  act_offset + 1,
4323 							  (u8)(data >> 8));
4324 		if (ret_val)
4325 			break;
4326 	}
4327 
4328 	/* Don't bother writing the segment valid bits if sector
4329 	 * programming failed.
4330 	 */
4331 	if (ret_val) {
4332 		DEBUGOUT("Flash commit failed.\n");
4333 		goto release;
4334 	}
4335 
4336 	/* Finally validate the new segment by setting bit 15:14
4337 	 * to 10b in word 0x13 , this can be done without an
4338 	 * erase as well since these bits are 11 to start with
4339 	 * and we need to change bit 14 to 0b
4340 	 */
4341 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4342 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4343 	if (ret_val)
4344 		goto release;
4345 
4346 	data &= 0xBFFF;
4347 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4348 						       (u8)(data >> 8));
4349 	if (ret_val)
4350 		goto release;
4351 
4352 	/* And invalidate the previously valid segment by setting
4353 	 * its signature word (0x13) high_byte to 0b. This can be
4354 	 * done without an erase because flash erase sets all bits
4355 	 * to 1's. We can write 1's to 0's without an erase
4356 	 */
4357 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4358 
4359 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4360 
4361 	if (ret_val)
4362 		goto release;
4363 
4364 	/* Great!  Everything worked, we can now clear the cached entries. */
4365 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4366 		dev_spec->shadow_ram[i].modified = false;
4367 		dev_spec->shadow_ram[i].value = 0xFFFF;
4368 	}
4369 
4370 release:
4371 	nvm->ops.release(hw);
4372 
4373 	/* Reload the EEPROM, or else modifications will not appear
4374 	 * until after the next adapter reset.
4375 	 */
4376 	if (!ret_val) {
4377 		nvm->ops.reload(hw);
4378 		msec_delay(10);
4379 	}
4380 
4381 out:
4382 	if (ret_val)
4383 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4384 
4385 	return ret_val;
4386 }
4387 
4388 /**
4389  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4390  *  @hw: pointer to the HW structure
4391  *
4392  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4393  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4394  *  calculated, in which case we need to calculate the checksum and set bit 6.
4395  **/
4396 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4397 {
4398 	s32 ret_val;
4399 	u16 data;
4400 	u16 word;
4401 	u16 valid_csum_mask;
4402 
4403 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4404 
4405 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4406 	 * the checksum needs to be fixed.  This bit is an indication that
4407 	 * the NVM was prepared by OEM software and did not calculate
4408 	 * the checksum...a likely scenario.
4409 	 */
4410 	switch (hw->mac.type) {
4411 	case e1000_pch_lpt:
4412 	case e1000_pch_spt:
4413 	case e1000_pch_cnp:
4414 	case e1000_pch_tgp:
4415 	case e1000_pch_adp:
4416 	case e1000_pch_mtp:
4417 	case e1000_pch_ptp:
4418 		word = NVM_COMPAT;
4419 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4420 		break;
4421 	default:
4422 		word = NVM_FUTURE_INIT_WORD1;
4423 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4424 		break;
4425 	}
4426 
4427 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4428 	if (ret_val)
4429 		return ret_val;
4430 
4431 	if (!(data & valid_csum_mask)) {
4432 		data |= valid_csum_mask;
4433 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4434 		if (ret_val)
4435 			return ret_val;
4436 		ret_val = hw->nvm.ops.update(hw);
4437 		if (ret_val)
4438 			return ret_val;
4439 	}
4440 
4441 	return e1000_validate_nvm_checksum_generic(hw);
4442 }
4443 
4444 /**
4445  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4446  *  @hw: pointer to the HW structure
4447  *  @offset: The offset (in bytes) of the byte/word to read.
4448  *  @size: Size of data to read, 1=byte 2=word
4449  *  @data: The byte(s) to write to the NVM.
4450  *
4451  *  Writes one/two bytes to the NVM using the flash access registers.
4452  **/
4453 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4454 					  u8 size, u16 data)
4455 {
4456 	union ich8_hws_flash_status hsfsts;
4457 	union ich8_hws_flash_ctrl hsflctl;
4458 	u32 flash_linear_addr;
4459 	u32 flash_data = 0;
4460 	s32 ret_val;
4461 	u8 count = 0;
4462 
4463 	DEBUGFUNC("e1000_write_ich8_data");
4464 
4465 	if (hw->mac.type >= e1000_pch_spt) {
4466 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4467 			return -E1000_ERR_NVM;
4468 	} else {
4469 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4470 			return -E1000_ERR_NVM;
4471 	}
4472 
4473 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4474 			     hw->nvm.flash_base_addr);
4475 
4476 	do {
4477 		usec_delay(1);
4478 		/* Steps */
4479 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4480 		if (ret_val != E1000_SUCCESS)
4481 			break;
4482 		/* In SPT, This register is in Lan memory space, not
4483 		 * flash.  Therefore, only 32 bit access is supported
4484 		 */
4485 		if (hw->mac.type >= e1000_pch_spt)
4486 			hsflctl.regval =
4487 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4488 		else
4489 			hsflctl.regval =
4490 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4491 
4492 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4493 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4494 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4495 		/* In SPT, This register is in Lan memory space,
4496 		 * not flash.  Therefore, only 32 bit access is
4497 		 * supported
4498 		 */
4499 		if (hw->mac.type >= e1000_pch_spt)
4500 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4501 					      hsflctl.regval << 16);
4502 		else
4503 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4504 						hsflctl.regval);
4505 
4506 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4507 
4508 		if (size == 1)
4509 			flash_data = (u32)data & 0x00FF;
4510 		else
4511 			flash_data = (u32)data;
4512 
4513 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4514 
4515 		/* check if FCERR is set to 1 , if set to 1, clear it
4516 		 * and try the whole sequence a few more times else done
4517 		 */
4518 		ret_val =
4519 		    e1000_flash_cycle_ich8lan(hw,
4520 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4521 		if (ret_val == E1000_SUCCESS)
4522 			break;
4523 
4524 		/* If we're here, then things are most likely
4525 		 * completely hosed, but if the error condition
4526 		 * is detected, it won't hurt to give it another
4527 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4528 		 */
4529 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4530 		if (hsfsts.hsf_status.flcerr)
4531 			/* Repeat for some time before giving up. */
4532 			continue;
4533 		if (!hsfsts.hsf_status.flcdone) {
4534 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4535 			break;
4536 		}
4537 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4538 
4539 	return ret_val;
4540 }
4541 
4542 /**
4543 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4544 *  @hw: pointer to the HW structure
4545 *  @offset: The offset (in bytes) of the dwords to read.
4546 *  @data: The 4 bytes to write to the NVM.
4547 *
4548 *  Writes one/two/four bytes to the NVM using the flash access registers.
