1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 /* 82562G 10/100 Network Connection 37 * 82562G-2 10/100 Network Connection 38 * 82562GT 10/100 Network Connection 39 * 82562GT-2 10/100 Network Connection 40 * 82562V 10/100 Network Connection 41 * 82562V-2 10/100 Network Connection 42 * 82566DC-2 Gigabit Network Connection 43 * 82566DC Gigabit Network Connection 44 * 82566DM-2 Gigabit Network Connection 45 * 82566DM Gigabit Network Connection 46 * 82566MC Gigabit Network Connection 47 * 82566MM Gigabit Network Connection 48 * 82567LM Gigabit Network Connection 49 * 82567LF Gigabit Network Connection 50 * 82567V Gigabit Network Connection 51 * 82567LM-2 Gigabit Network Connection 52 * 82567LF-2 Gigabit Network Connection 53 * 82567V-2 Gigabit Network Connection 54 * 82567LF-3 Gigabit Network Connection 55 * 82567LM-3 Gigabit Network Connection 56 * 82567LM-4 Gigabit Network Connection 57 * 82577LM Gigabit Network Connection 58 * 82577LC Gigabit Network Connection 59 * 82578DM Gigabit Network Connection 60 * 82578DC Gigabit Network Connection 61 * 82579LM Gigabit Network Connection 62 * 82579V Gigabit Network Connection 63 * Ethernet Connection I217-LM 64 * Ethernet Connection I217-V 65 * Ethernet Connection I218-V 66 * Ethernet Connection I218-LM 67 * Ethernet Connection (2) I218-LM 68 * Ethernet Connection (2) I218-V 69 * Ethernet Connection (3) I218-LM 70 * Ethernet Connection (3) I218-V 71 */ 72 73 #include "e1000_api.h" 74 75 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); 76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw); 77 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); 78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw); 79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 81 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 82 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); 84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, 85 u8 *mc_addr_list, 86 u32 mc_addr_count); 87 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); 88 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); 89 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 90 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, 91 bool active); 92 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, 93 bool active); 94 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, 95 u16 words, u16 *data); 96 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 97 u16 *data); 98 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, 99 u16 words, u16 *data); 100 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); 101 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); 102 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw); 103 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, 104 u16 *data); 105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 106 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); 107 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); 108 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); 109 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); 110 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); 111 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 112 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, 113 u16 *speed, u16 *duplex); 114 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 115 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 116 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 118 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 119 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 120 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 121 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 123 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 126 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, 127 u32 offset, u8 *data); 128 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 129 u8 size, u16 *data); 130 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 131 u32 *data); 132 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 133 u32 offset, u32 *data); 134 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 135 u32 offset, u32 data); 136 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 137 u32 offset, u32 dword); 138 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, 139 u32 offset, u16 *data); 140 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 141 u32 offset, u8 byte); 142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); 143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); 145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr); 149 150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 151 /* Offset 04h HSFSTS */ 152 union ich8_hws_flash_status { 153 struct ich8_hsfsts { 154 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 155 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 156 u16 dael:1; /* bit 2 Direct Access error Log */ 157 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 158 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 159 u16 reserved1:2; /* bit 13:6 Reserved */ 160 u16 reserved2:6; /* bit 13:6 Reserved */ 161 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 162 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 163 } hsf_status; 164 u16 regval; 165 }; 166 167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 168 /* Offset 06h FLCTL */ 169 union ich8_hws_flash_ctrl { 170 struct ich8_hsflctl { 171 u16 flcgo:1; /* 0 Flash Cycle Go */ 172 u16 flcycle:2; /* 2:1 Flash Cycle */ 173 u16 reserved:5; /* 7:3 Reserved */ 174 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 175 u16 flockdn:6; /* 15:10 Reserved */ 176 } hsf_ctrl; 177 u16 regval; 178 }; 179 180 /* ICH Flash Region Access Permissions */ 181 union ich8_hws_flash_regacc { 182 struct ich8_flracc { 183 u32 grra:8; /* 0:7 GbE region Read Access */ 184 u32 grwa:8; /* 8:15 GbE region Write Access */ 185 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 186 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 187 } hsf_flregacc; 188 u16 regval; 189 }; 190 191 /** 192 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 193 * @hw: pointer to the HW structure 194 * 195 * Test access to the PHY registers by reading the PHY ID registers. If 196 * the PHY ID is already known (e.g. resume path) compare it with known ID, 197 * otherwise assume the read PHY ID is correct if it is valid. 198 * 199 * Assumes the sw/fw/hw semaphore is already acquired. 200 **/ 201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 202 { 203 u16 phy_reg = 0; 204 u32 phy_id = 0; 205 s32 ret_val = 0; 206 u16 retry_count; 207 u32 mac_reg = 0; 208 209 for (retry_count = 0; retry_count < 2; retry_count++) { 210 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); 211 if (ret_val || (phy_reg == 0xFFFF)) 212 continue; 213 phy_id = (u32)(phy_reg << 16); 214 215 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); 216 if (ret_val || (phy_reg == 0xFFFF)) { 217 phy_id = 0; 218 continue; 219 } 220 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 221 break; 222 } 223 224 if (hw->phy.id) { 225 if (hw->phy.id == phy_id) 226 goto out; 227 } else if (phy_id) { 228 hw->phy.id = phy_id; 229 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 230 goto out; 231 } 232 233 /* In case the PHY needs to be in mdio slow mode, 234 * set slow mode and try to get the PHY id again. 235 */ 236 if (hw->mac.type < e1000_pch_lpt) { 237 hw->phy.ops.release(hw); 238 ret_val = e1000_set_mdio_slow_mode_hv(hw); 239 if (!ret_val) 240 ret_val = e1000_get_phy_id(hw); 241 hw->phy.ops.acquire(hw); 242 } 243 244 if (ret_val) 245 return FALSE; 246 out: 247 if (hw->mac.type >= e1000_pch_lpt) { 248 /* Only unforce SMBus if ME is not active */ 249 if (!(E1000_READ_REG(hw, E1000_FWSM) & 250 E1000_ICH_FWSM_FW_VALID)) { 251 /* Unforce SMBus mode in PHY */ 252 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg); 253 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 254 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg); 255 256 /* Unforce SMBus mode in MAC */ 257 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 258 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 259 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 260 } 261 } 262 263 return TRUE; 264 } 265 266 /** 267 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 268 * @hw: pointer to the HW structure 269 * 270 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 271 * used to reset the PHY to a quiescent state when necessary. 272 **/ 273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 274 { 275 u32 mac_reg; 276 277 DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt"); 278 279 /* Set Phy Config Counter to 50msec */ 280 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); 281 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 282 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 283 E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); 284 285 /* Toggle LANPHYPC Value bit */ 286 mac_reg = E1000_READ_REG(hw, E1000_CTRL); 287 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 288 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 289 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); 290 E1000_WRITE_FLUSH(hw); 291 msec_delay(1); 292 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 293 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); 294 E1000_WRITE_FLUSH(hw); 295 296 if (hw->mac.type < e1000_pch_lpt) { 297 msec_delay(50); 298 } else { 299 u16 count = 20; 300 301 do { 302 msec_delay(5); 303 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & 304 E1000_CTRL_EXT_LPCD) && count--); 305 306 msec_delay(30); 307 } 308 } 309 310 /** 311 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 312 * @hw: pointer to the HW structure 313 * 314 * Workarounds/flow necessary for PHY initialization during driver load 315 * and resume paths. 316 **/ 317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 318 { 319 u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); 320 s32 ret_val; 321 322 DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); 323 324 /* Gate automatic PHY configuration by hardware on managed and 325 * non-managed 82579 and newer adapters. 326 */ 327 e1000_gate_hw_phy_config_ich8lan(hw, TRUE); 328 329 /* It is not possible to be certain of the current state of ULP 330 * so forcibly disable it. 331 */ 332 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 333 e1000_disable_ulp_lpt_lp(hw, TRUE); 334 335 ret_val = hw->phy.ops.acquire(hw); 336 if (ret_val) { 337 DEBUGOUT("Failed to initialize PHY flow\n"); 338 goto out; 339 } 340 341 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 342 * inaccessible and resetting the PHY is not blocked, toggle the 343 * LANPHYPC Value bit to force the interconnect to PCIe mode. 344 */ 345 switch (hw->mac.type) { 346 case e1000_pch_lpt: 347 case e1000_pch_spt: 348 case e1000_pch_cnp: 349 if (e1000_phy_is_accessible_pchlan(hw)) 350 break; 351 352 /* Before toggling LANPHYPC, see if PHY is accessible by 353 * forcing MAC to SMBus mode first. 354 */ 355 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 356 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 357 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 358 359 /* Wait 50 milliseconds for MAC to finish any retries 360 * that it might be trying to perform from previous 361 * attempts to acknowledge any phy read requests. 362 */ 363 msec_delay(50); 364 365 /* fall-through */ 366 case e1000_pch2lan: 367 if (e1000_phy_is_accessible_pchlan(hw)) 368 break; 369 370 /* fall-through */ 371 case e1000_pchlan: 372 if ((hw->mac.type == e1000_pchlan) && 373 (fwsm & E1000_ICH_FWSM_FW_VALID)) 374 break; 375 376 if (hw->phy.ops.check_reset_block(hw)) { 377 DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); 378 ret_val = -E1000_ERR_PHY; 379 break; 380 } 381 382 /* Toggle LANPHYPC Value bit */ 383 e1000_toggle_lanphypc_pch_lpt(hw); 384 if (hw->mac.type >= e1000_pch_lpt) { 385 if (e1000_phy_is_accessible_pchlan(hw)) 386 break; 387 388 /* Toggling LANPHYPC brings the PHY out of SMBus mode 389 * so ensure that the MAC is also out of SMBus mode 390 */ 391 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 392 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 393 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 394 395 if (e1000_phy_is_accessible_pchlan(hw)) 396 break; 397 398 ret_val = -E1000_ERR_PHY; 399 } 400 break; 401 default: 402 break; 403 } 404 405 hw->phy.ops.release(hw); 406 if (!ret_val) { 407 408 /* Check to see if able to reset PHY. Print error if not */ 409 if (hw->phy.ops.check_reset_block(hw)) { 410 ERROR_REPORT("Reset blocked by ME\n"); 411 goto out; 412 } 413 414 /* Reset the PHY before any access to it. Doing so, ensures 415 * that the PHY is in a known good state before we read/write 416 * PHY registers. The generic reset is sufficient here, 417 * because we haven't determined the PHY type yet. 418 */ 419 ret_val = e1000_phy_hw_reset_generic(hw); 420 if (ret_val) 421 goto out; 422 423 /* On a successful reset, possibly need to wait for the PHY 424 * to quiesce to an accessible state before returning control 425 * to the calling function. If the PHY does not quiesce, then 426 * return E1000E_BLK_PHY_RESET, as this is the condition that 427 * the PHY is in. 428 */ 429 ret_val = hw->phy.ops.check_reset_block(hw); 430 if (ret_val) 431 ERROR_REPORT("ME blocked access to PHY after reset\n"); 432 } 433 434 out: 435 /* Ungate automatic PHY configuration on non-managed 82579 */ 436 if ((hw->mac.type == e1000_pch2lan) && 437 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 438 msec_delay(10); 439 e1000_gate_hw_phy_config_ich8lan(hw, FALSE); 440 } 441 442 return ret_val; 443 } 444 445 /** 446 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 447 * @hw: pointer to the HW structure 448 * 449 * Initialize family-specific PHY parameters and function pointers. 450 **/ 451 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 452 { 453 struct e1000_phy_info *phy = &hw->phy; 454 s32 ret_val; 455 456 DEBUGFUNC("e1000_init_phy_params_pchlan"); 457 458 phy->addr = 1; 459 phy->reset_delay_us = 100; 460 461 phy->ops.acquire = e1000_acquire_swflag_ich8lan; 462 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; 463 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; 464 phy->ops.set_page = e1000_set_page_igp; 465 phy->ops.read_reg = e1000_read_phy_reg_hv; 466 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 467 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 468 phy->ops.release = e1000_release_swflag_ich8lan; 469 phy->ops.reset = e1000_phy_hw_reset_ich8lan; 470 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 471 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 472 phy->ops.write_reg = e1000_write_phy_reg_hv; 473 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 474 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 475 phy->ops.power_up = e1000_power_up_phy_copper; 476 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 477 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 478 479 phy->id = e1000_phy_unknown; 480 481 ret_val = e1000_init_phy_workarounds_pchlan(hw); 482 if (ret_val) 483 return ret_val; 484 485 if (phy->id == e1000_phy_unknown) 486 switch (hw->mac.type) { 487 default: 488 ret_val = e1000_get_phy_id(hw); 489 if (ret_val) 490 return ret_val; 491 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 492 break; 493 /* fall-through */ 494 case e1000_pch2lan: 495 case e1000_pch_lpt: 496 case e1000_pch_spt: 497 case e1000_pch_cnp: 498 /* In case the PHY needs to be in mdio slow mode, 499 * set slow mode and try to get the PHY id again. 500 */ 501 ret_val = e1000_set_mdio_slow_mode_hv(hw); 502 if (ret_val) 503 return ret_val; 504 ret_val = e1000_get_phy_id(hw); 505 if (ret_val) 506 return ret_val; 507 break; 508 } 509 phy->type = e1000_get_phy_type_from_id(phy->id); 510 511 switch (phy->type) { 512 case e1000_phy_82577: 513 case e1000_phy_82579: 514 case e1000_phy_i217: 515 phy->ops.check_polarity = e1000_check_polarity_82577; 516 phy->ops.force_speed_duplex = 517 e1000_phy_force_speed_duplex_82577; 518 phy->ops.get_cable_length = e1000_get_cable_length_82577; 519 phy->ops.get_info = e1000_get_phy_info_82577; 520 phy->ops.commit = e1000_phy_sw_reset_generic; 521 break; 522 case e1000_phy_82578: 523 phy->ops.check_polarity = e1000_check_polarity_m88; 524 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 525 phy->ops.get_cable_length = e1000_get_cable_length_m88; 526 phy->ops.get_info = e1000_get_phy_info_m88; 527 break; 528 default: 529 ret_val = -E1000_ERR_PHY; 530 break; 531 } 532 533 return ret_val; 534 } 535 536 /** 537 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 538 * @hw: pointer to the HW structure 539 * 540 * Initialize family-specific PHY parameters and function pointers. 541 **/ 542 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 543 { 544 struct e1000_phy_info *phy = &hw->phy; 545 s32 ret_val; 546 u16 i = 0; 547 548 DEBUGFUNC("e1000_init_phy_params_ich8lan"); 549 550 phy->addr = 1; 551 phy->reset_delay_us = 100; 552 553 phy->ops.acquire = e1000_acquire_swflag_ich8lan; 554 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; 555 phy->ops.get_cable_length = e1000_get_cable_length_igp_2; 556 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; 557 phy->ops.read_reg = e1000_read_phy_reg_igp; 558 phy->ops.release = e1000_release_swflag_ich8lan; 559 phy->ops.reset = e1000_phy_hw_reset_ich8lan; 560 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; 561 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; 562 phy->ops.write_reg = e1000_write_phy_reg_igp; 563 phy->ops.power_up = e1000_power_up_phy_copper; 564 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 565 566 /* We may need to do this twice - once for IGP and if that fails, 567 * we'll set BM func pointers and try again 568 */ 569 ret_val = e1000_determine_phy_address(hw); 570 if (ret_val) { 571 phy->ops.write_reg = e1000_write_phy_reg_bm; 572 phy->ops.read_reg = e1000_read_phy_reg_bm; 573 ret_val = e1000_determine_phy_address(hw); 574 if (ret_val) { 575 DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); 576 return ret_val; 577 } 578 } 579 580 phy->id = 0; 581 while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && 582 (i++ < 100)) { 583 msec_delay(1); 584 ret_val = e1000_get_phy_id(hw); 585 if (ret_val) 586 return ret_val; 587 } 588 589 /* Verify phy id */ 590 switch (phy->id) { 591 case IGP03E1000_E_PHY_ID: 592 phy->type = e1000_phy_igp_3; 593 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 594 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; 595 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; 596 phy->ops.get_info = e1000_get_phy_info_igp; 597 phy->ops.check_polarity = e1000_check_polarity_igp; 598 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; 599 break; 600 case IFE_E_PHY_ID: 601 case IFE_PLUS_E_PHY_ID: 602 case IFE_C_E_PHY_ID: 603 phy->type = e1000_phy_ife; 604 phy->autoneg_mask = E1000_ALL_NOT_GIG; 605 phy->ops.get_info = e1000_get_phy_info_ife; 606 phy->ops.check_polarity = e1000_check_polarity_ife; 607 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 608 break; 609 case BME1000_E_PHY_ID: 610 phy->type = e1000_phy_bm; 611 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 612 phy->ops.read_reg = e1000_read_phy_reg_bm; 613 phy->ops.write_reg = e1000_write_phy_reg_bm; 614 phy->ops.commit = e1000_phy_sw_reset_generic; 615 phy->ops.get_info = e1000_get_phy_info_m88; 616 phy->ops.check_polarity = e1000_check_polarity_m88; 617 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 618 break; 619 default: 620 return -E1000_ERR_PHY; 621 break; 622 } 623 624 return E1000_SUCCESS; 625 } 626 627 /** 628 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 629 * @hw: pointer to the HW structure 630 * 631 * Initialize family-specific NVM parameters and function 632 * pointers. 633 **/ 634 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 635 { 636 struct e1000_nvm_info *nvm = &hw->nvm; 637 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 638 u32 gfpreg, sector_base_addr, sector_end_addr; 639 u16 i; 640 u32 nvm_size; 641 642 DEBUGFUNC("e1000_init_nvm_params_ich8lan"); 643 644 nvm->type = e1000_nvm_flash_sw; 645 646 if (hw->mac.type >= e1000_pch_spt) { 647 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 648 * STRAP register. This is because in SPT the GbE Flash region 649 * is no longer accessed through the flash registers. Instead, 650 * the mechanism has changed, and the Flash region access 651 * registers are now implemented in GbE memory space. 652 */ 653 nvm->flash_base_addr = 0; 654 nvm_size = 655 (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1) 656 * NVM_SIZE_MULTIPLIER; 657 nvm->flash_bank_size = nvm_size / 2; 658 /* Adjust to word count */ 659 nvm->flash_bank_size /= sizeof(u16); 660 /* Set the base address for flash register access */ 661 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 662 } else { 663 /* Can't read flash registers if register set isn't mapped. */ 664 if (!hw->flash_address) { 665 DEBUGOUT("ERROR: Flash registers not mapped\n"); 666 return -E1000_ERR_CONFIG; 667 } 668 669 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); 670 671 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 672 * Add 1 to sector_end_addr since this sector is included in 673 * the overall size. 674 */ 675 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 676 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 677 678 /* flash_base_addr is byte-aligned */ 679 nvm->flash_base_addr = sector_base_addr 680 << FLASH_SECTOR_ADDR_SHIFT; 681 682 /* find total size of the NVM, then cut in half since the total 683 * size represents two separate NVM banks. 684 */ 685 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 686 << FLASH_SECTOR_ADDR_SHIFT); 687 nvm->flash_bank_size /= 2; 688 /* Adjust to word count */ 689 nvm->flash_bank_size /= sizeof(u16); 690 } 691 692 nvm->word_size = E1000_SHADOW_RAM_WORDS; 693 694 /* Clear shadow ram */ 695 for (i = 0; i < nvm->word_size; i++) { 696 dev_spec->shadow_ram[i].modified = FALSE; 697 dev_spec->shadow_ram[i].value = 0xFFFF; 698 } 699 700 /* Function Pointers */ 701 nvm->ops.acquire = e1000_acquire_nvm_ich8lan; 702 nvm->ops.release = e1000_release_nvm_ich8lan; 703 if (hw->mac.type >= e1000_pch_spt) { 704 nvm->ops.read = e1000_read_nvm_spt; 705 nvm->ops.update = e1000_update_nvm_checksum_spt; 706 } else { 707 nvm->ops.read = e1000_read_nvm_ich8lan; 708 nvm->ops.update = e1000_update_nvm_checksum_ich8lan; 709 } 710 nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; 711 nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; 712 nvm->ops.write = e1000_write_nvm_ich8lan; 713 714 return E1000_SUCCESS; 715 } 716 717 /** 718 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 719 * @hw: pointer to the HW structure 720 * 721 * Initialize family-specific MAC parameters and function 722 * pointers. 