1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2020, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 /* 82562G 10/100 Network Connection 37 * 82562G-2 10/100 Network Connection 38 * 82562GT 10/100 Network Connection 39 * 82562GT-2 10/100 Network Connection 40 * 82562V 10/100 Network Connection 41 * 82562V-2 10/100 Network Connection 42 * 82566DC-2 Gigabit Network Connection 43 * 82566DC Gigabit Network Connection 44 * 82566DM-2 Gigabit Network Connection 45 * 82566DM Gigabit Network Connection 46 * 82566MC Gigabit Network Connection 47 * 82566MM Gigabit Network Connection 48 * 82567LM Gigabit Network Connection 49 * 82567LF Gigabit Network Connection 50 * 82567V Gigabit Network Connection 51 * 82567LM-2 Gigabit Network Connection 52 * 82567LF-2 Gigabit Network Connection 53 * 82567V-2 Gigabit Network Connection 54 * 82567LF-3 Gigabit Network Connection 55 * 82567LM-3 Gigabit Network Connection 56 * 82567LM-4 Gigabit Network Connection 57 * 82577LM Gigabit Network Connection 58 * 82577LC Gigabit Network Connection 59 * 82578DM Gigabit Network Connection 60 * 82578DC Gigabit Network Connection 61 * 82579LM Gigabit Network Connection 62 * 82579V Gigabit Network Connection 63 * Ethernet Connection I217-LM 64 * Ethernet Connection I217-V 65 * Ethernet Connection I218-V 66 * Ethernet Connection I218-LM 67 * Ethernet Connection (2) I218-LM 68 * Ethernet Connection (2) I218-V 69 * Ethernet Connection (3) I218-LM 70 * Ethernet Connection (3) I218-V 71 */ 72 73 #include "e1000_api.h" 74 75 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); 76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw); 77 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); 78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw); 79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 81 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 82 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); 84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, 85 u8 *mc_addr_list, 86 u32 mc_addr_count); 87 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); 88 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); 89 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 90 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, 91 bool active); 92 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, 93 bool active); 94 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, 95 u16 words, u16 *data); 96 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 97 u16 *data); 98 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, 99 u16 words, u16 *data); 100 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); 101 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); 102 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw); 103 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, 104 u16 *data); 105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 106 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); 107 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); 108 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); 109 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); 110 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); 111 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 112 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, 113 u16 *speed, u16 *duplex); 114 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 115 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 116 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 118 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 119 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 120 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 121 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 123 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 126 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, 127 u32 offset, u8 *data); 128 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 129 u8 size, u16 *data); 130 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 131 u32 *data); 132 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 133 u32 offset, u32 *data); 134 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 135 u32 offset, u32 data); 136 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 137 u32 offset, u32 dword); 138 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, 139 u32 offset, u16 *data); 140 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 141 u32 offset, u8 byte); 142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); 143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); 145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr); 149 150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 151 /* Offset 04h HSFSTS */ 152 union ich8_hws_flash_status { 153 struct ich8_hsfsts { 154 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 155 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 156 u16 dael:1; /* bit 2 Direct Access error Log */ 157 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 158 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 159 u16 reserved1:2; /* bit 13:6 Reserved */ 160 u16 reserved2:6; /* bit 13:6 Reserved */ 161 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 162 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 163 } hsf_status; 164 u16 regval; 165 }; 166 167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 168 /* Offset 06h FLCTL */ 169 union ich8_hws_flash_ctrl { 170 struct ich8_hsflctl { 171 u16 flcgo:1; /* 0 Flash Cycle Go */ 172 u16 flcycle:2; /* 2:1 Flash Cycle */ 173 u16 reserved:5; /* 7:3 Reserved */ 174 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 175 u16 flockdn:6; /* 15:10 Reserved */ 176 } hsf_ctrl; 177 u16 regval; 178 }; 179 180 /* ICH Flash Region Access Permissions */ 181 union ich8_hws_flash_regacc { 182 struct ich8_flracc { 183 u32 grra:8; /* 0:7 GbE region Read Access */ 184 u32 grwa:8; /* 8:15 GbE region Write Access */ 185 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 186 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 187 } hsf_flregacc; 188 u16 regval; 189 }; 190 191 /** 192 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 193 * @hw: pointer to the HW structure 194 * 195 * Test access to the PHY registers by reading the PHY ID registers. If 196 * the PHY ID is already known (e.g. resume path) compare it with known ID, 197 * otherwise assume the read PHY ID is correct if it is valid. 198 * 199 * Assumes the sw/fw/hw semaphore is already acquired. 200 **/ 201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 202 { 203 u16 phy_reg = 0; 204 u32 phy_id = 0; 205 s32 ret_val = 0; 206 u16 retry_count; 207 u32 mac_reg = 0; 208 209 for (retry_count = 0; retry_count < 2; retry_count++) { 210 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); 211 if (ret_val || (phy_reg == 0xFFFF)) 212 continue; 213 phy_id = (u32)(phy_reg << 16); 214 215 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); 216 if (ret_val || (phy_reg == 0xFFFF)) { 217 phy_id = 0; 218 continue; 219 } 220 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 221 break; 222 } 223 224 if (hw->phy.id) { 225 if (hw->phy.id == phy_id) 226 goto out; 227 } else if (phy_id) { 228 hw->phy.id = phy_id; 229 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 230 goto out; 231 } 232 233 /* In case the PHY needs to be in mdio slow mode, 234 * set slow mode and try to get the PHY id again. 235 */ 236 if (hw->mac.type < e1000_pch_lpt) { 237 hw->phy.ops.release(hw); 238 ret_val = e1000_set_mdio_slow_mode_hv(hw); 239 if (!ret_val) 240 ret_val = e1000_get_phy_id(hw); 241 hw->phy.ops.acquire(hw); 242 } 243 244 if (ret_val) 245 return false; 246 out: 247 if (hw->mac.type >= e1000_pch_lpt) { 248 /* Only unforce SMBus if ME is not active */ 249 if (!(E1000_READ_REG(hw, E1000_FWSM) & 250 E1000_ICH_FWSM_FW_VALID)) { 251 /* Unforce SMBus mode in PHY */ 252 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg); 253 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 254 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg); 255 256 /* Unforce SMBus mode in MAC */ 257 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 258 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 259 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 260 } 261 } 262 263 return true; 264 } 265 266 /** 267 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 268 * @hw: pointer to the HW structure 269 * 270 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 271 * used to reset the PHY to a quiescent state when necessary. 272 **/ 273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 274 { 275 u32 mac_reg; 276 277 DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt"); 278 279 /* Set Phy Config Counter to 50msec */ 280 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); 281 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 282 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 283 E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); 284 285 /* Toggle LANPHYPC Value bit */ 286 mac_reg = E1000_READ_REG(hw, E1000_CTRL); 287 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 288 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 289 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); 290 E1000_WRITE_FLUSH(hw); 291 msec_delay(1); 292 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 293 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); 294 E1000_WRITE_FLUSH(hw); 295 296 if (hw->mac.type < e1000_pch_lpt) { 297 msec_delay(50); 298 } else { 299 u16 count = 20; 300 301 do { 302 msec_delay(5); 303 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & 304 E1000_CTRL_EXT_LPCD) && count--); 305 306 msec_delay(30); 307 } 308 } 309 310 /** 311 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 312 * @hw: pointer to the HW structure 313 * 314 * Workarounds/flow necessary for PHY initialization during driver load 315 * and resume paths. 316 **/ 317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 318 { 319 u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); 320 s32 ret_val; 321 322 DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); 323 324 /* Gate automatic PHY configuration by hardware on managed and 325 * non-managed 82579 and newer adapters. 326 */ 327 e1000_gate_hw_phy_config_ich8lan(hw, true); 328 329 /* It is not possible to be certain of the current state of ULP 330 * so forcibly disable it. 331 */ 332 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 333 e1000_disable_ulp_lpt_lp(hw, TRUE); 334 335 ret_val = hw->phy.ops.acquire(hw); 336 if (ret_val) { 337 DEBUGOUT("Failed to initialize PHY flow\n"); 338 goto out; 339 } 340 341 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 342 * inaccessible and resetting the PHY is not blocked, toggle the 343 * LANPHYPC Value bit to force the interconnect to PCIe mode. 344 */ 345 switch (hw->mac.type) { 346 case e1000_pch_lpt: 347 case e1000_pch_spt: 348 case e1000_pch_cnp: 349 case e1000_pch_tgp: 350 case e1000_pch_adp: 351 case e1000_pch_mtp: 352 if (e1000_phy_is_accessible_pchlan(hw)) 353 break; 354 355 /* Before toggling LANPHYPC, see if PHY is accessible by 356 * forcing MAC to SMBus mode first. 357 */ 358 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 359 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 360 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 361 362 /* Wait 50 milliseconds for MAC to finish any retries 363 * that it might be trying to perform from previous 364 * attempts to acknowledge any phy read requests. 365 */ 366 msec_delay(50); 367 368 /* FALLTHROUGH */ 369 case e1000_pch2lan: 370 if (e1000_phy_is_accessible_pchlan(hw)) 371 break; 372 373 /* FALLTHROUGH */ 374 case e1000_pchlan: 375 if ((hw->mac.type == e1000_pchlan) && 376 (fwsm & E1000_ICH_FWSM_FW_VALID)) 377 break; 378 379 if (hw->phy.ops.check_reset_block(hw)) { 380 DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); 381 ret_val = -E1000_ERR_PHY; 382 break; 383 } 384 385 /* Toggle LANPHYPC Value bit */ 386 e1000_toggle_lanphypc_pch_lpt(hw); 387 if (hw->mac.type >= e1000_pch_lpt) { 388 if (e1000_phy_is_accessible_pchlan(hw)) 389 break; 390 391 /* Toggling LANPHYPC brings the PHY out of SMBus mode 392 * so ensure that the MAC is also out of SMBus mode 393 */ 394 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 395 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 396 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 397 398 if (e1000_phy_is_accessible_pchlan(hw)) 399 break; 400 401 ret_val = -E1000_ERR_PHY; 402 } 403 break; 404 default: 405 break; 406 } 407 408 hw->phy.ops.release(hw); 409 if (!ret_val) { 410 411 /* Check to see if able to reset PHY. Print error if not */ 412 if (hw->phy.ops.check_reset_block(hw)) { 413 ERROR_REPORT("Reset blocked by ME\n"); 414 goto out; 415 } 416 417 /* Reset the PHY before any access to it. Doing so, ensures 418 * that the PHY is in a known good state before we read/write 419 * PHY registers. The generic reset is sufficient here, 420 * because we haven't determined the PHY type yet. 421 */ 422 ret_val = e1000_phy_hw_reset_generic(hw); 423 if (ret_val) 424 goto out; 425 426 /* On a successful reset, possibly need to wait for the PHY 427 * to quiesce to an accessible state before returning control 428 * to the calling function. If the PHY does not quiesce, then 429 * return E1000E_BLK_PHY_RESET, as this is the condition that 430 * the PHY is in. 431 */ 432 ret_val = hw->phy.ops.check_reset_block(hw); 433 if (ret_val) 434 ERROR_REPORT("ME blocked access to PHY after reset\n"); 435 } 436 437 out: 438 /* Ungate automatic PHY configuration on non-managed 82579 */ 439 if ((hw->mac.type == e1000_pch2lan) && 440 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 441 msec_delay(10); 442 e1000_gate_hw_phy_config_ich8lan(hw, false); 443 } 444 445 return ret_val; 446 } 447 448 /** 449 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 450 * @hw: pointer to the HW structure 451 * 452 * Initialize family-specific PHY parameters and function pointers. 453 **/ 454 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 455 { 456 struct e1000_phy_info *phy = &hw->phy; 457 s32 ret_val; 458 459 DEBUGFUNC("e1000_init_phy_params_pchlan"); 460 461 phy->addr = 1; 462 phy->reset_delay_us = 100; 463 464 phy->ops.acquire = e1000_acquire_swflag_ich8lan; 465 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; 466 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; 467 phy->ops.set_page = e1000_set_page_igp; 468 phy->ops.read_reg = e1000_read_phy_reg_hv; 469 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 470 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 471 phy->ops.release = e1000_release_swflag_ich8lan; 472 phy->ops.reset = e1000_phy_hw_reset_ich8lan; 473 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 474 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 475 phy->ops.write_reg = e1000_write_phy_reg_hv; 476 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 477 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 478 phy->ops.power_up = e1000_power_up_phy_copper; 479 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 480 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 481 482 phy->id = e1000_phy_unknown; 483 484 ret_val = e1000_init_phy_workarounds_pchlan(hw); 485 if (ret_val) 486 return ret_val; 487 488 if (phy->id == e1000_phy_unknown) 489 switch (hw->mac.type) { 490 default: 491 ret_val = e1000_get_phy_id(hw); 492 if (ret_val) 493 return ret_val; 494 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 495 break; 496 /* FALLTHROUGH */ 497 case e1000_pch2lan: 498 case e1000_pch_lpt: 499 case e1000_pch_spt: 500 case e1000_pch_cnp: 501 case e1000_pch_tgp: 502 case e1000_pch_adp: 503 case e1000_pch_mtp: 504 /* In case the PHY needs to be in mdio slow mode, 505 * set slow mode and try to get the PHY id again. 506 */ 507 ret_val = e1000_set_mdio_slow_mode_hv(hw); 508 if (ret_val) 509 return ret_val; 510 ret_val = e1000_get_phy_id(hw); 511 if (ret_val) 512 return ret_val; 513 break; 514 } 515 phy->type = e1000_get_phy_type_from_id(phy->id); 516 517 switch (phy->type) { 518 case e1000_phy_82577: 519 case e1000_phy_82579: 520 case e1000_phy_i217: 521 phy->ops.check_polarity = e1000_check_polarity_82577; 522 phy->ops.force_speed_duplex = 523 e1000_phy_force_speed_duplex_82577; 524 phy->ops.get_cable_length = e1000_get_cable_length_82577; 525 phy->ops.get_info = e1000_get_phy_info_82577; 526 phy->ops.commit = e1000_phy_sw_reset_generic; 527 break; 528 case e1000_phy_82578: 529 phy->ops.check_polarity = e1000_check_polarity_m88; 530 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 531 phy->ops.get_cable_length = e1000_get_cable_length_m88; 532 phy->ops.get_info = e1000_get_phy_info_m88; 533 break; 534 default: 535 ret_val = -E1000_ERR_PHY; 536 break; 537 } 538 539 return ret_val; 540 } 541 542 /** 543 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 544 * @hw: pointer to the HW structure 545 * 546 * Initialize family-specific PHY parameters and function pointers. 547 **/ 548 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 549 { 550 struct e1000_phy_info *phy = &hw->phy; 551 s32 ret_val; 552 u16 i = 0; 553 554 DEBUGFUNC("e1000_init_phy_params_ich8lan"); 555 556 phy->addr = 1; 557 phy->reset_delay_us = 100; 558 559 phy->ops.acquire = e1000_acquire_swflag_ich8lan; 560 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; 561 phy->ops.get_cable_length = e1000_get_cable_length_igp_2; 562 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; 563 phy->ops.read_reg = e1000_read_phy_reg_igp; 564 phy->ops.release = e1000_release_swflag_ich8lan; 565 phy->ops.reset = e1000_phy_hw_reset_ich8lan; 566 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; 567 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; 568 phy->ops.write_reg = e1000_write_phy_reg_igp; 569 phy->ops.power_up = e1000_power_up_phy_copper; 570 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 571 572 /* We may need to do this twice - once for IGP and if that fails, 573 * we'll set BM func pointers and try again 574 */ 575 ret_val = e1000_determine_phy_address(hw); 576 if (ret_val) { 577 phy->ops.write_reg = e1000_write_phy_reg_bm; 578 phy->ops.read_reg = e1000_read_phy_reg_bm; 579 ret_val = e1000_determine_phy_address(hw); 580 if (ret_val) { 581 DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); 582 return ret_val; 583 } 584 } 585 586 phy->id = 0; 587 while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && 588 (i++ < 100)) { 589 msec_delay(1); 590 ret_val = e1000_get_phy_id(hw); 591 if (ret_val) 592 return ret_val; 593 } 594 595 /* Verify phy id */ 596 switch (phy->id) { 597 case IGP03E1000_E_PHY_ID: 598 phy->type = e1000_phy_igp_3; 599 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 600 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; 601 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; 602 phy->ops.get_info = e1000_get_phy_info_igp; 603 phy->ops.check_polarity = e1000_check_polarity_igp; 604 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; 605 break; 606 case IFE_E_PHY_ID: 607 case IFE_PLUS_E_PHY_ID: 608 case IFE_C_E_PHY_ID: 609 phy->type = e1000_phy_ife; 610 phy->autoneg_mask = E1000_ALL_NOT_GIG; 611 phy->ops.get_info = e1000_get_phy_info_ife; 612 phy->ops.check_polarity = e1000_check_polarity_ife; 613 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 614 break; 615 case BME1000_E_PHY_ID: 616 phy->type = e1000_phy_bm; 617 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 618 phy->ops.read_reg = e1000_read_phy_reg_bm; 619 phy->ops.write_reg = e1000_write_phy_reg_bm; 620 phy->ops.commit = e1000_phy_sw_reset_generic; 621 phy->ops.get_info = e1000_get_phy_info_m88; 622 phy->ops.check_polarity = e1000_check_polarity_m88; 623 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 624 break; 625 default: 626 return -E1000_ERR_PHY; 627 break; 628 } 629 630 return E1000_SUCCESS; 631 } 632 633 /** 634 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 635 * @hw: pointer to the HW structure 636 * 637 * Initialize family-specific NVM parameters and function 638 * pointers. 639 **/ 640 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 641 { 642 struct e1000_nvm_info *nvm = &hw->nvm; 643 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 644 u32 gfpreg, sector_base_addr, sector_end_addr; 645 u16 i; 646 u32 nvm_size; 647 648 DEBUGFUNC("e1000_init_nvm_params_ich8lan"); 649 650 nvm->type = e1000_nvm_flash_sw; 651 652 if (hw->mac.type >= e1000_pch_spt) { 653 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 654 * STRAP register. This is because in SPT the GbE Flash region 655 * is no longer accessed through the flash registers. Instead, 656 * the mechanism has changed, and the Flash region access 657 * registers are now implemented in GbE memory space. 658 */ 659 nvm->flash_base_addr = 0; 660 nvm_size = 661 (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1) 662 * NVM_SIZE_MULTIPLIER; 663 nvm->flash_bank_size = nvm_size / 2; 664 /* Adjust to word count */ 665 nvm->flash_bank_size /= sizeof(u16); 666 /* Set the base address for flash register access */ 667 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 668 } else { 669 /* Can't read flash registers if register set isn't mapped. */ 670 if (!hw->flash_address) { 671 DEBUGOUT("ERROR: Flash registers not mapped\n"); 672 return -E1000_ERR_CONFIG; 673 } 674 675 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); 676 677 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 678 * Add 1 to sector_end_addr since this sector is included in 679 * the overall size. 680 */ 681 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 682 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 683 684 /* flash_base_addr is byte-aligned */ 685 nvm->flash_base_addr = sector_base_addr 686 << FLASH_SECTOR_ADDR_SHIFT; 687 688 /* find total size of the NVM, then cut in half since the total 689 * size represents two separate NVM banks. 