4549 **/
4550 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4551 					    u32 data)
4552 {
4553 	union ich8_hws_flash_status hsfsts;
4554 	union ich8_hws_flash_ctrl hsflctl;
4555 	u32 flash_linear_addr;
4556 	s32 ret_val;
4557 	u8 count = 0;
4558 
4559 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4560 
4561 	if (hw->mac.type >= e1000_pch_spt) {
4562 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4563 			return -E1000_ERR_NVM;
4564 	}
4565 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4566 			     hw->nvm.flash_base_addr);
4567 	do {
4568 		usec_delay(1);
4569 		/* Steps */
4570 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4571 		if (ret_val != E1000_SUCCESS)
4572 			break;
4573 
4574 		/* In SPT, This register is in Lan memory space, not
4575 		 * flash.  Therefore, only 32 bit access is supported
4576 		 */
4577 		if (hw->mac.type >= e1000_pch_spt)
4578 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4579 							      ICH_FLASH_HSFSTS)
4580 					 >> 16;
4581 		else
4582 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4583 							      ICH_FLASH_HSFCTL);
4584 
4585 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4586 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4587 
4588 		/* In SPT, This register is in Lan memory space,
4589 		 * not flash.  Therefore, only 32 bit access is
4590 		 * supported
4591 		 */
4592 		if (hw->mac.type >= e1000_pch_spt)
4593 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4594 					      hsflctl.regval << 16);
4595 		else
4596 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4597 						hsflctl.regval);
4598 
4599 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4600 
4601 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4602 
4603 		/* check if FCERR is set to 1 , if set to 1, clear it
4604 		 * and try the whole sequence a few more times else done
4605 		 */
4606 		ret_val = e1000_flash_cycle_ich8lan(hw,
4607 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4608 
4609 		if (ret_val == E1000_SUCCESS)
4610 			break;
4611 
4612 		/* If we're here, then things are most likely
4613 		 * completely hosed, but if the error condition
4614 		 * is detected, it won't hurt to give it another
4615 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4616 		 */
4617 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4618 
4619 		if (hsfsts.hsf_status.flcerr)
4620 			/* Repeat for some time before giving up. */
4621 			continue;
4622 		if (!hsfsts.hsf_status.flcdone) {
4623 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4624 			break;
4625 		}
4626 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4627 
4628 	return ret_val;
4629 }
4630 
4631 /**
4632  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4633  *  @hw: pointer to the HW structure
4634  *  @offset: The index of the byte to read.
4635  *  @data: The byte to write to the NVM.
4636  *
4637  *  Writes a single byte to the NVM using the flash access registers.
4638  **/
4639 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4640 					  u8 data)
4641 {
4642 	u16 word = (u16)data;
4643 
4644 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4645 
4646 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4647 }
4648 
4649 /**
4650 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4651 *  @hw: pointer to the HW structure
4652 *  @offset: The offset of the word to write.
4653 *  @dword: The dword to write to the NVM.
4654 *
4655 *  Writes a single dword to the NVM using the flash access registers.
4656 *  Goes through a retry algorithm before giving up.
4657 **/
4658 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4659 						 u32 offset, u32 dword)
4660 {
4661 	s32 ret_val;
4662 	u16 program_retries;
4663 
4664 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4665 
4666 	/* Must convert word offset into bytes. */
4667 	offset <<= 1;
4668 
4669 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4670 
4671 	if (!ret_val)
4672 		return ret_val;
4673 	for (program_retries = 0; program_retries < 100; program_retries++) {
4674 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4675 		usec_delay(100);
4676 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4677 		if (ret_val == E1000_SUCCESS)
4678 			break;
4679 	}
4680 	if (program_retries == 100)
4681 		return -E1000_ERR_NVM;
4682 
4683 	return E1000_SUCCESS;
4684 }
4685 
4686 /**
4687  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4688  *  @hw: pointer to the HW structure
4689  *  @offset: The offset of the byte to write.
4690  *  @byte: The byte to write to the NVM.
4691  *
4692  *  Writes a single byte to the NVM using the flash access registers.
4693  *  Goes through a retry algorithm before giving up.
4694  **/
4695 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4696 						u32 offset, u8 byte)
4697 {
4698 	s32 ret_val;
4699 	u16 program_retries;
4700 
4701 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4702 
4703 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4704 	if (!ret_val)
4705 		return ret_val;
4706 
4707 	for (program_retries = 0; program_retries < 100; program_retries++) {
4708 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4709 		usec_delay(100);
4710 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4711 		if (ret_val == E1000_SUCCESS)
4712 			break;
4713 	}
4714 	if (program_retries == 100)
4715 		return -E1000_ERR_NVM;
4716 
4717 	return E1000_SUCCESS;
4718 }
4719 
4720 /**
4721  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4722  *  @hw: pointer to the HW structure
4723  *  @bank: 0 for first bank, 1 for second bank, etc.
4724  *
4725  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4726  *  bank N is 4096 * N + flash_reg_addr.
4727  **/
4728 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4729 {
4730 	struct e1000_nvm_info *nvm = &hw->nvm;
4731 	union ich8_hws_flash_status hsfsts;
4732 	union ich8_hws_flash_ctrl hsflctl;
4733 	u32 flash_linear_addr;
4734 	/* bank size is in 16bit words - adjust to bytes */
4735 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4736 	s32 ret_val;
4737 	s32 count = 0;
4738 	s32 j, iteration, sector_size;
4739 
4740 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4741 
4742 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4743 
4744 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4745 	 * register
4746 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4747 	 *     consecutive sectors.  The start index for the nth Hw sector
4748 	 *     can be calculated as = bank * 4096 + n * 256
4749 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4750 	 *     The start index for the nth Hw sector can be calculated
4751 	 *     as = bank * 4096
4752 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4753 	 *     (ich9 only, otherwise error condition)
4754 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4755 	 */
4756 	switch (hsfsts.hsf_status.berasesz) {
4757 	case 0:
4758 		/* Hw sector size 256 */
4759 		sector_size = ICH_FLASH_SEG_SIZE_256;
4760 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4761 		break;
4762 	case 1:
4763 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4764 		iteration = 1;
4765 		break;
4766 	case 2:
4767 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4768 		iteration = 1;
4769 		break;
4770 	case 3:
4771 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4772 		iteration = 1;
4773 		break;
4774 	default:
4775 		return -E1000_ERR_NVM;
4776 	}
4777 
4778 	/* Start with the base address, then add the sector offset. */
4779 	flash_linear_addr = hw->nvm.flash_base_addr;
4780 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4781 
4782 	for (j = 0; j < iteration; j++) {
4783 		do {
4784 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4785 
4786 			/* Steps */
4787 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4788 			if (ret_val)
4789 				return ret_val;
4790 
4791 			/* Write a value 11 (block Erase) in Flash
4792 			 * Cycle field in hw flash control
4793 			 */
4794 			if (hw->mac.type >= e1000_pch_spt)
4795 				hsflctl.regval =
4796 				    E1000_READ_FLASH_REG(hw,
4797 							 ICH_FLASH_HSFSTS)>>16;
4798 			else
4799 				hsflctl.regval =
4800 				    E1000_READ_FLASH_REG16(hw,
4801 							   ICH_FLASH_HSFCTL);
4802 
4803 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4804 			if (hw->mac.type >= e1000_pch_spt)
4805 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4806 						      hsflctl.regval << 16);
4807 			else
4808 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4809 							hsflctl.regval);
4810 
4811 			/* Write the last 24 bits of an index within the
4812 			 * block into Flash Linear address field in Flash
4813 			 * Address.