723 **/ 724 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 725 { 726 struct e1000_mac_info *mac = &hw->mac; 727 728 DEBUGFUNC("e1000_init_mac_params_ich8lan"); 729 730 /* Set media type function pointer */ 731 hw->phy.media_type = e1000_media_type_copper; 732 733 /* Set mta register count */ 734 mac->mta_reg_count = 32; 735 /* Set rar entry count */ 736 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 737 if (mac->type == e1000_ich8lan) 738 mac->rar_entry_count--; 739 /* Set if part includes ASF firmware */ 740 mac->asf_firmware_present = TRUE; 741 /* FWSM register */ 742 mac->has_fwsm = TRUE; 743 /* ARC subsystem not supported */ 744 mac->arc_subsystem_valid = FALSE; 745 /* Adaptive IFS supported */ 746 mac->adaptive_ifs = TRUE; 747 748 /* Function pointers */ 749 750 /* bus type/speed/width */ 751 mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; 752 /* function id */ 753 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 754 /* reset */ 755 mac->ops.reset_hw = e1000_reset_hw_ich8lan; 756 /* hw initialization */ 757 mac->ops.init_hw = e1000_init_hw_ich8lan; 758 /* link setup */ 759 mac->ops.setup_link = e1000_setup_link_ich8lan; 760 /* physical interface setup */ 761 mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; 762 /* check for link */ 763 mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; 764 /* link info */ 765 mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; 766 /* multicast address update */ 767 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; 768 /* clear hardware counters */ 769 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; 770 771 /* LED and other operations */ 772 switch (mac->type) { 773 case e1000_ich8lan: 774 case e1000_ich9lan: 775 case e1000_ich10lan: 776 /* check management mode */ 777 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 778 /* ID LED init */ 779 mac->ops.id_led_init = e1000_id_led_init_generic; 780 /* blink LED */ 781 mac->ops.blink_led = e1000_blink_led_generic; 782 /* setup LED */ 783 mac->ops.setup_led = e1000_setup_led_generic; 784 /* cleanup LED */ 785 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 786 /* turn on/off LED */ 787 mac->ops.led_on = e1000_led_on_ich8lan; 788 mac->ops.led_off = e1000_led_off_ich8lan; 789 break; 790 case e1000_pch2lan: 791 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 792 mac->ops.rar_set = e1000_rar_set_pch2lan; 793 /* fall-through */ 794 case e1000_pch_lpt: 795 case e1000_pch_spt: 796 case e1000_pch_cnp: 797 /* multicast address update for pch2 */ 798 mac->ops.update_mc_addr_list = 799 e1000_update_mc_addr_list_pch2lan; 800 /* fall-through */ 801 case e1000_pchlan: 802 /* check management mode */ 803 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 804 /* ID LED init */ 805 mac->ops.id_led_init = e1000_id_led_init_pchlan; 806 /* setup LED */ 807 mac->ops.setup_led = e1000_setup_led_pchlan; 808 /* cleanup LED */ 809 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 810 /* turn on/off LED */ 811 mac->ops.led_on = e1000_led_on_pchlan; 812 mac->ops.led_off = e1000_led_off_pchlan; 813 break; 814 default: 815 break; 816 } 817 818 if (mac->type >= e1000_pch_lpt) { 819 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 820 mac->ops.rar_set = e1000_rar_set_pch_lpt; 821 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; 822 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt; 823 } 824 825 /* Enable PCS Lock-loss workaround for ICH8 */ 826 if (mac->type == e1000_ich8lan) 827 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE); 828 829 return E1000_SUCCESS; 830 } 831 832 /** 833 * __e1000_access_emi_reg_locked - Read/write EMI register 834 * @hw: pointer to the HW structure 835 * @addr: EMI address to program 836 * @data: pointer to value to read/write from/to the EMI address 837 * @read: boolean flag to indicate read or write 838 * 839 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 840 **/ 841 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 842 u16 *data, bool read) 843 { 844 s32 ret_val; 845 846 DEBUGFUNC("__e1000_access_emi_reg_locked"); 847 848 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); 849 if (ret_val) 850 return ret_val; 851 852 if (read) 853 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, 854 data); 855 else 856 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 857 *data); 858 859 return ret_val; 860 } 861 862 /** 863 * e1000_read_emi_reg_locked - Read Extended Management Interface register 864 * @hw: pointer to the HW structure 865 * @addr: EMI address to program 866 * @data: value to be read from the EMI address 867 * 868 * Assumes the SW/FW/HW Semaphore is already acquired. 869 **/ 870 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 871 { 872 DEBUGFUNC("e1000_read_emi_reg_locked"); 873 874 return __e1000_access_emi_reg_locked(hw, addr, data, TRUE); 875 } 876 877 /** 878 * e1000_write_emi_reg_locked - Write Extended Management Interface register 879 * @hw: pointer to the HW structure 880 * @addr: EMI address to program 881 * @data: value to be written to the EMI address 882 * 883 * Assumes the SW/FW/HW Semaphore is already acquired. 884 **/ 885 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 886 { 887 DEBUGFUNC("e1000_read_emi_reg_locked"); 888 889 return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE); 890 } 891 892 /** 893 * e1000_set_eee_pchlan - Enable/disable EEE support 894 * @hw: pointer to the HW structure 895 * 896 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 897 * the link and the EEE capabilities of the link partner. The LPI Control 898 * register bits will remain set only if/when link is up. 899 * 900 * EEE LPI must not be asserted earlier than one second after link is up. 901 * On 82579, EEE LPI should not be enabled until such time otherwise there 902 * can be link issues with some switches. Other devices can have EEE LPI 903 * enabled immediately upon link up since they have a timer in hardware which 904 * prevents LPI from being asserted too early. 905 **/ 906 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 907 { 908 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 909 s32 ret_val; 910 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 911 912 DEBUGFUNC("e1000_set_eee_pchlan"); 913 914 switch (hw->phy.type) { 915 case e1000_phy_82579: 916 lpa = I82579_EEE_LP_ABILITY; 917 pcs_status = I82579_EEE_PCS_STATUS; 918 adv_addr = I82579_EEE_ADVERTISEMENT; 919 break; 920 case e1000_phy_i217: 921 lpa = I217_EEE_LP_ABILITY; 922 pcs_status = I217_EEE_PCS_STATUS; 923 adv_addr = I217_EEE_ADVERTISEMENT; 924 break; 925 default: 926 return E1000_SUCCESS; 927 } 928 929 ret_val = hw->phy.ops.acquire(hw); 930 if (ret_val) 931 return ret_val; 932 933 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 934 if (ret_val) 935 goto release; 936 937 /* Clear bits that enable EEE in various speeds */ 938 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 939 940 /* Enable EEE if not disabled by user */ 941 if (!dev_spec->eee_disable) { 942 /* Save off link partner's EEE ability */ 943 ret_val = e1000_read_emi_reg_locked(hw, lpa, 944 &dev_spec->eee_lp_ability); 945 if (ret_val) 946 goto release; 947 948 /* Read EEE advertisement */ 949 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 950 if (ret_val) 951 goto release; 952 953 /* Enable EEE only for speeds in which the link partner is 954 * EEE capable and for which we advertise EEE. 955 */ 956 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 957 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 958 959 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 960 hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); 961 if (data & NWAY_LPAR_100TX_FD_CAPS) 962 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 963 else 964 /* EEE is not supported in 100Half, so ignore 965 * partner's EEE in 100 ability if full-duplex 966 * is not advertised. 967 */ 968 dev_spec->eee_lp_ability &= 969 ~I82579_EEE_100_SUPPORTED; 970 } 971 } 972 973 if (hw->phy.type == e1000_phy_82579) { 974 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 975 &data); 976 if (ret_val) 977 goto release; 978 979 data &= ~I82579_LPI_100_PLL_SHUT; 980 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 981 data); 982 } 983 984 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 985 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 986 if (ret_val) 987 goto release; 988 989 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 990 release: 991 hw->phy.ops.release(hw); 992 993 return ret_val; 994 } 995 996 /** 997 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 998 * @hw: pointer to the HW structure 999 * @link: link up bool flag 1000 * 1001 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 1002 * preventing further DMA write requests. Workaround the issue by disabling 1003 * the de-assertion of the clock request when in 1Gpbs mode. 1004 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 1005 * speeds in order to avoid Tx hangs. 1006 **/ 1007 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 1008 { 1009 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); 1010 u32 status = E1000_READ_REG(hw, E1000_STATUS); 1011 s32 ret_val = E1000_SUCCESS; 1012 u16 reg; 1013 1014 if (link && (status & E1000_STATUS_SPEED_1000)) { 1015 ret_val = hw->phy.ops.acquire(hw); 1016 if (ret_val) 1017 return ret_val; 1018 1019 ret_val = 1020 e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 1021 ®); 1022 if (ret_val) 1023 goto release; 1024 1025 ret_val = 1026 e1000_write_kmrn_reg_locked(hw, 1027 E1000_KMRNCTRLSTA_K1_CONFIG, 1028 reg & 1029 ~E1000_KMRNCTRLSTA_K1_ENABLE); 1030 if (ret_val) 1031 goto release; 1032 1033 usec_delay(10); 1034 1035 E1000_WRITE_REG(hw, E1000_FEXTNVM6, 1036 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 1037 1038 ret_val = 1039 e1000_write_kmrn_reg_locked(hw, 1040 E1000_KMRNCTRLSTA_K1_CONFIG, 1041 reg); 1042 release: 1043 hw->phy.ops.release(hw); 1044 } else { 1045 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 1046 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 1047 1048 if ((hw->phy.revision > 5) || !link || 1049 ((status & E1000_STATUS_SPEED_100) && 1050 (status & E1000_STATUS_FD))) 1051 goto update_fextnvm6; 1052 1053 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®); 1054 if (ret_val) 1055 return ret_val; 1056 1057 /* Clear link status transmit timeout */ 1058 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 1059 1060 if (status & E1000_STATUS_SPEED_100) { 1061 /* Set inband Tx timeout to 5x10us for 100Half */ 1062 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 1063 1064 /* Do not extend the K1 entry latency for 100Half */ 1065 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 1066 } else { 1067 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 1068 reg |= 50 << 1069 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 1070 1071 /* Extend the K1 entry latency for 10 Mbps */ 1072 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 1073 } 1074 1075 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg); 1076 if (ret_val) 1077 return ret_val; 1078 1079 update_fextnvm6: 1080 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); 1081 } 1082 1083 return ret_val; 1084 } 1085 1086 static u64 e1000_ltr2ns(u16 ltr) 1087 { 1088 u32 value, scale; 1089 1090 /* Determine the latency in nsec based on the LTR value & scale */ 1091 value = ltr & E1000_LTRV_VALUE_MASK; 1092 scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT; 1093 1094 return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR)); 1095 } 1096 1097 /** 1098 * e1000_platform_pm_pch_lpt - Set platform power management values 1099 * @hw: pointer to the HW structure 1100 * @link: bool indicating link status 1101 * 1102 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 1103 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1104 * when link is up (which must not exceed the maximum latency supported 1105 * by the platform), otherwise specify there is no LTR requirement. 1106 * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop 1107 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1108 * Capability register set, on this device LTR is set by writing the 1109 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1110 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1111 * message to the PMC. 1112 * 1113 * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF) 1114 * high-water mark. 1115 **/ 1116 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1117 { 1118 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1119 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1120 u16 lat_enc = 0; /* latency encoded */ 1121 s32 obff_hwm = 0; 1122 1123 DEBUGFUNC("e1000_platform_pm_pch_lpt"); 1124 1125 if (link) { 1126 u16 speed, duplex, scale = 0; 1127 u16 max_snoop, max_nosnoop; 1128 u16 max_ltr_enc; /* max LTR latency encoded */ 1129 s64 lat_ns; 1130 s64 value; 1131 u32 rxa; 1132 1133 if (!hw->mac.max_frame_size) { 1134 DEBUGOUT("max_frame_size not set.\n"); 1135 return -E1000_ERR_CONFIG; 1136 } 1137 1138 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1139 if (!speed) { 1140 DEBUGOUT("Speed not set.\n"); 1141 return -E1000_ERR_CONFIG; 1142 } 1143 1144 /* Rx Packet Buffer Allocation size (KB) */ 1145 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK; 1146 1147 /* Determine the maximum latency tolerated by the device. 1148 * 1149 * Per the PCIe spec, the tolerated latencies are encoded as 1150 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1151 * a 10-bit value (0-1023) to provide a range from 1 ns to 1152 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1153 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1154 */ 1155 lat_ns = ((s64)rxa * 1024 - 1156 (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000; 1157 if (lat_ns < 0) 1158 lat_ns = 0; 1159 else 1160 lat_ns /= speed; 1161 value = lat_ns; 1162 1163 while (value > E1000_LTRV_VALUE_MASK) { 1164 scale++; 1165 value = E1000_DIVIDE_ROUND_UP(value, (1 << 5)); 1166 } 1167 if (scale > E1000_LTRV_SCALE_MAX) { 1168 DEBUGOUT1("Invalid LTR latency scale %d\n", scale); 1169 return -E1000_ERR_CONFIG; 1170 } 1171 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value); 1172 1173 /* Determine the maximum latency tolerated by the platform */ 1174 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop); 1175 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1176 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop); 1177 1178 if (lat_enc > max_ltr_enc) { 1179 lat_enc = max_ltr_enc; 1180 lat_ns = e1000_ltr2ns(max_ltr_enc); 1181 } 1182 1183 if (lat_ns) { 1184 lat_ns *= speed * 1000; 1185 lat_ns /= 8; 1186 lat_ns /= 1000000000; 1187 obff_hwm = (s32)(rxa - lat_ns); 1188 } 1189 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) { 1190 DEBUGOUT1("Invalid high water mark %d\n", obff_hwm); 1191 return -E1000_ERR_CONFIG; 1192 } 1193 } 1194 1195 /* Set Snoop and No-Snoop latencies the same */ 1196 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1197 E1000_WRITE_REG(hw, E1000_LTRV, reg); 1198 1199 /* Set OBFF high water mark */ 1200 reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK; 1201 reg |= obff_hwm; 1202 E1000_WRITE_REG(hw, E1000_SVT, reg); 1203 1204 /* Enable OBFF */ 1205 reg = E1000_READ_REG(hw, E1000_SVCR); 1206 reg |= E1000_SVCR_OFF_EN; 1207 /* Always unblock interrupts to the CPU even when the system is 1208 * in OBFF mode. This ensures that small round-robin traffic 1209 * (like ping) does not get dropped or experience long latency. 1210 */ 1211 reg |= E1000_SVCR_OFF_MASKINT; 1212 E1000_WRITE_REG(hw, E1000_SVCR, reg); 1213 1214 return E1000_SUCCESS; 1215 } 1216 1217 /** 1218 * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer 1219 * @hw: pointer to the HW structure 1220 * @itr: interrupt throttling rate 1221 * 1222 * Configure OBFF with the updated interrupt rate. 1223 **/ 1224 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr) 1225 { 1226 u32 svcr; 1227 s32 timer; 1228 1229 DEBUGFUNC("e1000_set_obff_timer_pch_lpt"); 1230 1231 /* Convert ITR value into microseconds for OBFF timer */ 1232 timer = itr & E1000_ITR_MASK; 1233 timer = (timer * E1000_ITR_MULT) / 1000; 1234 1235 if ((timer < 0) || (timer > E1000_ITR_MASK)) { 1236 DEBUGOUT1("Invalid OBFF timer %d\n", timer); 1237 return -E1000_ERR_CONFIG; 1238 } 1239 1240 svcr = E1000_READ_REG(hw, E1000_SVCR); 1241 svcr &= ~E1000_SVCR_OFF_TIMER_MASK; 1242 svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT; 1243 E1000_WRITE_REG(hw, E1000_SVCR, svcr); 1244 1245 return E1000_SUCCESS; 1246 } 1247 1248 /** 1249 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1250 * @hw: pointer to the HW structure 1251 * @to_sx: boolean indicating a system power state transition to Sx 1252 * 1253 * When link is down, configure ULP mode to significantly reduce the power 1254 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1255 * ME firmware to start the ULP configuration. If not on an ME enabled 1256 * system, configure the ULP mode by software. 1257 */ 1258 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1259 { 1260 u32 mac_reg; 1261 s32 ret_val = E1000_SUCCESS; 1262 u16 phy_reg; 1263 u16 oem_reg = 0; 1264 1265 if ((hw->mac.type < e1000_pch_lpt) || 1266 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || 1267 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || 1268 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || 1269 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || 1270 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1271 return 0; 1272 1273 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { 1274 /* Request ME configure ULP mode in the PHY */ 1275 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1276 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1277 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1278 1279 goto out; 1280 } 1281 1282 if (!to_sx) { 1283 int i = 0; 1284 1285 /* Poll up to 5 seconds for Cable Disconnected indication */ 1286 while (!(E1000_READ_REG(hw, E1000_FEXT) & 1287 E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1288 /* Bail if link is re-acquired */ 1289 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) 1290 return -E1000_ERR_PHY; 1291 1292 if (i++ == 100) 1293 break; 1294 1295 msec_delay(50); 1296 } 1297 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n", 1298 (E1000_READ_REG(hw, E1000_FEXT) & 1299 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", 1300 i * 50); 1301 } 1302 1303 ret_val = hw->phy.ops.acquire(hw); 1304 if (ret_val) 1305 goto out; 1306 1307 /* Force SMBus mode in PHY */ 1308 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1309 if (ret_val) 1310 goto release; 1311 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1312 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1313 1314 /* Force SMBus mode in MAC */ 1315 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1316 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1317 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 1318 1319 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1320 * LPLU and disable Gig speed when entering ULP 1321 */ 1322 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1323 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1324 &oem_reg); 1325 if (ret_val) 1326 goto release; 1327 1328 phy_reg = oem_reg; 1329 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1330 1331 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1332 phy_reg); 1333 1334 if (ret_val) 1335 goto release; 1336 } 1337 1338 /* Set Inband ULP Exit, Reset to SMBus mode and 1339 * Disable SMBus Release on PERST# in PHY 1340 */ 1341 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1342 if (ret_val) 1343 goto release; 1344 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1345 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1346 if (to_sx) { 1347 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC) 1348 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1349 else 1350 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1351 1352 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1353 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1354 } else { 1355 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1356 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1357 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1358 } 1359 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1360 1361 /* Set Disable SMBus Release on PERST# in MAC */ 1362 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); 1363 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1364 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); 1365 1366 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1367 phy_reg |= I218_ULP_CONFIG1_START; 1368 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1369 1370 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1371 to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { 1372 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1373 oem_reg); 1374 if (ret_val) 1375 goto release; 1376 } 1377 1378 release: 1379 hw->phy.ops.release(hw); 1380 out: 1381 if (ret_val) 1382 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val); 1383 else 1384 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1385 1386 return ret_val; 1387 } 1388 1389 /** 1390 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1391 * @hw: pointer to the HW structure 1392 * @force: boolean indicating whether or not to force disabling ULP 1393 * 1394 * Un-configure ULP mode when link is up, the system is transitioned from 1395 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1396 * system, poll for an indication from ME that ULP has been un-configured. 1397 * If not on an ME enabled system, un-configure the ULP mode by software. 1398 * 1399 * During nominal operation, this function is called when link is acquired 1400 * to disable ULP mode (force=FALSE); otherwise, for example when unloading 1401 * the driver or during Sx->S0 transitions, this is called with force=TRUE 1402 * to forcibly disable ULP. 1403 */ 1404 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1405 { 1406 s32 ret_val = E1000_SUCCESS; 1407 u32 mac_reg; 1408 u16 phy_reg; 1409 int i = 0; 1410 1411 if ((hw->mac.type < e1000_pch_lpt) || 1412 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || 1413 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || 1414 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || 1415 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || 1416 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1417 return 0; 1418 1419 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { 1420 if (force) { 1421 /* Request ME un-configure ULP mode in the PHY */ 1422 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1423 mac_reg &= ~E1000_H2ME_ULP; 1424 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1425 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1426 } 1427 1428 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ 1429 while (E1000_READ_REG(hw, E1000_FWSM) & 1430 E1000_FWSM_ULP_CFG_DONE) { 1431 if (i++ == 30) { 1432 ret_val = -E1000_ERR_PHY; 1433 goto out; 1434 } 1435 1436 msec_delay(10); 1437 } 1438 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1439 1440 if (force) { 1441 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1442 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1443 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1444 } else { 1445 /* Clear H2ME.ULP after ME ULP configuration */ 1446 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1447 mac_reg &= ~E1000_H2ME_ULP; 1448 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1449 } 1450 1451 goto out; 1452 } 1453 1454 ret_val = hw->phy.ops.acquire(hw); 1455 if (ret_val) 1456 goto out; 1457 1458 if (force) 1459 /* Toggle LANPHYPC Value bit */ 1460 e1000_toggle_lanphypc_pch_lpt(hw); 1461 1462 /* Unforce SMBus mode in PHY */ 1463 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1464 if (ret_val) { 1465 /* The MAC might be in PCIe mode, so temporarily force to 1466 * SMBus mode in order to access the PHY. 1467 */ 1468 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1469 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1470 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 1471 1472 msec_delay(50); 1473 1474 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1475 &phy_reg); 1476 if (ret_val) 1477 goto release; 1478 } 1479 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1480 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1481 1482 /* Unforce SMBus mode in MAC */ 1483 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1484 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1485 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 1486 1487 /* When ULP mode was previously entered, K1 was disabled by the 1488 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1489 */ 1490 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1491 if (ret_val) 1492 goto release; 1493 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1494 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1495 1496 /* Clear ULP enabled configuration */ 1497 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1498 if (ret_val) 1499 goto release; 1500 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1501 I218_ULP_CONFIG1_STICKY_ULP | 1502 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1503 I218_ULP_CONFIG1_WOL_HOST | 1504 I218_ULP_CONFIG1_INBAND_EXIT | 1505 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1506 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1507 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1508 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1509 1510 /* Commit ULP changes by starting auto ULP configuration */ 1511 phy_reg |= I218_ULP_CONFIG1_START; 1512 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1513 1514 /* Clear Disable SMBus Release on PERST# in MAC */ 1515 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); 1516 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1517 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); 1518 1519 release: 1520 hw->phy.ops.release(hw); 1521 if (force) { 1522 hw->phy.ops.reset(hw); 1523 msec_delay(50); 1524 } 1525 out: 1526 if (ret_val) 1527 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); 1528 else 1529 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1530 1531 return ret_val; 1532 } 1533 1534 /** 1535 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1536 * @hw: pointer to the HW structure 1537 * 1538 * Checks to see of the link status of the hardware has changed. If a 1539 * change in link status has been detected, then we read the PHY registers 1540 * to get the current speed/duplex if link exists. 