690 */ 691 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 692 << FLASH_SECTOR_ADDR_SHIFT); 693 nvm->flash_bank_size /= 2; 694 /* Adjust to word count */ 695 nvm->flash_bank_size /= sizeof(u16); 696 } 697 698 nvm->word_size = E1000_SHADOW_RAM_WORDS; 699 700 /* Clear shadow ram */ 701 for (i = 0; i < nvm->word_size; i++) { 702 dev_spec->shadow_ram[i].modified = false; 703 dev_spec->shadow_ram[i].value = 0xFFFF; 704 } 705 706 /* Function Pointers */ 707 nvm->ops.acquire = e1000_acquire_nvm_ich8lan; 708 nvm->ops.release = e1000_release_nvm_ich8lan; 709 if (hw->mac.type >= e1000_pch_spt) { 710 nvm->ops.read = e1000_read_nvm_spt; 711 nvm->ops.update = e1000_update_nvm_checksum_spt; 712 } else { 713 nvm->ops.read = e1000_read_nvm_ich8lan; 714 nvm->ops.update = e1000_update_nvm_checksum_ich8lan; 715 } 716 nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; 717 nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; 718 nvm->ops.write = e1000_write_nvm_ich8lan; 719 720 return E1000_SUCCESS; 721 } 722 723 /** 724 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 725 * @hw: pointer to the HW structure 726 * 727 * Initialize family-specific MAC parameters and function 728 * pointers. 729 **/ 730 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 731 { 732 struct e1000_mac_info *mac = &hw->mac; 733 734 DEBUGFUNC("e1000_init_mac_params_ich8lan"); 735 736 /* Set media type function pointer */ 737 hw->phy.media_type = e1000_media_type_copper; 738 739 /* Set mta register count */ 740 mac->mta_reg_count = 32; 741 /* Set rar entry count */ 742 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 743 if (mac->type == e1000_ich8lan) 744 mac->rar_entry_count--; 745 /* Set if part includes ASF firmware */ 746 mac->asf_firmware_present = true; 747 /* FWSM register */ 748 mac->has_fwsm = true; 749 /* ARC subsystem not supported */ 750 mac->arc_subsystem_valid = false; 751 /* Adaptive IFS supported */ 752 mac->adaptive_ifs = true; 753 754 /* Function pointers */ 755 756 /* bus type/speed/width */ 757 mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; 758 /* function id */ 759 mac->ops.set_lan_id = e1000_set_lan_id_single_port; 760 /* reset */ 761 mac->ops.reset_hw = e1000_reset_hw_ich8lan; 762 /* hw initialization */ 763 mac->ops.init_hw = e1000_init_hw_ich8lan; 764 /* link setup */ 765 mac->ops.setup_link = e1000_setup_link_ich8lan; 766 /* physical interface setup */ 767 mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; 768 /* check for link */ 769 mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; 770 /* link info */ 771 mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; 772 /* multicast address update */ 773 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; 774 /* clear hardware counters */ 775 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; 776 777 /* LED and other operations */ 778 switch (mac->type) { 779 case e1000_ich8lan: 780 case e1000_ich9lan: 781 case e1000_ich10lan: 782 /* check management mode */ 783 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 784 /* ID LED init */ 785 mac->ops.id_led_init = e1000_id_led_init_generic; 786 /* blink LED */ 787 mac->ops.blink_led = e1000_blink_led_generic; 788 /* setup LED */ 789 mac->ops.setup_led = e1000_setup_led_generic; 790 /* cleanup LED */ 791 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 792 /* turn on/off LED */ 793 mac->ops.led_on = e1000_led_on_ich8lan; 794 mac->ops.led_off = e1000_led_off_ich8lan; 795 break; 796 case e1000_pch2lan: 797 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 798 mac->ops.rar_set = e1000_rar_set_pch2lan; 799 /* FALLTHROUGH */ 800 case e1000_pch_lpt: 801 case e1000_pch_spt: 802 case e1000_pch_cnp: 803 case e1000_pch_tgp: 804 case e1000_pch_adp: 805 case e1000_pch_mtp: 806 /* multicast address update for pch2 */ 807 mac->ops.update_mc_addr_list = 808 e1000_update_mc_addr_list_pch2lan; 809 /* FALLTHROUGH */ 810 case e1000_pchlan: 811 /* check management mode */ 812 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 813 /* ID LED init */ 814 mac->ops.id_led_init = e1000_id_led_init_pchlan; 815 /* setup LED */ 816 mac->ops.setup_led = e1000_setup_led_pchlan; 817 /* cleanup LED */ 818 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 819 /* turn on/off LED */ 820 mac->ops.led_on = e1000_led_on_pchlan; 821 mac->ops.led_off = e1000_led_off_pchlan; 822 break; 823 default: 824 break; 825 } 826 827 if (mac->type >= e1000_pch_lpt) { 828 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 829 mac->ops.rar_set = e1000_rar_set_pch_lpt; 830 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; 831 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt; 832 } 833 834 /* Enable PCS Lock-loss workaround for ICH8 */ 835 if (mac->type == e1000_ich8lan) 836 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 837 838 return E1000_SUCCESS; 839 } 840 841 /** 842 * __e1000_access_emi_reg_locked - Read/write EMI register 843 * @hw: pointer to the HW structure 844 * @address: EMI address to program 845 * @data: pointer to value to read/write from/to the EMI address 846 * @read: boolean flag to indicate read or write 847 * 848 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 849 **/ 850 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 851 u16 *data, bool read) 852 { 853 s32 ret_val; 854 855 DEBUGFUNC("__e1000_access_emi_reg_locked"); 856 857 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); 858 if (ret_val) 859 return ret_val; 860 861 if (read) 862 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, 863 data); 864 else 865 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 866 *data); 867 868 return ret_val; 869 } 870 871 /** 872 * e1000_read_emi_reg_locked - Read Extended Management Interface register 873 * @hw: pointer to the HW structure 874 * @addr: EMI address to program 875 * @data: value to be read from the EMI address 876 * 877 * Assumes the SW/FW/HW Semaphore is already acquired. 878 **/ 879 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 880 { 881 DEBUGFUNC("e1000_read_emi_reg_locked"); 882 883 return __e1000_access_emi_reg_locked(hw, addr, data, true); 884 } 885 886 /** 887 * e1000_write_emi_reg_locked - Write Extended Management Interface register 888 * @hw: pointer to the HW structure 889 * @addr: EMI address to program 890 * @data: value to be written to the EMI address 891 * 892 * Assumes the SW/FW/HW Semaphore is already acquired. 893 **/ 894 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 895 { 896 DEBUGFUNC("e1000_read_emi_reg_locked"); 897 898 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 899 } 900 901 /** 902 * e1000_set_eee_pchlan - Enable/disable EEE support 903 * @hw: pointer to the HW structure 904 * 905 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 906 * the link and the EEE capabilities of the link partner. The LPI Control 907 * register bits will remain set only if/when link is up. 908 * 909 * EEE LPI must not be asserted earlier than one second after link is up. 910 * On 82579, EEE LPI should not be enabled until such time otherwise there 911 * can be link issues with some switches. Other devices can have EEE LPI 912 * enabled immediately upon link up since they have a timer in hardware which 913 * prevents LPI from being asserted too early. 914 **/ 915 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 916 { 917 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 918 s32 ret_val; 919 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 920 921 DEBUGFUNC("e1000_set_eee_pchlan"); 922 923 switch (hw->phy.type) { 924 case e1000_phy_82579: 925 lpa = I82579_EEE_LP_ABILITY; 926 pcs_status = I82579_EEE_PCS_STATUS; 927 adv_addr = I82579_EEE_ADVERTISEMENT; 928 break; 929 case e1000_phy_i217: 930 lpa = I217_EEE_LP_ABILITY; 931 pcs_status = I217_EEE_PCS_STATUS; 932 adv_addr = I217_EEE_ADVERTISEMENT; 933 break; 934 default: 935 return E1000_SUCCESS; 936 } 937 938 ret_val = hw->phy.ops.acquire(hw); 939 if (ret_val) 940 return ret_val; 941 942 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 943 if (ret_val) 944 goto release; 945 946 /* Clear bits that enable EEE in various speeds */ 947 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 948 949 /* Enable EEE if not disabled by user */ 950 if (!dev_spec->eee_disable) { 951 /* Save off link partner's EEE ability */ 952 ret_val = e1000_read_emi_reg_locked(hw, lpa, 953 &dev_spec->eee_lp_ability); 954 if (ret_val) 955 goto release; 956 957 /* Read EEE advertisement */ 958 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 959 if (ret_val) 960 goto release; 961 962 /* Enable EEE only for speeds in which the link partner is 963 * EEE capable and for which we advertise EEE. 964 */ 965 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 966 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 967 968 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 969 hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); 970 if (data & NWAY_LPAR_100TX_FD_CAPS) 971 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 972 else 973 /* EEE is not supported in 100Half, so ignore 974 * partner's EEE in 100 ability if full-duplex 975 * is not advertised. 976 */ 977 dev_spec->eee_lp_ability &= 978 ~I82579_EEE_100_SUPPORTED; 979 } 980 } 981 982 if (hw->phy.type == e1000_phy_82579) { 983 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 984 &data); 985 if (ret_val) 986 goto release; 987 988 data &= ~I82579_LPI_100_PLL_SHUT; 989 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 990 data); 991 } 992 993 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 994 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 995 if (ret_val) 996 goto release; 997 998 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 999 release: 1000 hw->phy.ops.release(hw); 1001 1002 return ret_val; 1003 } 1004 1005 /** 1006 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 1007 * @hw: pointer to the HW structure 1008 * @link: link up bool flag 1009 * 1010 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 1011 * preventing further DMA write requests. Workaround the issue by disabling 1012 * the de-assertion of the clock request when in 1Gpbs mode. 1013 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 1014 * speeds in order to avoid Tx hangs. 1015 **/ 1016 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 1017 { 1018 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); 1019 u32 status = E1000_READ_REG(hw, E1000_STATUS); 1020 s32 ret_val = E1000_SUCCESS; 1021 u16 reg; 1022 1023 if (link && (status & E1000_STATUS_SPEED_1000)) { 1024 ret_val = hw->phy.ops.acquire(hw); 1025 if (ret_val) 1026 return ret_val; 1027 1028 ret_val = 1029 e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 1030 ®); 1031 if (ret_val) 1032 goto release; 1033 1034 ret_val = 1035 e1000_write_kmrn_reg_locked(hw, 1036 E1000_KMRNCTRLSTA_K1_CONFIG, 1037 reg & 1038 ~E1000_KMRNCTRLSTA_K1_ENABLE); 1039 if (ret_val) 1040 goto release; 1041 1042 usec_delay(10); 1043 1044 E1000_WRITE_REG(hw, E1000_FEXTNVM6, 1045 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 1046 1047 ret_val = 1048 e1000_write_kmrn_reg_locked(hw, 1049 E1000_KMRNCTRLSTA_K1_CONFIG, 1050 reg); 1051 release: 1052 hw->phy.ops.release(hw); 1053 } else { 1054 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 1055 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 1056 1057 if ((hw->phy.revision > 5) || !link || 1058 ((status & E1000_STATUS_SPEED_100) && 1059 (status & E1000_STATUS_FD))) 1060 goto update_fextnvm6; 1061 1062 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®); 1063 if (ret_val) 1064 return ret_val; 1065 1066 /* Clear link status transmit timeout */ 1067 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 1068 1069 if (status & E1000_STATUS_SPEED_100) { 1070 /* Set inband Tx timeout to 5x10us for 100Half */ 1071 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 1072 1073 /* Do not extend the K1 entry latency for 100Half */ 1074 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 1075 } else { 1076 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 1077 reg |= 50 << 1078 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 1079 1080 /* Extend the K1 entry latency for 10 Mbps */ 1081 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 1082 } 1083 1084 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg); 1085 if (ret_val) 1086 return ret_val; 1087 1088 update_fextnvm6: 1089 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); 1090 } 1091 1092 return ret_val; 1093 } 1094 1095 static u64 e1000_ltr2ns(u16 ltr) 1096 { 1097 u32 value, scale; 1098 1099 /* Determine the latency in nsec based on the LTR value & scale */ 1100 value = ltr & E1000_LTRV_VALUE_MASK; 1101 scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT; 1102 1103 return value * (1ULL << (scale * E1000_LTRV_SCALE_FACTOR)); 1104 } 1105 1106 /** 1107 * e1000_platform_pm_pch_lpt - Set platform power management values 1108 * @hw: pointer to the HW structure 1109 * @link: bool indicating link status 1110 * 1111 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 1112 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1113 * when link is up (which must not exceed the maximum latency supported 1114 * by the platform), otherwise specify there is no LTR requirement. 1115 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1116 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1117 * Capability register set, on this device LTR is set by writing the 1118 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1119 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1120 * message to the PMC. 1121 * 1122 * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF) 1123 * high-water mark. 1124 **/ 1125 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1126 { 1127 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1128 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1129 u16 lat_enc = 0; /* latency encoded */ 1130 s32 obff_hwm = 0; 1131 1132 DEBUGFUNC("e1000_platform_pm_pch_lpt"); 1133 1134 if (link) { 1135 u16 speed, duplex, scale = 0; 1136 u16 max_snoop, max_nosnoop; 1137 u16 max_ltr_enc; /* max LTR latency encoded */ 1138 s64 lat_ns; 1139 s64 value; 1140 u32 rxa; 1141 1142 if (!hw->mac.max_frame_size) { 1143 DEBUGOUT("max_frame_size not set.\n"); 1144 return -E1000_ERR_CONFIG; 1145 } 1146 1147 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1148 if (!speed) { 1149 DEBUGOUT("Speed not set.\n"); 1150 return -E1000_ERR_CONFIG; 1151 } 1152 1153 /* Rx Packet Buffer Allocation size (KB) */ 1154 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK; 1155 1156 /* Determine the maximum latency tolerated by the device. 1157 * 1158 * Per the PCIe spec, the tolerated latencies are encoded as 1159 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1160 * a 10-bit value (0-1023) to provide a range from 1 ns to 1161 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1162 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1163 */ 1164 lat_ns = ((s64)rxa * 1024 - 1165 (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000; 1166 if (lat_ns < 0) 1167 lat_ns = 0; 1168 else 1169 lat_ns /= speed; 1170 value = lat_ns; 1171 1172 while (value > E1000_LTRV_VALUE_MASK) { 1173 scale++; 1174 value = E1000_DIVIDE_ROUND_UP(value, (1 << 5)); 1175 } 1176 if (scale > E1000_LTRV_SCALE_MAX) { 1177 DEBUGOUT1("Invalid LTR latency scale %d\n", scale); 1178 return -E1000_ERR_CONFIG; 1179 } 1180 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value); 1181 1182 /* Determine the maximum latency tolerated by the platform */ 1183 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop); 1184 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1185 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop); 1186 1187 if (lat_enc > max_ltr_enc) { 1188 lat_enc = max_ltr_enc; 1189 lat_ns = e1000_ltr2ns(max_ltr_enc); 1190 } 1191 1192 if (lat_ns) { 1193 lat_ns *= speed * 1000; 1194 lat_ns /= 8; 1195 lat_ns /= 1000000000; 1196 obff_hwm = (s32)(rxa - lat_ns); 1197 } 1198 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) { 1199 DEBUGOUT1("Invalid high water mark %d\n", obff_hwm); 1200 return -E1000_ERR_CONFIG; 1201 } 1202 } 1203 1204 /* Set Snoop and No-Snoop latencies the same */ 1205 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1206 E1000_WRITE_REG(hw, E1000_LTRV, reg); 1207 1208 /* Set OBFF high water mark */ 1209 reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK; 1210 reg |= obff_hwm; 1211 E1000_WRITE_REG(hw, E1000_SVT, reg); 1212 1213 /* Enable OBFF */ 1214 reg = E1000_READ_REG(hw, E1000_SVCR); 1215 reg |= E1000_SVCR_OFF_EN; 1216 /* Always unblock interrupts to the CPU even when the system is 1217 * in OBFF mode. This ensures that small round-robin traffic 1218 * (like ping) does not get dropped or experience long latency. 1219 */ 1220 reg |= E1000_SVCR_OFF_MASKINT; 1221 E1000_WRITE_REG(hw, E1000_SVCR, reg); 1222 1223 return E1000_SUCCESS; 1224 } 1225 1226 /** 1227 * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer 1228 * @hw: pointer to the HW structure 1229 * @itr: interrupt throttling rate 1230 * 1231 * Configure OBFF with the updated interrupt rate. 1232 **/ 1233 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr) 1234 { 1235 u32 svcr; 1236 s32 timer; 1237 1238 DEBUGFUNC("e1000_set_obff_timer_pch_lpt"); 1239 1240 /* Convert ITR value into microseconds for OBFF timer */ 1241 timer = itr & E1000_ITR_MASK; 1242 timer = (timer * E1000_ITR_MULT) / 1000; 1243 1244 if ((timer < 0) || (timer > E1000_ITR_MASK)) { 1245 DEBUGOUT1("Invalid OBFF timer %d\n", timer); 1246 return -E1000_ERR_CONFIG; 1247 } 1248 1249 svcr = E1000_READ_REG(hw, E1000_SVCR); 1250 svcr &= ~E1000_SVCR_OFF_TIMER_MASK; 1251 svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT; 1252 E1000_WRITE_REG(hw, E1000_SVCR, svcr); 1253 1254 return E1000_SUCCESS; 1255 } 1256 1257 /** 1258 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1259 * @hw: pointer to the HW structure 1260 * @to_sx: boolean indicating a system power state transition to Sx 1261 * 1262 * When link is down, configure ULP mode to significantly reduce the power 1263 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1264 * ME firmware to start the ULP configuration. If not on an ME enabled 1265 * system, configure the ULP mode by software. 1266 */ 1267 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1268 { 1269 u32 mac_reg; 1270 s32 ret_val = E1000_SUCCESS; 1271 u16 phy_reg; 1272 u16 oem_reg = 0; 1273 1274 if ((hw->mac.type < e1000_pch_lpt) || 1275 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || 1276 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || 1277 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || 1278 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || 1279 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1280 return 0; 1281 1282 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { 1283 /* Request ME configure ULP mode in the PHY */ 1284 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1285 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1286 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1287 1288 goto out; 1289 } 1290 1291 if (!to_sx) { 1292 int i = 0; 1293 1294 /* Poll up to 5 seconds for Cable Disconnected indication */ 1295 while (!(E1000_READ_REG(hw, E1000_FEXT) & 1296 E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1297 /* Bail if link is re-acquired */ 1298 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) 1299 return -E1000_ERR_PHY; 1300 1301 if (i++ == 100) 1302 break; 1303 1304 msec_delay(50); 1305 } 1306 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n", 1307 (E1000_READ_REG(hw, E1000_FEXT) & 1308 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", 1309 i * 50); 1310 if (!(E1000_READ_REG(hw, E1000_FEXT) & 1311 E1000_FEXT_PHY_CABLE_DISCONNECTED)) 1312 return 0; 1313 1314 } 1315 1316 ret_val = hw->phy.ops.acquire(hw); 1317 if (ret_val) 1318 goto out; 1319 1320 /* Force SMBus mode in PHY */ 1321 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1322 if (ret_val) 1323 goto release; 1324 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1325 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1326 1327 /* Force SMBus mode in MAC */ 1328 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1329 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1330 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 1331 1332 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1333 * LPLU and disable Gig speed when entering ULP 1334 */ 1335 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1336 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1337 &oem_reg); 1338 if (ret_val) 1339 goto release; 1340 1341 phy_reg = oem_reg; 1342 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1343 1344 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1345 phy_reg); 1346 1347 if (ret_val) 1348 goto release; 1349 } 1350 1351 /* Set Inband ULP Exit, Reset to SMBus mode and 1352 * Disable SMBus Release on PERST# in PHY 1353 */ 1354 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1355 if (ret_val) 1356 goto release; 1357 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1358 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1359 if (to_sx) { 1360 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC) 1361 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1362 else 1363 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1364 1365 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1366 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1367 } else { 1368 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1369 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1370 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1371 } 1372 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1373 1374 /* Set Disable SMBus Release on PERST# in MAC */ 1375 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); 1376 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1377 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); 1378 1379 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1380 phy_reg |= I218_ULP_CONFIG1_START; 1381 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1382 1383 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1384 to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { 1385 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1386 oem_reg); 1387 if (ret_val) 1388 goto release; 1389 } 1390 1391 release: 1392 hw->phy.ops.release(hw); 1393 out: 1394 if (ret_val) 1395 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val); 1396 else 1397 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1398 1399 return ret_val; 1400 } 1401 1402 /** 1403 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1404 * @hw: pointer to the HW structure 1405 * @force: boolean indicating whether or not to force disabling ULP 1406 * 1407 * Un-configure ULP mode when link is up, the system is transitioned from 1408 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1409 * system, poll for an indication from ME that ULP has been un-configured. 