4814 			 */
4815 			flash_linear_addr += (j * sector_size);
4816 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4817 					      flash_linear_addr);
4818 
4819 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4820 			if (ret_val == E1000_SUCCESS)
4821 				break;
4822 
4823 			/* Check if FCERR is set to 1.  If 1,
4824 			 * clear it and try the whole sequence
4825 			 * a few more times else Done
4826 			 */
4827 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4828 						      ICH_FLASH_HSFSTS);
4829 			if (hsfsts.hsf_status.flcerr)
4830 				/* repeat for some time before giving up */
4831 				continue;
4832 			else if (!hsfsts.hsf_status.flcdone)
4833 				return ret_val;
4834 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4835 	}
4836 
4837 	return E1000_SUCCESS;
4838 }
4839 
4840 /**
4841  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4842  *  @hw: pointer to the HW structure
4843  *  @data: Pointer to the LED settings
4844  *
4845  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4846  *  settings is all 0's or F's, set the LED default to a valid LED default
4847  *  setting.
4848  **/
4849 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4850 {
4851 	s32 ret_val;
4852 
4853 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4854 
4855 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4856 	if (ret_val) {
4857 		DEBUGOUT("NVM Read Error\n");
4858 		return ret_val;
4859 	}
4860 
4861 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4862 		*data = ID_LED_DEFAULT_ICH8LAN;
4863 
4864 	return E1000_SUCCESS;
4865 }
4866 
4867 /**
4868  *  e1000_id_led_init_pchlan - store LED configurations
4869  *  @hw: pointer to the HW structure
4870  *
4871  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4872  *  the PHY LED configuration register.
4873  *
4874  *  PCH also does not have an "always on" or "always off" mode which
4875  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4876  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4877  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4878  *  link based on logic in e1000_led_[on|off]_pchlan().
4879  **/
4880 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4881 {
4882 	struct e1000_mac_info *mac = &hw->mac;
4883 	s32 ret_val;
4884 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4885 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4886 	u16 data, i, temp, shift;
4887 
4888 	DEBUGFUNC("e1000_id_led_init_pchlan");
4889 
4890 	/* Get default ID LED modes */
4891 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4892 	if (ret_val)
4893 		return ret_val;
4894 
4895 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4896 	mac->ledctl_mode1 = mac->ledctl_default;
4897 	mac->ledctl_mode2 = mac->ledctl_default;
4898 
4899 	for (i = 0; i < 4; i++) {
4900 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4901 		shift = (i * 5);
4902 		switch (temp) {
4903 		case ID_LED_ON1_DEF2:
4904 		case ID_LED_ON1_ON2:
4905 		case ID_LED_ON1_OFF2:
4906 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4907 			mac->ledctl_mode1 |= (ledctl_on << shift);
4908 			break;
4909 		case ID_LED_OFF1_DEF2:
4910 		case ID_LED_OFF1_ON2:
4911 		case ID_LED_OFF1_OFF2:
4912 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4913 			mac->ledctl_mode1 |= (ledctl_off << shift);
4914 			break;
4915 		default:
4916 			/* Do nothing */
4917 			break;
4918 		}
4919 		switch (temp) {
4920 		case ID_LED_DEF1_ON2:
4921 		case ID_LED_ON1_ON2:
4922 		case ID_LED_OFF1_ON2:
4923 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4924 			mac->ledctl_mode2 |= (ledctl_on << shift);
4925 			break;
4926 		case ID_LED_DEF1_OFF2:
4927 		case ID_LED_ON1_OFF2:
4928 		case ID_LED_OFF1_OFF2:
4929 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4930 			mac->ledctl_mode2 |= (ledctl_off << shift);
4931 			break;
4932 		default:
4933 			/* Do nothing */
4934 			break;
4935 		}
4936 	}
4937 
4938 	return E1000_SUCCESS;
4939 }
4940 
4941 /**
4942  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4943  *  @hw: pointer to the HW structure
4944  *
4945  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4946  *  register, so the bus width is hard coded.
4947  **/
4948 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4949 {
4950 	struct e1000_bus_info *bus = &hw->bus;
4951 	s32 ret_val;
4952 
4953 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4954 
4955 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4956 
4957 	/* ICH devices are "PCI Express"-ish.  They have
4958 	 * a configuration space, but do not contain
4959 	 * PCI Express Capability registers, so bus width
4960 	 * must be hardcoded.
4961 	 */
4962 	if (bus->width == e1000_bus_width_unknown)
4963 		bus->width = e1000_bus_width_pcie_x1;
4964 
4965 	return ret_val;
4966 }
4967 
4968 /**
4969  *  e1000_reset_hw_ich8lan - Reset the hardware
4970  *  @hw: pointer to the HW structure
4971  *
4972  *  Does a full reset of the hardware which includes a reset of the PHY and
4973  *  MAC.
4974  **/
4975 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4976 {
4977 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4978 	u16 kum_cfg;
4979 	u32 ctrl, reg;
4980 	s32 ret_val;
4981 	u16 pci_cfg;
4982 
4983 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4984 
4985 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4986 	 * on the last TLP read/write transaction when MAC is reset.
4987 	 */
4988 	ret_val = e1000_disable_pcie_master_generic(hw);
4989 	if (ret_val)
4990 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4991 
4992 	DEBUGOUT("Masking off all interrupts\n");
4993 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4994 
4995 	/* Disable the Transmit and Receive units.  Then delay to allow
4996 	 * any pending transactions to complete before we hit the MAC
4997 	 * with the global reset.
4998 	 */
4999 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
5000 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
5001 	E1000_WRITE_FLUSH(hw);
5002 
5003 	msec_delay(10);
5004 
5005 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
5006 	if (hw->mac.type == e1000_ich8lan) {
5007 		/* Set Tx and Rx buffer allocation to 8k apiece. */
5008 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
5009 		/* Set Packet Buffer Size to 16k. */
5010 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
5011 	}
5012 
5013 	if (hw->mac.type == e1000_pchlan) {
5014 		/* Save the NVM K1 bit setting*/
5015 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
5016 		if (ret_val)
5017 			return ret_val;
5018 
5019 		if (kum_cfg & E1000_NVM_K1_ENABLE)
5020 			dev_spec->nvm_k1_enabled = true;
5021 		else
5022 			dev_spec->nvm_k1_enabled = false;
5023 	}
5024 
5025 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5026 
5027 	if (!hw->phy.ops.check_reset_block(hw)) {
5028 		/* Full-chip reset requires MAC and PHY reset at the same
5029 		 * time to make sure the interface between MAC and the
5030 		 * external PHY is reset.