1541 **/ 1542 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1543 { 1544 struct e1000_mac_info *mac = &hw->mac; 1545 s32 ret_val, tipg_reg = 0; 1546 u16 emi_addr, emi_val = 0; 1547 bool link; 1548 u16 phy_reg; 1549 1550 DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); 1551 1552 /* We only want to go out to the PHY registers to see if Auto-Neg 1553 * has completed and/or if our link status has changed. The 1554 * get_link_status flag is set upon receiving a Link Status 1555 * Change or Rx Sequence Error interrupt. 1556 */ 1557 if (!mac->get_link_status) 1558 return E1000_SUCCESS; 1559 1560 /* First we want to see if the MII Status Register reports 1561 * link. If so, then we want to get the current speed/duplex 1562 * of the PHY. 1563 */ 1564 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 1565 if (ret_val) 1566 return ret_val; 1567 1568 if (hw->mac.type == e1000_pchlan) { 1569 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1570 if (ret_val) 1571 return ret_val; 1572 } 1573 1574 /* When connected at 10Mbps half-duplex, some parts are excessively 1575 * aggressive resulting in many collisions. To avoid this, increase 1576 * the IPG and reduce Rx latency in the PHY. 1577 */ 1578 if ((hw->mac.type >= e1000_pch2lan) && link) { 1579 u16 speed, duplex; 1580 1581 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex); 1582 tipg_reg = E1000_READ_REG(hw, E1000_TIPG); 1583 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1584 1585 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1586 tipg_reg |= 0xFF; 1587 /* Reduce Rx latency in analog PHY */ 1588 emi_val = 0; 1589 } else if (hw->mac.type >= e1000_pch_spt && 1590 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1591 tipg_reg |= 0xC; 1592 emi_val = 1; 1593 } else { 1594 /* Roll back the default values */ 1595 tipg_reg |= 0x08; 1596 emi_val = 1; 1597 } 1598 1599 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg); 1600 1601 ret_val = hw->phy.ops.acquire(hw); 1602 if (ret_val) 1603 return ret_val; 1604 1605 if (hw->mac.type == e1000_pch2lan) 1606 emi_addr = I82579_RX_CONFIG; 1607 else 1608 emi_addr = I217_RX_CONFIG; 1609 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1610 1611 1612 if (hw->mac.type >= e1000_pch_lpt) { 1613 u16 phy_reg; 1614 1615 hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, 1616 &phy_reg); 1617 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1618 if (speed == SPEED_100 || speed == SPEED_10) 1619 phy_reg |= 0x3E8; 1620 else 1621 phy_reg |= 0xFA; 1622 hw->phy.ops.write_reg_locked(hw, 1623 I217_PLL_CLOCK_GATE_REG, 1624 phy_reg); 1625 1626 if (speed == SPEED_1000) { 1627 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1628 &phy_reg); 1629 1630 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1631 1632 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1633 phy_reg); 1634 } 1635 } 1636 hw->phy.ops.release(hw); 1637 1638 if (ret_val) 1639 return ret_val; 1640 1641 if (hw->mac.type >= e1000_pch_spt) { 1642 u16 data; 1643 u16 ptr_gap; 1644 1645 if (speed == SPEED_1000) { 1646 ret_val = hw->phy.ops.acquire(hw); 1647 if (ret_val) 1648 return ret_val; 1649 1650 ret_val = hw->phy.ops.read_reg_locked(hw, 1651 PHY_REG(776, 20), 1652 &data); 1653 if (ret_val) { 1654 hw->phy.ops.release(hw); 1655 return ret_val; 1656 } 1657 1658 ptr_gap = (data & (0x3FF << 2)) >> 2; 1659 if (ptr_gap < 0x18) { 1660 data &= ~(0x3FF << 2); 1661 data |= (0x18 << 2); 1662 ret_val = 1663 hw->phy.ops.write_reg_locked(hw, 1664 PHY_REG(776, 20), data); 1665 } 1666 hw->phy.ops.release(hw); 1667 if (ret_val) 1668 return ret_val; 1669 } else { 1670 ret_val = hw->phy.ops.acquire(hw); 1671 if (ret_val) 1672 return ret_val; 1673 1674 ret_val = hw->phy.ops.write_reg_locked(hw, 1675 PHY_REG(776, 20), 1676 0xC023); 1677 hw->phy.ops.release(hw); 1678 if (ret_val) 1679 return ret_val; 1680 1681 } 1682 } 1683 } 1684 1685 /* I217 Packet Loss issue: 1686 * ensure that FEXTNVM4 Beacon Duration is set correctly 1687 * on power up. 1688 * Set the Beacon Duration for I217 to 8 usec 1689 */ 1690 if (hw->mac.type >= e1000_pch_lpt) { 1691 u32 mac_reg; 1692 1693 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); 1694 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1695 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1696 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); 1697 } 1698 1699 /* Work-around I218 hang issue */ 1700 if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1701 (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1702 (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) || 1703 (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) { 1704 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1705 if (ret_val) 1706 return ret_val; 1707 } 1708 if (hw->mac.type >= e1000_pch_lpt) { 1709 /* Set platform power management values for 1710 * Latency Tolerance Reporting (LTR) 1711 * Optimized Buffer Flush/Fill (OBFF) 1712 */ 1713 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1714 if (ret_val) 1715 return ret_val; 1716 } 1717 1718 /* Clear link partner's EEE ability */ 1719 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1720 1721 if (hw->mac.type >= e1000_pch_lpt) { 1722 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); 1723 1724 if (hw->mac.type == e1000_pch_spt) { 1725 /* FEXTNVM6 K1-off workaround - for SPT only */ 1726 u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG); 1727 1728 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1729 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1730 else 1731 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1732 } 1733 1734 if (hw->dev_spec.ich8lan.disable_k1_off == TRUE) 1735 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1736 1737 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); 1738 } 1739 1740 if (!link) 1741 return E1000_SUCCESS; /* No link detected */ 1742 1743 mac->get_link_status = FALSE; 1744 1745 switch (hw->mac.type) { 1746 case e1000_pch2lan: 1747 ret_val = e1000_k1_workaround_lv(hw); 1748 if (ret_val) 1749 return ret_val; 1750 /* fall-thru */ 1751 case e1000_pchlan: 1752 if (hw->phy.type == e1000_phy_82578) { 1753 ret_val = e1000_link_stall_workaround_hv(hw); 1754 if (ret_val) 1755 return ret_val; 1756 } 1757 1758 /* Workaround for PCHx parts in half-duplex: 1759 * Set the number of preambles removed from the packet 1760 * when it is passed from the PHY to the MAC to prevent 1761 * the MAC from misinterpreting the packet type. 1762 */ 1763 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1764 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1765 1766 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != 1767 E1000_STATUS_FD) 1768 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1769 1770 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1771 break; 1772 default: 1773 break; 1774 } 1775 1776 /* Check if there was DownShift, must be checked 1777 * immediately after link-up 1778 */ 1779 e1000_check_downshift_generic(hw); 1780 1781 /* Enable/Disable EEE after link up */ 1782 if (hw->phy.type > e1000_phy_82579) { 1783 ret_val = e1000_set_eee_pchlan(hw); 1784 if (ret_val) 1785 return ret_val; 1786 } 1787 1788 /* If we are forcing speed/duplex, then we simply return since 1789 * we have already determined whether we have link or not. 1790 */ 1791 if (!mac->autoneg) 1792 return -E1000_ERR_CONFIG; 1793 1794 /* Auto-Neg is enabled. Auto Speed Detection takes care 1795 * of MAC speed/duplex configuration. So we only need to 1796 * configure Collision Distance in the MAC. 1797 */ 1798 mac->ops.config_collision_dist(hw); 1799 1800 /* Configure Flow Control now that Auto-Neg has completed. 1801 * First, we need to restore the desired flow control 1802 * settings because we may have had to re-autoneg with a 1803 * different link partner. 1804 */ 1805 ret_val = e1000_config_fc_after_link_up_generic(hw); 1806 if (ret_val) 1807 DEBUGOUT("Error configuring flow control\n"); 1808 1809 return ret_val; 1810 } 1811 1812 /** 1813 * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers 1814 * @hw: pointer to the HW structure 1815 * 1816 * Initialize family-specific function pointers for PHY, MAC, and NVM. 1817 **/ 1818 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) 1819 { 1820 DEBUGFUNC("e1000_init_function_pointers_ich8lan"); 1821 1822 hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; 1823 hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; 1824 switch (hw->mac.type) { 1825 case e1000_ich8lan: 1826 case e1000_ich9lan: 1827 case e1000_ich10lan: 1828 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; 1829 break; 1830 case e1000_pchlan: 1831 case e1000_pch2lan: 1832 case e1000_pch_lpt: 1833 case e1000_pch_spt: 1834 case e1000_pch_cnp: 1835 hw->phy.ops.init_params = e1000_init_phy_params_pchlan; 1836 break; 1837 default: 1838 break; 1839 } 1840 } 1841 1842 /** 1843 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1844 * @hw: pointer to the HW structure 1845 * 1846 * Acquires the mutex for performing NVM operations. 1847 **/ 1848 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) 1849 { 1850 DEBUGFUNC("e1000_acquire_nvm_ich8lan"); 1851 1852 ASSERT_CTX_LOCK_HELD(hw); 1853 1854 return E1000_SUCCESS; 1855 } 1856 1857 /** 1858 * e1000_release_nvm_ich8lan - Release NVM mutex 1859 * @hw: pointer to the HW structure 1860 * 1861 * Releases the mutex used while performing NVM operations. 1862 **/ 1863 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) 1864 { 1865 DEBUGFUNC("e1000_release_nvm_ich8lan"); 1866 1867 ASSERT_CTX_LOCK_HELD(hw); 1868 } 1869 1870 /** 1871 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1872 * @hw: pointer to the HW structure 1873 * 1874 * Acquires the software control flag for performing PHY and select 1875 * MAC CSR accesses. 1876 **/ 1877 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1878 { 1879 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1880 s32 ret_val = E1000_SUCCESS; 1881 1882 DEBUGFUNC("e1000_acquire_swflag_ich8lan"); 1883 1884 ASSERT_CTX_LOCK_HELD(hw); 1885 1886 while (timeout) { 1887 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 1888 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1889 break; 1890 1891 msec_delay_irq(1); 1892 timeout--; 1893 } 1894 1895 if (!timeout) { 1896 DEBUGOUT("SW has already locked the resource.\n"); 1897 ret_val = -E1000_ERR_CONFIG; 1898 goto out; 1899 } 1900 1901 timeout = SW_FLAG_TIMEOUT; 1902 1903 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1904 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 1905 1906 while (timeout) { 1907 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 1908 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1909 break; 1910 1911 msec_delay_irq(1); 1912 timeout--; 1913 } 1914 1915 if (!timeout) { 1916 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1917 E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); 1918 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1919 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 1920 ret_val = -E1000_ERR_CONFIG; 1921 goto out; 1922 } 1923 1924 out: 1925 return ret_val; 1926 } 1927 1928 /** 1929 * e1000_release_swflag_ich8lan - Release software control flag 1930 * @hw: pointer to the HW structure 1931 * 1932 * Releases the software control flag for performing PHY and select 1933 * MAC CSR accesses. 1934 **/ 1935 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1936 { 1937 u32 extcnf_ctrl; 1938 1939 DEBUGFUNC("e1000_release_swflag_ich8lan"); 1940 1941 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 1942 1943 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1944 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1945 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 1946 } else { 1947 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); 1948 } 1949 } 1950 1951 /** 1952 * e1000_check_mng_mode_ich8lan - Checks management mode 1953 * @hw: pointer to the HW structure 1954 * 1955 * This checks if the adapter has any manageability enabled. 1956 * This is a function pointer entry point only called by read/write 1957 * routines for the PHY and NVM parts. 1958 **/ 1959 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1960 { 1961 u32 fwsm; 1962 1963 DEBUGFUNC("e1000_check_mng_mode_ich8lan"); 1964 1965 fwsm = E1000_READ_REG(hw, E1000_FWSM); 1966 1967 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1968 ((fwsm & E1000_FWSM_MODE_MASK) == 1969 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1970 } 1971 1972 /** 1973 * e1000_check_mng_mode_pchlan - Checks management mode 1974 * @hw: pointer to the HW structure 1975 * 1976 * This checks if the adapter has iAMT enabled. 1977 * This is a function pointer entry point only called by read/write 1978 * routines for the PHY and NVM parts. 1979 **/ 1980 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1981 { 1982 u32 fwsm; 1983 1984 DEBUGFUNC("e1000_check_mng_mode_pchlan"); 1985 1986 fwsm = E1000_READ_REG(hw, E1000_FWSM); 1987 1988 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1989 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1990 } 1991 1992 /** 1993 * e1000_rar_set_pch2lan - Set receive address register 1994 * @hw: pointer to the HW structure 1995 * @addr: pointer to the receive address 1996 * @index: receive address array register 1997 * 1998 * Sets the receive address array register at index to the address passed 1999 * in by addr. For 82579, RAR[0] is the base address register that is to 2000 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 2001 * Use SHRA[0-3] in place of those reserved for ME. 2002 **/ 2003 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 2004 { 2005 u32 rar_low, rar_high; 2006 2007 DEBUGFUNC("e1000_rar_set_pch2lan"); 2008 2009 /* HW expects these in little endian so we reverse the byte order 2010 * from network order (big endian) to little endian 2011 */ 2012 rar_low = ((u32) addr[0] | 2013 ((u32) addr[1] << 8) | 2014 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 2015 2016 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 2017 2018 /* If MAC address zero, no need to set the AV bit */ 2019 if (rar_low || rar_high) 2020 rar_high |= E1000_RAH_AV; 2021 2022 if (index == 0) { 2023 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); 2024 E1000_WRITE_FLUSH(hw); 2025 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); 2026 E1000_WRITE_FLUSH(hw); 2027 return E1000_SUCCESS; 2028 } 2029 2030 /* RAR[1-6] are owned by manageability. Skip those and program the 2031 * next address into the SHRA register array. 2032 */ 2033 if (index < (u32) (hw->mac.rar_entry_count)) { 2034 s32 ret_val; 2035 2036 ret_val = e1000_acquire_swflag_ich8lan(hw); 2037 if (ret_val) 2038 goto out; 2039 2040 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); 2041 E1000_WRITE_FLUSH(hw); 2042 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); 2043 E1000_WRITE_FLUSH(hw); 2044 2045 e1000_release_swflag_ich8lan(hw); 2046 2047 /* verify the register updates */ 2048 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && 2049 (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) 2050 return E1000_SUCCESS; 2051 2052 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 2053 (index - 1), E1000_READ_REG(hw, E1000_FWSM)); 2054 } 2055 2056 out: 2057 DEBUGOUT1("Failed to write receive address at index %d\n", index); 2058 return -E1000_ERR_CONFIG; 2059 } 2060 2061 /** 2062 * e1000_rar_set_pch_lpt - Set receive address registers 2063 * @hw: pointer to the HW structure 2064 * @addr: pointer to the receive address 2065 * @index: receive address array register 2066 * 2067 * Sets the receive address register array at index to the address passed 2068 * in by addr. For LPT, RAR[0] is the base address register that is to 2069 * contain the MAC address. SHRA[0-10] are the shared receive address 2070 * registers that are shared between the Host and manageability engine (ME). 2071 **/ 2072 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 2073 { 2074 u32 rar_low, rar_high; 2075 u32 wlock_mac; 2076 2077 DEBUGFUNC("e1000_rar_set_pch_lpt"); 2078 2079 /* HW expects these in little endian so we reverse the byte order 2080 * from network order (big endian) to little endian 2081 */ 2082 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 2083 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 2084 2085 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 2086 2087 /* If MAC address zero, no need to set the AV bit */ 2088 if (rar_low || rar_high) 2089 rar_high |= E1000_RAH_AV; 2090 2091 if (index == 0) { 2092 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); 2093 E1000_WRITE_FLUSH(hw); 2094 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); 2095 E1000_WRITE_FLUSH(hw); 2096 return E1000_SUCCESS; 2097 } 2098 2099 /* The manageability engine (ME) can lock certain SHRAR registers that 2100 * it is using - those registers are unavailable for use. 2101 */ 2102 if (index < hw->mac.rar_entry_count) { 2103 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & 2104 E1000_FWSM_WLOCK_MAC_MASK; 2105 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2106 2107 /* Check if all SHRAR registers are locked */ 2108 if (wlock_mac == 1) 2109 goto out; 2110 2111 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2112 s32 ret_val; 2113 2114 ret_val = e1000_acquire_swflag_ich8lan(hw); 2115 2116 if (ret_val) 2117 goto out; 2118 2119 E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), 2120 rar_low); 2121 E1000_WRITE_FLUSH(hw); 2122 E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), 2123 rar_high); 2124 E1000_WRITE_FLUSH(hw); 2125 2126 e1000_release_swflag_ich8lan(hw); 2127 2128 /* verify the register updates */ 2129 if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && 2130 (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) 2131 return E1000_SUCCESS; 2132 } 2133 } 2134 2135 out: 2136 DEBUGOUT1("Failed to write receive address at index %d\n", index); 2137 return -E1000_ERR_CONFIG; 2138 } 2139 2140 /** 2141 * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses 2142 * @hw: pointer to the HW structure 2143 * @mc_addr_list: array of multicast addresses to program 2144 * @mc_addr_count: number of multicast addresses to program 2145 * 2146 * Updates entire Multicast Table Array of the PCH2 MAC and PHY. 2147 * The caller must have a packed mc_addr_list of multicast addresses. 2148 **/ 2149 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, 2150 u8 *mc_addr_list, 2151 u32 mc_addr_count) 2152 { 2153 u16 phy_reg = 0; 2154 int i; 2155 s32 ret_val; 2156 2157 DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); 2158 2159 e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); 2160 2161 ret_val = hw->phy.ops.acquire(hw); 2162 if (ret_val) 2163 return; 2164 2165 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2166 if (ret_val) 2167 goto release; 2168 2169 for (i = 0; i < hw->mac.mta_reg_count; i++) { 2170 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 2171 (u16)(hw->mac.mta_shadow[i] & 2172 0xFFFF)); 2173 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), 2174 (u16)((hw->mac.mta_shadow[i] >> 16) & 2175 0xFFFF)); 2176 } 2177 2178 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2179 2180 release: 2181 hw->phy.ops.release(hw); 2182 } 2183 2184 /** 2185 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2186 * @hw: pointer to the HW structure 2187 * 2188 * Checks if firmware is blocking the reset of the PHY. 2189 * This is a function pointer entry point only called by 2190 * reset routines. 2191 **/ 2192 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2193 { 2194 u32 fwsm; 2195 bool blocked = FALSE; 2196 int i = 0; 2197 2198 DEBUGFUNC("e1000_check_reset_block_ich8lan"); 2199 2200 do { 2201 fwsm = E1000_READ_REG(hw, E1000_FWSM); 2202 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) { 2203 blocked = TRUE; 2204 msec_delay(10); 2205 continue; 2206 } 2207 blocked = FALSE; 2208 } while (blocked && (i++ < 30)); 2209 return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS; 2210 } 2211 2212 /** 2213 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2214 * @hw: pointer to the HW structure 2215 * 2216 * Assumes semaphore already acquired. 2217 * 2218 **/ 2219 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2220 { 2221 u16 phy_data; 2222 u32 strap = E1000_READ_REG(hw, E1000_STRAP); 2223 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2224 E1000_STRAP_SMT_FREQ_SHIFT; 2225 s32 ret_val; 2226 2227 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2228 2229 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2230 if (ret_val) 2231 return ret_val; 2232 2233 phy_data &= ~HV_SMB_ADDR_MASK; 2234 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2235 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2236 2237 if (hw->phy.type == e1000_phy_i217) { 2238 /* Restore SMBus frequency */ 2239 if (freq--) { 2240 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2241 phy_data |= (freq & (1 << 0)) << 2242 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2243 phy_data |= (freq & (1 << 1)) << 2244 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2245 } else { 2246 DEBUGOUT("Unsupported SMB frequency in PHY\n"); 2247 } 2248 } 2249 2250 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2251 } 2252 2253 /** 2254 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2255 * @hw: pointer to the HW structure 2256 * 2257 * SW should configure the LCD from the NVM extended configuration region 2258 * as a workaround for certain parts. 