1410 * If not on an ME enabled system, un-configure the ULP mode by software. 1411 * 1412 * During nominal operation, this function is called when link is acquired 1413 * to disable ULP mode (force=false); otherwise, for example when unloading 1414 * the driver or during Sx->S0 transitions, this is called with force=true 1415 * to forcibly disable ULP. 1416 */ 1417 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1418 { 1419 s32 ret_val = E1000_SUCCESS; 1420 u8 ulp_exit_timeout = 30; 1421 u32 mac_reg; 1422 u16 phy_reg; 1423 int i = 0; 1424 1425 if ((hw->mac.type < e1000_pch_lpt) || 1426 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || 1427 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || 1428 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) || 1429 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) || 1430 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1431 return 0; 1432 1433 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { 1434 if (force) { 1435 /* Request ME un-configure ULP mode in the PHY */ 1436 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1437 mac_reg &= ~E1000_H2ME_ULP; 1438 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1439 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1440 } 1441 1442 if (hw->mac.type == e1000_pch_cnp) 1443 ulp_exit_timeout = 100; 1444 1445 while (E1000_READ_REG(hw, E1000_FWSM) & 1446 E1000_FWSM_ULP_CFG_DONE) { 1447 if (i++ == ulp_exit_timeout) { 1448 ret_val = -E1000_ERR_PHY; 1449 goto out; 1450 } 1451 1452 msec_delay(10); 1453 } 1454 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1455 1456 if (force) { 1457 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1458 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1459 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1460 } else { 1461 /* Clear H2ME.ULP after ME ULP configuration */ 1462 mac_reg = E1000_READ_REG(hw, E1000_H2ME); 1463 mac_reg &= ~E1000_H2ME_ULP; 1464 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); 1465 } 1466 1467 goto out; 1468 } 1469 1470 ret_val = hw->phy.ops.acquire(hw); 1471 if (ret_val) 1472 goto out; 1473 1474 if (force) 1475 /* Toggle LANPHYPC Value bit */ 1476 e1000_toggle_lanphypc_pch_lpt(hw); 1477 1478 /* Unforce SMBus mode in PHY */ 1479 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1480 if (ret_val) { 1481 /* The MAC might be in PCIe mode, so temporarily force to 1482 * SMBus mode in order to access the PHY. 1483 */ 1484 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1485 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1486 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 1487 1488 msec_delay(50); 1489 1490 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1491 &phy_reg); 1492 if (ret_val) 1493 goto release; 1494 } 1495 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1496 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1497 1498 /* Unforce SMBus mode in MAC */ 1499 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1500 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1501 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); 1502 1503 /* When ULP mode was previously entered, K1 was disabled by the 1504 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1505 */ 1506 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1507 if (ret_val) 1508 goto release; 1509 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1510 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1511 1512 /* Clear ULP enabled configuration */ 1513 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1514 if (ret_val) 1515 goto release; 1516 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1517 I218_ULP_CONFIG1_STICKY_ULP | 1518 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1519 I218_ULP_CONFIG1_WOL_HOST | 1520 I218_ULP_CONFIG1_INBAND_EXIT | 1521 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1522 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1523 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1524 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1525 1526 /* Commit ULP changes by starting auto ULP configuration */ 1527 phy_reg |= I218_ULP_CONFIG1_START; 1528 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1529 1530 /* Clear Disable SMBus Release on PERST# in MAC */ 1531 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); 1532 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1533 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); 1534 1535 release: 1536 hw->phy.ops.release(hw); 1537 if (force) { 1538 hw->phy.ops.reset(hw); 1539 msec_delay(50); 1540 } 1541 out: 1542 if (ret_val) 1543 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); 1544 else 1545 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1546 1547 return ret_val; 1548 } 1549 1550 /** 1551 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1552 * @hw: pointer to the HW structure 1553 * 1554 * Checks to see of the link status of the hardware has changed. If a 1555 * change in link status has been detected, then we read the PHY registers 1556 * to get the current speed/duplex if link exists. 1557 **/ 1558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1559 { 1560 struct e1000_mac_info *mac = &hw->mac; 1561 s32 ret_val, tipg_reg = 0; 1562 u16 emi_addr, emi_val = 0; 1563 bool link; 1564 u16 phy_reg; 1565 1566 DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); 1567 1568 /* We only want to go out to the PHY registers to see if Auto-Neg 1569 * has completed and/or if our link status has changed. The 1570 * get_link_status flag is set upon receiving a Link Status 1571 * Change or Rx Sequence Error interrupt. 1572 */ 1573 if (!mac->get_link_status) 1574 return E1000_SUCCESS; 1575 1576 /* First we want to see if the MII Status Register reports 1577 * link. If so, then we want to get the current speed/duplex 1578 * of the PHY. 1579 */ 1580 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 1581 if (ret_val) 1582 return ret_val; 1583 1584 if (hw->mac.type == e1000_pchlan) { 1585 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1586 if (ret_val) 1587 return ret_val; 1588 } 1589 1590 /* When connected at 10Mbps half-duplex, some parts are excessively 1591 * aggressive resulting in many collisions. To avoid this, increase 1592 * the IPG and reduce Rx latency in the PHY. 1593 */ 1594 if ((hw->mac.type >= e1000_pch2lan) && link) { 1595 u16 speed, duplex; 1596 1597 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex); 1598 tipg_reg = E1000_READ_REG(hw, E1000_TIPG); 1599 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1600 1601 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1602 tipg_reg |= 0xFF; 1603 /* Reduce Rx latency in analog PHY */ 1604 emi_val = 0; 1605 } else if (hw->mac.type >= e1000_pch_spt && 1606 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1607 tipg_reg |= 0xC; 1608 emi_val = 1; 1609 } else { 1610 /* Roll back the default values */ 1611 tipg_reg |= 0x08; 1612 emi_val = 1; 1613 } 1614 1615 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg); 1616 1617 ret_val = hw->phy.ops.acquire(hw); 1618 if (ret_val) 1619 return ret_val; 1620 1621 if (hw->mac.type == e1000_pch2lan) 1622 emi_addr = I82579_RX_CONFIG; 1623 else 1624 emi_addr = I217_RX_CONFIG; 1625 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1626 1627 1628 if (hw->mac.type >= e1000_pch_lpt) { 1629 hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG, 1630 &phy_reg); 1631 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1632 if (speed == SPEED_100 || speed == SPEED_10) 1633 phy_reg |= 0x3E8; 1634 else 1635 phy_reg |= 0xFA; 1636 hw->phy.ops.write_reg_locked(hw, 1637 I217_PLL_CLOCK_GATE_REG, 1638 phy_reg); 1639 1640 if (speed == SPEED_1000) { 1641 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1642 &phy_reg); 1643 1644 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1645 1646 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1647 phy_reg); 1648 } 1649 } 1650 hw->phy.ops.release(hw); 1651 1652 if (ret_val) 1653 return ret_val; 1654 1655 if (hw->mac.type >= e1000_pch_spt) { 1656 u16 data; 1657 u16 ptr_gap; 1658 1659 if (speed == SPEED_1000) { 1660 ret_val = hw->phy.ops.acquire(hw); 1661 if (ret_val) 1662 return ret_val; 1663 1664 ret_val = hw->phy.ops.read_reg_locked(hw, 1665 PHY_REG(776, 20), 1666 &data); 1667 if (ret_val) { 1668 hw->phy.ops.release(hw); 1669 return ret_val; 1670 } 1671 1672 ptr_gap = (data & (0x3FF << 2)) >> 2; 1673 if (ptr_gap < 0x18) { 1674 data &= ~(0x3FF << 2); 1675 data |= (0x18 << 2); 1676 ret_val = 1677 hw->phy.ops.write_reg_locked(hw, 1678 PHY_REG(776, 20), data); 1679 } 1680 hw->phy.ops.release(hw); 1681 if (ret_val) 1682 return ret_val; 1683 } else { 1684 ret_val = hw->phy.ops.acquire(hw); 1685 if (ret_val) 1686 return ret_val; 1687 1688 ret_val = hw->phy.ops.write_reg_locked(hw, 1689 PHY_REG(776, 20), 1690 0xC023); 1691 hw->phy.ops.release(hw); 1692 if (ret_val) 1693 return ret_val; 1694 1695 } 1696 } 1697 } 1698 1699 /* I217 Packet Loss issue: 1700 * ensure that FEXTNVM4 Beacon Duration is set correctly 1701 * on power up. 1702 * Set the Beacon Duration for I217 to 8 usec 1703 */ 1704 if (hw->mac.type >= e1000_pch_lpt) { 1705 u32 mac_reg; 1706 1707 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); 1708 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1709 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1710 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); 1711 } 1712 1713 /* Work-around I218 hang issue */ 1714 if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1715 (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1716 (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) || 1717 (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) { 1718 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1719 if (ret_val) 1720 return ret_val; 1721 } 1722 if (hw->mac.type >= e1000_pch_lpt) { 1723 /* Set platform power management values for 1724 * Latency Tolerance Reporting (LTR) 1725 * Optimized Buffer Flush/Fill (OBFF) 1726 */ 1727 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1728 if (ret_val) 1729 return ret_val; 1730 } 1731 /* Clear link partner's EEE ability */ 1732 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1733 1734 if (hw->mac.type >= e1000_pch_lpt) { 1735 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); 1736 1737 if (hw->mac.type == e1000_pch_spt) { 1738 /* FEXTNVM6 K1-off workaround - for SPT only */ 1739 u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG); 1740 1741 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1742 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1743 else 1744 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1745 } 1746 1747 if (hw->dev_spec.ich8lan.disable_k1_off == true) 1748 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1749 1750 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); 1751 1752 /* Configure K0s minimum time */ 1753 e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME); 1754 } 1755 1756 if (!link) 1757 return E1000_SUCCESS; /* No link detected */ 1758 1759 mac->get_link_status = false; 1760 1761 switch (hw->mac.type) { 1762 case e1000_pch2lan: 1763 ret_val = e1000_k1_workaround_lv(hw); 1764 if (ret_val) 1765 return ret_val; 1766 /* FALLTHROUGH */ 1767 case e1000_pchlan: 1768 if (hw->phy.type == e1000_phy_82578) { 1769 ret_val = e1000_link_stall_workaround_hv(hw); 1770 if (ret_val) 1771 return ret_val; 1772 } 1773 1774 /* Workaround for PCHx parts in half-duplex: 1775 * Set the number of preambles removed from the packet 1776 * when it is passed from the PHY to the MAC to prevent 1777 * the MAC from misinterpreting the packet type. 1778 */ 1779 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1780 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1781 1782 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != 1783 E1000_STATUS_FD) 1784 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1785 1786 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1787 break; 1788 default: 1789 break; 1790 } 1791 1792 /* Check if there was DownShift, must be checked 1793 * immediately after link-up 1794 */ 1795 e1000_check_downshift_generic(hw); 1796 1797 /* Enable/Disable EEE after link up */ 1798 if (hw->phy.type > e1000_phy_82579) { 1799 ret_val = e1000_set_eee_pchlan(hw); 1800 if (ret_val) 1801 return ret_val; 1802 } 1803 1804 /* If we are forcing speed/duplex, then we simply return since 1805 * we have already determined whether we have link or not. 1806 */ 1807 if (!mac->autoneg) 1808 return -E1000_ERR_CONFIG; 1809 1810 /* Auto-Neg is enabled. Auto Speed Detection takes care 1811 * of MAC speed/duplex configuration. So we only need to 1812 * configure Collision Distance in the MAC. 1813 */ 1814 mac->ops.config_collision_dist(hw); 1815 1816 /* Configure Flow Control now that Auto-Neg has completed. 1817 * First, we need to restore the desired flow control 1818 * settings because we may have had to re-autoneg with a 1819 * different link partner. 1820 */ 1821 ret_val = e1000_config_fc_after_link_up_generic(hw); 1822 if (ret_val) 1823 DEBUGOUT("Error configuring flow control\n"); 1824 1825 return ret_val; 1826 } 1827 1828 /** 1829 * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers 1830 * @hw: pointer to the HW structure 1831 * 1832 * Initialize family-specific function pointers for PHY, MAC, and NVM. 1833 **/ 1834 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) 1835 { 1836 DEBUGFUNC("e1000_init_function_pointers_ich8lan"); 1837 1838 hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; 1839 hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; 1840 switch (hw->mac.type) { 1841 case e1000_ich8lan: 1842 case e1000_ich9lan: 1843 case e1000_ich10lan: 1844 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; 1845 break; 1846 case e1000_pchlan: 1847 case e1000_pch2lan: 1848 case e1000_pch_lpt: 1849 case e1000_pch_spt: 1850 case e1000_pch_cnp: 1851 case e1000_pch_tgp: 1852 case e1000_pch_adp: 1853 case e1000_pch_mtp: 1854 hw->phy.ops.init_params = e1000_init_phy_params_pchlan; 1855 break; 1856 default: 1857 break; 1858 } 1859 } 1860 1861 /** 1862 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1863 * @hw: pointer to the HW structure 1864 * 1865 * Acquires the mutex for performing NVM operations. 1866 **/ 1867 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) 1868 { 1869 DEBUGFUNC("e1000_acquire_nvm_ich8lan"); 1870 1871 ASSERT_CTX_LOCK_HELD(hw); 1872 1873 return E1000_SUCCESS; 1874 } 1875 1876 /** 1877 * e1000_release_nvm_ich8lan - Release NVM mutex 1878 * @hw: pointer to the HW structure 1879 * 1880 * Releases the mutex used while performing NVM operations. 1881 **/ 1882 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) 1883 { 1884 DEBUGFUNC("e1000_release_nvm_ich8lan"); 1885 1886 ASSERT_CTX_LOCK_HELD(hw); 1887 } 1888 1889 /** 1890 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1891 * @hw: pointer to the HW structure 1892 * 1893 * Acquires the software control flag for performing PHY and select 1894 * MAC CSR accesses. 1895 **/ 1896 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1897 { 1898 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1899 s32 ret_val = E1000_SUCCESS; 1900 1901 DEBUGFUNC("e1000_acquire_swflag_ich8lan"); 1902 1903 ASSERT_CTX_LOCK_HELD(hw); 1904 1905 while (timeout) { 1906 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 1907 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1908 break; 1909 1910 msec_delay_irq(1); 1911 timeout--; 1912 } 1913 1914 if (!timeout) { 1915 DEBUGOUT("SW has already locked the resource.\n"); 1916 ret_val = -E1000_ERR_CONFIG; 1917 goto out; 1918 } 1919 1920 timeout = SW_FLAG_TIMEOUT; 1921 1922 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1923 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 1924 1925 while (timeout) { 1926 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 1927 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1928 break; 1929 1930 msec_delay_irq(1); 1931 timeout--; 1932 } 1933 1934 if (!timeout) { 1935 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1936 E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); 1937 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1938 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 1939 ret_val = -E1000_ERR_CONFIG; 1940 goto out; 1941 } 1942 1943 out: 1944 return ret_val; 1945 } 1946 1947 /** 1948 * e1000_release_swflag_ich8lan - Release software control flag 1949 * @hw: pointer to the HW structure 1950 * 1951 * Releases the software control flag for performing PHY and select 1952 * MAC CSR accesses. 1953 **/ 1954 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1955 { 1956 u32 extcnf_ctrl; 1957 1958 DEBUGFUNC("e1000_release_swflag_ich8lan"); 1959 1960 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 1961 1962 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1963 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1964 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 1965 } else { 1966 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); 1967 } 1968 } 1969 1970 /** 1971 * e1000_check_mng_mode_ich8lan - Checks management mode 1972 * @hw: pointer to the HW structure 1973 * 1974 * This checks if the adapter has any manageability enabled. 1975 * This is a function pointer entry point only called by read/write 1976 * routines for the PHY and NVM parts. 1977 **/ 1978 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1979 { 1980 u32 fwsm; 1981 1982 DEBUGFUNC("e1000_check_mng_mode_ich8lan"); 1983 1984 fwsm = E1000_READ_REG(hw, E1000_FWSM); 1985 1986 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1987 ((fwsm & E1000_FWSM_MODE_MASK) == 1988 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1989 } 1990 1991 /** 1992 * e1000_check_mng_mode_pchlan - Checks management mode 1993 * @hw: pointer to the HW structure 1994 * 1995 * This checks if the adapter has iAMT enabled. 1996 * This is a function pointer entry point only called by read/write 1997 * routines for the PHY and NVM parts. 1998 **/ 1999 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 2000 { 2001 u32 fwsm; 2002 2003 DEBUGFUNC("e1000_check_mng_mode_pchlan"); 2004 2005 fwsm = E1000_READ_REG(hw, E1000_FWSM); 2006 2007 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 2008 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 2009 } 2010 2011 /** 2012 * e1000_rar_set_pch2lan - Set receive address register 2013 * @hw: pointer to the HW structure 2014 * @addr: pointer to the receive address 2015 * @index: receive address array register 2016 * 2017 * Sets the receive address array register at index to the address passed 2018 * in by addr. For 82579, RAR[0] is the base address register that is to 2019 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 2020 * Use SHRA[0-3] in place of those reserved for ME. 2021 **/ 2022 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 2023 { 2024 u32 rar_low, rar_high; 2025 2026 DEBUGFUNC("e1000_rar_set_pch2lan"); 2027 2028 /* HW expects these in little endian so we reverse the byte order 2029 * from network order (big endian) to little endian 2030 */ 2031 rar_low = ((u32) addr[0] | 2032 ((u32) addr[1] << 8) | 2033 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 2034 2035 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 2036 2037 /* If MAC address zero, no need to set the AV bit */ 2038 if (rar_low || rar_high) 2039 rar_high |= E1000_RAH_AV; 2040 2041 if (index == 0) { 2042 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); 2043 E1000_WRITE_FLUSH(hw); 2044 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); 2045 E1000_WRITE_FLUSH(hw); 2046 return E1000_SUCCESS; 2047 } 2048 2049 /* RAR[1-6] are owned by manageability. Skip those and program the 2050 * next address into the SHRA register array. 2051 */ 2052 if (index < (u32) (hw->mac.rar_entry_count)) { 2053 s32 ret_val; 2054 2055 ret_val = e1000_acquire_swflag_ich8lan(hw); 2056 if (ret_val) 2057 goto out; 2058 2059 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); 2060 E1000_WRITE_FLUSH(hw); 2061 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); 2062 E1000_WRITE_FLUSH(hw); 2063 2064 e1000_release_swflag_ich8lan(hw); 2065 2066 /* verify the register updates */ 2067 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && 2068 (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) 2069 return E1000_SUCCESS; 2070 2071 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 2072 (index - 1), E1000_READ_REG(hw, E1000_FWSM)); 2073 } 2074 2075 out: 2076 DEBUGOUT1("Failed to write receive address at index %d\n", index); 2077 return -E1000_ERR_CONFIG; 2078 } 2079 2080 /** 2081 * e1000_rar_set_pch_lpt - Set receive address registers 2082 * @hw: pointer to the HW structure 2083 * @addr: pointer to the receive address 2084 * @index: receive address array register 2085 * 2086 * Sets the receive address register array at index to the address passed 2087 * in by addr. For LPT, RAR[0] is the base address register that is to 2088 * contain the MAC address. SHRA[0-10] are the shared receive address 2089 * registers that are shared between the Host and manageability engine (ME). 2090 **/ 2091 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 2092 { 2093 u32 rar_low, rar_high; 2094 u32 wlock_mac; 2095 2096 DEBUGFUNC("e1000_rar_set_pch_lpt"); 2097 2098 /* HW expects these in little endian so we reverse the byte order 2099 * from network order (big endian) to little endian 2100 */ 2101 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 2102 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 2103 2104 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 2105 2106 /* If MAC address zero, no need to set the AV bit */ 2107 if (rar_low || rar_high) 2108 rar_high |= E1000_RAH_AV; 2109 2110 if (index == 0) { 2111 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); 2112 E1000_WRITE_FLUSH(hw); 2113 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); 2114 E1000_WRITE_FLUSH(hw); 2115 return E1000_SUCCESS; 2116 } 2117 2118 /* The manageability engine (ME) can lock certain SHRAR registers that 2119 * it is using - those registers are unavailable for use. 2120 */ 2121 if (index < hw->mac.rar_entry_count) { 2122 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & 2123 E1000_FWSM_WLOCK_MAC_MASK; 2124 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2125 2126 /* Check if all SHRAR registers are locked */ 2127 if (wlock_mac == 1) 2128 goto out; 2129 2130 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2131 s32 ret_val; 2132 2133 ret_val = e1000_acquire_swflag_ich8lan(hw); 2134 2135 if (ret_val) 2136 goto out; 2137 2138 E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), 2139 rar_low); 2140 E1000_WRITE_FLUSH(hw); 2141 E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), 2142 rar_high); 2143 E1000_WRITE_FLUSH(hw); 2144 2145 e1000_release_swflag_ich8lan(hw); 2146 2147 /* verify the register updates */ 2148 if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && 2149 (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) 2150 return E1000_SUCCESS; 2151 } 2152 } 2153 2154 out: 2155 DEBUGOUT1("Failed to write receive address at index %d\n", index); 2156 return -E1000_ERR_CONFIG; 2157 } 2158 2159 /** 2160 * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses 2161 * @hw: pointer to the HW structure 2162 * @mc_addr_list: array of multicast addresses to program 2163 * @mc_addr_count: number of multicast addresses to program 2164 * 2165 * Updates entire Multicast Table Array of the PCH2 MAC and PHY. 2166 * The caller must have a packed mc_addr_list of multicast addresses. 