5031 		 */
5032 		ctrl |= E1000_CTRL_PHY_RST;
5033 
5034 		/* Gate automatic PHY configuration by hardware on
5035 		 * non-managed 82579
5036 		 */
5037 		if ((hw->mac.type == e1000_pch2lan) &&
5038 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5039 			e1000_gate_hw_phy_config_ich8lan(hw, true);
5040 	}
5041 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5042 
5043 	/* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function
5044 	 * may occur during global reset and cause system hang.
5045 	 * Configuration space access creates the needed delay.
5046 	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value
5047 	 * insures configuration space read is done before global reset.
5048 	 */
5049 	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5050 	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5051 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5052 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5053 	/* cannot issue a flush here because it hangs the hardware */
5054 	msec_delay(20);
5055 
5056 	/* Configuration space access improve HW level time sync mechanism.
5057 	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER
5058 	 * value to insure configuration space read is done
5059 	 * before any access to mac register.
5060 	 */
5061 	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5062 	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5063 
5064 	/* Set Phy Config Counter to 50msec */
5065 	if (hw->mac.type == e1000_pch2lan) {
5066 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5067 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5068 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5069 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5070 	}
5071 
5072 
5073 	if (ctrl & E1000_CTRL_PHY_RST) {
5074 		ret_val = hw->phy.ops.get_cfg_done(hw);
5075 		if (ret_val)
5076 			return ret_val;
5077 
5078 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5079 		if (ret_val)
5080 			return ret_val;
5081 	}
5082 
5083 	/* For PCH, this write will make sure that any noise
5084 	 * will be detected as a CRC error and be dropped rather than show up
5085 	 * as a bad packet to the DMA engine.
5086 	 */
5087 	if (hw->mac.type == e1000_pchlan)
5088 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5089 
5090 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5091 	E1000_READ_REG(hw, E1000_ICR);
5092 
5093 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5094 	reg |= E1000_KABGTXD_BGSQLBIAS;
5095 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5096 
5097 	return E1000_SUCCESS;
5098 }
5099 
5100 /**
5101  *  e1000_init_hw_ich8lan - Initialize the hardware
5102  *  @hw: pointer to the HW structure
5103  *
5104  *  Prepares the hardware for transmit and receive by doing the following:
5105  *   - initialize hardware bits
5106  *   - initialize LED identification
5107  *   - setup receive address registers
5108  *   - setup flow control
5109  *   - setup transmit descriptors
5110  *   - clear statistics
5111  **/
5112 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5113 {
5114 	struct e1000_mac_info *mac = &hw->mac;
5115 	u32 ctrl_ext, txdctl, snoop;
5116 	s32 ret_val;
5117 	u16 i;
5118 
5119 	DEBUGFUNC("e1000_init_hw_ich8lan");
5120 
5121 	e1000_initialize_hw_bits_ich8lan(hw);
5122 
5123 	/* Initialize identification LED */
5124 	ret_val = mac->ops.id_led_init(hw);
5125 	/* An error is not fatal and we should not stop init due to this */
5126 	if (ret_val)
5127 		DEBUGOUT("Error initializing identification LED\n");
5128 
5129 	/* Setup the receive address. */
5130 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5131 
5132 	/* Zero out the Multicast HASH table */
5133 	DEBUGOUT("Zeroing the MTA\n");
5134 	for (i = 0; i < mac->mta_reg_count; i++)
5135 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5136 
5137 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5138 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5139 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5140 	 */
5141 	if (hw->phy.type == e1000_phy_82578) {
5142 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5143 		i &= ~BM_WUC_HOST_WU_BIT;
5144 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5145 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5146 		if (ret_val)
5147 			return ret_val;
5148 	}
5149 
5150 	/* Setup link and flow control */
5151 	ret_val = mac->ops.setup_link(hw);
5152 
5153 	/* Set the transmit descriptor write-back policy for both queues */
5154 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5155 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5156 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5157 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5158 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5159 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5160 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5161 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5162 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5163 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5164 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5165 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5166 
5167 	/* ICH8 has opposite polarity of no_snoop bits.
5168 	 * By default, we should use snoop behavior.
5169 	 */
5170 	if (mac->type == e1000_ich8lan)
5171 		snoop = PCIE_ICH8_SNOOP_ALL;
5172 	else
5173 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5174 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5175 
5176 	/* ungate DMA clock to avoid packet loss */
5177 	if (mac->type >= e1000_pch_tgp) {
5178 		uint32_t fflt_dbg = E1000_READ_REG(hw, E1000_FFLT_DBG);
5179 		fflt_dbg |= (1 << 12);
5180 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, fflt_dbg);
5181 	}
5182 
5183 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5184 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5185 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5186 
5187 	/* Clear all of the statistics registers (clear on read).  It is
5188 	 * important that we do this after we have tried to establish link
5189 	 * because the symbol error count will increment wildly if there
5190 	 * is no link.
5191 	 */
5192 	e1000_clear_hw_cntrs_ich8lan(hw);
5193 
5194 	return ret_val;
5195 }
5196 
5197 /**
5198  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5199  *  @hw: pointer to the HW structure
5200  *
5201  *  Sets/Clears required hardware bits necessary for correctly setting up the
5202  *  hardware for transmit and receive.
5203  **/
5204 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5205 {
5206 	u32 reg;
5207 
5208 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5209 
5210 	/* Extended Device Control */
5211 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5212 	reg |= (1 << 22);
5213 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5214 	if (hw->mac.type >= e1000_pchlan)
5215 		reg |= E1000_CTRL_EXT_PHYPDEN;
5216 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5217 
5218 	/* Transmit Descriptor Control 0 */
5219 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5220 	reg |= (1 << 22);
5221 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5222 
5223 	/* Transmit Descriptor Control 1 */
5224 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5225 	reg |= (1 << 22);
5226 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5227 
5228 	/* Transmit Arbitration Control 0 */
5229 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5230 	if (hw->mac.type == e1000_ich8lan)
5231 		reg |= (1 << 28) | (1 << 29);
5232 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5233 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5234 
5235 	/* Transmit Arbitration Control 1 */
5236 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5237 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5238 		reg &= ~(1 << 28);
5239 	else
5240 		reg |= (1 << 28);
5241 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5242 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5243 
5244 	/* Device Status */
5245 	if (hw->mac.type == e1000_ich8lan) {
5246 		reg = E1000_READ_REG(hw, E1000_STATUS);
5247 		reg &= ~(1U << 31);
5248 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5249 	}
5250 
5251 	/* work-around descriptor data corruption issue during nfs v2 udp
5252 	 * traffic, just disable the nfs filtering capability
5253 	 */
5254 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5255 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5256 
5257 	/* Disable IPv6 extension header parsing because some malformed
5258 	 * IPv6 headers can hang the Rx.