2259 **/ 2260 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2261 { 2262 struct e1000_phy_info *phy = &hw->phy; 2263 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2264 s32 ret_val = E1000_SUCCESS; 2265 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2266 2267 DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); 2268 2269 /* Initialize the PHY from the NVM on ICH platforms. This 2270 * is needed due to an issue where the NVM configuration is 2271 * not properly autoloaded after power transitions. 2272 * Therefore, after each PHY reset, we will load the 2273 * configuration data out of the NVM manually. 2274 */ 2275 switch (hw->mac.type) { 2276 case e1000_ich8lan: 2277 if (phy->type != e1000_phy_igp_3) 2278 return ret_val; 2279 2280 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || 2281 (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { 2282 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2283 break; 2284 } 2285 /* Fall-thru */ 2286 case e1000_pchlan: 2287 case e1000_pch2lan: 2288 case e1000_pch_lpt: 2289 case e1000_pch_spt: 2290 case e1000_pch_cnp: 2291 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2292 break; 2293 default: 2294 return ret_val; 2295 } 2296 2297 ret_val = hw->phy.ops.acquire(hw); 2298 if (ret_val) 2299 return ret_val; 2300 2301 data = E1000_READ_REG(hw, E1000_FEXTNVM); 2302 if (!(data & sw_cfg_mask)) 2303 goto release; 2304 2305 /* Make sure HW does not configure LCD from PHY 2306 * extended configuration before SW configuration 2307 */ 2308 data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 2309 if ((hw->mac.type < e1000_pch2lan) && 2310 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2311 goto release; 2312 2313 cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); 2314 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2315 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2316 if (!cnf_size) 2317 goto release; 2318 2319 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2320 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2321 2322 if (((hw->mac.type == e1000_pchlan) && 2323 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2324 (hw->mac.type > e1000_pchlan)) { 2325 /* HW configures the SMBus address and LEDs when the 2326 * OEM and LCD Write Enable bits are set in the NVM. 2327 * When both NVM bits are cleared, SW will configure 2328 * them instead. 2329 */ 2330 ret_val = e1000_write_smbus_addr(hw); 2331 if (ret_val) 2332 goto release; 2333 2334 data = E1000_READ_REG(hw, E1000_LEDCTL); 2335 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2336 (u16)data); 2337 if (ret_val) 2338 goto release; 2339 } 2340 2341 /* Configure LCD from extended configuration region. */ 2342 2343 /* cnf_base_addr is in DWORD */ 2344 word_addr = (u16)(cnf_base_addr << 1); 2345 2346 for (i = 0; i < cnf_size; i++) { 2347 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, 2348 ®_data); 2349 if (ret_val) 2350 goto release; 2351 2352 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), 2353 1, ®_addr); 2354 if (ret_val) 2355 goto release; 2356 2357 /* Save off the PHY page for future writes. */ 2358 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2359 phy_page = reg_data; 2360 continue; 2361 } 2362 2363 reg_addr &= PHY_REG_MASK; 2364 reg_addr |= phy_page; 2365 2366 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, 2367 reg_data); 2368 if (ret_val) 2369 goto release; 2370 } 2371 2372 release: 2373 hw->phy.ops.release(hw); 2374 return ret_val; 2375 } 2376 2377 /** 2378 * e1000_k1_gig_workaround_hv - K1 Si workaround 2379 * @hw: pointer to the HW structure 2380 * @link: link up bool flag 2381 * 2382 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2383 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2384 * If link is down, the function will restore the default K1 setting located 2385 * in the NVM. 2386 **/ 2387 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2388 { 2389 s32 ret_val = E1000_SUCCESS; 2390 u16 status_reg = 0; 2391 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2392 2393 DEBUGFUNC("e1000_k1_gig_workaround_hv"); 2394 2395 if (hw->mac.type != e1000_pchlan) 2396 return E1000_SUCCESS; 2397 2398 /* Wrap the whole flow with the sw flag */ 2399 ret_val = hw->phy.ops.acquire(hw); 2400 if (ret_val) 2401 return ret_val; 2402 2403 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2404 if (link) { 2405 if (hw->phy.type == e1000_phy_82578) { 2406 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, 2407 &status_reg); 2408 if (ret_val) 2409 goto release; 2410 2411 status_reg &= (BM_CS_STATUS_LINK_UP | 2412 BM_CS_STATUS_RESOLVED | 2413 BM_CS_STATUS_SPEED_MASK); 2414 2415 if (status_reg == (BM_CS_STATUS_LINK_UP | 2416 BM_CS_STATUS_RESOLVED | 2417 BM_CS_STATUS_SPEED_1000)) 2418 k1_enable = FALSE; 2419 } 2420 2421 if (hw->phy.type == e1000_phy_82577) { 2422 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, 2423 &status_reg); 2424 if (ret_val) 2425 goto release; 2426 2427 status_reg &= (HV_M_STATUS_LINK_UP | 2428 HV_M_STATUS_AUTONEG_COMPLETE | 2429 HV_M_STATUS_SPEED_MASK); 2430 2431 if (status_reg == (HV_M_STATUS_LINK_UP | 2432 HV_M_STATUS_AUTONEG_COMPLETE | 2433 HV_M_STATUS_SPEED_1000)) 2434 k1_enable = FALSE; 2435 } 2436 2437 /* Link stall fix for link up */ 2438 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 2439 0x0100); 2440 if (ret_val) 2441 goto release; 2442 2443 } else { 2444 /* Link stall fix for link down */ 2445 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 2446 0x4100); 2447 if (ret_val) 2448 goto release; 2449 } 2450 2451 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2452 2453 release: 2454 hw->phy.ops.release(hw); 2455 2456 return ret_val; 2457 } 2458 2459 /** 2460 * e1000_configure_k1_ich8lan - Configure K1 power state 2461 * @hw: pointer to the HW structure 2462 * @enable: K1 state to configure 2463 * 2464 * Configure the K1 power state based on the provided parameter. 2465 * Assumes semaphore already acquired. 2466 * 2467 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2468 **/ 2469 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2470 { 2471 s32 ret_val; 2472 u32 ctrl_reg = 0; 2473 u32 ctrl_ext = 0; 2474 u32 reg = 0; 2475 u16 kmrn_reg = 0; 2476 2477 DEBUGFUNC("e1000_configure_k1_ich8lan"); 2478 2479 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2480 &kmrn_reg); 2481 if (ret_val) 2482 return ret_val; 2483 2484 if (k1_enable) 2485 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2486 else 2487 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2488 2489 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2490 kmrn_reg); 2491 if (ret_val) 2492 return ret_val; 2493 2494 usec_delay(20); 2495 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 2496 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); 2497 2498 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2499 reg |= E1000_CTRL_FRCSPD; 2500 E1000_WRITE_REG(hw, E1000_CTRL, reg); 2501 2502 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2503 E1000_WRITE_FLUSH(hw); 2504 usec_delay(20); 2505 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); 2506 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 2507 E1000_WRITE_FLUSH(hw); 2508 usec_delay(20); 2509 2510 return E1000_SUCCESS; 2511 } 2512 2513 /** 2514 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2515 * @hw: pointer to the HW structure 2516 * @d0_state: boolean if entering d0 or d3 device state 2517 * 2518 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2519 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2520 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2521 **/ 2522 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2523 { 2524 s32 ret_val = 0; 2525 u32 mac_reg; 2526 u16 oem_reg; 2527 2528 DEBUGFUNC("e1000_oem_bits_config_ich8lan"); 2529 2530 if (hw->mac.type < e1000_pchlan) 2531 return ret_val; 2532 2533 ret_val = hw->phy.ops.acquire(hw); 2534 if (ret_val) 2535 return ret_val; 2536 2537 if (hw->mac.type == e1000_pchlan) { 2538 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 2539 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2540 goto release; 2541 } 2542 2543 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); 2544 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2545 goto release; 2546 2547 mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); 2548 2549 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); 2550 if (ret_val) 2551 goto release; 2552 2553 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2554 2555 if (d0_state) { 2556 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2557 oem_reg |= HV_OEM_BITS_GBE_DIS; 2558 2559 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2560 oem_reg |= HV_OEM_BITS_LPLU; 2561 } else { 2562 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2563 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2564 oem_reg |= HV_OEM_BITS_GBE_DIS; 2565 2566 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2567 E1000_PHY_CTRL_NOND0A_LPLU)) 2568 oem_reg |= HV_OEM_BITS_LPLU; 2569 } 2570 2571 /* Set Restart auto-neg to activate the bits */ 2572 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2573 !hw->phy.ops.check_reset_block(hw)) 2574 oem_reg |= HV_OEM_BITS_RESTART_AN; 2575 2576 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); 2577 2578 release: 2579 hw->phy.ops.release(hw); 2580 2581 return ret_val; 2582 } 2583 2584 2585 /** 2586 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2587 * @hw: pointer to the HW structure 2588 **/ 2589 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2590 { 2591 s32 ret_val; 2592 u16 data; 2593 2594 DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); 2595 2596 ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); 2597 if (ret_val) 2598 return ret_val; 2599 2600 data |= HV_KMRN_MDIO_SLOW; 2601 2602 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); 2603 2604 return ret_val; 2605 } 2606 2607 /** 2608 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2609 * done after every PHY reset. 2610 **/ 2611 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2612 { 2613 s32 ret_val = E1000_SUCCESS; 2614 u16 phy_data; 2615 2616 DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); 2617 2618 if (hw->mac.type != e1000_pchlan) 2619 return E1000_SUCCESS; 2620 2621 /* Set MDIO slow mode before any other MDIO access */ 2622 if (hw->phy.type == e1000_phy_82577) { 2623 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2624 if (ret_val) 2625 return ret_val; 2626 } 2627 2628 if (((hw->phy.type == e1000_phy_82577) && 2629 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2630 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2631 /* Disable generation of early preamble */ 2632 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); 2633 if (ret_val) 2634 return ret_val; 2635 2636 /* Preamble tuning for SSC */ 2637 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, 2638 0xA204); 2639 if (ret_val) 2640 return ret_val; 2641 } 2642 2643 if (hw->phy.type == e1000_phy_82578) { 2644 /* Return registers to default by doing a soft reset then 2645 * writing 0x3140 to the control register. 2646 */ 2647 if (hw->phy.revision < 2) { 2648 e1000_phy_sw_reset_generic(hw); 2649 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, 2650 0x3140); 2651 if (ret_val) 2652 return ret_val; 2653 } 2654 } 2655 2656 /* Select page 0 */ 2657 ret_val = hw->phy.ops.acquire(hw); 2658 if (ret_val) 2659 return ret_val; 2660 2661 hw->phy.addr = 1; 2662 ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2663 hw->phy.ops.release(hw); 2664 if (ret_val) 2665 return ret_val; 2666 2667 /* Configure the K1 Si workaround during phy reset assuming there is 2668 * link so that it disables K1 if link is in 1Gbps. 2669 */ 2670 ret_val = e1000_k1_gig_workaround_hv(hw, TRUE); 2671 if (ret_val) 2672 return ret_val; 2673 2674 /* Workaround for link disconnects on a busy hub in half duplex */ 2675 ret_val = hw->phy.ops.acquire(hw); 2676 if (ret_val) 2677 return ret_val; 2678 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2679 if (ret_val) 2680 goto release; 2681 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, 2682 phy_data & 0x00FF); 2683 if (ret_val) 2684 goto release; 2685 2686 /* set MSE higher to enable link to stay up when noise is high */ 2687 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2688 release: 2689 hw->phy.ops.release(hw); 2690 2691 return ret_val; 2692 } 2693 2694 /** 2695 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2696 * @hw: pointer to the HW structure 2697 **/ 2698 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2699 { 2700 u32 mac_reg; 2701 u16 i, phy_reg = 0; 2702 s32 ret_val; 2703 2704 DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); 2705 2706 ret_val = hw->phy.ops.acquire(hw); 2707 if (ret_val) 2708 return; 2709 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2710 if (ret_val) 2711 goto release; 2712 2713 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2714 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2715 mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); 2716 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2717 (u16)(mac_reg & 0xFFFF)); 2718 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2719 (u16)((mac_reg >> 16) & 0xFFFF)); 2720 2721 mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); 2722 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2723 (u16)(mac_reg & 0xFFFF)); 2724 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2725 (u16)((mac_reg & E1000_RAH_AV) 2726 >> 16)); 2727 } 2728 2729 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2730 2731 release: 2732 hw->phy.ops.release(hw); 2733 } 2734 2735 static u32 e1000_calc_rx_da_crc(u8 mac[]) 2736 { 2737 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ 2738 u32 i, j, mask, crc; 2739 2740 DEBUGFUNC("e1000_calc_rx_da_crc"); 2741 2742 crc = 0xffffffff; 2743 for (i = 0; i < 6; i++) { 2744 crc = crc ^ mac[i]; 2745 for (j = 8; j > 0; j--) { 2746 mask = (crc & 1) * (-1); 2747 crc = (crc >> 1) ^ (poly & mask); 2748 } 2749 } 2750 return ~crc; 2751 } 2752 2753 /** 2754 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2755 * with 82579 PHY 2756 * @hw: pointer to the HW structure 2757 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2758 **/ 2759 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2760 { 2761 s32 ret_val = E1000_SUCCESS; 2762 u16 phy_reg, data; 2763 u32 mac_reg; 2764 u16 i; 2765 2766 DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); 2767 2768 if (hw->mac.type < e1000_pch2lan) 2769 return E1000_SUCCESS; 2770 2771 /* disable Rx path while enabling/disabling workaround */ 2772 hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); 2773 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), 2774 phy_reg | (1 << 14)); 2775 if (ret_val) 2776 return ret_val; 2777 2778 if (enable) { 2779 /* Write Rx addresses (rar_entry_count for RAL/H, and 2780 * SHRAL/H) and initial CRC values to the MAC 2781 */ 2782 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2783 u8 mac_addr[ETHER_ADDR_LEN] = {0}; 2784 u32 addr_high, addr_low; 2785 2786 addr_high = E1000_READ_REG(hw, E1000_RAH(i)); 2787 if (!(addr_high & E1000_RAH_AV)) 2788 continue; 2789 addr_low = E1000_READ_REG(hw, E1000_RAL(i)); 2790 mac_addr[0] = (addr_low & 0xFF); 2791 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2792 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2793 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2794 mac_addr[4] = (addr_high & 0xFF); 2795 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2796 2797 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), 2798 e1000_calc_rx_da_crc(mac_addr)); 2799 } 2800 2801 /* Write Rx addresses to the PHY */ 2802 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2803 2804 /* Enable jumbo frame workaround in the MAC */ 2805 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); 2806 mac_reg &= ~(1 << 14); 2807 mac_reg |= (7 << 15); 2808 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); 2809 2810 mac_reg = E1000_READ_REG(hw, E1000_RCTL); 2811 mac_reg |= E1000_RCTL_SECRC; 2812 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); 2813 2814 ret_val = e1000_read_kmrn_reg_generic(hw, 2815 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2816 &data); 2817 if (ret_val) 2818 return ret_val; 2819 ret_val = e1000_write_kmrn_reg_generic(hw, 2820 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2821 data | (1 << 0)); 2822 if (ret_val) 2823 return ret_val; 2824 ret_val = e1000_read_kmrn_reg_generic(hw, 2825 E1000_KMRNCTRLSTA_HD_CTRL, 2826 &data); 2827 if (ret_val) 2828 return ret_val; 2829 data &= ~(0xF << 8); 2830 data |= (0xB << 8); 2831 ret_val = e1000_write_kmrn_reg_generic(hw, 2832 E1000_KMRNCTRLSTA_HD_CTRL, 2833 data); 2834 if (ret_val) 2835 return ret_val; 2836 2837 /* Enable jumbo frame workaround in the PHY */ 2838 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); 2839 data &= ~(0x7F << 5); 2840 data |= (0x37 << 5); 2841 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); 2842 if (ret_val) 2843 return ret_val; 2844 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); 2845 data &= ~(1 << 13); 2846 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); 2847 if (ret_val) 2848 return ret_val; 2849 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); 2850 data &= ~(0x3FF << 2); 2851 data |= (E1000_TX_PTR_GAP << 2); 2852 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); 2853 if (ret_val) 2854 return ret_val; 2855 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); 2856 if (ret_val) 2857 return ret_val; 2858 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); 2859 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | 2860 (1 << 10)); 2861 if (ret_val) 2862 return ret_val; 2863 } else { 2864 /* Write MAC register values back to h/w defaults */ 2865 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); 2866 mac_reg &= ~(0xF << 14); 2867 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); 2868 2869 mac_reg = E1000_READ_REG(hw, E1000_RCTL); 2870 mac_reg &= ~E1000_RCTL_SECRC; 2871 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); 2872 2873 ret_val = e1000_read_kmrn_reg_generic(hw, 2874 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2875 &data); 2876 if (ret_val) 2877 return ret_val; 2878 ret_val = e1000_write_kmrn_reg_generic(hw, 2879 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2880 data & ~(1 << 0)); 2881 if (ret_val) 2882 return ret_val; 2883 ret_val = e1000_read_kmrn_reg_generic(hw, 2884 E1000_KMRNCTRLSTA_HD_CTRL, 2885 &data); 2886 if (ret_val) 2887 return ret_val; 2888 data &= ~(0xF << 8); 2889 data |= (0xB << 8); 2890 ret_val = e1000_write_kmrn_reg_generic(hw, 2891 E1000_KMRNCTRLSTA_HD_CTRL, 2892 data); 2893 if (ret_val) 2894 return ret_val; 2895 2896 /* Write PHY register values back to h/w defaults */ 2897 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); 2898 data &= ~(0x7F << 5); 2899 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); 2900 if (ret_val) 2901 return ret_val; 2902 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); 2903 data |= (1 << 13); 2904 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); 2905 if (ret_val) 2906 return ret_val; 2907 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); 2908 data &= ~(0x3FF << 2); 2909 data |= (0x8 << 2); 2910 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); 2911 if (ret_val) 2912 return ret_val; 2913 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); 2914 if (ret_val) 2915 return ret_val; 2916 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); 2917 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & 2918 ~(1 << 10)); 2919 if (ret_val) 2920 return ret_val; 2921 } 2922 2923 /* re-enable Rx path after enabling/disabling workaround */ 2924 return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & 2925 ~(1 << 14)); 2926 } 2927 2928 /** 2929 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2930 * done after every PHY reset. 2931 **/ 2932 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2933 { 2934 s32 ret_val = E1000_SUCCESS; 2935 2936 DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); 2937 2938 if (hw->mac.type != e1000_pch2lan) 2939 return E1000_SUCCESS; 2940 2941 /* Set MDIO slow mode before any other MDIO access */ 2942 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2943 if (ret_val) 2944 return ret_val; 2945 2946 ret_val = hw->phy.ops.acquire(hw); 2947 if (ret_val) 2948 return ret_val; 2949 /* set MSE higher to enable link to stay up when noise is high */ 2950 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2951 if (ret_val) 2952 goto release; 2953 /* drop link after 5 times MSE threshold was reached */ 2954 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2955 release: 2956 hw->phy.ops.release(hw); 2957 2958 return ret_val; 2959 } 2960 2961 /** 2962 * e1000_k1_gig_workaround_lv - K1 Si workaround 2963 * @hw: pointer to the HW structure 2964 * 2965 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2966 * Disable K1 for 1000 and 100 speeds 2967 **/ 2968 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2969 { 2970 s32 ret_val = E1000_SUCCESS; 2971 u16 status_reg = 0; 2972 2973 DEBUGFUNC("e1000_k1_workaround_lv"); 2974 2975 if (hw->mac.type != e1000_pch2lan) 2976 return E1000_SUCCESS; 2977 2978 /* Set K1 beacon duration based on 10Mbs speed */ 2979 ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); 2980 if (ret_val) 2981 return ret_val; 2982 2983 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2984 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2985 if (status_reg & 2986 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2987 u16 pm_phy_reg; 2988 2989 /* LV 1G/100 Packet drop issue wa */ 2990 ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, 2991 &pm_phy_reg); 2992 if (ret_val) 2993 return ret_val; 2994 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2995 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, 2996 pm_phy_reg); 2997 if (ret_val) 2998 return ret_val; 2999 } else { 3000 u32 mac_reg; 3001 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); 3002 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 3003 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 3004 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); 3005 } 3006 } 3007 3008 return ret_val; 3009 } 3010 3011 /** 3012 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 3013 * @hw: pointer to the HW structure 3014 * @gate: boolean set to TRUE to gate, FALSE to ungate 3015 * 3016 * Gate/ungate the automatic PHY configuration via hardware; perform 3017 * the configuration via software instead. 3018 **/ 3019 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 3020 { 3021 u32 extcnf_ctrl; 3022 3023 DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); 3024 3025 if (hw->mac.type < e1000_pch2lan) 3026 return; 3027 3028 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 3029 3030 if (gate) 3031 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 3032 else 3033 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 3034 3035 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 3036 } 3037 3038 /** 3039 * e1000_lan_init_done_ich8lan - Check for PHY config completion 3040 * @hw: pointer to the HW structure 3041 * 3042 * Check the appropriate indication the MAC has finished configuring the 3043 * PHY after a software reset. 