2167 **/ 2168 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, 2169 u8 *mc_addr_list, 2170 u32 mc_addr_count) 2171 { 2172 u16 phy_reg = 0; 2173 int i; 2174 s32 ret_val; 2175 2176 DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); 2177 2178 e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); 2179 2180 ret_val = hw->phy.ops.acquire(hw); 2181 if (ret_val) 2182 return; 2183 2184 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2185 if (ret_val) 2186 goto release; 2187 2188 for (i = 0; i < hw->mac.mta_reg_count; i++) { 2189 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 2190 (u16)(hw->mac.mta_shadow[i] & 2191 0xFFFF)); 2192 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), 2193 (u16)((hw->mac.mta_shadow[i] >> 16) & 2194 0xFFFF)); 2195 } 2196 2197 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2198 2199 release: 2200 hw->phy.ops.release(hw); 2201 } 2202 2203 /** 2204 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2205 * @hw: pointer to the HW structure 2206 * 2207 * Checks if firmware is blocking the reset of the PHY. 2208 * This is a function pointer entry point only called by 2209 * reset routines. 2210 **/ 2211 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2212 { 2213 u32 fwsm; 2214 bool blocked = false; 2215 int i = 0; 2216 2217 DEBUGFUNC("e1000_check_reset_block_ich8lan"); 2218 2219 do { 2220 fwsm = E1000_READ_REG(hw, E1000_FWSM); 2221 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) { 2222 blocked = true; 2223 msec_delay(10); 2224 continue; 2225 } 2226 blocked = false; 2227 } while (blocked && (i++ < 30)); 2228 return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS; 2229 } 2230 2231 /** 2232 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2233 * @hw: pointer to the HW structure 2234 * 2235 * Assumes semaphore already acquired. 2236 * 2237 **/ 2238 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2239 { 2240 u16 phy_data; 2241 u32 strap = E1000_READ_REG(hw, E1000_STRAP); 2242 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2243 E1000_STRAP_SMT_FREQ_SHIFT; 2244 s32 ret_val; 2245 2246 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2247 2248 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2249 if (ret_val) 2250 return ret_val; 2251 2252 phy_data &= ~HV_SMB_ADDR_MASK; 2253 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2254 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2255 2256 if (hw->phy.type == e1000_phy_i217) { 2257 /* Restore SMBus frequency */ 2258 if (freq--) { 2259 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2260 phy_data |= (freq & (1 << 0)) << 2261 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2262 phy_data |= (freq & (1 << 1)) << 2263 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2264 } else { 2265 DEBUGOUT("Unsupported SMB frequency in PHY\n"); 2266 } 2267 } 2268 2269 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2270 } 2271 2272 /** 2273 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2274 * @hw: pointer to the HW structure 2275 * 2276 * SW should configure the LCD from the NVM extended configuration region 2277 * as a workaround for certain parts. 2278 **/ 2279 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2280 { 2281 struct e1000_phy_info *phy = &hw->phy; 2282 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2283 s32 ret_val = E1000_SUCCESS; 2284 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2285 2286 DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); 2287 2288 /* Initialize the PHY from the NVM on ICH platforms. This 2289 * is needed due to an issue where the NVM configuration is 2290 * not properly autoloaded after power transitions. 2291 * Therefore, after each PHY reset, we will load the 2292 * configuration data out of the NVM manually. 2293 */ 2294 switch (hw->mac.type) { 2295 case e1000_ich8lan: 2296 if (phy->type != e1000_phy_igp_3) 2297 return ret_val; 2298 2299 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || 2300 (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { 2301 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2302 break; 2303 } 2304 /* FALLTHROUGH */ 2305 case e1000_pchlan: 2306 case e1000_pch2lan: 2307 case e1000_pch_lpt: 2308 case e1000_pch_spt: 2309 case e1000_pch_cnp: 2310 case e1000_pch_tgp: 2311 case e1000_pch_adp: 2312 case e1000_pch_mtp: 2313 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2314 break; 2315 default: 2316 return ret_val; 2317 } 2318 2319 ret_val = hw->phy.ops.acquire(hw); 2320 if (ret_val) 2321 return ret_val; 2322 2323 data = E1000_READ_REG(hw, E1000_FEXTNVM); 2324 if (!(data & sw_cfg_mask)) 2325 goto release; 2326 2327 /* Make sure HW does not configure LCD from PHY 2328 * extended configuration before SW configuration 2329 */ 2330 data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 2331 if ((hw->mac.type < e1000_pch2lan) && 2332 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2333 goto release; 2334 2335 cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); 2336 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2337 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2338 if (!cnf_size) 2339 goto release; 2340 2341 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2342 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2343 2344 if (((hw->mac.type == e1000_pchlan) && 2345 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2346 (hw->mac.type > e1000_pchlan)) { 2347 /* HW configures the SMBus address and LEDs when the 2348 * OEM and LCD Write Enable bits are set in the NVM. 2349 * When both NVM bits are cleared, SW will configure 2350 * them instead. 2351 */ 2352 ret_val = e1000_write_smbus_addr(hw); 2353 if (ret_val) 2354 goto release; 2355 2356 data = E1000_READ_REG(hw, E1000_LEDCTL); 2357 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2358 (u16)data); 2359 if (ret_val) 2360 goto release; 2361 } 2362 2363 /* Configure LCD from extended configuration region. */ 2364 2365 /* cnf_base_addr is in DWORD */ 2366 word_addr = (u16)(cnf_base_addr << 1); 2367 2368 for (i = 0; i < cnf_size; i++) { 2369 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, 2370 ®_data); 2371 if (ret_val) 2372 goto release; 2373 2374 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), 2375 1, ®_addr); 2376 if (ret_val) 2377 goto release; 2378 2379 /* Save off the PHY page for future writes. */ 2380 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2381 phy_page = reg_data; 2382 continue; 2383 } 2384 2385 reg_addr &= PHY_REG_MASK; 2386 reg_addr |= phy_page; 2387 2388 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, 2389 reg_data); 2390 if (ret_val) 2391 goto release; 2392 } 2393 2394 release: 2395 hw->phy.ops.release(hw); 2396 return ret_val; 2397 } 2398 2399 /** 2400 * e1000_k1_gig_workaround_hv - K1 Si workaround 2401 * @hw: pointer to the HW structure 2402 * @link: link up bool flag 2403 * 2404 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2405 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2406 * If link is down, the function will restore the default K1 setting located 2407 * in the NVM. 2408 **/ 2409 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2410 { 2411 s32 ret_val = E1000_SUCCESS; 2412 u16 status_reg = 0; 2413 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2414 2415 DEBUGFUNC("e1000_k1_gig_workaround_hv"); 2416 2417 if (hw->mac.type != e1000_pchlan) 2418 return E1000_SUCCESS; 2419 2420 /* Wrap the whole flow with the sw flag */ 2421 ret_val = hw->phy.ops.acquire(hw); 2422 if (ret_val) 2423 return ret_val; 2424 2425 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2426 if (link) { 2427 if (hw->phy.type == e1000_phy_82578) { 2428 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, 2429 &status_reg); 2430 if (ret_val) 2431 goto release; 2432 2433 status_reg &= (BM_CS_STATUS_LINK_UP | 2434 BM_CS_STATUS_RESOLVED | 2435 BM_CS_STATUS_SPEED_MASK); 2436 2437 if (status_reg == (BM_CS_STATUS_LINK_UP | 2438 BM_CS_STATUS_RESOLVED | 2439 BM_CS_STATUS_SPEED_1000)) 2440 k1_enable = false; 2441 } 2442 2443 if (hw->phy.type == e1000_phy_82577) { 2444 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, 2445 &status_reg); 2446 if (ret_val) 2447 goto release; 2448 2449 status_reg &= (HV_M_STATUS_LINK_UP | 2450 HV_M_STATUS_AUTONEG_COMPLETE | 2451 HV_M_STATUS_SPEED_MASK); 2452 2453 if (status_reg == (HV_M_STATUS_LINK_UP | 2454 HV_M_STATUS_AUTONEG_COMPLETE | 2455 HV_M_STATUS_SPEED_1000)) 2456 k1_enable = false; 2457 } 2458 2459 /* Link stall fix for link up */ 2460 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 2461 0x0100); 2462 if (ret_val) 2463 goto release; 2464 2465 } else { 2466 /* Link stall fix for link down */ 2467 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 2468 0x4100); 2469 if (ret_val) 2470 goto release; 2471 } 2472 2473 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2474 2475 release: 2476 hw->phy.ops.release(hw); 2477 2478 return ret_val; 2479 } 2480 2481 /** 2482 * e1000_configure_k1_ich8lan - Configure K1 power state 2483 * @hw: pointer to the HW structure 2484 * @k1_enable: K1 state to configure 2485 * 2486 * Configure the K1 power state based on the provided parameter. 2487 * Assumes semaphore already acquired. 2488 * 2489 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2490 **/ 2491 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2492 { 2493 s32 ret_val; 2494 u32 ctrl_reg = 0; 2495 u32 ctrl_ext = 0; 2496 u32 reg = 0; 2497 u16 kmrn_reg = 0; 2498 2499 DEBUGFUNC("e1000_configure_k1_ich8lan"); 2500 2501 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2502 &kmrn_reg); 2503 if (ret_val) 2504 return ret_val; 2505 2506 if (k1_enable) 2507 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2508 else 2509 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2510 2511 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2512 kmrn_reg); 2513 if (ret_val) 2514 return ret_val; 2515 2516 usec_delay(20); 2517 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 2518 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); 2519 2520 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2521 reg |= E1000_CTRL_FRCSPD; 2522 E1000_WRITE_REG(hw, E1000_CTRL, reg); 2523 2524 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2525 E1000_WRITE_FLUSH(hw); 2526 usec_delay(20); 2527 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); 2528 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 2529 E1000_WRITE_FLUSH(hw); 2530 usec_delay(20); 2531 2532 return E1000_SUCCESS; 2533 } 2534 2535 /** 2536 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2537 * @hw: pointer to the HW structure 2538 * @d0_state: boolean if entering d0 or d3 device state 2539 * 2540 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2541 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2542 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2543 **/ 2544 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2545 { 2546 s32 ret_val = 0; 2547 u32 mac_reg; 2548 u16 oem_reg; 2549 2550 DEBUGFUNC("e1000_oem_bits_config_ich8lan"); 2551 2552 if (hw->mac.type < e1000_pchlan) 2553 return ret_val; 2554 2555 ret_val = hw->phy.ops.acquire(hw); 2556 if (ret_val) 2557 return ret_val; 2558 2559 if (hw->mac.type == e1000_pchlan) { 2560 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 2561 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2562 goto release; 2563 } 2564 2565 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); 2566 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2567 goto release; 2568 2569 mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); 2570 2571 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); 2572 if (ret_val) 2573 goto release; 2574 2575 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2576 2577 if (d0_state) { 2578 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2579 oem_reg |= HV_OEM_BITS_GBE_DIS; 2580 2581 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2582 oem_reg |= HV_OEM_BITS_LPLU; 2583 } else { 2584 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2585 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2586 oem_reg |= HV_OEM_BITS_GBE_DIS; 2587 2588 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2589 E1000_PHY_CTRL_NOND0A_LPLU)) 2590 oem_reg |= HV_OEM_BITS_LPLU; 2591 } 2592 2593 /* Set Restart auto-neg to activate the bits */ 2594 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2595 !hw->phy.ops.check_reset_block(hw)) 2596 oem_reg |= HV_OEM_BITS_RESTART_AN; 2597 2598 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); 2599 2600 release: 2601 hw->phy.ops.release(hw); 2602 2603 return ret_val; 2604 } 2605 2606 2607 /** 2608 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2609 * @hw: pointer to the HW structure 2610 **/ 2611 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2612 { 2613 s32 ret_val; 2614 u16 data; 2615 2616 DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); 2617 2618 ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); 2619 if (ret_val) 2620 return ret_val; 2621 2622 data |= HV_KMRN_MDIO_SLOW; 2623 2624 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); 2625 2626 return ret_val; 2627 } 2628 2629 /** 2630 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2631 * done after every PHY reset. 2632 * @hw: pointer to the HW structure 2633 **/ 2634 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2635 { 2636 s32 ret_val = E1000_SUCCESS; 2637 u16 phy_data; 2638 2639 DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); 2640 2641 if (hw->mac.type != e1000_pchlan) 2642 return E1000_SUCCESS; 2643 2644 /* Set MDIO slow mode before any other MDIO access */ 2645 if (hw->phy.type == e1000_phy_82577) { 2646 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2647 if (ret_val) 2648 return ret_val; 2649 } 2650 2651 if (((hw->phy.type == e1000_phy_82577) && 2652 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2653 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2654 /* Disable generation of early preamble */ 2655 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); 2656 if (ret_val) 2657 return ret_val; 2658 2659 /* Preamble tuning for SSC */ 2660 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, 2661 0xA204); 2662 if (ret_val) 2663 return ret_val; 2664 } 2665 2666 if (hw->phy.type == e1000_phy_82578) { 2667 /* Return registers to default by doing a soft reset then 2668 * writing 0x3140 to the control register. 2669 */ 2670 if (hw->phy.revision < 2) { 2671 e1000_phy_sw_reset_generic(hw); 2672 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, 2673 0x3140); 2674 if (ret_val) 2675 return ret_val; 2676 } 2677 } 2678 2679 /* Select page 0 */ 2680 ret_val = hw->phy.ops.acquire(hw); 2681 if (ret_val) 2682 return ret_val; 2683 2684 hw->phy.addr = 1; 2685 ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2686 hw->phy.ops.release(hw); 2687 if (ret_val) 2688 return ret_val; 2689 2690 /* Configure the K1 Si workaround during phy reset assuming there is 2691 * link so that it disables K1 if link is in 1Gbps. 2692 */ 2693 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2694 if (ret_val) 2695 return ret_val; 2696 2697 /* Workaround for link disconnects on a busy hub in half duplex */ 2698 ret_val = hw->phy.ops.acquire(hw); 2699 if (ret_val) 2700 return ret_val; 2701 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2702 if (ret_val) 2703 goto release; 2704 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, 2705 phy_data & 0x00FF); 2706 if (ret_val) 2707 goto release; 2708 2709 /* set MSE higher to enable link to stay up when noise is high */ 2710 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2711 release: 2712 hw->phy.ops.release(hw); 2713 2714 return ret_val; 2715 } 2716 2717 /** 2718 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2719 * @hw: pointer to the HW structure 2720 **/ 2721 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2722 { 2723 u32 mac_reg; 2724 u16 i, phy_reg = 0; 2725 s32 ret_val; 2726 2727 DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); 2728 2729 ret_val = hw->phy.ops.acquire(hw); 2730 if (ret_val) 2731 return; 2732 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2733 if (ret_val) 2734 goto release; 2735 2736 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2737 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2738 mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); 2739 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2740 (u16)(mac_reg & 0xFFFF)); 2741 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2742 (u16)((mac_reg >> 16) & 0xFFFF)); 2743 2744 mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); 2745 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2746 (u16)(mac_reg & 0xFFFF)); 2747 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2748 (u16)((mac_reg & E1000_RAH_AV) 2749 >> 16)); 2750 } 2751 2752 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2753 2754 release: 2755 hw->phy.ops.release(hw); 2756 } 2757 2758 static u32 e1000_calc_rx_da_crc(u8 mac[]) 2759 { 2760 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ 2761 u32 i, j, mask, crc; 2762 2763 DEBUGFUNC("e1000_calc_rx_da_crc"); 2764 2765 crc = 0xffffffff; 2766 for (i = 0; i < 6; i++) { 2767 crc = crc ^ mac[i]; 2768 for (j = 8; j > 0; j--) { 2769 mask = (crc & 1) * (-1); 2770 crc = (crc >> 1) ^ (poly & mask); 2771 } 2772 } 2773 return ~crc; 2774 } 2775 2776 /** 2777 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2778 * with 82579 PHY 2779 * @hw: pointer to the HW structure 2780 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2781 **/ 2782 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2783 { 2784 s32 ret_val = E1000_SUCCESS; 2785 u16 phy_reg, data; 2786 u32 mac_reg; 2787 u16 i; 2788 2789 DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); 2790 2791 if (hw->mac.type < e1000_pch2lan) 2792 return E1000_SUCCESS; 2793 2794 /* disable Rx path while enabling/disabling workaround */ 2795 hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); 2796 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), 2797 phy_reg | (1 << 14)); 2798 if (ret_val) 2799 return ret_val; 2800 2801 if (enable) { 2802 /* Write Rx addresses (rar_entry_count for RAL/H, and 2803 * SHRAL/H) and initial CRC values to the MAC 2804 */ 2805 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2806 u8 mac_addr[ETHER_ADDR_LEN] = {0}; 2807 u32 addr_high, addr_low; 2808 2809 addr_high = E1000_READ_REG(hw, E1000_RAH(i)); 2810 if (!(addr_high & E1000_RAH_AV)) 2811 continue; 2812 addr_low = E1000_READ_REG(hw, E1000_RAL(i)); 2813 mac_addr[0] = (addr_low & 0xFF); 2814 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2815 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2816 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2817 mac_addr[4] = (addr_high & 0xFF); 2818 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2819 2820 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), 2821 e1000_calc_rx_da_crc(mac_addr)); 2822 } 2823 2824 /* Write Rx addresses to the PHY */ 2825 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2826 2827 /* Enable jumbo frame workaround in the MAC */ 2828 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); 2829 mac_reg &= ~(1 << 14); 2830 mac_reg |= (7 << 15); 2831 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); 2832 2833 mac_reg = E1000_READ_REG(hw, E1000_RCTL); 2834 mac_reg |= E1000_RCTL_SECRC; 2835 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); 2836 2837 ret_val = e1000_read_kmrn_reg_generic(hw, 2838 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2839 &data); 2840 if (ret_val) 2841 return ret_val; 2842 ret_val = e1000_write_kmrn_reg_generic(hw, 2843 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2844 data | (1 << 0)); 2845 if (ret_val) 2846 return ret_val; 2847 ret_val = e1000_read_kmrn_reg_generic(hw, 2848 E1000_KMRNCTRLSTA_HD_CTRL, 2849 &data); 2850 if (ret_val) 2851 return ret_val; 2852 data &= ~(0xF << 8); 2853 data |= (0xB << 8); 2854 ret_val = e1000_write_kmrn_reg_generic(hw, 2855 E1000_KMRNCTRLSTA_HD_CTRL, 2856 data); 2857 if (ret_val) 2858 return ret_val; 2859 2860 /* Enable jumbo frame workaround in the PHY */ 2861 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); 2862 data &= ~(0x7F << 5); 2863 data |= (0x37 << 5); 2864 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); 2865 if (ret_val) 2866 return ret_val; 2867 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); 2868 data &= ~(1 << 13); 2869 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); 2870 if (ret_val) 2871 return ret_val; 2872 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); 2873 data &= ~(0x3FF << 2); 2874 data |= (E1000_TX_PTR_GAP << 2); 2875 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); 2876 if (ret_val) 2877 return ret_val; 2878 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); 2879 if (ret_val) 2880 return ret_val; 2881 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); 2882 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | 2883 (1 << 10)); 2884 if (ret_val) 2885 return ret_val; 2886 } else { 2887 /* Write MAC register values back to h/w defaults */ 2888 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); 2889 mac_reg &= ~(0xF << 14); 2890 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); 2891 2892 mac_reg = E1000_READ_REG(hw, E1000_RCTL); 2893 mac_reg &= ~E1000_RCTL_SECRC; 2894 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); 2895 2896 ret_val = e1000_read_kmrn_reg_generic(hw, 2897 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2898 &data); 2899 if (ret_val) 2900 return ret_val; 2901 ret_val = e1000_write_kmrn_reg_generic(hw, 2902 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2903 data & ~(1 << 0)); 2904 if (ret_val) 2905 return ret_val; 2906 ret_val = e1000_read_kmrn_reg_generic(hw, 2907 E1000_KMRNCTRLSTA_HD_CTRL, 2908 &data); 2909 if (ret_val) 2910 return ret_val; 2911 data &= ~(0xF << 8); 2912 data |= (0xB << 8); 2913 ret_val = e1000_write_kmrn_reg_generic(hw, 2914 E1000_KMRNCTRLSTA_HD_CTRL, 2915 data); 2916 if (ret_val) 2917 return ret_val; 2918 2919 /* Write PHY register values back to h/w defaults */ 2920 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); 2921 data &= ~(0x7F << 5); 2922 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); 2923 if (ret_val) 2924 return ret_val; 2925 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); 2926 data |= (1 << 13); 2927 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); 2928 if (ret_val) 2929 return ret_val; 2930 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); 2931 data &= ~(0x3FF << 2); 2932 data |= (0x8 << 2); 2933 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); 2934 if (ret_val) 2935 return ret_val; 2936 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); 2937 if (ret_val) 2938 return ret_val; 2939 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); 2940 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & 2941 ~(1 << 10)); 2942 if (ret_val) 2943 return ret_val; 2944 } 2945 2946 /* re-enable Rx path after enabling/disabling workaround */ 2947 return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & 2948 ~(1 << 14)); 2949 } 2950 2951 /** 2952 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2953 * done after every PHY reset. 