5259 	 */
5260 	if (hw->mac.type == e1000_ich8lan)
5261 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5262 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5263 
5264 	/* Enable ECC on Lynxpoint */
5265 	if (hw->mac.type >= e1000_pch_lpt) {
5266 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5267 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5268 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5269 
5270 		reg = E1000_READ_REG(hw, E1000_CTRL);
5271 		reg |= E1000_CTRL_MEHE;
5272 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5273 	}
5274 
5275 	return;
5276 }
5277 
5278 /**
5279  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5280  *  @hw: pointer to the HW structure
5281  *
5282  *  Determines which flow control settings to use, then configures flow
5283  *  control.  Calls the appropriate media-specific link configuration
5284  *  function.  Assuming the adapter has a valid link partner, a valid link
5285  *  should be established.  Assumes the hardware has previously been reset
5286  *  and the transmitter and receiver are not enabled.
5287  **/
5288 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5289 {
5290 	s32 ret_val;
5291 
5292 	DEBUGFUNC("e1000_setup_link_ich8lan");
5293 
5294 	/* ICH parts do not have a word in the NVM to determine
5295 	 * the default flow control setting, so we explicitly
5296 	 * set it to full.
5297 	 */
5298 	if (hw->fc.requested_mode == e1000_fc_default)
5299 		hw->fc.requested_mode = e1000_fc_full;
5300 
5301 	/* Save off the requested flow control mode for use later.  Depending
5302 	 * on the link partner's capabilities, we may or may not use this mode.
5303 	 */
5304 	hw->fc.current_mode = hw->fc.requested_mode;
5305 
5306 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5307 		hw->fc.current_mode);
5308 
5309 	if (!hw->phy.ops.check_reset_block(hw)) {
5310 		/* Continue to configure the copper link. */
5311 		ret_val = hw->mac.ops.setup_physical_interface(hw);
5312 		if (ret_val)
5313 			return ret_val;
5314 	}
5315 
5316 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5317 	if ((hw->phy.type == e1000_phy_82578) ||
5318 	    (hw->phy.type == e1000_phy_82579) ||
5319 	    (hw->phy.type == e1000_phy_i217) ||
5320 	    (hw->phy.type == e1000_phy_82577)) {
5321 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5322 
5323 		ret_val = hw->phy.ops.write_reg(hw,
5324 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5325 					     hw->fc.pause_time);
5326 		if (ret_val)
5327 			return ret_val;
5328 	}
5329 
5330 	return e1000_set_fc_watermarks_generic(hw);
5331 }
5332 
5333 /**
5334  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5335  *  @hw: pointer to the HW structure
5336  *
5337  *  Configures the kumeran interface to the PHY to wait the appropriate time
5338  *  when polling the PHY, then call the generic setup_copper_link to finish
5339  *  configuring the copper link.
5340  **/
5341 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5342 {
5343 	u32 ctrl;
5344 	s32 ret_val;
5345 	u16 reg_data;
5346 
5347 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5348 
5349 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5350 	ctrl |= E1000_CTRL_SLU;
5351 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5352 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5353 
5354 	/* Set the mac to wait the maximum time between each iteration
5355 	 * and increase the max iterations when polling the phy;
5356 	 * this fixes erroneous timeouts at 10Mbps.
5357 	 */
5358 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5359 					       0xFFFF);
5360 	if (ret_val)
5361 		return ret_val;
5362 	ret_val = e1000_read_kmrn_reg_generic(hw,
5363 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5364 					      &reg_data);
5365 	if (ret_val)
5366 		return ret_val;
5367 	reg_data |= 0x3F;
5368 	ret_val = e1000_write_kmrn_reg_generic(hw,
5369 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5370 					       reg_data);
5371 	if (ret_val)
5372 		return ret_val;
5373 
5374 	switch (hw->phy.type) {
5375 	case e1000_phy_igp_3:
5376 		ret_val = e1000_copper_link_setup_igp(hw);
5377 		if (ret_val)
5378 			return ret_val;
5379 		break;
5380 	case e1000_phy_bm:
5381 	case e1000_phy_82578:
5382 		ret_val = e1000_copper_link_setup_m88(hw);
5383 		if (ret_val)
5384 			return ret_val;
5385 		break;
5386 	case e1000_phy_82577:
5387 	case e1000_phy_82579:
5388 		ret_val = e1000_copper_link_setup_82577(hw);
5389 		if (ret_val)
5390 			return ret_val;
5391 		break;
5392 	case e1000_phy_ife:
5393 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5394 					       &reg_data);
5395 		if (ret_val)
5396 			return ret_val;
5397 
5398 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5399 
5400 		switch (hw->phy.mdix) {
5401 		case 1:
5402 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5403 			break;
5404 		case 2:
5405 			reg_data |= IFE_PMC_FORCE_MDIX;
5406 			break;
5407 		case 0:
5408 		default:
5409 			reg_data |= IFE_PMC_AUTO_MDIX;
5410 			break;
5411 		}
5412 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5413 						reg_data);
5414 		if (ret_val)
5415 			return ret_val;
5416 		break;
5417 	default:
5418 		break;
5419 	}
5420 
5421 	return e1000_setup_copper_link_generic(hw);
5422 }
5423 
5424 /**
5425  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5426  *  @hw: pointer to the HW structure
5427  *
5428  *  Calls the PHY specific link setup function and then calls the
5429  *  generic setup_copper_link to finish configuring the link for
5430  *  Lynxpoint PCH devices
5431  **/
5432 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5433 {
5434 	u32 ctrl;
5435 	s32 ret_val;
5436 
5437 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5438 
5439 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5440 	ctrl |= E1000_CTRL_SLU;
5441 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5442 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5443 
5444 	ret_val = e1000_copper_link_setup_82577(hw);
5445 	if (ret_val)
5446 		return ret_val;
5447 
5448 	return e1000_setup_copper_link_generic(hw);
5449 }
5450 
5451 /**
5452  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5453  *  @hw: pointer to the HW structure
5454  *  @speed: pointer to store current link speed
5455  *  @duplex: pointer to store the current link duplex
5456  *
5457  *  Calls the generic get_speed_and_duplex to retrieve the current link
5458  *  information and then calls the Kumeran lock loss workaround for links at
5459  *  gigabit speeds.
5460  **/
5461 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5462 					  u16 *duplex)
5463 {
5464 	s32 ret_val;
5465 
5466 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5467 
5468 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5469 	if (ret_val)
5470 		return ret_val;
5471 
5472 	if ((hw->mac.type == e1000_ich8lan) &&
5473 	    (hw->phy.type == e1000_phy_igp_3) &&
5474 	    (*speed == SPEED_1000)) {
5475 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5476 	}
5477 
5478 	return ret_val;
5479 }
5480 
5481 /**
5482  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5483  *  @hw: pointer to the HW structure
5484  *
5485  *  Work-around for 82566 Kumeran PCS lock loss:
5486  *  On link status change (i.e. PCI reset, speed change) and link is up and
5487  *  speed is gigabit-
5488  *    0) if workaround is optionally disabled do nothing
5489  *    1) wait 1ms for Kumeran link to come up
5490  *    2) check Kumeran Diagnostic register PCS lock loss bit
5491  *    3) if not set the link is locked (all is good), otherwise...