3044 **/ 3045 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 3046 { 3047 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 3048 3049 DEBUGFUNC("e1000_lan_init_done_ich8lan"); 3050 3051 /* Wait for basic configuration completes before proceeding */ 3052 do { 3053 data = E1000_READ_REG(hw, E1000_STATUS); 3054 data &= E1000_STATUS_LAN_INIT_DONE; 3055 usec_delay(100); 3056 } while ((!data) && --loop); 3057 3058 /* If basic configuration is incomplete before the above loop 3059 * count reaches 0, loading the configuration from NVM will 3060 * leave the PHY in a bad state possibly resulting in no link. 3061 */ 3062 if (loop == 0) 3063 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); 3064 3065 /* Clear the Init Done bit for the next init event */ 3066 data = E1000_READ_REG(hw, E1000_STATUS); 3067 data &= ~E1000_STATUS_LAN_INIT_DONE; 3068 E1000_WRITE_REG(hw, E1000_STATUS, data); 3069 } 3070 3071 /** 3072 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 3073 * @hw: pointer to the HW structure 3074 **/ 3075 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 3076 { 3077 s32 ret_val = E1000_SUCCESS; 3078 u16 reg; 3079 3080 DEBUGFUNC("e1000_post_phy_reset_ich8lan"); 3081 3082 if (hw->phy.ops.check_reset_block(hw)) 3083 return E1000_SUCCESS; 3084 3085 /* Allow time for h/w to get to quiescent state after reset */ 3086 msec_delay(10); 3087 3088 /* Perform any necessary post-reset workarounds */ 3089 switch (hw->mac.type) { 3090 case e1000_pchlan: 3091 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 3092 if (ret_val) 3093 return ret_val; 3094 break; 3095 case e1000_pch2lan: 3096 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 3097 if (ret_val) 3098 return ret_val; 3099 break; 3100 default: 3101 break; 3102 } 3103 3104 /* Clear the host wakeup bit after lcd reset */ 3105 if (hw->mac.type >= e1000_pchlan) { 3106 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); 3107 reg &= ~BM_WUC_HOST_WU_BIT; 3108 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); 3109 } 3110 3111 /* Configure the LCD with the extended configuration region in NVM */ 3112 ret_val = e1000_sw_lcd_config_ich8lan(hw); 3113 if (ret_val) 3114 return ret_val; 3115 3116 /* Configure the LCD with the OEM bits in NVM */ 3117 ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE); 3118 3119 if (hw->mac.type == e1000_pch2lan) { 3120 /* Ungate automatic PHY configuration on non-managed 82579 */ 3121 if (!(E1000_READ_REG(hw, E1000_FWSM) & 3122 E1000_ICH_FWSM_FW_VALID)) { 3123 msec_delay(10); 3124 e1000_gate_hw_phy_config_ich8lan(hw, FALSE); 3125 } 3126 3127 /* Set EEE LPI Update Timer to 200usec */ 3128 ret_val = hw->phy.ops.acquire(hw); 3129 if (ret_val) 3130 return ret_val; 3131 ret_val = e1000_write_emi_reg_locked(hw, 3132 I82579_LPI_UPDATE_TIMER, 3133 0x1387); 3134 hw->phy.ops.release(hw); 3135 } 3136 3137 return ret_val; 3138 } 3139 3140 /** 3141 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 3142 * @hw: pointer to the HW structure 3143 * 3144 * Resets the PHY 3145 * This is a function pointer entry point called by drivers 3146 * or other shared routines. 3147 **/ 3148 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 3149 { 3150 s32 ret_val = E1000_SUCCESS; 3151 3152 DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); 3153 3154 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 3155 if ((hw->mac.type == e1000_pch2lan) && 3156 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) 3157 e1000_gate_hw_phy_config_ich8lan(hw, TRUE); 3158 3159 ret_val = e1000_phy_hw_reset_generic(hw); 3160 if (ret_val) 3161 return ret_val; 3162 3163 return e1000_post_phy_reset_ich8lan(hw); 3164 } 3165 3166 /** 3167 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 3168 * @hw: pointer to the HW structure 3169 * @active: TRUE to enable LPLU, FALSE to disable 3170 * 3171 * Sets the LPLU state according to the active flag. For PCH, if OEM write 3172 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 3173 * the phy speed. This function will manually set the LPLU bit and restart 3174 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 3175 * since it configures the same bit. 3176 **/ 3177 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 3178 { 3179 s32 ret_val; 3180 u16 oem_reg; 3181 3182 DEBUGFUNC("e1000_set_lplu_state_pchlan"); 3183 ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); 3184 if (ret_val) 3185 return ret_val; 3186 3187 if (active) 3188 oem_reg |= HV_OEM_BITS_LPLU; 3189 else 3190 oem_reg &= ~HV_OEM_BITS_LPLU; 3191 3192 if (!hw->phy.ops.check_reset_block(hw)) 3193 oem_reg |= HV_OEM_BITS_RESTART_AN; 3194 3195 return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); 3196 } 3197 3198 /** 3199 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 3200 * @hw: pointer to the HW structure 3201 * @active: TRUE to enable LPLU, FALSE to disable 3202 * 3203 * Sets the LPLU D0 state according to the active flag. When 3204 * activating LPLU this function also disables smart speed 3205 * and vice versa. LPLU will not be activated unless the 3206 * device autonegotiation advertisement meets standards of 3207 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3208 * This is a function pointer entry point only called by 3209 * PHY setup routines. 3210 **/ 3211 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3212 { 3213 struct e1000_phy_info *phy = &hw->phy; 3214 u32 phy_ctrl; 3215 s32 ret_val = E1000_SUCCESS; 3216 u16 data; 3217 3218 DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); 3219 3220 if (phy->type == e1000_phy_ife) 3221 return E1000_SUCCESS; 3222 3223 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 3224 3225 if (active) { 3226 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3227 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3228 3229 if (phy->type != e1000_phy_igp_3) 3230 return E1000_SUCCESS; 3231 3232 /* Call gig speed drop workaround on LPLU before accessing 3233 * any PHY registers 3234 */ 3235 if (hw->mac.type == e1000_ich8lan) 3236 e1000_gig_downshift_workaround_ich8lan(hw); 3237 3238 /* When LPLU is enabled, we should disable SmartSpeed */ 3239 ret_val = phy->ops.read_reg(hw, 3240 IGP01E1000_PHY_PORT_CONFIG, 3241 &data); 3242 if (ret_val) 3243 return ret_val; 3244 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3245 ret_val = phy->ops.write_reg(hw, 3246 IGP01E1000_PHY_PORT_CONFIG, 3247 data); 3248 if (ret_val) 3249 return ret_val; 3250 } else { 3251 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3252 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3253 3254 if (phy->type != e1000_phy_igp_3) 3255 return E1000_SUCCESS; 3256 3257 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3258 * during Dx states where the power conservation is most 3259 * important. During driver activity we should enable 3260 * SmartSpeed, so performance is maintained. 3261 */ 3262 if (phy->smart_speed == e1000_smart_speed_on) { 3263 ret_val = phy->ops.read_reg(hw, 3264 IGP01E1000_PHY_PORT_CONFIG, 3265 &data); 3266 if (ret_val) 3267 return ret_val; 3268 3269 data |= IGP01E1000_PSCFR_SMART_SPEED; 3270 ret_val = phy->ops.write_reg(hw, 3271 IGP01E1000_PHY_PORT_CONFIG, 3272 data); 3273 if (ret_val) 3274 return ret_val; 3275 } else if (phy->smart_speed == e1000_smart_speed_off) { 3276 ret_val = phy->ops.read_reg(hw, 3277 IGP01E1000_PHY_PORT_CONFIG, 3278 &data); 3279 if (ret_val) 3280 return ret_val; 3281 3282 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3283 ret_val = phy->ops.write_reg(hw, 3284 IGP01E1000_PHY_PORT_CONFIG, 3285 data); 3286 if (ret_val) 3287 return ret_val; 3288 } 3289 } 3290 3291 return E1000_SUCCESS; 3292 } 3293 3294 /** 3295 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3296 * @hw: pointer to the HW structure 3297 * @active: TRUE to enable LPLU, FALSE to disable 3298 * 3299 * Sets the LPLU D3 state according to the active flag. When 3300 * activating LPLU this function also disables smart speed 3301 * and vice versa. LPLU will not be activated unless the 3302 * device autonegotiation advertisement meets standards of 3303 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3304 * This is a function pointer entry point only called by 3305 * PHY setup routines. 3306 **/ 3307 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3308 { 3309 struct e1000_phy_info *phy = &hw->phy; 3310 u32 phy_ctrl; 3311 s32 ret_val = E1000_SUCCESS; 3312 u16 data; 3313 3314 DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); 3315 3316 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 3317 3318 if (!active) { 3319 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3320 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3321 3322 if (phy->type != e1000_phy_igp_3) 3323 return E1000_SUCCESS; 3324 3325 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3326 * during Dx states where the power conservation is most 3327 * important. During driver activity we should enable 3328 * SmartSpeed, so performance is maintained. 3329 */ 3330 if (phy->smart_speed == e1000_smart_speed_on) { 3331 ret_val = phy->ops.read_reg(hw, 3332 IGP01E1000_PHY_PORT_CONFIG, 3333 &data); 3334 if (ret_val) 3335 return ret_val; 3336 3337 data |= IGP01E1000_PSCFR_SMART_SPEED; 3338 ret_val = phy->ops.write_reg(hw, 3339 IGP01E1000_PHY_PORT_CONFIG, 3340 data); 3341 if (ret_val) 3342 return ret_val; 3343 } else if (phy->smart_speed == e1000_smart_speed_off) { 3344 ret_val = phy->ops.read_reg(hw, 3345 IGP01E1000_PHY_PORT_CONFIG, 3346 &data); 3347 if (ret_val) 3348 return ret_val; 3349 3350 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3351 ret_val = phy->ops.write_reg(hw, 3352 IGP01E1000_PHY_PORT_CONFIG, 3353 data); 3354 if (ret_val) 3355 return ret_val; 3356 } 3357 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3358 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3359 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3360 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3361 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3362 3363 if (phy->type != e1000_phy_igp_3) 3364 return E1000_SUCCESS; 3365 3366 /* Call gig speed drop workaround on LPLU before accessing 3367 * any PHY registers 3368 */ 3369 if (hw->mac.type == e1000_ich8lan) 3370 e1000_gig_downshift_workaround_ich8lan(hw); 3371 3372 /* When LPLU is enabled, we should disable SmartSpeed */ 3373 ret_val = phy->ops.read_reg(hw, 3374 IGP01E1000_PHY_PORT_CONFIG, 3375 &data); 3376 if (ret_val) 3377 return ret_val; 3378 3379 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3380 ret_val = phy->ops.write_reg(hw, 3381 IGP01E1000_PHY_PORT_CONFIG, 3382 data); 3383 } 3384 3385 return ret_val; 3386 } 3387 3388 /** 3389 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3390 * @hw: pointer to the HW structure 3391 * @bank: pointer to the variable that returns the active bank 3392 * 3393 * Reads signature byte from the NVM using the flash access registers. 3394 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3395 **/ 3396 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3397 { 3398 u32 eecd; 3399 struct e1000_nvm_info *nvm = &hw->nvm; 3400 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3401 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3402 u32 nvm_dword = 0; 3403 u8 sig_byte = 0; 3404 s32 ret_val; 3405 3406 DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); 3407 3408 switch (hw->mac.type) { 3409 case e1000_pch_spt: 3410 case e1000_pch_cnp: 3411 bank1_offset = nvm->flash_bank_size; 3412 act_offset = E1000_ICH_NVM_SIG_WORD; 3413 3414 /* set bank to 0 in case flash read fails */ 3415 *bank = 0; 3416 3417 /* Check bank 0 */ 3418 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3419 &nvm_dword); 3420 if (ret_val) 3421 return ret_val; 3422 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3423 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3424 E1000_ICH_NVM_SIG_VALUE) { 3425 *bank = 0; 3426 return E1000_SUCCESS; 3427 } 3428 3429 /* Check bank 1 */ 3430 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3431 bank1_offset, 3432 &nvm_dword); 3433 if (ret_val) 3434 return ret_val; 3435 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3436 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3437 E1000_ICH_NVM_SIG_VALUE) { 3438 *bank = 1; 3439 return E1000_SUCCESS; 3440 } 3441 3442 DEBUGOUT("ERROR: No valid NVM bank present\n"); 3443 return -E1000_ERR_NVM; 3444 case e1000_ich8lan: 3445 case e1000_ich9lan: 3446 eecd = E1000_READ_REG(hw, E1000_EECD); 3447 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3448 E1000_EECD_SEC1VAL_VALID_MASK) { 3449 if (eecd & E1000_EECD_SEC1VAL) 3450 *bank = 1; 3451 else 3452 *bank = 0; 3453 3454 return E1000_SUCCESS; 3455 } 3456 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3457 /* fall-thru */ 3458 default: 3459 /* set bank to 0 in case flash read fails */ 3460 *bank = 0; 3461 3462 /* Check bank 0 */ 3463 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3464 &sig_byte); 3465 if (ret_val) 3466 return ret_val; 3467 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3468 E1000_ICH_NVM_SIG_VALUE) { 3469 *bank = 0; 3470 return E1000_SUCCESS; 3471 } 3472 3473 /* Check bank 1 */ 3474 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3475 bank1_offset, 3476 &sig_byte); 3477 if (ret_val) 3478 return ret_val; 3479 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3480 E1000_ICH_NVM_SIG_VALUE) { 3481 *bank = 1; 3482 return E1000_SUCCESS; 3483 } 3484 3485 DEBUGOUT("ERROR: No valid NVM bank present\n"); 3486 return -E1000_ERR_NVM; 3487 } 3488 } 3489 3490 /** 3491 * e1000_read_nvm_spt - NVM access for SPT 3492 * @hw: pointer to the HW structure 3493 * @offset: The offset (in bytes) of the word(s) to read. 3494 * @words: Size of data to read in words. 3495 * @data: pointer to the word(s) to read at offset. 3496 * 3497 * Reads a word(s) from the NVM 3498 **/ 3499 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3500 u16 *data) 3501 { 3502 struct e1000_nvm_info *nvm = &hw->nvm; 3503 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3504 u32 act_offset; 3505 s32 ret_val = E1000_SUCCESS; 3506 u32 bank = 0; 3507 u32 dword = 0; 3508 u16 offset_to_read; 3509 u16 i; 3510 3511 DEBUGFUNC("e1000_read_nvm_spt"); 3512 3513 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3514 (words == 0)) { 3515 DEBUGOUT("nvm parameter(s) out of bounds\n"); 3516 ret_val = -E1000_ERR_NVM; 3517 goto out; 3518 } 3519 3520 nvm->ops.acquire(hw); 3521 3522 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3523 if (ret_val != E1000_SUCCESS) { 3524 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 3525 bank = 0; 3526 } 3527 3528 act_offset = (bank) ? nvm->flash_bank_size : 0; 3529 act_offset += offset; 3530 3531 ret_val = E1000_SUCCESS; 3532 3533 for (i = 0; i < words; i += 2) { 3534 if (words - i == 1) { 3535 if (dev_spec->shadow_ram[offset+i].modified) { 3536 data[i] = dev_spec->shadow_ram[offset+i].value; 3537 } else { 3538 offset_to_read = act_offset + i - 3539 ((act_offset + i) % 2); 3540 ret_val = 3541 e1000_read_flash_dword_ich8lan(hw, 3542 offset_to_read, 3543 &dword); 3544 if (ret_val) 3545 break; 3546 if ((act_offset + i) % 2 == 0) 3547 data[i] = (u16)(dword & 0xFFFF); 3548 else 3549 data[i] = (u16)((dword >> 16) & 0xFFFF); 3550 } 3551 } else { 3552 offset_to_read = act_offset + i; 3553 if (!(dev_spec->shadow_ram[offset+i].modified) || 3554 !(dev_spec->shadow_ram[offset+i+1].modified)) { 3555 ret_val = 3556 e1000_read_flash_dword_ich8lan(hw, 3557 offset_to_read, 3558 &dword); 3559 if (ret_val) 3560 break; 3561 } 3562 if (dev_spec->shadow_ram[offset+i].modified) 3563 data[i] = dev_spec->shadow_ram[offset+i].value; 3564 else 3565 data[i] = (u16) (dword & 0xFFFF); 3566 if (dev_spec->shadow_ram[offset+i].modified) 3567 data[i+1] = 3568 dev_spec->shadow_ram[offset+i+1].value; 3569 else 3570 data[i+1] = (u16) (dword >> 16 & 0xFFFF); 3571 } 3572 } 3573 3574 nvm->ops.release(hw); 3575 3576 out: 3577 if (ret_val) 3578 DEBUGOUT1("NVM read error: %d\n", ret_val); 3579 3580 return ret_val; 3581 } 3582 3583 /** 3584 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3585 * @hw: pointer to the HW structure 3586 * @offset: The offset (in bytes) of the word(s) to read. 3587 * @words: Size of data to read in words 3588 * @data: Pointer to the word(s) to read at offset. 3589 * 3590 * Reads a word(s) from the NVM using the flash access registers. 3591 **/ 3592 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3593 u16 *data) 3594 { 3595 struct e1000_nvm_info *nvm = &hw->nvm; 3596 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3597 u32 act_offset; 3598 s32 ret_val = E1000_SUCCESS; 3599 u32 bank = 0; 3600 u16 i, word; 3601 3602 DEBUGFUNC("e1000_read_nvm_ich8lan"); 3603 3604 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3605 (words == 0)) { 3606 DEBUGOUT("nvm parameter(s) out of bounds\n"); 3607 ret_val = -E1000_ERR_NVM; 3608 goto out; 3609 } 3610 3611 nvm->ops.acquire(hw); 3612 3613 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3614 if (ret_val != E1000_SUCCESS) { 3615 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 3616 bank = 0; 3617 } 3618 3619 act_offset = (bank) ? nvm->flash_bank_size : 0; 3620 act_offset += offset; 3621 3622 ret_val = E1000_SUCCESS; 3623 for (i = 0; i < words; i++) { 3624 if (dev_spec->shadow_ram[offset+i].modified) { 3625 data[i] = dev_spec->shadow_ram[offset+i].value; 3626 } else { 3627 ret_val = e1000_read_flash_word_ich8lan(hw, 3628 act_offset + i, 3629 &word); 3630 if (ret_val) 3631 break; 3632 data[i] = word; 3633 } 3634 } 3635 3636 nvm->ops.release(hw); 3637 3638 out: 3639 if (ret_val) 3640 DEBUGOUT1("NVM read error: %d\n", ret_val); 3641 3642 return ret_val; 3643 } 3644 3645 /** 3646 * e1000_flash_cycle_init_ich8lan - Initialize flash 3647 * @hw: pointer to the HW structure 3648 * 3649 * This function does initial flash setup so that a new read/write/erase cycle 3650 * can be started. 3651 **/ 3652 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3653 { 3654 union ich8_hws_flash_status hsfsts; 3655 s32 ret_val = -E1000_ERR_NVM; 3656 3657 DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); 3658 3659 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 3660 3661 /* Check if the flash descriptor is valid */ 3662 if (!hsfsts.hsf_status.fldesvalid) { 3663 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); 3664 return -E1000_ERR_NVM; 3665 } 3666 3667 /* Clear FCERR and DAEL in hw status by writing 1 */ 3668 hsfsts.hsf_status.flcerr = 1; 3669 hsfsts.hsf_status.dael = 1; 3670 if (hw->mac.type >= e1000_pch_spt) 3671 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3672 hsfsts.regval & 0xFFFF); 3673 else 3674 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); 3675 3676 /* Either we should have a hardware SPI cycle in progress 3677 * bit to check against, in order to start a new cycle or 3678 * FDONE bit should be changed in the hardware so that it 3679 * is 1 after hardware reset, which can then be used as an 3680 * indication whether a cycle is in progress or has been 3681 * completed. 3682 */ 3683 3684 if (!hsfsts.hsf_status.flcinprog) { 3685 /* There is no cycle running at present, 3686 * so we can start a cycle. 3687 * Begin by setting Flash Cycle Done. 3688 */ 3689 hsfsts.hsf_status.flcdone = 1; 3690 if (hw->mac.type >= e1000_pch_spt) 3691 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3692 hsfsts.regval & 0xFFFF); 3693 else 3694 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, 3695 hsfsts.regval); 3696 ret_val = E1000_SUCCESS; 3697 } else { 3698 s32 i; 3699 3700 /* Otherwise poll for sometime so the current 3701 * cycle has a chance to end before giving up. 3702 */ 3703 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3704 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 3705 ICH_FLASH_HSFSTS); 3706 if (!hsfsts.hsf_status.flcinprog) { 3707 ret_val = E1000_SUCCESS; 3708 break; 3709 } 3710 usec_delay(1); 3711 } 3712 if (ret_val == E1000_SUCCESS) { 3713 /* Successful in waiting for previous cycle to timeout, 3714 * now set the Flash Cycle Done. 3715 */ 3716 hsfsts.hsf_status.flcdone = 1; 3717 if (hw->mac.type >= e1000_pch_spt) 3718 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3719 hsfsts.regval & 0xFFFF); 3720 else 3721 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, 3722 hsfsts.regval); 3723 } else { 3724 DEBUGOUT("Flash controller busy, cannot get access\n"); 3725 } 3726 } 3727 3728 return ret_val; 3729 } 3730 3731 /** 3732 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3733 * @hw: pointer to the HW structure 3734 * @timeout: maximum time to wait for completion 3735 * 3736 * This function starts a flash cycle and waits for its completion. 3737 **/ 3738 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3739 { 3740 union ich8_hws_flash_ctrl hsflctl; 3741 union ich8_hws_flash_status hsfsts; 3742 u32 i = 0; 3743 3744 DEBUGFUNC("e1000_flash_cycle_ich8lan"); 3745 3746 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3747 if (hw->mac.type >= e1000_pch_spt) 3748 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; 3749 else 3750 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); 3751 hsflctl.hsf_ctrl.flcgo = 1; 3752 3753 if (hw->mac.type >= e1000_pch_spt) 3754 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3755 hsflctl.regval << 16); 3756 else 3757 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); 3758 3759 /* wait till FDONE bit is set to 1 */ 3760 do { 3761 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 3762 if (hsfsts.hsf_status.flcdone) 3763 break; 3764 usec_delay(1); 3765 } while (i++ < timeout); 3766 3767 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3768 return E1000_SUCCESS; 3769 3770 return -E1000_ERR_NVM; 3771 } 3772 3773 /** 3774 * e1000_read_flash_dword_ich8lan - Read dword from flash 3775 * @hw: pointer to the HW structure 3776 * @offset: offset to data location 3777 * @data: pointer to the location for storing the data 3778 * 3779 * Reads the flash dword at offset into data. Offset is converted 3780 * to bytes before read. 3781 **/ 3782 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3783 u32 *data) 3784 { 3785 DEBUGFUNC("e1000_read_flash_dword_ich8lan"); 3786 3787 if (!data) 3788 return -E1000_ERR_NVM; 3789 3790 /* Must convert word offset into bytes. */ 3791 offset <<= 1; 3792 3793 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3794 } 3795 3796 /** 3797 * e1000_read_flash_word_ich8lan - Read word from flash 3798 * @hw: pointer to the HW structure 3799 * @offset: offset to data location 3800 * @data: pointer to the location for storing the data 3801 * 3802 * Reads the flash word at offset into data. Offset is converted 3803 * to bytes before read. 3804 **/ 3805 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3806 u16 *data) 3807 { 3808 DEBUGFUNC("e1000_read_flash_word_ich8lan"); 3809 3810 if (!data) 3811 return -E1000_ERR_NVM; 3812 3813 /* Must convert offset into bytes. */ 3814 offset <<= 1; 3815 3816 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3817 } 3818 3819 /** 3820 * e1000_read_flash_byte_ich8lan - Read byte from flash 3821 * @hw: pointer to the HW structure 3822 * @offset: The offset of the byte to read. 3823 * @data: Pointer to a byte to store the value read. 3824 * 3825 * Reads a single byte from the NVM using the flash access registers. 3826 **/ 3827 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3828 u8 *data) 3829 { 3830 s32 ret_val; 3831 u16 word = 0; 3832 3833 /* In SPT, only 32 bits access is supported, 3834 * so this function should not be called. 3835 */ 3836 if (hw->mac.type >= e1000_pch_spt) 3837 return -E1000_ERR_NVM; 3838 else 3839 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3840 3841 if (ret_val) 3842 return ret_val; 3843 3844 *data = (u8)word; 3845 3846 return E1000_SUCCESS; 3847 } 3848 3849 /** 3850 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3851 * @hw: pointer to the HW structure 3852 * @offset: The offset (in bytes) of the byte or word to read. 3853 * @size: Size of data to read, 1=byte 2=word 3854 * @data: Pointer to the word to store the value read. 3855 * 3856 * Reads a byte or word from the NVM using the flash access registers. 