2954 * @hw: pointer to the HW structure 2955 **/ 2956 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2957 { 2958 s32 ret_val = E1000_SUCCESS; 2959 2960 DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); 2961 2962 if (hw->mac.type != e1000_pch2lan) 2963 return E1000_SUCCESS; 2964 2965 /* Set MDIO slow mode before any other MDIO access */ 2966 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2967 if (ret_val) 2968 return ret_val; 2969 2970 ret_val = hw->phy.ops.acquire(hw); 2971 if (ret_val) 2972 return ret_val; 2973 /* set MSE higher to enable link to stay up when noise is high */ 2974 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2975 if (ret_val) 2976 goto release; 2977 /* drop link after 5 times MSE threshold was reached */ 2978 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2979 release: 2980 hw->phy.ops.release(hw); 2981 2982 return ret_val; 2983 } 2984 2985 /** 2986 * e1000_k1_gig_workaround_lv - K1 Si workaround 2987 * @hw: pointer to the HW structure 2988 * 2989 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2990 * Disable K1 for 1000 and 100 speeds 2991 **/ 2992 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2993 { 2994 s32 ret_val = E1000_SUCCESS; 2995 u16 status_reg = 0; 2996 2997 DEBUGFUNC("e1000_k1_workaround_lv"); 2998 2999 if (hw->mac.type != e1000_pch2lan) 3000 return E1000_SUCCESS; 3001 3002 /* Set K1 beacon duration based on 10Mbs speed */ 3003 ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); 3004 if (ret_val) 3005 return ret_val; 3006 3007 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 3008 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 3009 if (status_reg & 3010 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 3011 u16 pm_phy_reg; 3012 3013 /* LV 1G/100 Packet drop issue wa */ 3014 ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, 3015 &pm_phy_reg); 3016 if (ret_val) 3017 return ret_val; 3018 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 3019 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, 3020 pm_phy_reg); 3021 if (ret_val) 3022 return ret_val; 3023 } else { 3024 u32 mac_reg; 3025 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); 3026 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 3027 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 3028 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); 3029 } 3030 } 3031 3032 return ret_val; 3033 } 3034 3035 /** 3036 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 3037 * @hw: pointer to the HW structure 3038 * @gate: boolean set to true to gate, false to ungate 3039 * 3040 * Gate/ungate the automatic PHY configuration via hardware; perform 3041 * the configuration via software instead. 3042 **/ 3043 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 3044 { 3045 u32 extcnf_ctrl; 3046 3047 DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); 3048 3049 if (hw->mac.type < e1000_pch2lan) 3050 return; 3051 3052 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); 3053 3054 if (gate) 3055 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 3056 else 3057 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 3058 3059 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); 3060 } 3061 3062 /** 3063 * e1000_lan_init_done_ich8lan - Check for PHY config completion 3064 * @hw: pointer to the HW structure 3065 * 3066 * Check the appropriate indication the MAC has finished configuring the 3067 * PHY after a software reset. 3068 **/ 3069 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 3070 { 3071 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 3072 3073 DEBUGFUNC("e1000_lan_init_done_ich8lan"); 3074 3075 /* Wait for basic configuration completes before proceeding */ 3076 do { 3077 data = E1000_READ_REG(hw, E1000_STATUS); 3078 data &= E1000_STATUS_LAN_INIT_DONE; 3079 usec_delay(100); 3080 } while ((!data) && --loop); 3081 3082 /* If basic configuration is incomplete before the above loop 3083 * count reaches 0, loading the configuration from NVM will 3084 * leave the PHY in a bad state possibly resulting in no link. 3085 */ 3086 if (loop == 0) 3087 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); 3088 3089 /* Clear the Init Done bit for the next init event */ 3090 data = E1000_READ_REG(hw, E1000_STATUS); 3091 data &= ~E1000_STATUS_LAN_INIT_DONE; 3092 E1000_WRITE_REG(hw, E1000_STATUS, data); 3093 } 3094 3095 /** 3096 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 3097 * @hw: pointer to the HW structure 3098 **/ 3099 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 3100 { 3101 s32 ret_val = E1000_SUCCESS; 3102 u16 reg; 3103 3104 DEBUGFUNC("e1000_post_phy_reset_ich8lan"); 3105 3106 if (hw->phy.ops.check_reset_block(hw)) 3107 return E1000_SUCCESS; 3108 3109 /* Allow time for h/w to get to quiescent state after reset */ 3110 msec_delay(10); 3111 3112 /* Perform any necessary post-reset workarounds */ 3113 switch (hw->mac.type) { 3114 case e1000_pchlan: 3115 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 3116 if (ret_val) 3117 return ret_val; 3118 break; 3119 case e1000_pch2lan: 3120 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 3121 if (ret_val) 3122 return ret_val; 3123 break; 3124 default: 3125 break; 3126 } 3127 3128 /* Clear the host wakeup bit after lcd reset */ 3129 if (hw->mac.type >= e1000_pchlan) { 3130 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); 3131 reg &= ~BM_WUC_HOST_WU_BIT; 3132 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); 3133 } 3134 3135 /* Configure the LCD with the extended configuration region in NVM */ 3136 ret_val = e1000_sw_lcd_config_ich8lan(hw); 3137 if (ret_val) 3138 return ret_val; 3139 3140 /* Configure the LCD with the OEM bits in NVM */ 3141 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 3142 3143 if (hw->mac.type == e1000_pch2lan) { 3144 /* Ungate automatic PHY configuration on non-managed 82579 */ 3145 if (!(E1000_READ_REG(hw, E1000_FWSM) & 3146 E1000_ICH_FWSM_FW_VALID)) { 3147 msec_delay(10); 3148 e1000_gate_hw_phy_config_ich8lan(hw, false); 3149 } 3150 3151 /* Set EEE LPI Update Timer to 200usec */ 3152 ret_val = hw->phy.ops.acquire(hw); 3153 if (ret_val) 3154 return ret_val; 3155 ret_val = e1000_write_emi_reg_locked(hw, 3156 I82579_LPI_UPDATE_TIMER, 3157 0x1387); 3158 hw->phy.ops.release(hw); 3159 } 3160 3161 return ret_val; 3162 } 3163 3164 /** 3165 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 3166 * @hw: pointer to the HW structure 3167 * 3168 * Resets the PHY 3169 * This is a function pointer entry point called by drivers 3170 * or other shared routines. 3171 **/ 3172 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 3173 { 3174 s32 ret_val = E1000_SUCCESS; 3175 3176 DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); 3177 3178 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 3179 if ((hw->mac.type == e1000_pch2lan) && 3180 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) 3181 e1000_gate_hw_phy_config_ich8lan(hw, true); 3182 3183 ret_val = e1000_phy_hw_reset_generic(hw); 3184 if (ret_val) 3185 return ret_val; 3186 3187 return e1000_post_phy_reset_ich8lan(hw); 3188 } 3189 3190 /** 3191 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 3192 * @hw: pointer to the HW structure 3193 * @active: true to enable LPLU, false to disable 3194 * 3195 * Sets the LPLU state according to the active flag. For PCH, if OEM write 3196 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 3197 * the phy speed. This function will manually set the LPLU bit and restart 3198 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 3199 * since it configures the same bit. 3200 **/ 3201 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 3202 { 3203 s32 ret_val; 3204 u16 oem_reg; 3205 3206 DEBUGFUNC("e1000_set_lplu_state_pchlan"); 3207 ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); 3208 if (ret_val) 3209 return ret_val; 3210 3211 if (active) 3212 oem_reg |= HV_OEM_BITS_LPLU; 3213 else 3214 oem_reg &= ~HV_OEM_BITS_LPLU; 3215 3216 if (!hw->phy.ops.check_reset_block(hw)) 3217 oem_reg |= HV_OEM_BITS_RESTART_AN; 3218 3219 return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); 3220 } 3221 3222 /** 3223 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 3224 * @hw: pointer to the HW structure 3225 * @active: true to enable LPLU, false to disable 3226 * 3227 * Sets the LPLU D0 state according to the active flag. When 3228 * activating LPLU this function also disables smart speed 3229 * and vice versa. LPLU will not be activated unless the 3230 * device autonegotiation advertisement meets standards of 3231 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3232 * This is a function pointer entry point only called by 3233 * PHY setup routines. 3234 **/ 3235 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3236 { 3237 struct e1000_phy_info *phy = &hw->phy; 3238 u32 phy_ctrl; 3239 s32 ret_val = E1000_SUCCESS; 3240 u16 data; 3241 3242 DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); 3243 3244 if (phy->type == e1000_phy_ife) 3245 return E1000_SUCCESS; 3246 3247 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 3248 3249 if (active) { 3250 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3251 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3252 3253 if (phy->type != e1000_phy_igp_3) 3254 return E1000_SUCCESS; 3255 3256 /* Call gig speed drop workaround on LPLU before accessing 3257 * any PHY registers 3258 */ 3259 if (hw->mac.type == e1000_ich8lan) 3260 e1000_gig_downshift_workaround_ich8lan(hw); 3261 3262 /* When LPLU is enabled, we should disable SmartSpeed */ 3263 ret_val = phy->ops.read_reg(hw, 3264 IGP01E1000_PHY_PORT_CONFIG, 3265 &data); 3266 if (ret_val) 3267 return ret_val; 3268 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3269 ret_val = phy->ops.write_reg(hw, 3270 IGP01E1000_PHY_PORT_CONFIG, 3271 data); 3272 if (ret_val) 3273 return ret_val; 3274 } else { 3275 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3276 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3277 3278 if (phy->type != e1000_phy_igp_3) 3279 return E1000_SUCCESS; 3280 3281 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3282 * during Dx states where the power conservation is most 3283 * important. During driver activity we should enable 3284 * SmartSpeed, so performance is maintained. 3285 */ 3286 if (phy->smart_speed == e1000_smart_speed_on) { 3287 ret_val = phy->ops.read_reg(hw, 3288 IGP01E1000_PHY_PORT_CONFIG, 3289 &data); 3290 if (ret_val) 3291 return ret_val; 3292 3293 data |= IGP01E1000_PSCFR_SMART_SPEED; 3294 ret_val = phy->ops.write_reg(hw, 3295 IGP01E1000_PHY_PORT_CONFIG, 3296 data); 3297 if (ret_val) 3298 return ret_val; 3299 } else if (phy->smart_speed == e1000_smart_speed_off) { 3300 ret_val = phy->ops.read_reg(hw, 3301 IGP01E1000_PHY_PORT_CONFIG, 3302 &data); 3303 if (ret_val) 3304 return ret_val; 3305 3306 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3307 ret_val = phy->ops.write_reg(hw, 3308 IGP01E1000_PHY_PORT_CONFIG, 3309 data); 3310 if (ret_val) 3311 return ret_val; 3312 } 3313 } 3314 3315 return E1000_SUCCESS; 3316 } 3317 3318 /** 3319 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3320 * @hw: pointer to the HW structure 3321 * @active: true to enable LPLU, false to disable 3322 * 3323 * Sets the LPLU D3 state according to the active flag. When 3324 * activating LPLU this function also disables smart speed 3325 * and vice versa. LPLU will not be activated unless the 3326 * device autonegotiation advertisement meets standards of 3327 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3328 * This is a function pointer entry point only called by 3329 * PHY setup routines. 3330 **/ 3331 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3332 { 3333 struct e1000_phy_info *phy = &hw->phy; 3334 u32 phy_ctrl; 3335 s32 ret_val = E1000_SUCCESS; 3336 u16 data; 3337 3338 DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); 3339 3340 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 3341 3342 if (!active) { 3343 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3344 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3345 3346 if (phy->type != e1000_phy_igp_3) 3347 return E1000_SUCCESS; 3348 3349 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3350 * during Dx states where the power conservation is most 3351 * important. During driver activity we should enable 3352 * SmartSpeed, so performance is maintained. 3353 */ 3354 if (phy->smart_speed == e1000_smart_speed_on) { 3355 ret_val = phy->ops.read_reg(hw, 3356 IGP01E1000_PHY_PORT_CONFIG, 3357 &data); 3358 if (ret_val) 3359 return ret_val; 3360 3361 data |= IGP01E1000_PSCFR_SMART_SPEED; 3362 ret_val = phy->ops.write_reg(hw, 3363 IGP01E1000_PHY_PORT_CONFIG, 3364 data); 3365 if (ret_val) 3366 return ret_val; 3367 } else if (phy->smart_speed == e1000_smart_speed_off) { 3368 ret_val = phy->ops.read_reg(hw, 3369 IGP01E1000_PHY_PORT_CONFIG, 3370 &data); 3371 if (ret_val) 3372 return ret_val; 3373 3374 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3375 ret_val = phy->ops.write_reg(hw, 3376 IGP01E1000_PHY_PORT_CONFIG, 3377 data); 3378 if (ret_val) 3379 return ret_val; 3380 } 3381 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3382 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3383 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3384 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3385 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 3386 3387 if (phy->type != e1000_phy_igp_3) 3388 return E1000_SUCCESS; 3389 3390 /* Call gig speed drop workaround on LPLU before accessing 3391 * any PHY registers 3392 */ 3393 if (hw->mac.type == e1000_ich8lan) 3394 e1000_gig_downshift_workaround_ich8lan(hw); 3395 3396 /* When LPLU is enabled, we should disable SmartSpeed */ 3397 ret_val = phy->ops.read_reg(hw, 3398 IGP01E1000_PHY_PORT_CONFIG, 3399 &data); 3400 if (ret_val) 3401 return ret_val; 3402 3403 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3404 ret_val = phy->ops.write_reg(hw, 3405 IGP01E1000_PHY_PORT_CONFIG, 3406 data); 3407 } 3408 3409 return ret_val; 3410 } 3411 3412 /** 3413 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3414 * @hw: pointer to the HW structure 3415 * @bank: pointer to the variable that returns the active bank 3416 * 3417 * Reads signature byte from the NVM using the flash access registers. 3418 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3419 **/ 3420 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3421 { 3422 u32 eecd; 3423 struct e1000_nvm_info *nvm = &hw->nvm; 3424 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3425 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3426 u32 nvm_dword = 0; 3427 u8 sig_byte = 0; 3428 s32 ret_val; 3429 3430 DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); 3431 3432 switch (hw->mac.type) { 3433 case e1000_pch_spt: 3434 case e1000_pch_cnp: 3435 case e1000_pch_tgp: 3436 case e1000_pch_adp: 3437 case e1000_pch_mtp: 3438 bank1_offset = nvm->flash_bank_size; 3439 act_offset = E1000_ICH_NVM_SIG_WORD; 3440 3441 /* set bank to 0 in case flash read fails */ 3442 *bank = 0; 3443 3444 /* Check bank 0 */ 3445 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3446 &nvm_dword); 3447 if (ret_val) 3448 return ret_val; 3449 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3450 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3451 E1000_ICH_NVM_SIG_VALUE) { 3452 *bank = 0; 3453 return E1000_SUCCESS; 3454 } 3455 3456 /* Check bank 1 */ 3457 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3458 bank1_offset, 3459 &nvm_dword); 3460 if (ret_val) 3461 return ret_val; 3462 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3463 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3464 E1000_ICH_NVM_SIG_VALUE) { 3465 *bank = 1; 3466 return E1000_SUCCESS; 3467 } 3468 3469 DEBUGOUT("ERROR: No valid NVM bank present\n"); 3470 return -E1000_ERR_NVM; 3471 case e1000_ich8lan: 3472 case e1000_ich9lan: 3473 eecd = E1000_READ_REG(hw, E1000_EECD); 3474 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3475 E1000_EECD_SEC1VAL_VALID_MASK) { 3476 if (eecd & E1000_EECD_SEC1VAL) 3477 *bank = 1; 3478 else 3479 *bank = 0; 3480 3481 return E1000_SUCCESS; 3482 } 3483 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3484 /* FALLTHROUGH */ 3485 default: 3486 /* set bank to 0 in case flash read fails */ 3487 *bank = 0; 3488 3489 /* Check bank 0 */ 3490 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3491 &sig_byte); 3492 if (ret_val) 3493 return ret_val; 3494 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3495 E1000_ICH_NVM_SIG_VALUE) { 3496 *bank = 0; 3497 return E1000_SUCCESS; 3498 } 3499 3500 /* Check bank 1 */ 3501 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3502 bank1_offset, 3503 &sig_byte); 3504 if (ret_val) 3505 return ret_val; 3506 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3507 E1000_ICH_NVM_SIG_VALUE) { 3508 *bank = 1; 3509 return E1000_SUCCESS; 3510 } 3511 3512 DEBUGOUT("ERROR: No valid NVM bank present\n"); 3513 return -E1000_ERR_NVM; 3514 } 3515 } 3516 3517 /** 3518 * e1000_read_nvm_spt - NVM access for SPT 3519 * @hw: pointer to the HW structure 3520 * @offset: The offset (in bytes) of the word(s) to read. 3521 * @words: Size of data to read in words. 3522 * @data: pointer to the word(s) to read at offset. 3523 * 3524 * Reads a word(s) from the NVM 3525 **/ 3526 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3527 u16 *data) 3528 { 3529 struct e1000_nvm_info *nvm = &hw->nvm; 3530 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3531 u32 act_offset; 3532 s32 ret_val = E1000_SUCCESS; 3533 u32 bank = 0; 3534 u32 dword = 0; 3535 u16 offset_to_read; 3536 u16 i; 3537 3538 DEBUGFUNC("e1000_read_nvm_spt"); 3539 3540 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3541 (words == 0)) { 3542 DEBUGOUT("nvm parameter(s) out of bounds\n"); 3543 ret_val = -E1000_ERR_NVM; 3544 goto out; 3545 } 3546 3547 nvm->ops.acquire(hw); 3548 3549 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3550 if (ret_val != E1000_SUCCESS) { 3551 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 3552 bank = 0; 3553 } 3554 3555 act_offset = (bank) ? nvm->flash_bank_size : 0; 3556 act_offset += offset; 3557 3558 ret_val = E1000_SUCCESS; 3559 3560 for (i = 0; i < words; i += 2) { 3561 if (words - i == 1) { 3562 if (dev_spec->shadow_ram[offset + i].modified) { 3563 data[i] = 3564 dev_spec->shadow_ram[offset + i].value; 3565 } else { 3566 offset_to_read = act_offset + i - 3567 ((act_offset + i) % 2); 3568 ret_val = 3569 e1000_read_flash_dword_ich8lan(hw, 3570 offset_to_read, 3571 &dword); 3572 if (ret_val) 3573 break; 3574 if ((act_offset + i) % 2 == 0) 3575 data[i] = (u16)(dword & 0xFFFF); 3576 else 3577 data[i] = (u16)((dword >> 16) & 0xFFFF); 3578 } 3579 } else { 3580 offset_to_read = act_offset + i; 3581 if (!(dev_spec->shadow_ram[offset + i].modified) || 3582 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3583 ret_val = 3584 e1000_read_flash_dword_ich8lan(hw, 3585 offset_to_read, 3586 &dword); 3587 if (ret_val) 3588 break; 3589 } 3590 if (dev_spec->shadow_ram[offset + i].modified) 3591 data[i] = 3592 dev_spec->shadow_ram[offset + i].value; 3593 else 3594 data[i] = (u16)(dword & 0xFFFF); 3595 if (dev_spec->shadow_ram[offset + i + 1].modified) 3596 data[i + 1] = 3597 dev_spec->shadow_ram[offset + i + 1].value; 3598 else 3599 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3600 } 3601 } 3602 3603 nvm->ops.release(hw); 3604 3605 out: 3606 if (ret_val) 3607 DEBUGOUT1("NVM read error: %d\n", ret_val); 3608 3609 return ret_val; 3610 } 3611 3612 /** 3613 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3614 * @hw: pointer to the HW structure 3615 * @offset: The offset (in bytes) of the word(s) to read. 3616 * @words: Size of data to read in words 3617 * @data: Pointer to the word(s) to read at offset. 3618 * 3619 * Reads a word(s) from the NVM using the flash access registers. 3620 **/ 3621 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3622 u16 *data) 3623 { 3624 struct e1000_nvm_info *nvm = &hw->nvm; 3625 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3626 u32 act_offset; 3627 s32 ret_val = E1000_SUCCESS; 3628 u32 bank = 0; 3629 u16 i, word; 3630 3631 DEBUGFUNC("e1000_read_nvm_ich8lan"); 3632 3633 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3634 (words == 0)) { 3635 DEBUGOUT("nvm parameter(s) out of bounds\n"); 3636 ret_val = -E1000_ERR_NVM; 3637 goto out; 3638 } 3639 3640 nvm->ops.acquire(hw); 3641 3642 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3643 if (ret_val != E1000_SUCCESS) { 3644 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 3645 bank = 0; 3646 } 3647 3648 act_offset = (bank) ? nvm->flash_bank_size : 0; 3649 act_offset += offset; 3650 3651 ret_val = E1000_SUCCESS; 3652 for (i = 0; i < words; i++) { 3653 if (dev_spec->shadow_ram[offset + i].modified) { 3654 data[i] = dev_spec->shadow_ram[offset + i].value; 3655 } else { 3656 ret_val = e1000_read_flash_word_ich8lan(hw, 3657 act_offset + i, 3658 &word); 3659 if (ret_val) 3660 break; 3661 data[i] = word; 3662 } 3663 } 3664 3665 nvm->ops.release(hw); 3666 3667 out: 3668 if (ret_val) 3669 DEBUGOUT1("NVM read error: %d\n", ret_val); 3670 3671 return ret_val; 3672 } 3673 3674 /** 3675 * e1000_flash_cycle_init_ich8lan - Initialize flash 3676 * @hw: pointer to the HW structure 3677 * 3678 * This function does initial flash setup so that a new read/write/erase cycle 3679 * can be started. 