5492  *    4) reset the PHY
5493  *    5) repeat up to 10 times
5494  *  Note: this is only called for IGP3 copper when speed is 1gb.
5495  **/
5496 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5497 {
5498 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5499 	u32 phy_ctrl;
5500 	s32 ret_val;
5501 	u16 i, data;
5502 	bool link;
5503 
5504 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5505 
5506 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5507 		return E1000_SUCCESS;
5508 
5509 	/* Make sure link is up before proceeding.  If not just return.
5510 	 * Attempting this while link is negotiating fouled up link
5511 	 * stability
5512 	 */
5513 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5514 	if (!link)
5515 		return E1000_SUCCESS;
5516 
5517 	for (i = 0; i < 10; i++) {
5518 		/* read once to clear */
5519 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5520 		if (ret_val)
5521 			return ret_val;
5522 		/* and again to get new status */
5523 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5524 		if (ret_val)
5525 			return ret_val;
5526 
5527 		/* check for PCS lock */
5528 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5529 			return E1000_SUCCESS;
5530 
5531 		/* Issue PHY reset */
5532 		hw->phy.ops.reset(hw);
5533 		msec_delay_irq(5);
5534 	}
5535 	/* Disable GigE link negotiation */
5536 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5537 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5538 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5539 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5540 
5541 	/* Call gig speed drop workaround on Gig disable before accessing
5542 	 * any PHY registers
5543 	 */
5544 	e1000_gig_downshift_workaround_ich8lan(hw);
5545 
5546 	/* unable to acquire PCS lock */
5547 	return -E1000_ERR_PHY;
5548 }
5549 
5550 /**
5551  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5552  *  @hw: pointer to the HW structure
5553  *  @state: boolean value used to set the current Kumeran workaround state
5554  *
5555  *  If ICH8, set the current Kumeran workaround state (enabled - true
5556  *  /disabled - false).
5557  **/
5558 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5559 						 bool state)
5560 {
5561 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5562 
5563 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5564 
5565 	if (hw->mac.type != e1000_ich8lan) {
5566 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5567 		return;
5568 	}
5569 
5570 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5571 
5572 	return;
5573 }
5574 
5575 /**
5576  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5577  *  @hw: pointer to the HW structure
5578  *
5579  *  Workaround for 82566 power-down on D3 entry:
5580  *    1) disable gigabit link
5581  *    2) write VR power-down enable
5582  *    3) read it back
5583  *  Continue if successful, else issue LCD reset and repeat
5584  **/
5585 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5586 {
5587 	u32 reg;
5588 	u16 data;
5589 	u8  retry = 0;
5590 
5591 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5592 
5593 	if (hw->phy.type != e1000_phy_igp_3)
5594 		return;
5595 
5596 	/* Try the workaround twice (if needed) */
5597 	do {
5598 		/* Disable link */
5599 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5600 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5601 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5602 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5603 
5604 		/* Call gig speed drop workaround on Gig disable before
5605 		 * accessing any PHY registers
5606 		 */
5607 		if (hw->mac.type == e1000_ich8lan)
5608 			e1000_gig_downshift_workaround_ich8lan(hw);
5609 
5610 		/* Write VR power-down enable */
5611 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5612 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5613 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5614 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5615 
5616 		/* Read it back and test */
5617 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5618 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5619 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5620 			break;
5621 
5622 		/* Issue PHY reset and repeat at most one more time */
5623 		reg = E1000_READ_REG(hw, E1000_CTRL);
5624 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5625 		retry++;
5626 	} while (retry);
5627 }
5628 
5629 /**
5630  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5631  *  @hw: pointer to the HW structure
5632  *
5633  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5634  *  LPLU, Gig disable, MDIC PHY reset):
5635  *    1) Set Kumeran Near-end loopback
5636  *    2) Clear Kumeran Near-end loopback
5637  *  Should only be called for ICH8[m] devices with any 1G Phy.
5638  **/
5639 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5640 {
5641 	s32 ret_val;
5642 	u16 reg_data = 0;
5643 
5644 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5645 
5646 	if ((hw->mac.type != e1000_ich8lan) ||
5647 	    (hw->phy.type == e1000_phy_ife))
5648 		return;
5649 
5650 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5651 					      &reg_data);
5652 	if (ret_val)
5653 		return;
5654 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5655 	ret_val = e1000_write_kmrn_reg_generic(hw,
5656 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5657 					       reg_data);
5658 	if (ret_val)
5659 		return;
5660 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5661 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5662 				     reg_data);
5663 }
5664 
5665 /**
5666  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5667  *  @hw: pointer to the HW structure
5668  *
5669  *  During S0 to Sx transition, it is possible the link remains at gig
5670  *  instead of negotiating to a lower speed.  Before going to Sx, set
5671  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5672  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5673  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5674  *  needs to be written.
5675  *  Parts that support (and are linked to a partner which support) EEE in
5676  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5677  *  than 10Mbps w/o EEE.
5678  **/
5679 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5680 {
5681 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5682 	u32 phy_ctrl;
5683 	s32 ret_val;
5684 
5685 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5686 
5687 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5688 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5689 
5690 	if (hw->phy.type == e1000_phy_i217) {
5691 		u16 phy_reg, device_id = hw->device_id;
5692 
5693 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5694 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5695 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5696 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5697 		    (hw->mac.type >= e1000_pch_spt)) {
5698 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5699 
5700 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5701 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5702 		}
5703 
5704 		ret_val = hw->phy.ops.acquire(hw);
5705 		if (ret_val)
5706 			goto out;
5707 
5708 		if (!dev_spec->eee_disable) {
5709 			u16 eee_advert;
5710 
5711 			ret_val =
5712 			    e1000_read_emi_reg_locked(hw,
5713 						      I217_EEE_ADVERTISEMENT,
5714 						      &eee_advert);
5715 			if (ret_val)
5716 				goto release;
5717 
5718 			/* Disable LPLU if both link partners support 100BaseT
5719 			 * EEE and 100Full is advertised on both ends of the
5720 			 * link, and enable Auto Enable LPI since there will
5721 			 * be no driver to enable LPI while in Sx.
5722 			 */
5723 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5724 			    (dev_spec->eee_lp_ability &
5725 			     I82579_EEE_100_SUPPORTED) &&
5726 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5727 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5728 					      E1000_PHY_CTRL_NOND0A_LPLU);
5729 
5730 				/* Set Auto Enable LPI after link up */
5731 				hw->phy.ops.read_reg_locked(hw,
5732 							    I217_LPI_GPIO_CTRL,
5733 							    &phy_reg);
5734 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5735 				hw->phy.ops.write_reg_locked(hw,
5736 							     I217_LPI_GPIO_CTRL,
5737 							     phy_reg);
5738 			}
5739 		}
5740 
5741 		/* For i217 Intel Rapid Start Technology support,
5742 		 * when the system is going into Sx and no manageability engine
5743 		 * is present, the driver must configure proxy to reset only on
5744 		 * power good.  LPI (Low Power Idle) state must also reset only
5745 		 * on power good, as well as the MTA (Multicast table array).