3857 **/ 3858 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3859 u8 size, u16 *data) 3860 { 3861 union ich8_hws_flash_status hsfsts; 3862 union ich8_hws_flash_ctrl hsflctl; 3863 u32 flash_linear_addr; 3864 u32 flash_data = 0; 3865 s32 ret_val = -E1000_ERR_NVM; 3866 u8 count = 0; 3867 3868 DEBUGFUNC("e1000_read_flash_data_ich8lan"); 3869 3870 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3871 return -E1000_ERR_NVM; 3872 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3873 hw->nvm.flash_base_addr); 3874 3875 do { 3876 usec_delay(1); 3877 /* Steps */ 3878 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3879 if (ret_val != E1000_SUCCESS) 3880 break; 3881 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); 3882 3883 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3884 hsflctl.hsf_ctrl.fldbcount = size - 1; 3885 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3886 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); 3887 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 3888 3889 ret_val = e1000_flash_cycle_ich8lan(hw, 3890 ICH_FLASH_READ_COMMAND_TIMEOUT); 3891 3892 /* Check if FCERR is set to 1, if set to 1, clear it 3893 * and try the whole sequence a few more times, else 3894 * read in (shift in) the Flash Data0, the order is 3895 * least significant byte first msb to lsb 3896 */ 3897 if (ret_val == E1000_SUCCESS) { 3898 flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); 3899 if (size == 1) 3900 *data = (u8)(flash_data & 0x000000FF); 3901 else if (size == 2) 3902 *data = (u16)(flash_data & 0x0000FFFF); 3903 break; 3904 } else { 3905 /* If we've gotten here, then things are probably 3906 * completely hosed, but if the error condition is 3907 * detected, it won't hurt to give it another try... 3908 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3909 */ 3910 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 3911 ICH_FLASH_HSFSTS); 3912 if (hsfsts.hsf_status.flcerr) { 3913 /* Repeat for some time before giving up. */ 3914 continue; 3915 } else if (!hsfsts.hsf_status.flcdone) { 3916 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 3917 break; 3918 } 3919 } 3920 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3921 3922 return ret_val; 3923 } 3924 3925 /** 3926 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3927 * @hw: pointer to the HW structure 3928 * @offset: The offset (in bytes) of the dword to read. 3929 * @data: Pointer to the dword to store the value read. 3930 * 3931 * Reads a byte or word from the NVM using the flash access registers. 3932 **/ 3933 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3934 u32 *data) 3935 { 3936 union ich8_hws_flash_status hsfsts; 3937 union ich8_hws_flash_ctrl hsflctl; 3938 u32 flash_linear_addr; 3939 s32 ret_val = -E1000_ERR_NVM; 3940 u8 count = 0; 3941 3942 DEBUGFUNC("e1000_read_flash_data_ich8lan"); 3943 3944 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || 3945 hw->mac.type < e1000_pch_spt) 3946 return -E1000_ERR_NVM; 3947 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3948 hw->nvm.flash_base_addr); 3949 3950 do { 3951 usec_delay(1); 3952 /* Steps */ 3953 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3954 if (ret_val != E1000_SUCCESS) 3955 break; 3956 /* In SPT, This register is in Lan memory space, not flash. 3957 * Therefore, only 32 bit access is supported 3958 */ 3959 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; 3960 3961 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3962 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3963 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3964 /* In SPT, This register is in Lan memory space, not flash. 3965 * Therefore, only 32 bit access is supported 3966 */ 3967 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3968 (u32)hsflctl.regval << 16); 3969 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 3970 3971 ret_val = e1000_flash_cycle_ich8lan(hw, 3972 ICH_FLASH_READ_COMMAND_TIMEOUT); 3973 3974 /* Check if FCERR is set to 1, if set to 1, clear it 3975 * and try the whole sequence a few more times, else 3976 * read in (shift in) the Flash Data0, the order is 3977 * least significant byte first msb to lsb 3978 */ 3979 if (ret_val == E1000_SUCCESS) { 3980 *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); 3981 break; 3982 } else { 3983 /* If we've gotten here, then things are probably 3984 * completely hosed, but if the error condition is 3985 * detected, it won't hurt to give it another try... 3986 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3987 */ 3988 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 3989 ICH_FLASH_HSFSTS); 3990 if (hsfsts.hsf_status.flcerr) { 3991 /* Repeat for some time before giving up. */ 3992 continue; 3993 } else if (!hsfsts.hsf_status.flcdone) { 3994 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 3995 break; 3996 } 3997 } 3998 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3999 4000 return ret_val; 4001 } 4002 4003 /** 4004 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 4005 * @hw: pointer to the HW structure 4006 * @offset: The offset (in bytes) of the word(s) to write. 4007 * @words: Size of data to write in words 4008 * @data: Pointer to the word(s) to write at offset. 4009 * 4010 * Writes a byte or word to the NVM using the flash access registers. 4011 **/ 4012 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 4013 u16 *data) 4014 { 4015 struct e1000_nvm_info *nvm = &hw->nvm; 4016 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4017 u16 i; 4018 4019 DEBUGFUNC("e1000_write_nvm_ich8lan"); 4020 4021 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 4022 (words == 0)) { 4023 DEBUGOUT("nvm parameter(s) out of bounds\n"); 4024 return -E1000_ERR_NVM; 4025 } 4026 4027 nvm->ops.acquire(hw); 4028 4029 for (i = 0; i < words; i++) { 4030 dev_spec->shadow_ram[offset+i].modified = TRUE; 4031 dev_spec->shadow_ram[offset+i].value = data[i]; 4032 } 4033 4034 nvm->ops.release(hw); 4035 4036 return E1000_SUCCESS; 4037 } 4038 4039 /** 4040 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 4041 * @hw: pointer to the HW structure 4042 * 4043 * The NVM checksum is updated by calling the generic update_nvm_checksum, 4044 * which writes the checksum to the shadow ram. The changes in the shadow 4045 * ram are then committed to the EEPROM by processing each bank at a time 4046 * checking for the modified bit and writing only the pending changes. 4047 * After a successful commit, the shadow ram is cleared and is ready for 4048 * future writes. 4049 **/ 4050 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 4051 { 4052 struct e1000_nvm_info *nvm = &hw->nvm; 4053 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4054 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 4055 s32 ret_val; 4056 u32 dword = 0; 4057 4058 DEBUGFUNC("e1000_update_nvm_checksum_spt"); 4059 4060 ret_val = e1000_update_nvm_checksum_generic(hw); 4061 if (ret_val) 4062 goto out; 4063 4064 if (nvm->type != e1000_nvm_flash_sw) 4065 goto out; 4066 4067 nvm->ops.acquire(hw); 4068 4069 /* We're writing to the opposite bank so if we're on bank 1, 4070 * write to bank 0 etc. We also need to erase the segment that 4071 * is going to be written 4072 */ 4073 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 4074 if (ret_val != E1000_SUCCESS) { 4075 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 4076 bank = 0; 4077 } 4078 4079 if (bank == 0) { 4080 new_bank_offset = nvm->flash_bank_size; 4081 old_bank_offset = 0; 4082 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 4083 if (ret_val) 4084 goto release; 4085 } else { 4086 old_bank_offset = nvm->flash_bank_size; 4087 new_bank_offset = 0; 4088 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4089 if (ret_val) 4090 goto release; 4091 } 4092 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) { 4093 /* Determine whether to write the value stored 4094 * in the other NVM bank or a modified value stored 4095 * in the shadow RAM 4096 */ 4097 ret_val = e1000_read_flash_dword_ich8lan(hw, 4098 i + old_bank_offset, 4099 &dword); 4100 4101 if (dev_spec->shadow_ram[i].modified) { 4102 dword &= 0xffff0000; 4103 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 4104 } 4105 if (dev_spec->shadow_ram[i + 1].modified) { 4106 dword &= 0x0000ffff; 4107 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 4108 << 16); 4109 } 4110 if (ret_val) 4111 break; 4112 4113 /* If the word is 0x13, then make sure the signature bits 4114 * (15:14) are 11b until the commit has completed. 4115 * This will allow us to write 10b which indicates the 4116 * signature is valid. We want to do this after the write 4117 * has completed so that we don't mark the segment valid 4118 * while the write is still in progress 4119 */ 4120 if (i == E1000_ICH_NVM_SIG_WORD - 1) 4121 dword |= E1000_ICH_NVM_SIG_MASK << 16; 4122 4123 /* Convert offset to bytes. */ 4124 act_offset = (i + new_bank_offset) << 1; 4125 4126 usec_delay(100); 4127 4128 /* Write the data to the new bank. Offset in words*/ 4129 act_offset = i + new_bank_offset; 4130 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 4131 dword); 4132 if (ret_val) 4133 break; 4134 } 4135 4136 /* Don't bother writing the segment valid bits if sector 4137 * programming failed. 4138 */ 4139 if (ret_val) { 4140 DEBUGOUT("Flash commit failed.\n"); 4141 goto release; 4142 } 4143 4144 /* Finally validate the new segment by setting bit 15:14 4145 * to 10b in word 0x13 , this can be done without an 4146 * erase as well since these bits are 11 to start with 4147 * and we need to change bit 14 to 0b 4148 */ 4149 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4150 4151 /*offset in words but we read dword*/ 4152 --act_offset; 4153 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 4154 4155 if (ret_val) 4156 goto release; 4157 4158 dword &= 0xBFFFFFFF; 4159 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 4160 4161 if (ret_val) 4162 goto release; 4163 4164 /* And invalidate the previously valid segment by setting 4165 * its signature word (0x13) high_byte to 0b. This can be 4166 * done without an erase because flash erase sets all bits 4167 * to 1's. We can write 1's to 0's without an erase 4168 */ 4169 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4170 4171 /* offset in words but we read dword*/ 4172 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 4173 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 4174 4175 if (ret_val) 4176 goto release; 4177 4178 dword &= 0x00FFFFFF; 4179 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 4180 4181 if (ret_val) 4182 goto release; 4183 4184 /* Great! Everything worked, we can now clear the cached entries. */ 4185 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 4186 dev_spec->shadow_ram[i].modified = FALSE; 4187 dev_spec->shadow_ram[i].value = 0xFFFF; 4188 } 4189 4190 release: 4191 nvm->ops.release(hw); 4192 4193 /* Reload the EEPROM, or else modifications will not appear 4194 * until after the next adapter reset. 4195 */ 4196 if (!ret_val) { 4197 nvm->ops.reload(hw); 4198 msec_delay(10); 4199 } 4200 4201 out: 4202 if (ret_val) 4203 DEBUGOUT1("NVM update error: %d\n", ret_val); 4204 4205 return ret_val; 4206 } 4207 4208 /** 4209 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 4210 * @hw: pointer to the HW structure 4211 * 4212 * The NVM checksum is updated by calling the generic update_nvm_checksum, 4213 * which writes the checksum to the shadow ram. The changes in the shadow 4214 * ram are then committed to the EEPROM by processing each bank at a time 4215 * checking for the modified bit and writing only the pending changes. 4216 * After a successful commit, the shadow ram is cleared and is ready for 4217 * future writes. 4218 **/ 4219 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 4220 { 4221 struct e1000_nvm_info *nvm = &hw->nvm; 4222 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4223 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 4224 s32 ret_val; 4225 u16 data = 0; 4226 4227 DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); 4228 4229 ret_val = e1000_update_nvm_checksum_generic(hw); 4230 if (ret_val) 4231 goto out; 4232 4233 if (nvm->type != e1000_nvm_flash_sw) 4234 goto out; 4235 4236 nvm->ops.acquire(hw); 4237 4238 /* We're writing to the opposite bank so if we're on bank 1, 4239 * write to bank 0 etc. We also need to erase the segment that 4240 * is going to be written 4241 */ 4242 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 4243 if (ret_val != E1000_SUCCESS) { 4244 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 4245 bank = 0; 4246 } 4247 4248 if (bank == 0) { 4249 new_bank_offset = nvm->flash_bank_size; 4250 old_bank_offset = 0; 4251 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 4252 if (ret_val) 4253 goto release; 4254 } else { 4255 old_bank_offset = nvm->flash_bank_size; 4256 new_bank_offset = 0; 4257 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4258 if (ret_val) 4259 goto release; 4260 } 4261 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 4262 if (dev_spec->shadow_ram[i].modified) { 4263 data = dev_spec->shadow_ram[i].value; 4264 } else { 4265 ret_val = e1000_read_flash_word_ich8lan(hw, i + 4266 old_bank_offset, 4267 &data); 4268 if (ret_val) 4269 break; 4270 } 4271 /* If the word is 0x13, then make sure the signature bits 4272 * (15:14) are 11b until the commit has completed. 4273 * This will allow us to write 10b which indicates the 4274 * signature is valid. We want to do this after the write 4275 * has completed so that we don't mark the segment valid 4276 * while the write is still in progress 4277 */ 4278 if (i == E1000_ICH_NVM_SIG_WORD) 4279 data |= E1000_ICH_NVM_SIG_MASK; 4280 4281 /* Convert offset to bytes. */ 4282 act_offset = (i + new_bank_offset) << 1; 4283 4284 usec_delay(100); 4285 4286 /* Write the bytes to the new bank. */ 4287 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4288 act_offset, 4289 (u8)data); 4290 if (ret_val) 4291 break; 4292 4293 usec_delay(100); 4294 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4295 act_offset + 1, 4296 (u8)(data >> 8)); 4297 if (ret_val) 4298 break; 4299 } 4300 4301 /* Don't bother writing the segment valid bits if sector 4302 * programming failed. 4303 */ 4304 if (ret_val) { 4305 DEBUGOUT("Flash commit failed.\n"); 4306 goto release; 4307 } 4308 4309 /* Finally validate the new segment by setting bit 15:14 4310 * to 10b in word 0x13 , this can be done without an 4311 * erase as well since these bits are 11 to start with 4312 * and we need to change bit 14 to 0b 4313 */ 4314 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4315 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4316 if (ret_val) 4317 goto release; 4318 4319 data &= 0xBFFF; 4320 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1, 4321 (u8)(data >> 8)); 4322 if (ret_val) 4323 goto release; 4324 4325 /* And invalidate the previously valid segment by setting 4326 * its signature word (0x13) high_byte to 0b. This can be 4327 * done without an erase because flash erase sets all bits 4328 * to 1's. We can write 1's to 0's without an erase 4329 */ 4330 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4331 4332 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4333 4334 if (ret_val) 4335 goto release; 4336 4337 /* Great! Everything worked, we can now clear the cached entries. */ 4338 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 4339 dev_spec->shadow_ram[i].modified = FALSE; 4340 dev_spec->shadow_ram[i].value = 0xFFFF; 4341 } 4342 4343 release: 4344 nvm->ops.release(hw); 4345 4346 /* Reload the EEPROM, or else modifications will not appear 4347 * until after the next adapter reset. 4348 */ 4349 if (!ret_val) { 4350 nvm->ops.reload(hw); 4351 msec_delay(10); 4352 } 4353 4354 out: 4355 if (ret_val) 4356 DEBUGOUT1("NVM update error: %d\n", ret_val); 4357 4358 return ret_val; 4359 } 4360 4361 /** 4362 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4363 * @hw: pointer to the HW structure 4364 * 4365 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4366 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4367 * calculated, in which case we need to calculate the checksum and set bit 6. 4368 **/ 4369 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4370 { 4371 s32 ret_val; 4372 u16 data; 4373 u16 word; 4374 u16 valid_csum_mask; 4375 4376 DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); 4377 4378 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4379 * the checksum needs to be fixed. This bit is an indication that 4380 * the NVM was prepared by OEM software and did not calculate 4381 * the checksum...a likely scenario. 4382 */ 4383 switch (hw->mac.type) { 4384 case e1000_pch_lpt: 4385 case e1000_pch_spt: 4386 case e1000_pch_cnp: 4387 word = NVM_COMPAT; 4388 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4389 break; 4390 default: 4391 word = NVM_FUTURE_INIT_WORD1; 4392 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4393 break; 4394 } 4395 4396 ret_val = hw->nvm.ops.read(hw, word, 1, &data); 4397 if (ret_val) 4398 return ret_val; 4399 4400 if (!(data & valid_csum_mask)) { 4401 data |= valid_csum_mask; 4402 ret_val = hw->nvm.ops.write(hw, word, 1, &data); 4403 if (ret_val) 4404 return ret_val; 4405 ret_val = hw->nvm.ops.update(hw); 4406 if (ret_val) 4407 return ret_val; 4408 } 4409 4410 return e1000_validate_nvm_checksum_generic(hw); 4411 } 4412 4413 /** 4414 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4415 * @hw: pointer to the HW structure 4416 * @offset: The offset (in bytes) of the byte/word to read. 4417 * @size: Size of data to read, 1=byte 2=word 4418 * @data: The byte(s) to write to the NVM. 4419 * 4420 * Writes one/two bytes to the NVM using the flash access registers. 4421 **/ 4422 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4423 u8 size, u16 data) 4424 { 4425 union ich8_hws_flash_status hsfsts; 4426 union ich8_hws_flash_ctrl hsflctl; 4427 u32 flash_linear_addr; 4428 u32 flash_data = 0; 4429 s32 ret_val; 4430 u8 count = 0; 4431 4432 DEBUGFUNC("e1000_write_ich8_data"); 4433 4434 if (hw->mac.type >= e1000_pch_spt) { 4435 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4436 return -E1000_ERR_NVM; 4437 } else { 4438 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4439 return -E1000_ERR_NVM; 4440 } 4441 4442 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4443 hw->nvm.flash_base_addr); 4444 4445 do { 4446 usec_delay(1); 4447 /* Steps */ 4448 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4449 if (ret_val != E1000_SUCCESS) 4450 break; 4451 /* In SPT, This register is in Lan memory space, not 4452 * flash. Therefore, only 32 bit access is supported 4453 */ 4454 if (hw->mac.type >= e1000_pch_spt) 4455 hsflctl.regval = 4456 E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; 4457 else 4458 hsflctl.regval = 4459 E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); 4460 4461 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4462 hsflctl.hsf_ctrl.fldbcount = size - 1; 4463 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4464 /* In SPT, This register is in Lan memory space, 4465 * not flash. Therefore, only 32 bit access is 4466 * supported 4467 */ 4468 if (hw->mac.type >= e1000_pch_spt) 4469 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 4470 hsflctl.regval << 16); 4471 else 4472 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, 4473 hsflctl.regval); 4474 4475 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 4476 4477 if (size == 1) 4478 flash_data = (u32)data & 0x00FF; 4479 else 4480 flash_data = (u32)data; 4481 4482 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); 4483 4484 /* check if FCERR is set to 1 , if set to 1, clear it 4485 * and try the whole sequence a few more times else done 4486 */ 4487 ret_val = 4488 e1000_flash_cycle_ich8lan(hw, 4489 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4490 if (ret_val == E1000_SUCCESS) 4491 break; 4492 4493 /* If we're here, then things are most likely 4494 * completely hosed, but if the error condition 4495 * is detected, it won't hurt to give it another 4496 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4497 */ 4498 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 4499 if (hsfsts.hsf_status.flcerr) 4500 /* Repeat for some time before giving up. */ 4501 continue; 4502 if (!hsfsts.hsf_status.flcdone) { 4503 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 4504 break; 4505 } 4506 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4507 4508 return ret_val; 4509 } 4510 4511 /** 4512 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4513 * @hw: pointer to the HW structure 4514 * @offset: The offset (in bytes) of the dwords to read. 4515 * @data: The 4 bytes to write to the NVM. 4516 * 4517 * Writes one/two/four bytes to the NVM using the flash access registers. 4518 **/ 4519 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4520 u32 data) 4521 { 4522 union ich8_hws_flash_status hsfsts; 4523 union ich8_hws_flash_ctrl hsflctl; 4524 u32 flash_linear_addr; 4525 s32 ret_val; 4526 u8 count = 0; 4527 4528 DEBUGFUNC("e1000_write_flash_data32_ich8lan"); 4529 4530 if (hw->mac.type >= e1000_pch_spt) { 4531 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4532 return -E1000_ERR_NVM; 4533 } 4534 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4535 hw->nvm.flash_base_addr); 4536 do { 4537 usec_delay(1); 4538 /* Steps */ 4539 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4540 if (ret_val != E1000_SUCCESS) 4541 break; 4542 4543 /* In SPT, This register is in Lan memory space, not 4544 * flash. Therefore, only 32 bit access is supported 4545 */ 4546 if (hw->mac.type >= e1000_pch_spt) 4547 hsflctl.regval = E1000_READ_FLASH_REG(hw, 4548 ICH_FLASH_HSFSTS) 4549 >> 16; 4550 else 4551 hsflctl.regval = E1000_READ_FLASH_REG16(hw, 4552 ICH_FLASH_HSFCTL); 4553 4554 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4555 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4556 4557 /* In SPT, This register is in Lan memory space, 4558 * not flash. Therefore, only 32 bit access is 4559 * supported 4560 */ 4561 if (hw->mac.type >= e1000_pch_spt) 4562 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 4563 hsflctl.regval << 16); 4564 else 4565 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, 4566 hsflctl.regval); 4567 4568 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 4569 4570 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data); 4571 4572 /* check if FCERR is set to 1 , if set to 1, clear it 4573 * and try the whole sequence a few more times else done 4574 */ 4575 ret_val = e1000_flash_cycle_ich8lan(hw, 4576 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4577 4578 if (ret_val == E1000_SUCCESS) 4579 break; 4580 4581 /* If we're here, then things are most likely 4582 * completely hosed, but if the error condition 4583 * is detected, it won't hurt to give it another 4584 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4585 */ 4586 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 4587 4588 if (hsfsts.hsf_status.flcerr) 4589 /* Repeat for some time before giving up. */ 4590 continue; 4591 if (!hsfsts.hsf_status.flcdone) { 4592 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 4593 break; 4594 } 4595 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4596 4597 return ret_val; 4598 } 4599 4600 /** 4601 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4602 * @hw: pointer to the HW structure 4603 * @offset: The index of the byte to read. 4604 * @data: The byte to write to the NVM. 4605 * 4606 * Writes a single byte to the NVM using the flash access registers. 4607 **/ 4608 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4609 u8 data) 4610 { 4611 u16 word = (u16)data; 4612 4613 DEBUGFUNC("e1000_write_flash_byte_ich8lan"); 4614 4615 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4616 } 4617 4618 /** 4619 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4620 * @hw: pointer to the HW structure 4621 * @offset: The offset of the word to write. 