3680 **/ 3681 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3682 { 3683 union ich8_hws_flash_status hsfsts; 3684 s32 ret_val = -E1000_ERR_NVM; 3685 3686 DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); 3687 3688 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 3689 3690 /* Check if the flash descriptor is valid */ 3691 if (!hsfsts.hsf_status.fldesvalid) { 3692 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); 3693 return -E1000_ERR_NVM; 3694 } 3695 3696 /* Clear FCERR and DAEL in hw status by writing 1 */ 3697 hsfsts.hsf_status.flcerr = 1; 3698 hsfsts.hsf_status.dael = 1; 3699 if (hw->mac.type >= e1000_pch_spt) 3700 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3701 hsfsts.regval & 0xFFFF); 3702 else 3703 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); 3704 3705 /* Either we should have a hardware SPI cycle in progress 3706 * bit to check against, in order to start a new cycle or 3707 * FDONE bit should be changed in the hardware so that it 3708 * is 1 after hardware reset, which can then be used as an 3709 * indication whether a cycle is in progress or has been 3710 * completed. 3711 */ 3712 3713 if (!hsfsts.hsf_status.flcinprog) { 3714 /* There is no cycle running at present, 3715 * so we can start a cycle. 3716 * Begin by setting Flash Cycle Done. 3717 */ 3718 hsfsts.hsf_status.flcdone = 1; 3719 if (hw->mac.type >= e1000_pch_spt) 3720 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3721 hsfsts.regval & 0xFFFF); 3722 else 3723 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, 3724 hsfsts.regval); 3725 ret_val = E1000_SUCCESS; 3726 } else { 3727 s32 i; 3728 3729 /* Otherwise poll for sometime so the current 3730 * cycle has a chance to end before giving up. 3731 */ 3732 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3733 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 3734 ICH_FLASH_HSFSTS); 3735 if (!hsfsts.hsf_status.flcinprog) { 3736 ret_val = E1000_SUCCESS; 3737 break; 3738 } 3739 usec_delay(1); 3740 } 3741 if (ret_val == E1000_SUCCESS) { 3742 /* Successful in waiting for previous cycle to timeout, 3743 * now set the Flash Cycle Done. 3744 */ 3745 hsfsts.hsf_status.flcdone = 1; 3746 if (hw->mac.type >= e1000_pch_spt) 3747 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3748 hsfsts.regval & 0xFFFF); 3749 else 3750 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, 3751 hsfsts.regval); 3752 } else { 3753 DEBUGOUT("Flash controller busy, cannot get access\n"); 3754 } 3755 } 3756 3757 return ret_val; 3758 } 3759 3760 /** 3761 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3762 * @hw: pointer to the HW structure 3763 * @timeout: maximum time to wait for completion 3764 * 3765 * This function starts a flash cycle and waits for its completion. 3766 **/ 3767 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3768 { 3769 union ich8_hws_flash_ctrl hsflctl; 3770 union ich8_hws_flash_status hsfsts; 3771 u32 i = 0; 3772 3773 DEBUGFUNC("e1000_flash_cycle_ich8lan"); 3774 3775 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3776 if (hw->mac.type >= e1000_pch_spt) 3777 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; 3778 else 3779 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); 3780 hsflctl.hsf_ctrl.flcgo = 1; 3781 3782 if (hw->mac.type >= e1000_pch_spt) 3783 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3784 hsflctl.regval << 16); 3785 else 3786 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); 3787 3788 /* wait till FDONE bit is set to 1 */ 3789 do { 3790 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 3791 if (hsfsts.hsf_status.flcdone) 3792 break; 3793 usec_delay(1); 3794 } while (i++ < timeout); 3795 3796 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3797 return E1000_SUCCESS; 3798 3799 return -E1000_ERR_NVM; 3800 } 3801 3802 /** 3803 * e1000_read_flash_dword_ich8lan - Read dword from flash 3804 * @hw: pointer to the HW structure 3805 * @offset: offset to data location 3806 * @data: pointer to the location for storing the data 3807 * 3808 * Reads the flash dword at offset into data. Offset is converted 3809 * to bytes before read. 3810 **/ 3811 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3812 u32 *data) 3813 { 3814 DEBUGFUNC("e1000_read_flash_dword_ich8lan"); 3815 3816 if (!data) 3817 return -E1000_ERR_NVM; 3818 3819 /* Must convert word offset into bytes. */ 3820 offset <<= 1; 3821 3822 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3823 } 3824 3825 /** 3826 * e1000_read_flash_word_ich8lan - Read word from flash 3827 * @hw: pointer to the HW structure 3828 * @offset: offset to data location 3829 * @data: pointer to the location for storing the data 3830 * 3831 * Reads the flash word at offset into data. Offset is converted 3832 * to bytes before read. 3833 **/ 3834 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3835 u16 *data) 3836 { 3837 DEBUGFUNC("e1000_read_flash_word_ich8lan"); 3838 3839 if (!data) 3840 return -E1000_ERR_NVM; 3841 3842 /* Must convert offset into bytes. */ 3843 offset <<= 1; 3844 3845 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3846 } 3847 3848 /** 3849 * e1000_read_flash_byte_ich8lan - Read byte from flash 3850 * @hw: pointer to the HW structure 3851 * @offset: The offset of the byte to read. 3852 * @data: Pointer to a byte to store the value read. 3853 * 3854 * Reads a single byte from the NVM using the flash access registers. 3855 **/ 3856 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3857 u8 *data) 3858 { 3859 s32 ret_val; 3860 u16 word = 0; 3861 3862 /* In SPT, only 32 bits access is supported, 3863 * so this function should not be called. 3864 */ 3865 if (hw->mac.type >= e1000_pch_spt) 3866 return -E1000_ERR_NVM; 3867 else 3868 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3869 3870 if (ret_val) 3871 return ret_val; 3872 3873 *data = (u8)word; 3874 3875 return E1000_SUCCESS; 3876 } 3877 3878 /** 3879 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3880 * @hw: pointer to the HW structure 3881 * @offset: The offset (in bytes) of the byte or word to read. 3882 * @size: Size of data to read, 1=byte 2=word 3883 * @data: Pointer to the word to store the value read. 3884 * 3885 * Reads a byte or word from the NVM using the flash access registers. 3886 **/ 3887 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3888 u8 size, u16 *data) 3889 { 3890 union ich8_hws_flash_status hsfsts; 3891 union ich8_hws_flash_ctrl hsflctl; 3892 u32 flash_linear_addr; 3893 u32 flash_data = 0; 3894 s32 ret_val = -E1000_ERR_NVM; 3895 u8 count = 0; 3896 3897 DEBUGFUNC("e1000_read_flash_data_ich8lan"); 3898 3899 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3900 return -E1000_ERR_NVM; 3901 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3902 hw->nvm.flash_base_addr); 3903 3904 do { 3905 usec_delay(1); 3906 /* Steps */ 3907 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3908 if (ret_val != E1000_SUCCESS) 3909 break; 3910 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); 3911 3912 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3913 hsflctl.hsf_ctrl.fldbcount = size - 1; 3914 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3915 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); 3916 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 3917 3918 ret_val = e1000_flash_cycle_ich8lan(hw, 3919 ICH_FLASH_READ_COMMAND_TIMEOUT); 3920 3921 /* Check if FCERR is set to 1, if set to 1, clear it 3922 * and try the whole sequence a few more times, else 3923 * read in (shift in) the Flash Data0, the order is 3924 * least significant byte first msb to lsb 3925 */ 3926 if (ret_val == E1000_SUCCESS) { 3927 flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); 3928 if (size == 1) 3929 *data = (u8)(flash_data & 0x000000FF); 3930 else if (size == 2) 3931 *data = (u16)(flash_data & 0x0000FFFF); 3932 break; 3933 } else { 3934 /* If we've gotten here, then things are probably 3935 * completely hosed, but if the error condition is 3936 * detected, it won't hurt to give it another try... 3937 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3938 */ 3939 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 3940 ICH_FLASH_HSFSTS); 3941 if (hsfsts.hsf_status.flcerr) { 3942 /* Repeat for some time before giving up. */ 3943 continue; 3944 } else if (!hsfsts.hsf_status.flcdone) { 3945 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 3946 break; 3947 } 3948 } 3949 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3950 3951 return ret_val; 3952 } 3953 3954 /** 3955 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3956 * @hw: pointer to the HW structure 3957 * @offset: The offset (in bytes) of the dword to read. 3958 * @data: Pointer to the dword to store the value read. 3959 * 3960 * Reads a byte or word from the NVM using the flash access registers. 3961 **/ 3962 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3963 u32 *data) 3964 { 3965 union ich8_hws_flash_status hsfsts; 3966 union ich8_hws_flash_ctrl hsflctl; 3967 u32 flash_linear_addr; 3968 s32 ret_val = -E1000_ERR_NVM; 3969 u8 count = 0; 3970 3971 DEBUGFUNC("e1000_read_flash_data_ich8lan"); 3972 3973 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || 3974 hw->mac.type < e1000_pch_spt) 3975 return -E1000_ERR_NVM; 3976 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3977 hw->nvm.flash_base_addr); 3978 3979 do { 3980 usec_delay(1); 3981 /* Steps */ 3982 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3983 if (ret_val != E1000_SUCCESS) 3984 break; 3985 /* In SPT, This register is in Lan memory space, not flash. 3986 * Therefore, only 32 bit access is supported 3987 */ 3988 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; 3989 3990 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3991 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3992 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3993 /* In SPT, This register is in Lan memory space, not flash. 3994 * Therefore, only 32 bit access is supported 3995 */ 3996 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 3997 (u32)hsflctl.regval << 16); 3998 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 3999 4000 ret_val = e1000_flash_cycle_ich8lan(hw, 4001 ICH_FLASH_READ_COMMAND_TIMEOUT); 4002 4003 /* Check if FCERR is set to 1, if set to 1, clear it 4004 * and try the whole sequence a few more times, else 4005 * read in (shift in) the Flash Data0, the order is 4006 * least significant byte first msb to lsb 4007 */ 4008 if (ret_val == E1000_SUCCESS) { 4009 *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); 4010 break; 4011 } else { 4012 /* If we've gotten here, then things are probably 4013 * completely hosed, but if the error condition is 4014 * detected, it won't hurt to give it another try... 4015 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 4016 */ 4017 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 4018 ICH_FLASH_HSFSTS); 4019 if (hsfsts.hsf_status.flcerr) { 4020 /* Repeat for some time before giving up. */ 4021 continue; 4022 } else if (!hsfsts.hsf_status.flcdone) { 4023 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 4024 break; 4025 } 4026 } 4027 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4028 4029 return ret_val; 4030 } 4031 4032 /** 4033 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 4034 * @hw: pointer to the HW structure 4035 * @offset: The offset (in bytes) of the word(s) to write. 4036 * @words: Size of data to write in words 4037 * @data: Pointer to the word(s) to write at offset. 4038 * 4039 * Writes a byte or word to the NVM using the flash access registers. 4040 **/ 4041 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 4042 u16 *data) 4043 { 4044 struct e1000_nvm_info *nvm = &hw->nvm; 4045 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4046 u16 i; 4047 4048 DEBUGFUNC("e1000_write_nvm_ich8lan"); 4049 4050 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 4051 (words == 0)) { 4052 DEBUGOUT("nvm parameter(s) out of bounds\n"); 4053 return -E1000_ERR_NVM; 4054 } 4055 4056 nvm->ops.acquire(hw); 4057 4058 for (i = 0; i < words; i++) { 4059 dev_spec->shadow_ram[offset + i].modified = true; 4060 dev_spec->shadow_ram[offset + i].value = data[i]; 4061 } 4062 4063 nvm->ops.release(hw); 4064 4065 return E1000_SUCCESS; 4066 } 4067 4068 /** 4069 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 4070 * @hw: pointer to the HW structure 4071 * 4072 * The NVM checksum is updated by calling the generic update_nvm_checksum, 4073 * which writes the checksum to the shadow ram. The changes in the shadow 4074 * ram are then committed to the EEPROM by processing each bank at a time 4075 * checking for the modified bit and writing only the pending changes. 4076 * After a successful commit, the shadow ram is cleared and is ready for 4077 * future writes. 4078 **/ 4079 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 4080 { 4081 struct e1000_nvm_info *nvm = &hw->nvm; 4082 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4083 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 4084 s32 ret_val; 4085 u32 dword = 0; 4086 4087 DEBUGFUNC("e1000_update_nvm_checksum_spt"); 4088 4089 ret_val = e1000_update_nvm_checksum_generic(hw); 4090 if (ret_val) 4091 goto out; 4092 4093 if (nvm->type != e1000_nvm_flash_sw) 4094 goto out; 4095 4096 nvm->ops.acquire(hw); 4097 4098 /* We're writing to the opposite bank so if we're on bank 1, 4099 * write to bank 0 etc. We also need to erase the segment that 4100 * is going to be written 4101 */ 4102 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 4103 if (ret_val != E1000_SUCCESS) { 4104 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 4105 bank = 0; 4106 } 4107 4108 if (bank == 0) { 4109 new_bank_offset = nvm->flash_bank_size; 4110 old_bank_offset = 0; 4111 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 4112 if (ret_val) 4113 goto release; 4114 } else { 4115 old_bank_offset = nvm->flash_bank_size; 4116 new_bank_offset = 0; 4117 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4118 if (ret_val) 4119 goto release; 4120 } 4121 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) { 4122 /* Determine whether to write the value stored 4123 * in the other NVM bank or a modified value stored 4124 * in the shadow RAM 4125 */ 4126 ret_val = e1000_read_flash_dword_ich8lan(hw, 4127 i + old_bank_offset, 4128 &dword); 4129 4130 if (dev_spec->shadow_ram[i].modified) { 4131 dword &= 0xffff0000; 4132 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 4133 } 4134 if (dev_spec->shadow_ram[i + 1].modified) { 4135 dword &= 0x0000ffff; 4136 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 4137 << 16); 4138 } 4139 if (ret_val) 4140 break; 4141 4142 /* If the word is 0x13, then make sure the signature bits 4143 * (15:14) are 11b until the commit has completed. 4144 * This will allow us to write 10b which indicates the 4145 * signature is valid. We want to do this after the write 4146 * has completed so that we don't mark the segment valid 4147 * while the write is still in progress 4148 */ 4149 if (i == E1000_ICH_NVM_SIG_WORD - 1) 4150 dword |= E1000_ICH_NVM_SIG_MASK << 16; 4151 4152 /* Convert offset to bytes. */ 4153 act_offset = (i + new_bank_offset) << 1; 4154 4155 usec_delay(100); 4156 4157 /* Write the data to the new bank. Offset in words*/ 4158 act_offset = i + new_bank_offset; 4159 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 4160 dword); 4161 if (ret_val) 4162 break; 4163 } 4164 4165 /* Don't bother writing the segment valid bits if sector 4166 * programming failed. 4167 */ 4168 if (ret_val) { 4169 DEBUGOUT("Flash commit failed.\n"); 4170 goto release; 4171 } 4172 4173 /* Finally validate the new segment by setting bit 15:14 4174 * to 10b in word 0x13 , this can be done without an 4175 * erase as well since these bits are 11 to start with 4176 * and we need to change bit 14 to 0b 4177 */ 4178 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4179 4180 /*offset in words but we read dword*/ 4181 --act_offset; 4182 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 4183 4184 if (ret_val) 4185 goto release; 4186 4187 dword &= 0xBFFFFFFF; 4188 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 4189 4190 if (ret_val) 4191 goto release; 4192 4193 /* offset in words but we read dword*/ 4194 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 4195 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 4196 4197 if (ret_val) 4198 goto release; 4199 4200 dword &= 0x00FFFFFF; 4201 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 4202 4203 if (ret_val) 4204 goto release; 4205 4206 /* Great! Everything worked, we can now clear the cached entries. */ 4207 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 4208 dev_spec->shadow_ram[i].modified = false; 4209 dev_spec->shadow_ram[i].value = 0xFFFF; 4210 } 4211 4212 release: 4213 nvm->ops.release(hw); 4214 4215 /* Reload the EEPROM, or else modifications will not appear 4216 * until after the next adapter reset. 4217 */ 4218 if (!ret_val) { 4219 nvm->ops.reload(hw); 4220 msec_delay(10); 4221 } 4222 4223 out: 4224 if (ret_val) 4225 DEBUGOUT1("NVM update error: %d\n", ret_val); 4226 4227 return ret_val; 4228 } 4229 4230 /** 4231 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 4232 * @hw: pointer to the HW structure 4233 * 4234 * The NVM checksum is updated by calling the generic update_nvm_checksum, 4235 * which writes the checksum to the shadow ram. The changes in the shadow 4236 * ram are then committed to the EEPROM by processing each bank at a time 4237 * checking for the modified bit and writing only the pending changes. 4238 * After a successful commit, the shadow ram is cleared and is ready for 4239 * future writes. 4240 **/ 4241 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 4242 { 4243 struct e1000_nvm_info *nvm = &hw->nvm; 4244 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4245 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 4246 s32 ret_val; 4247 u16 data = 0; 4248 4249 DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); 4250 4251 ret_val = e1000_update_nvm_checksum_generic(hw); 4252 if (ret_val) 4253 goto out; 4254 4255 if (nvm->type != e1000_nvm_flash_sw) 4256 goto out; 4257 4258 nvm->ops.acquire(hw); 4259 4260 /* We're writing to the opposite bank so if we're on bank 1, 4261 * write to bank 0 etc. We also need to erase the segment that 4262 * is going to be written 4263 */ 4264 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 4265 if (ret_val != E1000_SUCCESS) { 4266 DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); 4267 bank = 0; 4268 } 4269 4270 if (bank == 0) { 4271 new_bank_offset = nvm->flash_bank_size; 4272 old_bank_offset = 0; 4273 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 4274 if (ret_val) 4275 goto release; 4276 } else { 4277 old_bank_offset = nvm->flash_bank_size; 4278 new_bank_offset = 0; 4279 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4280 if (ret_val) 4281 goto release; 4282 } 4283 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 4284 if (dev_spec->shadow_ram[i].modified) { 4285 data = dev_spec->shadow_ram[i].value; 4286 } else { 4287 ret_val = e1000_read_flash_word_ich8lan(hw, i + 4288 old_bank_offset, 4289 &data); 4290 if (ret_val) 4291 break; 4292 } 4293 /* If the word is 0x13, then make sure the signature bits 4294 * (15:14) are 11b until the commit has completed. 4295 * This will allow us to write 10b which indicates the 4296 * signature is valid. We want to do this after the write 4297 * has completed so that we don't mark the segment valid 4298 * while the write is still in progress 4299 */ 4300 if (i == E1000_ICH_NVM_SIG_WORD) 4301 data |= E1000_ICH_NVM_SIG_MASK; 4302 4303 /* Convert offset to bytes. */ 4304 act_offset = (i + new_bank_offset) << 1; 4305 4306 usec_delay(100); 4307 4308 /* Write the bytes to the new bank. */ 4309 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4310 act_offset, 4311 (u8)data); 4312 if (ret_val) 4313 break; 4314 4315 usec_delay(100); 4316 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4317 act_offset + 1, 4318 (u8)(data >> 8)); 4319 if (ret_val) 4320 break; 4321 } 4322 4323 /* Don't bother writing the segment valid bits if sector 4324 * programming failed. 4325 */ 4326 if (ret_val) { 4327 DEBUGOUT("Flash commit failed.\n"); 4328 goto release; 4329 } 4330 4331 /* Finally validate the new segment by setting bit 15:14 4332 * to 10b in word 0x13 , this can be done without an 4333 * erase as well since these bits are 11 to start with 4334 * and we need to change bit 14 to 0b 4335 */ 4336 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4337 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4338 if (ret_val) 4339 goto release; 4340 4341 data &= 0xBFFF; 4342 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1, 4343 (u8)(data >> 8)); 4344 if (ret_val) 4345 goto release; 4346 4347 /* And invalidate the previously valid segment by setting 4348 * its signature word (0x13) high_byte to 0b. This can be 4349 * done without an erase because flash erase sets all bits 4350 * to 1's. We can write 1's to 0's without an erase 4351 */ 4352 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4353 4354 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4355 4356 if (ret_val) 4357 goto release; 4358 4359 /* Great! Everything worked, we can now clear the cached entries. */ 4360 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { 4361 dev_spec->shadow_ram[i].modified = false; 4362 dev_spec->shadow_ram[i].value = 0xFFFF; 4363 } 4364 4365 release: 4366 nvm->ops.release(hw); 4367 4368 /* Reload the EEPROM, or else modifications will not appear 4369 * until after the next adapter reset. 