5746 		 * The SMBus release must also be disabled on LCD reset.
5747 		 */
5748 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5749 		      E1000_ICH_FWSM_FW_VALID)) {
5750 			/* Enable proxy to reset only on power good. */
5751 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5752 						    &phy_reg);
5753 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5754 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5755 						     phy_reg);
5756 
5757 			/* Set bit enable LPI (EEE) to reset only on
5758 			 * power good.
5759 			*/
5760 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5761 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5762 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5763 
5764 			/* Disable the SMB release on LCD reset. */
5765 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5766 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5767 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5768 		}
5769 
5770 		/* Enable MTA to reset for Intel Rapid Start Technology
5771 		 * Support
5772 		 */
5773 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5774 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5775 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5776 
5777 release:
5778 		hw->phy.ops.release(hw);
5779 	}
5780 out:
5781 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5782 
5783 	if (hw->mac.type == e1000_ich8lan)
5784 		e1000_gig_downshift_workaround_ich8lan(hw);
5785 
5786 	if (hw->mac.type >= e1000_pchlan) {
5787 		e1000_oem_bits_config_ich8lan(hw, false);
5788 
5789 		/* Reset PHY to activate OEM bits on 82577/8 */
5790 		if (hw->mac.type == e1000_pchlan)
5791 			e1000_phy_hw_reset_generic(hw);
5792 
5793 		ret_val = hw->phy.ops.acquire(hw);
5794 		if (ret_val)
5795 			return;
5796 		e1000_write_smbus_addr(hw);
5797 		hw->phy.ops.release(hw);
5798 	}
5799 
5800 	return;
5801 }
5802 
5803 /**
5804  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5805  *  @hw: pointer to the HW structure
5806  *
5807  *  During Sx to S0 transitions on non-managed devices or managed devices
5808  *  on which PHY resets are not blocked, if the PHY registers cannot be
5809  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5810  *  the PHY.
5811  *  On i217, setup Intel Rapid Start Technology.
5812  **/
5813 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5814 {
5815 	s32 ret_val;
5816 
5817 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5818 	if (hw->mac.type < e1000_pch2lan)
5819 		return E1000_SUCCESS;
5820 
5821 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5822 	if (ret_val) {
5823 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5824 		return ret_val;
5825 	}
5826 
5827 	/* For i217 Intel Rapid Start Technology support when the system
5828 	 * is transitioning from Sx and no manageability engine is present
5829 	 * configure SMBus to restore on reset, disable proxy, and enable
5830 	 * the reset on MTA (Multicast table array).
5831 	 */
5832 	if (hw->phy.type == e1000_phy_i217) {
5833 		u16 phy_reg;
5834 
5835 		ret_val = hw->phy.ops.acquire(hw);
5836 		if (ret_val) {
5837 			DEBUGOUT("Failed to setup iRST\n");
5838 			return ret_val;
5839 		}
5840 
5841 		/* Clear Auto Enable LPI after link up */
5842 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5843 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5844 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5845 
5846 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5847 		    E1000_ICH_FWSM_FW_VALID)) {
5848 			/* Restore clear on SMB if no manageability engine
5849 			 * is present
5850 			 */
5851 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5852 							      &phy_reg);
5853 			if (ret_val)
5854 				goto release;
5855 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5856 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5857 
5858 			/* Disable Proxy */
5859 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5860 		}
5861 		/* Enable reset on MTA */
5862 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5863 						      &phy_reg);
5864 		if (ret_val)
5865 			goto release;
5866 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5867 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5868 release:
5869 		if (ret_val)
5870 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5871 		hw->phy.ops.release(hw);
5872 		return ret_val;
5873 	}
5874 	return E1000_SUCCESS;
5875 }
5876 
5877 /**
5878  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5879  *  @hw: pointer to the HW structure
5880  *
5881  *  Return the LED back to the default configuration.
5882  **/
5883 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5884 {
5885 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5886 
5887 	if (hw->phy.type == e1000_phy_ife)
5888 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5889 					     0);
5890 
5891 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5892 	return E1000_SUCCESS;
5893 }
5894 
5895 /**
5896  *  e1000_led_on_ich8lan - Turn LEDs on
5897  *  @hw: pointer to the HW structure
5898  *
5899  *  Turn on the LEDs.
5900  **/
5901 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5902 {
5903 	DEBUGFUNC("e1000_led_on_ich8lan");
5904 
5905 	if (hw->phy.type == e1000_phy_ife)
5906 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5907 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5908 
5909 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5910 	return E1000_SUCCESS;
5911 }
5912 
5913 /**
5914  *  e1000_led_off_ich8lan - Turn LEDs off
5915  *  @hw: pointer to the HW structure
5916  *
5917  *  Turn off the LEDs.
5918  **/
5919 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5920 {
5921 	DEBUGFUNC("e1000_led_off_ich8lan");
5922 
5923 	if (hw->phy.type == e1000_phy_ife)
5924 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5925 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5926 
5927 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5928 	return E1000_SUCCESS;
5929 }
5930 
5931 /**
5932  *  e1000_setup_led_pchlan - Configures SW controllable LED
5933  *  @hw: pointer to the HW structure
5934  *
5935  *  This prepares the SW controllable LED for use.
5936  **/
5937 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5938 {
5939 	DEBUGFUNC("e1000_setup_led_pchlan");
5940 
5941 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5942 				     (u16)hw->mac.ledctl_mode1);
5943 }
5944 
5945 /**
5946  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5947  *  @hw: pointer to the HW structure
5948  *
5949  *  Return the LED back to the default configuration.
5950  **/
5951 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5952 {
5953 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5954 
5955 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5956 				     (u16)hw->mac.ledctl_default);
5957 }
5958 
5959 /**
5960  *  e1000_led_on_pchlan - Turn LEDs on
5961  *  @hw: pointer to the HW structure
5962  *
5963  *  Turn on the LEDs.
5964  **/
5965 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5966 {
5967 	u16 data = (u16)hw->mac.ledctl_mode2;
5968 	u32 i, led;
5969 
5970 	DEBUGFUNC("e1000_led_on_pchlan");
5971 
5972 	/* If no link, then turn LED on by setting the invert bit
5973 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5974 	 */
5975 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5976 		for (i = 0; i < 3; i++) {
5977 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5978 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5979 			    E1000_LEDCTL_MODE_LINK_UP)
5980 				continue;
5981 			if (led & E1000_PHY_LED0_IVRT)
5982 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5983 			else
5984 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5985 		}
5986 	}
5987 
5988 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5989 }
5990 
5991 /**
5992  *  e1000_led_off_pchlan - Turn LEDs off
5993  *  @hw: pointer to the HW structure
5994  *
5995  *  Turn off the LEDs.