4622 * @dword: The dword to write to the NVM. 4623 * 4624 * Writes a single dword to the NVM using the flash access registers. 4625 * Goes through a retry algorithm before giving up. 4626 **/ 4627 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4628 u32 offset, u32 dword) 4629 { 4630 s32 ret_val; 4631 u16 program_retries; 4632 4633 DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan"); 4634 4635 /* Must convert word offset into bytes. */ 4636 offset <<= 1; 4637 4638 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4639 4640 if (!ret_val) 4641 return ret_val; 4642 for (program_retries = 0; program_retries < 100; program_retries++) { 4643 DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset); 4644 usec_delay(100); 4645 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4646 if (ret_val == E1000_SUCCESS) 4647 break; 4648 } 4649 if (program_retries == 100) 4650 return -E1000_ERR_NVM; 4651 4652 return E1000_SUCCESS; 4653 } 4654 4655 /** 4656 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4657 * @hw: pointer to the HW structure 4658 * @offset: The offset of the byte to write. 4659 * @byte: The byte to write to the NVM. 4660 * 4661 * Writes a single byte to the NVM using the flash access registers. 4662 * Goes through a retry algorithm before giving up. 4663 **/ 4664 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4665 u32 offset, u8 byte) 4666 { 4667 s32 ret_val; 4668 u16 program_retries; 4669 4670 DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); 4671 4672 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4673 if (!ret_val) 4674 return ret_val; 4675 4676 for (program_retries = 0; program_retries < 100; program_retries++) { 4677 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); 4678 usec_delay(100); 4679 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4680 if (ret_val == E1000_SUCCESS) 4681 break; 4682 } 4683 if (program_retries == 100) 4684 return -E1000_ERR_NVM; 4685 4686 return E1000_SUCCESS; 4687 } 4688 4689 /** 4690 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4691 * @hw: pointer to the HW structure 4692 * @bank: 0 for first bank, 1 for second bank, etc. 4693 * 4694 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4695 * bank N is 4096 * N + flash_reg_addr. 4696 **/ 4697 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4698 { 4699 struct e1000_nvm_info *nvm = &hw->nvm; 4700 union ich8_hws_flash_status hsfsts; 4701 union ich8_hws_flash_ctrl hsflctl; 4702 u32 flash_linear_addr; 4703 /* bank size is in 16bit words - adjust to bytes */ 4704 u32 flash_bank_size = nvm->flash_bank_size * 2; 4705 s32 ret_val; 4706 s32 count = 0; 4707 s32 j, iteration, sector_size; 4708 4709 DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); 4710 4711 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 4712 4713 /* Determine HW Sector size: Read BERASE bits of hw flash status 4714 * register 4715 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4716 * consecutive sectors. The start index for the nth Hw sector 4717 * can be calculated as = bank * 4096 + n * 256 4718 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4719 * The start index for the nth Hw sector can be calculated 4720 * as = bank * 4096 4721 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4722 * (ich9 only, otherwise error condition) 4723 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4724 */ 4725 switch (hsfsts.hsf_status.berasesz) { 4726 case 0: 4727 /* Hw sector size 256 */ 4728 sector_size = ICH_FLASH_SEG_SIZE_256; 4729 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4730 break; 4731 case 1: 4732 sector_size = ICH_FLASH_SEG_SIZE_4K; 4733 iteration = 1; 4734 break; 4735 case 2: 4736 sector_size = ICH_FLASH_SEG_SIZE_8K; 4737 iteration = 1; 4738 break; 4739 case 3: 4740 sector_size = ICH_FLASH_SEG_SIZE_64K; 4741 iteration = 1; 4742 break; 4743 default: 4744 return -E1000_ERR_NVM; 4745 } 4746 4747 /* Start with the base address, then add the sector offset. */ 4748 flash_linear_addr = hw->nvm.flash_base_addr; 4749 flash_linear_addr += (bank) ? flash_bank_size : 0; 4750 4751 for (j = 0; j < iteration; j++) { 4752 do { 4753 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4754 4755 /* Steps */ 4756 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4757 if (ret_val) 4758 return ret_val; 4759 4760 /* Write a value 11 (block Erase) in Flash 4761 * Cycle field in hw flash control 4762 */ 4763 if (hw->mac.type >= e1000_pch_spt) 4764 hsflctl.regval = 4765 E1000_READ_FLASH_REG(hw, 4766 ICH_FLASH_HSFSTS)>>16; 4767 else 4768 hsflctl.regval = 4769 E1000_READ_FLASH_REG16(hw, 4770 ICH_FLASH_HSFCTL); 4771 4772 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4773 if (hw->mac.type >= e1000_pch_spt) 4774 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 4775 hsflctl.regval << 16); 4776 else 4777 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, 4778 hsflctl.regval); 4779 4780 /* Write the last 24 bits of an index within the 4781 * block into Flash Linear address field in Flash 4782 * Address. 4783 */ 4784 flash_linear_addr += (j * sector_size); 4785 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, 4786 flash_linear_addr); 4787 4788 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4789 if (ret_val == E1000_SUCCESS) 4790 break; 4791 4792 /* Check if FCERR is set to 1. If 1, 4793 * clear it and try the whole sequence 4794 * a few more times else Done 4795 */ 4796 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 4797 ICH_FLASH_HSFSTS); 4798 if (hsfsts.hsf_status.flcerr) 4799 /* repeat for some time before giving up */ 4800 continue; 4801 else if (!hsfsts.hsf_status.flcdone) 4802 return ret_val; 4803 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4804 } 4805 4806 return E1000_SUCCESS; 4807 } 4808 4809 /** 4810 * e1000_valid_led_default_ich8lan - Set the default LED settings 4811 * @hw: pointer to the HW structure 4812 * @data: Pointer to the LED settings 4813 * 4814 * Reads the LED default settings from the NVM to data. If the NVM LED 4815 * settings is all 0's or F's, set the LED default to a valid LED default 4816 * setting. 4817 **/ 4818 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4819 { 4820 s32 ret_val; 4821 4822 DEBUGFUNC("e1000_valid_led_default_ich8lan"); 4823 4824 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); 4825 if (ret_val) { 4826 DEBUGOUT("NVM Read Error\n"); 4827 return ret_val; 4828 } 4829 4830 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4831 *data = ID_LED_DEFAULT_ICH8LAN; 4832 4833 return E1000_SUCCESS; 4834 } 4835 4836 /** 4837 * e1000_id_led_init_pchlan - store LED configurations 4838 * @hw: pointer to the HW structure 4839 * 4840 * PCH does not control LEDs via the LEDCTL register, rather it uses 4841 * the PHY LED configuration register. 4842 * 4843 * PCH also does not have an "always on" or "always off" mode which 4844 * complicates the ID feature. Instead of using the "on" mode to indicate 4845 * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), 4846 * use "link_up" mode. The LEDs will still ID on request if there is no 4847 * link based on logic in e1000_led_[on|off]_pchlan(). 4848 **/ 4849 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4850 { 4851 struct e1000_mac_info *mac = &hw->mac; 4852 s32 ret_val; 4853 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4854 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4855 u16 data, i, temp, shift; 4856 4857 DEBUGFUNC("e1000_id_led_init_pchlan"); 4858 4859 /* Get default ID LED modes */ 4860 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4861 if (ret_val) 4862 return ret_val; 4863 4864 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); 4865 mac->ledctl_mode1 = mac->ledctl_default; 4866 mac->ledctl_mode2 = mac->ledctl_default; 4867 4868 for (i = 0; i < 4; i++) { 4869 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4870 shift = (i * 5); 4871 switch (temp) { 4872 case ID_LED_ON1_DEF2: 4873 case ID_LED_ON1_ON2: 4874 case ID_LED_ON1_OFF2: 4875 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4876 mac->ledctl_mode1 |= (ledctl_on << shift); 4877 break; 4878 case ID_LED_OFF1_DEF2: 4879 case ID_LED_OFF1_ON2: 4880 case ID_LED_OFF1_OFF2: 4881 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4882 mac->ledctl_mode1 |= (ledctl_off << shift); 4883 break; 4884 default: 4885 /* Do nothing */ 4886 break; 4887 } 4888 switch (temp) { 4889 case ID_LED_DEF1_ON2: 4890 case ID_LED_ON1_ON2: 4891 case ID_LED_OFF1_ON2: 4892 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4893 mac->ledctl_mode2 |= (ledctl_on << shift); 4894 break; 4895 case ID_LED_DEF1_OFF2: 4896 case ID_LED_ON1_OFF2: 4897 case ID_LED_OFF1_OFF2: 4898 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4899 mac->ledctl_mode2 |= (ledctl_off << shift); 4900 break; 4901 default: 4902 /* Do nothing */ 4903 break; 4904 } 4905 } 4906 4907 return E1000_SUCCESS; 4908 } 4909 4910 /** 4911 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4912 * @hw: pointer to the HW structure 4913 * 4914 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4915 * register, so the bus width is hard coded. 4916 **/ 4917 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4918 { 4919 struct e1000_bus_info *bus = &hw->bus; 4920 s32 ret_val; 4921 4922 DEBUGFUNC("e1000_get_bus_info_ich8lan"); 4923 4924 ret_val = e1000_get_bus_info_pcie_generic(hw); 4925 4926 /* ICH devices are "PCI Express"-ish. They have 4927 * a configuration space, but do not contain 4928 * PCI Express Capability registers, so bus width 4929 * must be hardcoded. 4930 */ 4931 if (bus->width == e1000_bus_width_unknown) 4932 bus->width = e1000_bus_width_pcie_x1; 4933 4934 return ret_val; 4935 } 4936 4937 /** 4938 * e1000_reset_hw_ich8lan - Reset the hardware 4939 * @hw: pointer to the HW structure 4940 * 4941 * Does a full reset of the hardware which includes a reset of the PHY and 4942 * MAC. 4943 **/ 4944 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4945 { 4946 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4947 u16 kum_cfg; 4948 u32 ctrl, reg; 4949 s32 ret_val; 4950 4951 DEBUGFUNC("e1000_reset_hw_ich8lan"); 4952 4953 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4954 * on the last TLP read/write transaction when MAC is reset. 4955 */ 4956 ret_val = e1000_disable_pcie_master_generic(hw); 4957 if (ret_val) 4958 DEBUGOUT("PCI-E Master disable polling has failed.\n"); 4959 4960 DEBUGOUT("Masking off all interrupts\n"); 4961 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 4962 4963 /* Disable the Transmit and Receive units. Then delay to allow 4964 * any pending transactions to complete before we hit the MAC 4965 * with the global reset. 4966 */ 4967 E1000_WRITE_REG(hw, E1000_RCTL, 0); 4968 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); 4969 E1000_WRITE_FLUSH(hw); 4970 4971 msec_delay(10); 4972 4973 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4974 if (hw->mac.type == e1000_ich8lan) { 4975 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4976 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); 4977 /* Set Packet Buffer Size to 16k. */ 4978 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); 4979 } 4980 4981 if (hw->mac.type == e1000_pchlan) { 4982 /* Save the NVM K1 bit setting*/ 4983 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4984 if (ret_val) 4985 return ret_val; 4986 4987 if (kum_cfg & E1000_NVM_K1_ENABLE) 4988 dev_spec->nvm_k1_enabled = TRUE; 4989 else 4990 dev_spec->nvm_k1_enabled = FALSE; 4991 } 4992 4993 ctrl = E1000_READ_REG(hw, E1000_CTRL); 4994 4995 if (!hw->phy.ops.check_reset_block(hw)) { 4996 /* Full-chip reset requires MAC and PHY reset at the same 4997 * time to make sure the interface between MAC and the 4998 * external PHY is reset. 4999 */ 5000 ctrl |= E1000_CTRL_PHY_RST; 5001 5002 /* Gate automatic PHY configuration by hardware on 5003 * non-managed 82579 5004 */ 5005 if ((hw->mac.type == e1000_pch2lan) && 5006 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) 5007 e1000_gate_hw_phy_config_ich8lan(hw, TRUE); 5008 } 5009 ret_val = e1000_acquire_swflag_ich8lan(hw); 5010 DEBUGOUT("Issuing a global reset to ich8lan\n"); 5011 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); 5012 /* cannot issue a flush here because it hangs the hardware */ 5013 msec_delay(20); 5014 5015 /* Set Phy Config Counter to 50msec */ 5016 if (hw->mac.type == e1000_pch2lan) { 5017 reg = E1000_READ_REG(hw, E1000_FEXTNVM3); 5018 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 5019 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 5020 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); 5021 } 5022 5023 5024 if (ctrl & E1000_CTRL_PHY_RST) { 5025 ret_val = hw->phy.ops.get_cfg_done(hw); 5026 if (ret_val) 5027 return ret_val; 5028 5029 ret_val = e1000_post_phy_reset_ich8lan(hw); 5030 if (ret_val) 5031 return ret_val; 5032 } 5033 5034 /* For PCH, this write will make sure that any noise 5035 * will be detected as a CRC error and be dropped rather than show up 5036 * as a bad packet to the DMA engine. 5037 */ 5038 if (hw->mac.type == e1000_pchlan) 5039 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); 5040 5041 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 5042 E1000_READ_REG(hw, E1000_ICR); 5043 5044 reg = E1000_READ_REG(hw, E1000_KABGTXD); 5045 reg |= E1000_KABGTXD_BGSQLBIAS; 5046 E1000_WRITE_REG(hw, E1000_KABGTXD, reg); 5047 5048 return E1000_SUCCESS; 5049 } 5050 5051 /** 5052 * e1000_init_hw_ich8lan - Initialize the hardware 5053 * @hw: pointer to the HW structure 5054 * 5055 * Prepares the hardware for transmit and receive by doing the following: 5056 * - initialize hardware bits 5057 * - initialize LED identification 5058 * - setup receive address registers 5059 * - setup flow control 5060 * - setup transmit descriptors 5061 * - clear statistics 5062 **/ 5063 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 5064 { 5065 struct e1000_mac_info *mac = &hw->mac; 5066 u32 ctrl_ext, txdctl, snoop; 5067 s32 ret_val; 5068 u16 i; 5069 5070 DEBUGFUNC("e1000_init_hw_ich8lan"); 5071 5072 e1000_initialize_hw_bits_ich8lan(hw); 5073 5074 /* Initialize identification LED */ 5075 ret_val = mac->ops.id_led_init(hw); 5076 /* An error is not fatal and we should not stop init due to this */ 5077 if (ret_val) 5078 DEBUGOUT("Error initializing identification LED\n"); 5079 5080 /* Setup the receive address. */ 5081 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); 5082 5083 /* Zero out the Multicast HASH table */ 5084 DEBUGOUT("Zeroing the MTA\n"); 5085 for (i = 0; i < mac->mta_reg_count; i++) 5086 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 5087 5088 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 5089 * the ME. Disable wakeup by clearing the host wakeup bit. 5090 * Reset the phy after disabling host wakeup to reset the Rx buffer. 5091 */ 5092 if (hw->phy.type == e1000_phy_82578) { 5093 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); 5094 i &= ~BM_WUC_HOST_WU_BIT; 5095 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); 5096 ret_val = e1000_phy_hw_reset_ich8lan(hw); 5097 if (ret_val) 5098 return ret_val; 5099 } 5100 5101 /* Setup link and flow control */ 5102 ret_val = mac->ops.setup_link(hw); 5103 5104 /* Set the transmit descriptor write-back policy for both queues */ 5105 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); 5106 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 5107 E1000_TXDCTL_FULL_TX_DESC_WB); 5108 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 5109 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 5110 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); 5111 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); 5112 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 5113 E1000_TXDCTL_FULL_TX_DESC_WB); 5114 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 5115 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 5116 E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); 5117 5118 /* ICH8 has opposite polarity of no_snoop bits. 5119 * By default, we should use snoop behavior. 5120 */ 5121 if (mac->type == e1000_ich8lan) 5122 snoop = PCIE_ICH8_SNOOP_ALL; 5123 else 5124 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); 5125 e1000_set_pcie_no_snoop_generic(hw, snoop); 5126 5127 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 5128 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 5129 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 5130 5131 /* Clear all of the statistics registers (clear on read). It is 5132 * important that we do this after we have tried to establish link 5133 * because the symbol error count will increment wildly if there 5134 * is no link. 5135 */ 5136 e1000_clear_hw_cntrs_ich8lan(hw); 5137 5138 return ret_val; 5139 } 5140 5141 /** 5142 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 5143 * @hw: pointer to the HW structure 5144 * 5145 * Sets/Clears required hardware bits necessary for correctly setting up the 5146 * hardware for transmit and receive. 5147 **/ 5148 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 5149 { 5150 u32 reg; 5151 5152 DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); 5153 5154 /* Extended Device Control */ 5155 reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 5156 reg |= (1 << 22); 5157 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 5158 if (hw->mac.type >= e1000_pchlan) 5159 reg |= E1000_CTRL_EXT_PHYPDEN; 5160 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); 5161 5162 /* Transmit Descriptor Control 0 */ 5163 reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); 5164 reg |= (1 << 22); 5165 E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); 5166 5167 /* Transmit Descriptor Control 1 */ 5168 reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); 5169 reg |= (1 << 22); 5170 E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); 5171 5172 /* Transmit Arbitration Control 0 */ 5173 reg = E1000_READ_REG(hw, E1000_TARC(0)); 5174 if (hw->mac.type == e1000_ich8lan) 5175 reg |= (1 << 28) | (1 << 29); 5176 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 5177 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 5178 5179 /* Transmit Arbitration Control 1 */ 5180 reg = E1000_READ_REG(hw, E1000_TARC(1)); 5181 if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) 5182 reg &= ~(1 << 28); 5183 else 5184 reg |= (1 << 28); 5185 reg |= (1 << 24) | (1 << 26) | (1 << 30); 5186 E1000_WRITE_REG(hw, E1000_TARC(1), reg); 5187 5188 /* Device Status */ 5189 if (hw->mac.type == e1000_ich8lan) { 5190 reg = E1000_READ_REG(hw, E1000_STATUS); 5191 reg &= ~(1U << 31); 5192 E1000_WRITE_REG(hw, E1000_STATUS, reg); 5193 } 5194 5195 /* work-around descriptor data corruption issue during nfs v2 udp 5196 * traffic, just disable the nfs filtering capability 5197 */ 5198 reg = E1000_READ_REG(hw, E1000_RFCTL); 5199 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 5200 5201 /* Disable IPv6 extension header parsing because some malformed 5202 * IPv6 headers can hang the Rx. 5203 */ 5204 if (hw->mac.type == e1000_ich8lan) 5205 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 5206 E1000_WRITE_REG(hw, E1000_RFCTL, reg); 5207 5208 /* Enable ECC on Lynxpoint */ 5209 if (hw->mac.type >= e1000_pch_lpt) { 5210 reg = E1000_READ_REG(hw, E1000_PBECCSTS); 5211 reg |= E1000_PBECCSTS_ECC_ENABLE; 5212 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); 5213 5214 reg = E1000_READ_REG(hw, E1000_CTRL); 5215 reg |= E1000_CTRL_MEHE; 5216 E1000_WRITE_REG(hw, E1000_CTRL, reg); 5217 } 5218 5219 return; 5220 } 5221 5222 /** 5223 * e1000_setup_link_ich8lan - Setup flow control and link settings 5224 * @hw: pointer to the HW structure 5225 * 5226 * Determines which flow control settings to use, then configures flow 5227 * control. Calls the appropriate media-specific link configuration 5228 * function. Assuming the adapter has a valid link partner, a valid link 5229 * should be established. Assumes the hardware has previously been reset 5230 * and the transmitter and receiver are not enabled. 5231 **/ 5232 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 5233 { 5234 s32 ret_val; 5235 5236 DEBUGFUNC("e1000_setup_link_ich8lan"); 5237 5238 if (hw->phy.ops.check_reset_block(hw)) 5239 return E1000_SUCCESS; 5240 5241 /* ICH parts do not have a word in the NVM to determine 5242 * the default flow control setting, so we explicitly 5243 * set it to full. 5244 */ 5245 if (hw->fc.requested_mode == e1000_fc_default) 5246 hw->fc.requested_mode = e1000_fc_full; 5247 5248 /* Save off the requested flow control mode for use later. Depending 5249 * on the link partner's capabilities, we may or may not use this mode. 5250 */ 5251 hw->fc.current_mode = hw->fc.requested_mode; 5252 5253 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", 5254 hw->fc.current_mode); 5255 5256 /* Continue to configure the copper link. */ 5257 ret_val = hw->mac.ops.setup_physical_interface(hw); 5258 if (ret_val) 5259 return ret_val; 5260 5261 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); 5262 if ((hw->phy.type == e1000_phy_82578) || 5263 (hw->phy.type == e1000_phy_82579) || 5264 (hw->phy.type == e1000_phy_i217) || 5265 (hw->phy.type == e1000_phy_82577)) { 5266 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); 5267 5268 ret_val = hw->phy.ops.write_reg(hw, 5269 PHY_REG(BM_PORT_CTRL_PAGE, 27), 5270 hw->fc.pause_time); 5271 if (ret_val) 5272 return ret_val; 5273 } 5274 5275 return e1000_set_fc_watermarks_generic(hw); 5276 } 5277 5278 /** 5279 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5280 * @hw: pointer to the HW structure 5281 * 5282 * Configures the kumeran interface to the PHY to wait the appropriate time 5283 * when polling the PHY, then call the generic setup_copper_link to finish 5284 * configuring the copper link. 5285 **/ 5286 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5287 { 5288 u32 ctrl; 5289 s32 ret_val; 5290 u16 reg_data; 5291 5292 DEBUGFUNC("e1000_setup_copper_link_ich8lan"); 5293 5294 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5295 ctrl |= E1000_CTRL_SLU; 5296 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5297 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5298 5299 /* Set the mac to wait the maximum time between each iteration 5300 * and increase the max iterations when polling the phy; 5301 * this fixes erroneous timeouts at 10Mbps. 5302 */ 5303 ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 5304 0xFFFF); 5305 if (ret_val) 5306 return ret_val; 5307 ret_val = e1000_read_kmrn_reg_generic(hw, 5308 E1000_KMRNCTRLSTA_INBAND_PARAM, 5309 ®_data); 5310 if (ret_val) 5311 return ret_val; 5312 reg_data |= 0x3F; 5313 ret_val = e1000_write_kmrn_reg_generic(hw, 5314 E1000_KMRNCTRLSTA_INBAND_PARAM, 5315 reg_data); 5316 if (ret_val) 5317 return ret_val; 5318 5319 switch (hw->phy.type) { 5320 case e1000_phy_igp_3: 5321 ret_val = e1000_copper_link_setup_igp(hw); 5322 if (ret_val) 5323 return ret_val; 5324 break; 5325 case e1000_phy_bm: 5326 case e1000_phy_82578: 5327 ret_val = e1000_copper_link_setup_m88(hw); 5328 if (ret_val) 5329 return ret_val; 5330 break; 5331 case e1000_phy_82577: 5332 case e1000_phy_82579: 5333 ret_val = e1000_copper_link_setup_82577(hw); 5334 if (ret_val) 5335 return ret_val; 5336 break; 5337 case e1000_phy_ife: 5338 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, 5339 ®_data); 5340 if (ret_val) 5341 return ret_val; 5342 5343 reg_data &= ~IFE_PMC_AUTO_MDIX; 5344 5345 switch (hw->phy.mdix) { 5346 case 1: 5347 reg_data &= ~IFE_PMC_FORCE_MDIX; 5348 break; 5349 case 2: 5350 reg_data |= IFE_PMC_FORCE_MDIX; 5351 break; 5352 case 0: 5353 default: 5354 reg_data |= IFE_PMC_AUTO_MDIX; 5355 break; 5356 } 5357 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, 5358 reg_data); 5359 if (ret_val) 5360 return ret_val; 5361 break; 5362 default: 5363 break; 5364 } 5365 5366 return e1000_setup_copper_link_generic(hw); 5367 } 5368 5369 /** 5370 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5371 * @hw: pointer to the HW structure 5372 * 5373 * Calls the PHY specific link setup function and then calls the 5374 * generic setup_copper_link to finish configuring the link for 5375 * Lynxpoint PCH devices 5376 **/ 5377 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5378 { 5379 u32 ctrl; 5380 s32 ret_val; 5381 5382 DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); 5383 5384 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5385 ctrl |= E1000_CTRL_SLU; 5386 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5387 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5388 5389 ret_val = e1000_copper_link_setup_82577(hw); 5390 if (ret_val) 5391 return ret_val; 5392 5393 return e1000_setup_copper_link_generic(hw); 5394 } 5395 5396 /** 5397 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5398 * @hw: pointer to the HW structure 5399 * @speed: pointer to store current link speed 5400 * @duplex: pointer to store the current link duplex 5401 * 5402 * Calls the generic get_speed_and_duplex to retrieve the current link 5403 * information and then calls the Kumeran lock loss workaround for links at 5404 * gigabit speeds. 