4370 */ 4371 if (!ret_val) { 4372 nvm->ops.reload(hw); 4373 msec_delay(10); 4374 } 4375 4376 out: 4377 if (ret_val) 4378 DEBUGOUT1("NVM update error: %d\n", ret_val); 4379 4380 return ret_val; 4381 } 4382 4383 /** 4384 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4385 * @hw: pointer to the HW structure 4386 * 4387 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4388 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4389 * calculated, in which case we need to calculate the checksum and set bit 6. 4390 **/ 4391 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4392 { 4393 s32 ret_val; 4394 u16 data; 4395 u16 word; 4396 u16 valid_csum_mask; 4397 4398 DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); 4399 4400 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4401 * the checksum needs to be fixed. This bit is an indication that 4402 * the NVM was prepared by OEM software and did not calculate 4403 * the checksum...a likely scenario. 4404 */ 4405 switch (hw->mac.type) { 4406 case e1000_pch_lpt: 4407 case e1000_pch_spt: 4408 case e1000_pch_cnp: 4409 case e1000_pch_tgp: 4410 case e1000_pch_adp: 4411 case e1000_pch_mtp: 4412 word = NVM_COMPAT; 4413 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4414 break; 4415 default: 4416 word = NVM_FUTURE_INIT_WORD1; 4417 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4418 break; 4419 } 4420 4421 ret_val = hw->nvm.ops.read(hw, word, 1, &data); 4422 if (ret_val) 4423 return ret_val; 4424 4425 if (!(data & valid_csum_mask)) { 4426 data |= valid_csum_mask; 4427 ret_val = hw->nvm.ops.write(hw, word, 1, &data); 4428 if (ret_val) 4429 return ret_val; 4430 ret_val = hw->nvm.ops.update(hw); 4431 if (ret_val) 4432 return ret_val; 4433 } 4434 4435 return e1000_validate_nvm_checksum_generic(hw); 4436 } 4437 4438 /** 4439 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4440 * @hw: pointer to the HW structure 4441 * @offset: The offset (in bytes) of the byte/word to read. 4442 * @size: Size of data to read, 1=byte 2=word 4443 * @data: The byte(s) to write to the NVM. 4444 * 4445 * Writes one/two bytes to the NVM using the flash access registers. 4446 **/ 4447 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4448 u8 size, u16 data) 4449 { 4450 union ich8_hws_flash_status hsfsts; 4451 union ich8_hws_flash_ctrl hsflctl; 4452 u32 flash_linear_addr; 4453 u32 flash_data = 0; 4454 s32 ret_val; 4455 u8 count = 0; 4456 4457 DEBUGFUNC("e1000_write_ich8_data"); 4458 4459 if (hw->mac.type >= e1000_pch_spt) { 4460 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4461 return -E1000_ERR_NVM; 4462 } else { 4463 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4464 return -E1000_ERR_NVM; 4465 } 4466 4467 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4468 hw->nvm.flash_base_addr); 4469 4470 do { 4471 usec_delay(1); 4472 /* Steps */ 4473 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4474 if (ret_val != E1000_SUCCESS) 4475 break; 4476 /* In SPT, This register is in Lan memory space, not 4477 * flash. Therefore, only 32 bit access is supported 4478 */ 4479 if (hw->mac.type >= e1000_pch_spt) 4480 hsflctl.regval = 4481 E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16; 4482 else 4483 hsflctl.regval = 4484 E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); 4485 4486 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4487 hsflctl.hsf_ctrl.fldbcount = size - 1; 4488 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4489 /* In SPT, This register is in Lan memory space, 4490 * not flash. Therefore, only 32 bit access is 4491 * supported 4492 */ 4493 if (hw->mac.type >= e1000_pch_spt) 4494 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 4495 hsflctl.regval << 16); 4496 else 4497 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, 4498 hsflctl.regval); 4499 4500 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 4501 4502 if (size == 1) 4503 flash_data = (u32)data & 0x00FF; 4504 else 4505 flash_data = (u32)data; 4506 4507 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); 4508 4509 /* check if FCERR is set to 1 , if set to 1, clear it 4510 * and try the whole sequence a few more times else done 4511 */ 4512 ret_val = 4513 e1000_flash_cycle_ich8lan(hw, 4514 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4515 if (ret_val == E1000_SUCCESS) 4516 break; 4517 4518 /* If we're here, then things are most likely 4519 * completely hosed, but if the error condition 4520 * is detected, it won't hurt to give it another 4521 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4522 */ 4523 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 4524 if (hsfsts.hsf_status.flcerr) 4525 /* Repeat for some time before giving up. */ 4526 continue; 4527 if (!hsfsts.hsf_status.flcdone) { 4528 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 4529 break; 4530 } 4531 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4532 4533 return ret_val; 4534 } 4535 4536 /** 4537 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4538 * @hw: pointer to the HW structure 4539 * @offset: The offset (in bytes) of the dwords to read. 4540 * @data: The 4 bytes to write to the NVM. 4541 * 4542 * Writes one/two/four bytes to the NVM using the flash access registers. 4543 **/ 4544 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4545 u32 data) 4546 { 4547 union ich8_hws_flash_status hsfsts; 4548 union ich8_hws_flash_ctrl hsflctl; 4549 u32 flash_linear_addr; 4550 s32 ret_val; 4551 u8 count = 0; 4552 4553 DEBUGFUNC("e1000_write_flash_data32_ich8lan"); 4554 4555 if (hw->mac.type >= e1000_pch_spt) { 4556 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4557 return -E1000_ERR_NVM; 4558 } 4559 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4560 hw->nvm.flash_base_addr); 4561 do { 4562 usec_delay(1); 4563 /* Steps */ 4564 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4565 if (ret_val != E1000_SUCCESS) 4566 break; 4567 4568 /* In SPT, This register is in Lan memory space, not 4569 * flash. Therefore, only 32 bit access is supported 4570 */ 4571 if (hw->mac.type >= e1000_pch_spt) 4572 hsflctl.regval = E1000_READ_FLASH_REG(hw, 4573 ICH_FLASH_HSFSTS) 4574 >> 16; 4575 else 4576 hsflctl.regval = E1000_READ_FLASH_REG16(hw, 4577 ICH_FLASH_HSFCTL); 4578 4579 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4580 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4581 4582 /* In SPT, This register is in Lan memory space, 4583 * not flash. Therefore, only 32 bit access is 4584 * supported 4585 */ 4586 if (hw->mac.type >= e1000_pch_spt) 4587 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 4588 hsflctl.regval << 16); 4589 else 4590 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, 4591 hsflctl.regval); 4592 4593 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); 4594 4595 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data); 4596 4597 /* check if FCERR is set to 1 , if set to 1, clear it 4598 * and try the whole sequence a few more times else done 4599 */ 4600 ret_val = e1000_flash_cycle_ich8lan(hw, 4601 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4602 4603 if (ret_val == E1000_SUCCESS) 4604 break; 4605 4606 /* If we're here, then things are most likely 4607 * completely hosed, but if the error condition 4608 * is detected, it won't hurt to give it another 4609 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4610 */ 4611 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 4612 4613 if (hsfsts.hsf_status.flcerr) 4614 /* Repeat for some time before giving up. */ 4615 continue; 4616 if (!hsfsts.hsf_status.flcdone) { 4617 DEBUGOUT("Timeout error - flash cycle did not complete.\n"); 4618 break; 4619 } 4620 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4621 4622 return ret_val; 4623 } 4624 4625 /** 4626 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4627 * @hw: pointer to the HW structure 4628 * @offset: The index of the byte to read. 4629 * @data: The byte to write to the NVM. 4630 * 4631 * Writes a single byte to the NVM using the flash access registers. 4632 **/ 4633 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4634 u8 data) 4635 { 4636 u16 word = (u16)data; 4637 4638 DEBUGFUNC("e1000_write_flash_byte_ich8lan"); 4639 4640 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4641 } 4642 4643 /** 4644 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4645 * @hw: pointer to the HW structure 4646 * @offset: The offset of the word to write. 4647 * @dword: The dword to write to the NVM. 4648 * 4649 * Writes a single dword to the NVM using the flash access registers. 4650 * Goes through a retry algorithm before giving up. 4651 **/ 4652 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4653 u32 offset, u32 dword) 4654 { 4655 s32 ret_val; 4656 u16 program_retries; 4657 4658 DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan"); 4659 4660 /* Must convert word offset into bytes. */ 4661 offset <<= 1; 4662 4663 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4664 4665 if (!ret_val) 4666 return ret_val; 4667 for (program_retries = 0; program_retries < 100; program_retries++) { 4668 DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset); 4669 usec_delay(100); 4670 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4671 if (ret_val == E1000_SUCCESS) 4672 break; 4673 } 4674 if (program_retries == 100) 4675 return -E1000_ERR_NVM; 4676 4677 return E1000_SUCCESS; 4678 } 4679 4680 /** 4681 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4682 * @hw: pointer to the HW structure 4683 * @offset: The offset of the byte to write. 4684 * @byte: The byte to write to the NVM. 4685 * 4686 * Writes a single byte to the NVM using the flash access registers. 4687 * Goes through a retry algorithm before giving up. 4688 **/ 4689 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4690 u32 offset, u8 byte) 4691 { 4692 s32 ret_val; 4693 u16 program_retries; 4694 4695 DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); 4696 4697 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4698 if (!ret_val) 4699 return ret_val; 4700 4701 for (program_retries = 0; program_retries < 100; program_retries++) { 4702 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); 4703 usec_delay(100); 4704 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4705 if (ret_val == E1000_SUCCESS) 4706 break; 4707 } 4708 if (program_retries == 100) 4709 return -E1000_ERR_NVM; 4710 4711 return E1000_SUCCESS; 4712 } 4713 4714 /** 4715 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4716 * @hw: pointer to the HW structure 4717 * @bank: 0 for first bank, 1 for second bank, etc. 4718 * 4719 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4720 * bank N is 4096 * N + flash_reg_addr. 4721 **/ 4722 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4723 { 4724 struct e1000_nvm_info *nvm = &hw->nvm; 4725 union ich8_hws_flash_status hsfsts; 4726 union ich8_hws_flash_ctrl hsflctl; 4727 u32 flash_linear_addr; 4728 /* bank size is in 16bit words - adjust to bytes */ 4729 u32 flash_bank_size = nvm->flash_bank_size * 2; 4730 s32 ret_val; 4731 s32 count = 0; 4732 s32 j, iteration, sector_size; 4733 4734 DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); 4735 4736 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); 4737 4738 /* Determine HW Sector size: Read BERASE bits of hw flash status 4739 * register 4740 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4741 * consecutive sectors. The start index for the nth Hw sector 4742 * can be calculated as = bank * 4096 + n * 256 4743 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4744 * The start index for the nth Hw sector can be calculated 4745 * as = bank * 4096 4746 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4747 * (ich9 only, otherwise error condition) 4748 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4749 */ 4750 switch (hsfsts.hsf_status.berasesz) { 4751 case 0: 4752 /* Hw sector size 256 */ 4753 sector_size = ICH_FLASH_SEG_SIZE_256; 4754 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4755 break; 4756 case 1: 4757 sector_size = ICH_FLASH_SEG_SIZE_4K; 4758 iteration = 1; 4759 break; 4760 case 2: 4761 sector_size = ICH_FLASH_SEG_SIZE_8K; 4762 iteration = 1; 4763 break; 4764 case 3: 4765 sector_size = ICH_FLASH_SEG_SIZE_64K; 4766 iteration = 1; 4767 break; 4768 default: 4769 return -E1000_ERR_NVM; 4770 } 4771 4772 /* Start with the base address, then add the sector offset. */ 4773 flash_linear_addr = hw->nvm.flash_base_addr; 4774 flash_linear_addr += (bank) ? flash_bank_size : 0; 4775 4776 for (j = 0; j < iteration; j++) { 4777 do { 4778 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4779 4780 /* Steps */ 4781 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4782 if (ret_val) 4783 return ret_val; 4784 4785 /* Write a value 11 (block Erase) in Flash 4786 * Cycle field in hw flash control 4787 */ 4788 if (hw->mac.type >= e1000_pch_spt) 4789 hsflctl.regval = 4790 E1000_READ_FLASH_REG(hw, 4791 ICH_FLASH_HSFSTS)>>16; 4792 else 4793 hsflctl.regval = 4794 E1000_READ_FLASH_REG16(hw, 4795 ICH_FLASH_HSFCTL); 4796 4797 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4798 if (hw->mac.type >= e1000_pch_spt) 4799 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS, 4800 hsflctl.regval << 16); 4801 else 4802 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, 4803 hsflctl.regval); 4804 4805 /* Write the last 24 bits of an index within the 4806 * block into Flash Linear address field in Flash 4807 * Address. 4808 */ 4809 flash_linear_addr += (j * sector_size); 4810 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, 4811 flash_linear_addr); 4812 4813 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4814 if (ret_val == E1000_SUCCESS) 4815 break; 4816 4817 /* Check if FCERR is set to 1. If 1, 4818 * clear it and try the whole sequence 4819 * a few more times else Done 4820 */ 4821 hsfsts.regval = E1000_READ_FLASH_REG16(hw, 4822 ICH_FLASH_HSFSTS); 4823 if (hsfsts.hsf_status.flcerr) 4824 /* repeat for some time before giving up */ 4825 continue; 4826 else if (!hsfsts.hsf_status.flcdone) 4827 return ret_val; 4828 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4829 } 4830 4831 return E1000_SUCCESS; 4832 } 4833 4834 /** 4835 * e1000_valid_led_default_ich8lan - Set the default LED settings 4836 * @hw: pointer to the HW structure 4837 * @data: Pointer to the LED settings 4838 * 4839 * Reads the LED default settings from the NVM to data. If the NVM LED 4840 * settings is all 0's or F's, set the LED default to a valid LED default 4841 * setting. 4842 **/ 4843 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4844 { 4845 s32 ret_val; 4846 4847 DEBUGFUNC("e1000_valid_led_default_ich8lan"); 4848 4849 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); 4850 if (ret_val) { 4851 DEBUGOUT("NVM Read Error\n"); 4852 return ret_val; 4853 } 4854 4855 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4856 *data = ID_LED_DEFAULT_ICH8LAN; 4857 4858 return E1000_SUCCESS; 4859 } 4860 4861 /** 4862 * e1000_id_led_init_pchlan - store LED configurations 4863 * @hw: pointer to the HW structure 4864 * 4865 * PCH does not control LEDs via the LEDCTL register, rather it uses 4866 * the PHY LED configuration register. 4867 * 4868 * PCH also does not have an "always on" or "always off" mode which 4869 * complicates the ID feature. Instead of using the "on" mode to indicate 4870 * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), 4871 * use "link_up" mode. The LEDs will still ID on request if there is no 4872 * link based on logic in e1000_led_[on|off]_pchlan(). 4873 **/ 4874 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4875 { 4876 struct e1000_mac_info *mac = &hw->mac; 4877 s32 ret_val; 4878 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4879 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4880 u16 data, i, temp, shift; 4881 4882 DEBUGFUNC("e1000_id_led_init_pchlan"); 4883 4884 /* Get default ID LED modes */ 4885 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4886 if (ret_val) 4887 return ret_val; 4888 4889 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); 4890 mac->ledctl_mode1 = mac->ledctl_default; 4891 mac->ledctl_mode2 = mac->ledctl_default; 4892 4893 for (i = 0; i < 4; i++) { 4894 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4895 shift = (i * 5); 4896 switch (temp) { 4897 case ID_LED_ON1_DEF2: 4898 case ID_LED_ON1_ON2: 4899 case ID_LED_ON1_OFF2: 4900 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4901 mac->ledctl_mode1 |= (ledctl_on << shift); 4902 break; 4903 case ID_LED_OFF1_DEF2: 4904 case ID_LED_OFF1_ON2: 4905 case ID_LED_OFF1_OFF2: 4906 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4907 mac->ledctl_mode1 |= (ledctl_off << shift); 4908 break; 4909 default: 4910 /* Do nothing */ 4911 break; 4912 } 4913 switch (temp) { 4914 case ID_LED_DEF1_ON2: 4915 case ID_LED_ON1_ON2: 4916 case ID_LED_OFF1_ON2: 4917 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4918 mac->ledctl_mode2 |= (ledctl_on << shift); 4919 break; 4920 case ID_LED_DEF1_OFF2: 4921 case ID_LED_ON1_OFF2: 4922 case ID_LED_OFF1_OFF2: 4923 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4924 mac->ledctl_mode2 |= (ledctl_off << shift); 4925 break; 4926 default: 4927 /* Do nothing */ 4928 break; 4929 } 4930 } 4931 4932 return E1000_SUCCESS; 4933 } 4934 4935 /** 4936 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4937 * @hw: pointer to the HW structure 4938 * 4939 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4940 * register, so the bus width is hard coded. 4941 **/ 4942 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4943 { 4944 struct e1000_bus_info *bus = &hw->bus; 4945 s32 ret_val; 4946 4947 DEBUGFUNC("e1000_get_bus_info_ich8lan"); 4948 4949 ret_val = e1000_get_bus_info_pcie_generic(hw); 4950 4951 /* ICH devices are "PCI Express"-ish. They have 4952 * a configuration space, but do not contain 4953 * PCI Express Capability registers, so bus width 4954 * must be hardcoded. 4955 */ 4956 if (bus->width == e1000_bus_width_unknown) 4957 bus->width = e1000_bus_width_pcie_x1; 4958 4959 return ret_val; 4960 } 4961 4962 /** 4963 * e1000_reset_hw_ich8lan - Reset the hardware 4964 * @hw: pointer to the HW structure 4965 * 4966 * Does a full reset of the hardware which includes a reset of the PHY and 4967 * MAC. 4968 **/ 4969 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4970 { 4971 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4972 u16 kum_cfg; 4973 u32 ctrl, reg; 4974 s32 ret_val; 4975 u16 pci_cfg; 4976 4977 DEBUGFUNC("e1000_reset_hw_ich8lan"); 4978 4979 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4980 * on the last TLP read/write transaction when MAC is reset. 4981 */ 4982 ret_val = e1000_disable_pcie_master_generic(hw); 4983 if (ret_val) 4984 DEBUGOUT("PCI-E Master disable polling has failed.\n"); 4985 4986 DEBUGOUT("Masking off all interrupts\n"); 4987 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 4988 4989 /* Disable the Transmit and Receive units. Then delay to allow 4990 * any pending transactions to complete before we hit the MAC 4991 * with the global reset. 4992 */ 4993 E1000_WRITE_REG(hw, E1000_RCTL, 0); 4994 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); 4995 E1000_WRITE_FLUSH(hw); 4996 4997 msec_delay(10); 4998 4999 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 5000 if (hw->mac.type == e1000_ich8lan) { 5001 /* Set Tx and Rx buffer allocation to 8k apiece. */ 5002 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); 5003 /* Set Packet Buffer Size to 16k. */ 5004 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); 5005 } 5006 5007 if (hw->mac.type == e1000_pchlan) { 5008 /* Save the NVM K1 bit setting*/ 5009 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 5010 if (ret_val) 5011 return ret_val; 5012 5013 if (kum_cfg & E1000_NVM_K1_ENABLE) 5014 dev_spec->nvm_k1_enabled = true; 5015 else 5016 dev_spec->nvm_k1_enabled = false; 5017 } 5018 5019 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5020 5021 if (!hw->phy.ops.check_reset_block(hw)) { 5022 /* Full-chip reset requires MAC and PHY reset at the same 5023 * time to make sure the interface between MAC and the 5024 * external PHY is reset. 5025 */ 5026 ctrl |= E1000_CTRL_PHY_RST; 5027 5028 /* Gate automatic PHY configuration by hardware on 5029 * non-managed 82579 5030 */ 5031 if ((hw->mac.type == e1000_pch2lan) && 5032 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) 5033 e1000_gate_hw_phy_config_ich8lan(hw, true); 5034 } 5035 ret_val = e1000_acquire_swflag_ich8lan(hw); 5036 5037 /* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function 5038 * may occur during global reset and cause system hang. 5039 * Configuration space access creates the needed delay. 5040 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value 5041 * insures configuration space read is done before global reset. 5042 */ 5043 e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg); 5044 E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg); 5045 DEBUGOUT("Issuing a global reset to ich8lan\n"); 5046 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); 5047 /* cannot issue a flush here because it hangs the hardware */ 5048 msec_delay(20); 5049 5050 /* Configuration space access improve HW level time sync mechanism. 5051 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER 5052 * value to insure configuration space read is done 5053 * before any access to mac register. 5054 */ 5055 e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg); 5056 E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg); 5057 5058 /* Set Phy Config Counter to 50msec */ 5059 if (hw->mac.type == e1000_pch2lan) { 5060 reg = E1000_READ_REG(hw, E1000_FEXTNVM3); 5061 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 5062 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 5063 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); 5064 } 5065 5066 5067 if (ctrl & E1000_CTRL_PHY_RST) { 5068 ret_val = hw->phy.ops.get_cfg_done(hw); 5069 if (ret_val) 5070 return ret_val; 5071 5072 ret_val = e1000_post_phy_reset_ich8lan(hw); 5073 if (ret_val) 5074 return ret_val; 5075 } 5076 5077 /* For PCH, this write will make sure that any noise 5078 * will be detected as a CRC error and be dropped rather than show up 5079 * as a bad packet to the DMA engine. 