5996  **/
5997 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5998 {
5999 	u16 data = (u16)hw->mac.ledctl_mode1;
6000 	u32 i, led;
6001 
6002 	DEBUGFUNC("e1000_led_off_pchlan");
6003 
6004 	/* If no link, then turn LED off by clearing the invert bit
6005 	 * for each LED that's mode is "link_up" in ledctl_mode1.
6006 	 */
6007 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
6008 		for (i = 0; i < 3; i++) {
6009 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
6010 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
6011 			    E1000_LEDCTL_MODE_LINK_UP)
6012 				continue;
6013 			if (led & E1000_PHY_LED0_IVRT)
6014 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
6015 			else
6016 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
6017 		}
6018 	}
6019 
6020 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
6021 }
6022 
6023 /**
6024  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
6025  *  @hw: pointer to the HW structure
6026  *
6027  *  Read appropriate register for the config done bit for completion status
6028  *  and configure the PHY through s/w for EEPROM-less parts.
6029  *
6030  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
6031  *  config done bit, so only an error is logged and continues.  If we were
6032  *  to return with error, EEPROM-less silicon would not be able to be reset
6033  *  or change link.
6034  **/
6035 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
6036 {
6037 	s32 ret_val = E1000_SUCCESS;
6038 	u32 bank = 0;
6039 	u32 status;
6040 
6041 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6042 
6043 	e1000_get_cfg_done_generic(hw);
6044 
6045 	/* Wait for indication from h/w that it has completed basic config */
6046 	if (hw->mac.type >= e1000_ich10lan) {
6047 		e1000_lan_init_done_ich8lan(hw);
6048 	} else {
6049 		ret_val = e1000_get_auto_rd_done_generic(hw);
6050 		if (ret_val) {
6051 			/* When auto config read does not complete, do not
6052 			 * return with an error. This can happen in situations
6053 			 * where there is no eeprom and prevents getting link.
6054 			 */
6055 			DEBUGOUT("Auto Read Done did not complete\n");
6056 			ret_val = E1000_SUCCESS;
6057 		}
6058 	}
6059 
6060 	/* Clear PHY Reset Asserted bit */
6061 	status = E1000_READ_REG(hw, E1000_STATUS);
6062 	if (status & E1000_STATUS_PHYRA)
6063 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6064 	else
6065 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6066 
6067 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6068 	if (hw->mac.type <= e1000_ich9lan) {
6069 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6070 		    (hw->phy.type == e1000_phy_igp_3)) {
6071 			e1000_phy_init_script_igp3(hw);
6072 		}
6073 	} else {
6074 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6075 			/* Maybe we should do a basic PHY config */
6076 			DEBUGOUT("EEPROM not present\n");
6077 			ret_val = -E1000_ERR_CONFIG;
6078 		}
6079 	}
6080 
6081 	return ret_val;
6082 }
6083 
6084 /**
6085  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6086  * @hw: pointer to the HW structure
6087  *
6088  * In the case of a PHY power down to save power, or to turn off link during a
6089  * driver unload, or wake on lan is not enabled, remove the link.
6090  **/
6091 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6092 {
6093 	/* If the management interface is not enabled, then power down */
6094 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6095 	      hw->phy.ops.check_reset_block(hw)))
6096 		e1000_power_down_phy_copper(hw);
6097 
6098 	return;
6099 }
6100 
6101 /**
6102  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6103  *  @hw: pointer to the HW structure
6104  *
6105  *  Clears hardware counters specific to the silicon family and calls
6106  *  clear_hw_cntrs_generic to clear all general purpose counters.
6107  **/
6108 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6109 {
6110 	u16 phy_data;
6111 	s32 ret_val;
6112 
6113 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6114 
6115 	e1000_clear_hw_cntrs_base_generic(hw);
6116 
6117 	E1000_READ_REG(hw, E1000_ALGNERRC);
6118 	E1000_READ_REG(hw, E1000_RXERRC);
6119 	E1000_READ_REG(hw, E1000_TNCRS);
6120 	E1000_READ_REG(hw, E1000_CEXTERR);
6121 	E1000_READ_REG(hw, E1000_TSCTC);
6122 	E1000_READ_REG(hw, E1000_TSCTFC);
6123 
6124 	E1000_READ_REG(hw, E1000_MGTPRC);
6125 	E1000_READ_REG(hw, E1000_MGTPDC);
6126 	E1000_READ_REG(hw, E1000_MGTPTC);
6127 
6128 	E1000_READ_REG(hw, E1000_IAC);
6129 	E1000_READ_REG(hw, E1000_ICRXOC);
6130 
6131 	/* Clear PHY statistics registers */
6132 	if ((hw->phy.type == e1000_phy_82578) ||
6133 	    (hw->phy.type == e1000_phy_82579) ||
6134 	    (hw->phy.type == e1000_phy_i217) ||
6135 	    (hw->phy.type == e1000_phy_82577)) {
6136 		ret_val = hw->phy.ops.acquire(hw);
6137 		if (ret_val)
6138 			return;
6139 		ret_val = hw->phy.ops.set_page(hw,
6140 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6141 		if (ret_val)
6142 			goto release;
6143 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6144 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6145 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6146 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6147 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6148 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6149 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6150 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6151 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6152 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6153 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6154 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6155 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6156 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6157 release:
6158 		hw->phy.ops.release(hw);
6159 	}
6160 }
6161 
6162 /**
6163  *  e1000_configure_k0s_lpt - Configure K0s power state
6164  *  @hw: pointer to the HW structure
6165  *  @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
6166  *	0 corresponds to 128ns, each value over 0 doubles the duration.
6167  *  @min_time: Minimum Tx idle period allowed  - valid values are 0 to 4.
6168  *	0 corresponds to 128ns, each value over 0 doubles the duration.
6169  *
6170  *  Configure the K1 power state based on the provided parameter.
6171  *  Assumes semaphore already acquired.
6172  *
6173  *  Success returns 0, Failure returns:
6174  *	-E1000_ERR_PHY (-2) in case of access error
6175  *	-E1000_ERR_PARAM (-4) in case of parameters error
6176  **/
6177 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
6178 {
6179 	s32 ret_val;
6180 	u16 kmrn_reg = 0;
6181 
6182 	DEBUGFUNC("e1000_configure_k0s_lpt");
6183 
6184 	if (entry_latency > 3 || min_time > 4)
6185 		return -E1000_ERR_PARAM;
6186 
6187 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6188 					     &kmrn_reg);
6189 	if (ret_val)
6190 		return ret_val;
6191 
6192 	/* for now don't touch the latency */
6193 	kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
6194 	kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
6195 
6196 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6197 					      kmrn_reg);
6198 	if (ret_val)
6199 		return ret_val;
6200 
6201 	return E1000_SUCCESS;
6202 }
6203