5405 **/ 5406 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5407 u16 *duplex) 5408 { 5409 s32 ret_val; 5410 5411 DEBUGFUNC("e1000_get_link_up_info_ich8lan"); 5412 5413 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); 5414 if (ret_val) 5415 return ret_val; 5416 5417 if ((hw->mac.type == e1000_ich8lan) && 5418 (hw->phy.type == e1000_phy_igp_3) && 5419 (*speed == SPEED_1000)) { 5420 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5421 } 5422 5423 return ret_val; 5424 } 5425 5426 /** 5427 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5428 * @hw: pointer to the HW structure 5429 * 5430 * Work-around for 82566 Kumeran PCS lock loss: 5431 * On link status change (i.e. PCI reset, speed change) and link is up and 5432 * speed is gigabit- 5433 * 0) if workaround is optionally disabled do nothing 5434 * 1) wait 1ms for Kumeran link to come up 5435 * 2) check Kumeran Diagnostic register PCS lock loss bit 5436 * 3) if not set the link is locked (all is good), otherwise... 5437 * 4) reset the PHY 5438 * 5) repeat up to 10 times 5439 * Note: this is only called for IGP3 copper when speed is 1gb. 5440 **/ 5441 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5442 { 5443 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5444 u32 phy_ctrl; 5445 s32 ret_val; 5446 u16 i, data; 5447 bool link; 5448 5449 DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); 5450 5451 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5452 return E1000_SUCCESS; 5453 5454 /* Make sure link is up before proceeding. If not just return. 5455 * Attempting this while link is negotiating fouled up link 5456 * stability 5457 */ 5458 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 5459 if (!link) 5460 return E1000_SUCCESS; 5461 5462 for (i = 0; i < 10; i++) { 5463 /* read once to clear */ 5464 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); 5465 if (ret_val) 5466 return ret_val; 5467 /* and again to get new status */ 5468 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); 5469 if (ret_val) 5470 return ret_val; 5471 5472 /* check for PCS lock */ 5473 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5474 return E1000_SUCCESS; 5475 5476 /* Issue PHY reset */ 5477 hw->phy.ops.reset(hw); 5478 msec_delay_irq(5); 5479 } 5480 /* Disable GigE link negotiation */ 5481 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 5482 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5483 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5484 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 5485 5486 /* Call gig speed drop workaround on Gig disable before accessing 5487 * any PHY registers 5488 */ 5489 e1000_gig_downshift_workaround_ich8lan(hw); 5490 5491 /* unable to acquire PCS lock */ 5492 return -E1000_ERR_PHY; 5493 } 5494 5495 /** 5496 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5497 * @hw: pointer to the HW structure 5498 * @state: boolean value used to set the current Kumeran workaround state 5499 * 5500 * If ICH8, set the current Kumeran workaround state (enabled - TRUE 5501 * /disabled - FALSE). 5502 **/ 5503 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5504 bool state) 5505 { 5506 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5507 5508 DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); 5509 5510 if (hw->mac.type != e1000_ich8lan) { 5511 DEBUGOUT("Workaround applies to ICH8 only.\n"); 5512 return; 5513 } 5514 5515 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5516 5517 return; 5518 } 5519 5520 /** 5521 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5522 * @hw: pointer to the HW structure 5523 * 5524 * Workaround for 82566 power-down on D3 entry: 5525 * 1) disable gigabit link 5526 * 2) write VR power-down enable 5527 * 3) read it back 5528 * Continue if successful, else issue LCD reset and repeat 5529 **/ 5530 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5531 { 5532 u32 reg; 5533 u16 data; 5534 u8 retry = 0; 5535 5536 DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); 5537 5538 if (hw->phy.type != e1000_phy_igp_3) 5539 return; 5540 5541 /* Try the workaround twice (if needed) */ 5542 do { 5543 /* Disable link */ 5544 reg = E1000_READ_REG(hw, E1000_PHY_CTRL); 5545 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5546 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5547 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); 5548 5549 /* Call gig speed drop workaround on Gig disable before 5550 * accessing any PHY registers 5551 */ 5552 if (hw->mac.type == e1000_ich8lan) 5553 e1000_gig_downshift_workaround_ich8lan(hw); 5554 5555 /* Write VR power-down enable */ 5556 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); 5557 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5558 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, 5559 data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5560 5561 /* Read it back and test */ 5562 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); 5563 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5564 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5565 break; 5566 5567 /* Issue PHY reset and repeat at most one more time */ 5568 reg = E1000_READ_REG(hw, E1000_CTRL); 5569 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); 5570 retry++; 5571 } while (retry); 5572 } 5573 5574 /** 5575 * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5576 * @hw: pointer to the HW structure 5577 * 5578 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5579 * LPLU, Gig disable, MDIC PHY reset): 5580 * 1) Set Kumeran Near-end loopback 5581 * 2) Clear Kumeran Near-end loopback 5582 * Should only be called for ICH8[m] devices with any 1G Phy. 5583 **/ 5584 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5585 { 5586 s32 ret_val; 5587 u16 reg_data; 5588 5589 DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); 5590 5591 if ((hw->mac.type != e1000_ich8lan) || 5592 (hw->phy.type == e1000_phy_ife)) 5593 return; 5594 5595 ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5596 ®_data); 5597 if (ret_val) 5598 return; 5599 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5600 ret_val = e1000_write_kmrn_reg_generic(hw, 5601 E1000_KMRNCTRLSTA_DIAG_OFFSET, 5602 reg_data); 5603 if (ret_val) 5604 return; 5605 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5606 e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5607 reg_data); 5608 } 5609 5610 /** 5611 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5612 * @hw: pointer to the HW structure 5613 * 5614 * During S0 to Sx transition, it is possible the link remains at gig 5615 * instead of negotiating to a lower speed. Before going to Sx, set 5616 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5617 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5618 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5619 * needs to be written. 5620 * Parts that support (and are linked to a partner which support) EEE in 5621 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5622 * than 10Mbps w/o EEE. 5623 **/ 5624 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5625 { 5626 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5627 u32 phy_ctrl; 5628 s32 ret_val; 5629 5630 DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); 5631 5632 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 5633 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5634 5635 if (hw->phy.type == e1000_phy_i217) { 5636 u16 phy_reg, device_id = hw->device_id; 5637 5638 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5639 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5640 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5641 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5642 (hw->mac.type >= e1000_pch_spt)) { 5643 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); 5644 5645 E1000_WRITE_REG(hw, E1000_FEXTNVM6, 5646 fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5647 } 5648 5649 ret_val = hw->phy.ops.acquire(hw); 5650 if (ret_val) 5651 goto out; 5652 5653 if (!dev_spec->eee_disable) { 5654 u16 eee_advert; 5655 5656 ret_val = 5657 e1000_read_emi_reg_locked(hw, 5658 I217_EEE_ADVERTISEMENT, 5659 &eee_advert); 5660 if (ret_val) 5661 goto release; 5662 5663 /* Disable LPLU if both link partners support 100BaseT 5664 * EEE and 100Full is advertised on both ends of the 5665 * link, and enable Auto Enable LPI since there will 5666 * be no driver to enable LPI while in Sx. 5667 */ 5668 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5669 (dev_spec->eee_lp_ability & 5670 I82579_EEE_100_SUPPORTED) && 5671 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5672 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5673 E1000_PHY_CTRL_NOND0A_LPLU); 5674 5675 /* Set Auto Enable LPI after link up */ 5676 hw->phy.ops.read_reg_locked(hw, 5677 I217_LPI_GPIO_CTRL, 5678 &phy_reg); 5679 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5680 hw->phy.ops.write_reg_locked(hw, 5681 I217_LPI_GPIO_CTRL, 5682 phy_reg); 5683 } 5684 } 5685 5686 /* For i217 Intel Rapid Start Technology support, 5687 * when the system is going into Sx and no manageability engine 5688 * is present, the driver must configure proxy to reset only on 5689 * power good. LPI (Low Power Idle) state must also reset only 5690 * on power good, as well as the MTA (Multicast table array). 5691 * The SMBus release must also be disabled on LCD reset. 5692 */ 5693 if (!(E1000_READ_REG(hw, E1000_FWSM) & 5694 E1000_ICH_FWSM_FW_VALID)) { 5695 /* Enable proxy to reset only on power good. */ 5696 hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, 5697 &phy_reg); 5698 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5699 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 5700 phy_reg); 5701 5702 /* Set bit enable LPI (EEE) to reset only on 5703 * power good. 5704 */ 5705 hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); 5706 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5707 hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); 5708 5709 /* Disable the SMB release on LCD reset. */ 5710 hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); 5711 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5712 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); 5713 } 5714 5715 /* Enable MTA to reset for Intel Rapid Start Technology 5716 * Support 5717 */ 5718 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); 5719 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5720 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); 5721 5722 release: 5723 hw->phy.ops.release(hw); 5724 } 5725 out: 5726 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 5727 5728 if (hw->mac.type == e1000_ich8lan) 5729 e1000_gig_downshift_workaround_ich8lan(hw); 5730 5731 if (hw->mac.type >= e1000_pchlan) { 5732 e1000_oem_bits_config_ich8lan(hw, FALSE); 5733 5734 /* Reset PHY to activate OEM bits on 82577/8 */ 5735 if (hw->mac.type == e1000_pchlan) 5736 e1000_phy_hw_reset_generic(hw); 5737 5738 ret_val = hw->phy.ops.acquire(hw); 5739 if (ret_val) 5740 return; 5741 e1000_write_smbus_addr(hw); 5742 hw->phy.ops.release(hw); 5743 } 5744 5745 return; 5746 } 5747 5748 /** 5749 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5750 * @hw: pointer to the HW structure 5751 * 5752 * During Sx to S0 transitions on non-managed devices or managed devices 5753 * on which PHY resets are not blocked, if the PHY registers cannot be 5754 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5755 * the PHY. 5756 * On i217, setup Intel Rapid Start Technology. 5757 **/ 5758 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5759 { 5760 s32 ret_val; 5761 5762 DEBUGFUNC("e1000_resume_workarounds_pchlan"); 5763 if (hw->mac.type < e1000_pch2lan) 5764 return E1000_SUCCESS; 5765 5766 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5767 if (ret_val) { 5768 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); 5769 return ret_val; 5770 } 5771 5772 /* For i217 Intel Rapid Start Technology support when the system 5773 * is transitioning from Sx and no manageability engine is present 5774 * configure SMBus to restore on reset, disable proxy, and enable 5775 * the reset on MTA (Multicast table array). 5776 */ 5777 if (hw->phy.type == e1000_phy_i217) { 5778 u16 phy_reg; 5779 5780 ret_val = hw->phy.ops.acquire(hw); 5781 if (ret_val) { 5782 DEBUGOUT("Failed to setup iRST\n"); 5783 return ret_val; 5784 } 5785 5786 /* Clear Auto Enable LPI after link up */ 5787 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5788 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5789 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5790 5791 if (!(E1000_READ_REG(hw, E1000_FWSM) & 5792 E1000_ICH_FWSM_FW_VALID)) { 5793 /* Restore clear on SMB if no manageability engine 5794 * is present 5795 */ 5796 ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, 5797 &phy_reg); 5798 if (ret_val) 5799 goto release; 5800 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5801 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); 5802 5803 /* Disable Proxy */ 5804 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); 5805 } 5806 /* Enable reset on MTA */ 5807 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, 5808 &phy_reg); 5809 if (ret_val) 5810 goto release; 5811 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5812 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); 5813 release: 5814 if (ret_val) 5815 DEBUGOUT1("Error %d in resume workarounds\n", ret_val); 5816 hw->phy.ops.release(hw); 5817 return ret_val; 5818 } 5819 return E1000_SUCCESS; 5820 } 5821 5822 /** 5823 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5824 * @hw: pointer to the HW structure 5825 * 5826 * Return the LED back to the default configuration. 5827 **/ 5828 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5829 { 5830 DEBUGFUNC("e1000_cleanup_led_ich8lan"); 5831 5832 if (hw->phy.type == e1000_phy_ife) 5833 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5834 0); 5835 5836 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); 5837 return E1000_SUCCESS; 5838 } 5839 5840 /** 5841 * e1000_led_on_ich8lan - Turn LEDs on 5842 * @hw: pointer to the HW structure 5843 * 5844 * Turn on the LEDs. 5845 **/ 5846 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5847 { 5848 DEBUGFUNC("e1000_led_on_ich8lan"); 5849 5850 if (hw->phy.type == e1000_phy_ife) 5851 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5852 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5853 5854 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); 5855 return E1000_SUCCESS; 5856 } 5857 5858 /** 5859 * e1000_led_off_ich8lan - Turn LEDs off 5860 * @hw: pointer to the HW structure 5861 * 5862 * Turn off the LEDs. 5863 **/ 5864 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5865 { 5866 DEBUGFUNC("e1000_led_off_ich8lan"); 5867 5868 if (hw->phy.type == e1000_phy_ife) 5869 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5870 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); 5871 5872 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); 5873 return E1000_SUCCESS; 5874 } 5875 5876 /** 5877 * e1000_setup_led_pchlan - Configures SW controllable LED 5878 * @hw: pointer to the HW structure 5879 * 5880 * This prepares the SW controllable LED for use. 5881 **/ 5882 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5883 { 5884 DEBUGFUNC("e1000_setup_led_pchlan"); 5885 5886 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, 5887 (u16)hw->mac.ledctl_mode1); 5888 } 5889 5890 /** 5891 * e1000_cleanup_led_pchlan - Restore the default LED operation 5892 * @hw: pointer to the HW structure 5893 * 5894 * Return the LED back to the default configuration. 5895 **/ 5896 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5897 { 5898 DEBUGFUNC("e1000_cleanup_led_pchlan"); 5899 5900 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, 5901 (u16)hw->mac.ledctl_default); 5902 } 5903 5904 /** 5905 * e1000_led_on_pchlan - Turn LEDs on 5906 * @hw: pointer to the HW structure 5907 * 5908 * Turn on the LEDs. 5909 **/ 5910 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5911 { 5912 u16 data = (u16)hw->mac.ledctl_mode2; 5913 u32 i, led; 5914 5915 DEBUGFUNC("e1000_led_on_pchlan"); 5916 5917 /* If no link, then turn LED on by setting the invert bit 5918 * for each LED that's mode is "link_up" in ledctl_mode2. 5919 */ 5920 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { 5921 for (i = 0; i < 3; i++) { 5922 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5923 if ((led & E1000_PHY_LED0_MODE_MASK) != 5924 E1000_LEDCTL_MODE_LINK_UP) 5925 continue; 5926 if (led & E1000_PHY_LED0_IVRT) 5927 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5928 else 5929 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5930 } 5931 } 5932 5933 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); 5934 } 5935 5936 /** 5937 * e1000_led_off_pchlan - Turn LEDs off 5938 * @hw: pointer to the HW structure 5939 * 5940 * Turn off the LEDs. 5941 **/ 5942 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5943 { 5944 u16 data = (u16)hw->mac.ledctl_mode1; 5945 u32 i, led; 5946 5947 DEBUGFUNC("e1000_led_off_pchlan"); 5948 5949 /* If no link, then turn LED off by clearing the invert bit 5950 * for each LED that's mode is "link_up" in ledctl_mode1. 5951 */ 5952 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { 5953 for (i = 0; i < 3; i++) { 5954 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5955 if ((led & E1000_PHY_LED0_MODE_MASK) != 5956 E1000_LEDCTL_MODE_LINK_UP) 5957 continue; 5958 if (led & E1000_PHY_LED0_IVRT) 5959 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5960 else 5961 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5962 } 5963 } 5964 5965 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); 5966 } 5967 5968 /** 5969 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5970 * @hw: pointer to the HW structure 5971 * 5972 * Read appropriate register for the config done bit for completion status 5973 * and configure the PHY through s/w for EEPROM-less parts. 5974 * 5975 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5976 * config done bit, so only an error is logged and continues. If we were 5977 * to return with error, EEPROM-less silicon would not be able to be reset 5978 * or change link. 5979 **/ 5980 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5981 { 5982 s32 ret_val = E1000_SUCCESS; 5983 u32 bank = 0; 5984 u32 status; 5985 5986 DEBUGFUNC("e1000_get_cfg_done_ich8lan"); 5987 5988 e1000_get_cfg_done_generic(hw); 5989 5990 /* Wait for indication from h/w that it has completed basic config */ 5991 if (hw->mac.type >= e1000_ich10lan) { 5992 e1000_lan_init_done_ich8lan(hw); 5993 } else { 5994 ret_val = e1000_get_auto_rd_done_generic(hw); 5995 if (ret_val) { 5996 /* When auto config read does not complete, do not 5997 * return with an error. This can happen in situations 5998 * where there is no eeprom and prevents getting link. 5999 */ 6000 DEBUGOUT("Auto Read Done did not complete\n"); 6001 ret_val = E1000_SUCCESS; 6002 } 6003 } 6004 6005 /* Clear PHY Reset Asserted bit */ 6006 status = E1000_READ_REG(hw, E1000_STATUS); 6007 if (status & E1000_STATUS_PHYRA) 6008 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); 6009 else 6010 DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); 6011 6012 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 6013 if (hw->mac.type <= e1000_ich9lan) { 6014 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && 6015 (hw->phy.type == e1000_phy_igp_3)) { 6016 e1000_phy_init_script_igp3(hw); 6017 } 6018 } else { 6019 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 6020 /* Maybe we should do a basic PHY config */ 6021 DEBUGOUT("EEPROM not present\n"); 6022 ret_val = -E1000_ERR_CONFIG; 6023 } 6024 } 6025 6026 return ret_val; 6027 } 6028 6029 /** 6030 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 6031 * @hw: pointer to the HW structure 6032 * 6033 * In the case of a PHY power down to save power, or to turn off link during a 6034 * driver unload, or wake on lan is not enabled, remove the link. 6035 **/ 6036 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 6037 { 6038 /* If the management interface is not enabled, then power down */ 6039 if (!(hw->mac.ops.check_mng_mode(hw) || 6040 hw->phy.ops.check_reset_block(hw))) 6041 e1000_power_down_phy_copper(hw); 6042 6043 return; 6044 } 6045 6046 /** 6047 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 6048 * @hw: pointer to the HW structure 6049 * 6050 * Clears hardware counters specific to the silicon family and calls 6051 * clear_hw_cntrs_generic to clear all general purpose counters. 6052 **/ 6053 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 6054 { 6055 u16 phy_data; 6056 s32 ret_val; 6057 6058 DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); 6059 6060 e1000_clear_hw_cntrs_base_generic(hw); 6061 6062 E1000_READ_REG(hw, E1000_ALGNERRC); 6063 E1000_READ_REG(hw, E1000_RXERRC); 6064 E1000_READ_REG(hw, E1000_TNCRS); 6065 E1000_READ_REG(hw, E1000_CEXTERR); 6066 E1000_READ_REG(hw, E1000_TSCTC); 6067 E1000_READ_REG(hw, E1000_TSCTFC); 6068 6069 E1000_READ_REG(hw, E1000_MGTPRC); 6070 E1000_READ_REG(hw, E1000_MGTPDC); 6071 E1000_READ_REG(hw, E1000_MGTPTC); 6072 6073 E1000_READ_REG(hw, E1000_IAC); 6074 E1000_READ_REG(hw, E1000_ICRXOC); 6075 6076 /* Clear PHY statistics registers */ 6077 if ((hw->phy.type == e1000_phy_82578) || 6078 (hw->phy.type == e1000_phy_82579) || 6079 (hw->phy.type == e1000_phy_i217) || 6080 (hw->phy.type == e1000_phy_82577)) { 6081 ret_val = hw->phy.ops.acquire(hw); 6082 if (ret_val) 6083 return; 6084 ret_val = hw->phy.ops.set_page(hw, 6085 HV_STATS_PAGE << IGP_PAGE_SHIFT); 6086 if (ret_val) 6087 goto release; 6088 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 6089 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 6090 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 6091 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 6092 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 6093 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 6094 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 6095 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 6096 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 6097 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 6098 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 6099 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 6100 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 6101 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 6102 release: 6103 hw->phy.ops.release(hw); 6104 } 6105 } 6106 6107