5080 */ 5081 if (hw->mac.type == e1000_pchlan) 5082 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); 5083 5084 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 5085 E1000_READ_REG(hw, E1000_ICR); 5086 5087 reg = E1000_READ_REG(hw, E1000_KABGTXD); 5088 reg |= E1000_KABGTXD_BGSQLBIAS; 5089 E1000_WRITE_REG(hw, E1000_KABGTXD, reg); 5090 5091 return E1000_SUCCESS; 5092 } 5093 5094 /** 5095 * e1000_init_hw_ich8lan - Initialize the hardware 5096 * @hw: pointer to the HW structure 5097 * 5098 * Prepares the hardware for transmit and receive by doing the following: 5099 * - initialize hardware bits 5100 * - initialize LED identification 5101 * - setup receive address registers 5102 * - setup flow control 5103 * - setup transmit descriptors 5104 * - clear statistics 5105 **/ 5106 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 5107 { 5108 struct e1000_mac_info *mac = &hw->mac; 5109 u32 ctrl_ext, txdctl, snoop; 5110 s32 ret_val; 5111 u16 i; 5112 5113 DEBUGFUNC("e1000_init_hw_ich8lan"); 5114 5115 e1000_initialize_hw_bits_ich8lan(hw); 5116 5117 /* Initialize identification LED */ 5118 ret_val = mac->ops.id_led_init(hw); 5119 /* An error is not fatal and we should not stop init due to this */ 5120 if (ret_val) 5121 DEBUGOUT("Error initializing identification LED\n"); 5122 5123 /* Setup the receive address. */ 5124 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); 5125 5126 /* Zero out the Multicast HASH table */ 5127 DEBUGOUT("Zeroing the MTA\n"); 5128 for (i = 0; i < mac->mta_reg_count; i++) 5129 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 5130 5131 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 5132 * the ME. Disable wakeup by clearing the host wakeup bit. 5133 * Reset the phy after disabling host wakeup to reset the Rx buffer. 5134 */ 5135 if (hw->phy.type == e1000_phy_82578) { 5136 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); 5137 i &= ~BM_WUC_HOST_WU_BIT; 5138 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); 5139 ret_val = e1000_phy_hw_reset_ich8lan(hw); 5140 if (ret_val) 5141 return ret_val; 5142 } 5143 5144 /* Setup link and flow control */ 5145 ret_val = mac->ops.setup_link(hw); 5146 5147 /* Set the transmit descriptor write-back policy for both queues */ 5148 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); 5149 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 5150 E1000_TXDCTL_FULL_TX_DESC_WB); 5151 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 5152 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 5153 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); 5154 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); 5155 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 5156 E1000_TXDCTL_FULL_TX_DESC_WB); 5157 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 5158 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 5159 E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); 5160 5161 /* ICH8 has opposite polarity of no_snoop bits. 5162 * By default, we should use snoop behavior. 5163 */ 5164 if (mac->type == e1000_ich8lan) 5165 snoop = PCIE_ICH8_SNOOP_ALL; 5166 else 5167 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); 5168 e1000_set_pcie_no_snoop_generic(hw, snoop); 5169 5170 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 5171 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 5172 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 5173 5174 /* Clear all of the statistics registers (clear on read). It is 5175 * important that we do this after we have tried to establish link 5176 * because the symbol error count will increment wildly if there 5177 * is no link. 5178 */ 5179 e1000_clear_hw_cntrs_ich8lan(hw); 5180 5181 return ret_val; 5182 } 5183 5184 /** 5185 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 5186 * @hw: pointer to the HW structure 5187 * 5188 * Sets/Clears required hardware bits necessary for correctly setting up the 5189 * hardware for transmit and receive. 5190 **/ 5191 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 5192 { 5193 u32 reg; 5194 5195 DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); 5196 5197 /* Extended Device Control */ 5198 reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 5199 reg |= (1 << 22); 5200 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 5201 if (hw->mac.type >= e1000_pchlan) 5202 reg |= E1000_CTRL_EXT_PHYPDEN; 5203 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); 5204 5205 /* Transmit Descriptor Control 0 */ 5206 reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); 5207 reg |= (1 << 22); 5208 E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); 5209 5210 /* Transmit Descriptor Control 1 */ 5211 reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); 5212 reg |= (1 << 22); 5213 E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); 5214 5215 /* Transmit Arbitration Control 0 */ 5216 reg = E1000_READ_REG(hw, E1000_TARC(0)); 5217 if (hw->mac.type == e1000_ich8lan) 5218 reg |= (1 << 28) | (1 << 29); 5219 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 5220 E1000_WRITE_REG(hw, E1000_TARC(0), reg); 5221 5222 /* Transmit Arbitration Control 1 */ 5223 reg = E1000_READ_REG(hw, E1000_TARC(1)); 5224 if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) 5225 reg &= ~(1 << 28); 5226 else 5227 reg |= (1 << 28); 5228 reg |= (1 << 24) | (1 << 26) | (1 << 30); 5229 E1000_WRITE_REG(hw, E1000_TARC(1), reg); 5230 5231 /* Device Status */ 5232 if (hw->mac.type == e1000_ich8lan) { 5233 reg = E1000_READ_REG(hw, E1000_STATUS); 5234 reg &= ~(1U << 31); 5235 E1000_WRITE_REG(hw, E1000_STATUS, reg); 5236 } 5237 5238 /* work-around descriptor data corruption issue during nfs v2 udp 5239 * traffic, just disable the nfs filtering capability 5240 */ 5241 reg = E1000_READ_REG(hw, E1000_RFCTL); 5242 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 5243 5244 /* Disable IPv6 extension header parsing because some malformed 5245 * IPv6 headers can hang the Rx. 5246 */ 5247 if (hw->mac.type == e1000_ich8lan) 5248 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 5249 E1000_WRITE_REG(hw, E1000_RFCTL, reg); 5250 5251 /* Enable ECC on Lynxpoint */ 5252 if (hw->mac.type >= e1000_pch_lpt) { 5253 reg = E1000_READ_REG(hw, E1000_PBECCSTS); 5254 reg |= E1000_PBECCSTS_ECC_ENABLE; 5255 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); 5256 5257 reg = E1000_READ_REG(hw, E1000_CTRL); 5258 reg |= E1000_CTRL_MEHE; 5259 E1000_WRITE_REG(hw, E1000_CTRL, reg); 5260 } 5261 5262 return; 5263 } 5264 5265 /** 5266 * e1000_setup_link_ich8lan - Setup flow control and link settings 5267 * @hw: pointer to the HW structure 5268 * 5269 * Determines which flow control settings to use, then configures flow 5270 * control. Calls the appropriate media-specific link configuration 5271 * function. Assuming the adapter has a valid link partner, a valid link 5272 * should be established. Assumes the hardware has previously been reset 5273 * and the transmitter and receiver are not enabled. 5274 **/ 5275 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 5276 { 5277 s32 ret_val; 5278 5279 DEBUGFUNC("e1000_setup_link_ich8lan"); 5280 5281 /* ICH parts do not have a word in the NVM to determine 5282 * the default flow control setting, so we explicitly 5283 * set it to full. 5284 */ 5285 if (hw->fc.requested_mode == e1000_fc_default) 5286 hw->fc.requested_mode = e1000_fc_full; 5287 5288 /* Save off the requested flow control mode for use later. Depending 5289 * on the link partner's capabilities, we may or may not use this mode. 5290 */ 5291 hw->fc.current_mode = hw->fc.requested_mode; 5292 5293 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", 5294 hw->fc.current_mode); 5295 5296 if (!hw->phy.ops.check_reset_block(hw)) { 5297 /* Continue to configure the copper link. */ 5298 ret_val = hw->mac.ops.setup_physical_interface(hw); 5299 if (ret_val) 5300 return ret_val; 5301 } 5302 5303 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); 5304 if ((hw->phy.type == e1000_phy_82578) || 5305 (hw->phy.type == e1000_phy_82579) || 5306 (hw->phy.type == e1000_phy_i217) || 5307 (hw->phy.type == e1000_phy_82577)) { 5308 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); 5309 5310 ret_val = hw->phy.ops.write_reg(hw, 5311 PHY_REG(BM_PORT_CTRL_PAGE, 27), 5312 hw->fc.pause_time); 5313 if (ret_val) 5314 return ret_val; 5315 } 5316 5317 return e1000_set_fc_watermarks_generic(hw); 5318 } 5319 5320 /** 5321 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5322 * @hw: pointer to the HW structure 5323 * 5324 * Configures the kumeran interface to the PHY to wait the appropriate time 5325 * when polling the PHY, then call the generic setup_copper_link to finish 5326 * configuring the copper link. 5327 **/ 5328 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5329 { 5330 u32 ctrl; 5331 s32 ret_val; 5332 u16 reg_data; 5333 5334 DEBUGFUNC("e1000_setup_copper_link_ich8lan"); 5335 5336 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5337 ctrl |= E1000_CTRL_SLU; 5338 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5339 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5340 5341 /* Set the mac to wait the maximum time between each iteration 5342 * and increase the max iterations when polling the phy; 5343 * this fixes erroneous timeouts at 10Mbps. 5344 */ 5345 ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 5346 0xFFFF); 5347 if (ret_val) 5348 return ret_val; 5349 ret_val = e1000_read_kmrn_reg_generic(hw, 5350 E1000_KMRNCTRLSTA_INBAND_PARAM, 5351 ®_data); 5352 if (ret_val) 5353 return ret_val; 5354 reg_data |= 0x3F; 5355 ret_val = e1000_write_kmrn_reg_generic(hw, 5356 E1000_KMRNCTRLSTA_INBAND_PARAM, 5357 reg_data); 5358 if (ret_val) 5359 return ret_val; 5360 5361 switch (hw->phy.type) { 5362 case e1000_phy_igp_3: 5363 ret_val = e1000_copper_link_setup_igp(hw); 5364 if (ret_val) 5365 return ret_val; 5366 break; 5367 case e1000_phy_bm: 5368 case e1000_phy_82578: 5369 ret_val = e1000_copper_link_setup_m88(hw); 5370 if (ret_val) 5371 return ret_val; 5372 break; 5373 case e1000_phy_82577: 5374 case e1000_phy_82579: 5375 ret_val = e1000_copper_link_setup_82577(hw); 5376 if (ret_val) 5377 return ret_val; 5378 break; 5379 case e1000_phy_ife: 5380 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, 5381 ®_data); 5382 if (ret_val) 5383 return ret_val; 5384 5385 reg_data &= ~IFE_PMC_AUTO_MDIX; 5386 5387 switch (hw->phy.mdix) { 5388 case 1: 5389 reg_data &= ~IFE_PMC_FORCE_MDIX; 5390 break; 5391 case 2: 5392 reg_data |= IFE_PMC_FORCE_MDIX; 5393 break; 5394 case 0: 5395 default: 5396 reg_data |= IFE_PMC_AUTO_MDIX; 5397 break; 5398 } 5399 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, 5400 reg_data); 5401 if (ret_val) 5402 return ret_val; 5403 break; 5404 default: 5405 break; 5406 } 5407 5408 return e1000_setup_copper_link_generic(hw); 5409 } 5410 5411 /** 5412 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5413 * @hw: pointer to the HW structure 5414 * 5415 * Calls the PHY specific link setup function and then calls the 5416 * generic setup_copper_link to finish configuring the link for 5417 * Lynxpoint PCH devices 5418 **/ 5419 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5420 { 5421 u32 ctrl; 5422 s32 ret_val; 5423 5424 DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); 5425 5426 ctrl = E1000_READ_REG(hw, E1000_CTRL); 5427 ctrl |= E1000_CTRL_SLU; 5428 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5429 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 5430 5431 ret_val = e1000_copper_link_setup_82577(hw); 5432 if (ret_val) 5433 return ret_val; 5434 5435 return e1000_setup_copper_link_generic(hw); 5436 } 5437 5438 /** 5439 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5440 * @hw: pointer to the HW structure 5441 * @speed: pointer to store current link speed 5442 * @duplex: pointer to store the current link duplex 5443 * 5444 * Calls the generic get_speed_and_duplex to retrieve the current link 5445 * information and then calls the Kumeran lock loss workaround for links at 5446 * gigabit speeds. 5447 **/ 5448 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5449 u16 *duplex) 5450 { 5451 s32 ret_val; 5452 5453 DEBUGFUNC("e1000_get_link_up_info_ich8lan"); 5454 5455 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); 5456 if (ret_val) 5457 return ret_val; 5458 5459 if ((hw->mac.type == e1000_ich8lan) && 5460 (hw->phy.type == e1000_phy_igp_3) && 5461 (*speed == SPEED_1000)) { 5462 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5463 } 5464 5465 return ret_val; 5466 } 5467 5468 /** 5469 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5470 * @hw: pointer to the HW structure 5471 * 5472 * Work-around for 82566 Kumeran PCS lock loss: 5473 * On link status change (i.e. PCI reset, speed change) and link is up and 5474 * speed is gigabit- 5475 * 0) if workaround is optionally disabled do nothing 5476 * 1) wait 1ms for Kumeran link to come up 5477 * 2) check Kumeran Diagnostic register PCS lock loss bit 5478 * 3) if not set the link is locked (all is good), otherwise... 5479 * 4) reset the PHY 5480 * 5) repeat up to 10 times 5481 * Note: this is only called for IGP3 copper when speed is 1gb. 5482 **/ 5483 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5484 { 5485 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5486 u32 phy_ctrl; 5487 s32 ret_val; 5488 u16 i, data; 5489 bool link; 5490 5491 DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); 5492 5493 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5494 return E1000_SUCCESS; 5495 5496 /* Make sure link is up before proceeding. If not just return. 5497 * Attempting this while link is negotiating fouled up link 5498 * stability 5499 */ 5500 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 5501 if (!link) 5502 return E1000_SUCCESS; 5503 5504 for (i = 0; i < 10; i++) { 5505 /* read once to clear */ 5506 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); 5507 if (ret_val) 5508 return ret_val; 5509 /* and again to get new status */ 5510 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); 5511 if (ret_val) 5512 return ret_val; 5513 5514 /* check for PCS lock */ 5515 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5516 return E1000_SUCCESS; 5517 5518 /* Issue PHY reset */ 5519 hw->phy.ops.reset(hw); 5520 msec_delay_irq(5); 5521 } 5522 /* Disable GigE link negotiation */ 5523 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 5524 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5525 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5526 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 5527 5528 /* Call gig speed drop workaround on Gig disable before accessing 5529 * any PHY registers 5530 */ 5531 e1000_gig_downshift_workaround_ich8lan(hw); 5532 5533 /* unable to acquire PCS lock */ 5534 return -E1000_ERR_PHY; 5535 } 5536 5537 /** 5538 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5539 * @hw: pointer to the HW structure 5540 * @state: boolean value used to set the current Kumeran workaround state 5541 * 5542 * If ICH8, set the current Kumeran workaround state (enabled - true 5543 * /disabled - false). 5544 **/ 5545 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5546 bool state) 5547 { 5548 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5549 5550 DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); 5551 5552 if (hw->mac.type != e1000_ich8lan) { 5553 DEBUGOUT("Workaround applies to ICH8 only.\n"); 5554 return; 5555 } 5556 5557 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5558 5559 return; 5560 } 5561 5562 /** 5563 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5564 * @hw: pointer to the HW structure 5565 * 5566 * Workaround for 82566 power-down on D3 entry: 5567 * 1) disable gigabit link 5568 * 2) write VR power-down enable 5569 * 3) read it back 5570 * Continue if successful, else issue LCD reset and repeat 5571 **/ 5572 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5573 { 5574 u32 reg; 5575 u16 data; 5576 u8 retry = 0; 5577 5578 DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); 5579 5580 if (hw->phy.type != e1000_phy_igp_3) 5581 return; 5582 5583 /* Try the workaround twice (if needed) */ 5584 do { 5585 /* Disable link */ 5586 reg = E1000_READ_REG(hw, E1000_PHY_CTRL); 5587 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5588 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5589 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); 5590 5591 /* Call gig speed drop workaround on Gig disable before 5592 * accessing any PHY registers 5593 */ 5594 if (hw->mac.type == e1000_ich8lan) 5595 e1000_gig_downshift_workaround_ich8lan(hw); 5596 5597 /* Write VR power-down enable */ 5598 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); 5599 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5600 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, 5601 data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5602 5603 /* Read it back and test */ 5604 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); 5605 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5606 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5607 break; 5608 5609 /* Issue PHY reset and repeat at most one more time */ 5610 reg = E1000_READ_REG(hw, E1000_CTRL); 5611 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); 5612 retry++; 5613 } while (retry); 5614 } 5615 5616 /** 5617 * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5618 * @hw: pointer to the HW structure 5619 * 5620 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5621 * LPLU, Gig disable, MDIC PHY reset): 5622 * 1) Set Kumeran Near-end loopback 5623 * 2) Clear Kumeran Near-end loopback 5624 * Should only be called for ICH8[m] devices with any 1G Phy. 5625 **/ 5626 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5627 { 5628 s32 ret_val; 5629 u16 reg_data = 0; 5630 5631 DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); 5632 5633 if ((hw->mac.type != e1000_ich8lan) || 5634 (hw->phy.type == e1000_phy_ife)) 5635 return; 5636 5637 ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5638 ®_data); 5639 if (ret_val) 5640 return; 5641 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5642 ret_val = e1000_write_kmrn_reg_generic(hw, 5643 E1000_KMRNCTRLSTA_DIAG_OFFSET, 5644 reg_data); 5645 if (ret_val) 5646 return; 5647 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5648 e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5649 reg_data); 5650 } 5651 5652 /** 5653 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5654 * @hw: pointer to the HW structure 5655 * 5656 * During S0 to Sx transition, it is possible the link remains at gig 5657 * instead of negotiating to a lower speed. Before going to Sx, set 5658 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5659 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5660 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5661 * needs to be written. 5662 * Parts that support (and are linked to a partner which support) EEE in 5663 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5664 * than 10Mbps w/o EEE. 5665 **/ 5666 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5667 { 5668 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5669 u32 phy_ctrl; 5670 s32 ret_val; 5671 5672 DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); 5673 5674 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); 5675 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5676 5677 if (hw->phy.type == e1000_phy_i217) { 5678 u16 phy_reg, device_id = hw->device_id; 5679 5680 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5681 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5682 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5683 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5684 (hw->mac.type >= e1000_pch_spt)) { 5685 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); 5686 5687 E1000_WRITE_REG(hw, E1000_FEXTNVM6, 5688 fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5689 } 5690 5691 ret_val = hw->phy.ops.acquire(hw); 5692 if (ret_val) 5693 goto out; 5694 5695 if (!dev_spec->eee_disable) { 5696 u16 eee_advert; 5697 5698 ret_val = 5699 e1000_read_emi_reg_locked(hw, 5700 I217_EEE_ADVERTISEMENT, 5701 &eee_advert); 5702 if (ret_val) 5703 goto release; 5704 5705 /* Disable LPLU if both link partners support 100BaseT 5706 * EEE and 100Full is advertised on both ends of the 5707 * link, and enable Auto Enable LPI since there will 5708 * be no driver to enable LPI while in Sx. 5709 */ 5710 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5711 (dev_spec->eee_lp_ability & 5712 I82579_EEE_100_SUPPORTED) && 5713 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5714 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5715 E1000_PHY_CTRL_NOND0A_LPLU); 5716 5717 /* Set Auto Enable LPI after link up */ 5718 hw->phy.ops.read_reg_locked(hw, 5719 I217_LPI_GPIO_CTRL, 5720 &phy_reg); 5721 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5722 hw->phy.ops.write_reg_locked(hw, 5723 I217_LPI_GPIO_CTRL, 5724 phy_reg); 5725 } 5726 } 5727 5728 /* For i217 Intel Rapid Start Technology support, 5729 * when the system is going into Sx and no manageability engine 5730 * is present, the driver must configure proxy to reset only on 5731 * power good. LPI (Low Power Idle) state must also reset only 5732 * on power good, as well as the MTA (Multicast table array). 5733 * The SMBus release must also be disabled on LCD reset. 5734 */ 5735 if (!(E1000_READ_REG(hw, E1000_FWSM) & 5736 E1000_ICH_FWSM_FW_VALID)) { 5737 /* Enable proxy to reset only on power good. */ 5738 hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, 5739 &phy_reg); 5740 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5741 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 5742 phy_reg); 5743 5744 /* Set bit enable LPI (EEE) to reset only on 5745 * power good. 5746 */ 5747 hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); 5748 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5749 hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); 5750 5751 /* Disable the SMB release on LCD reset. */ 5752 hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); 5753 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5754 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); 5755 } 5756 5757 /* Enable MTA to reset for Intel Rapid Start Technology 5758 * Support 5759 */ 5760 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); 5761 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5762 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); 5763 5764 release: 5765 hw->phy.ops.release(hw); 5766 } 5767 out: 5768 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); 5769 5770 if (hw->mac.type == e1000_ich8lan) 5771 e1000_gig_downshift_workaround_ich8lan(hw); 5772 5773 if (hw->mac.type >= e1000_pchlan) { 5774 e1000_oem_bits_config_ich8lan(hw, false); 5775 5776 /* Reset PHY to activate OEM bits on 82577/8 */ 5777 if (hw->mac.type == e1000_pchlan) 5778 e1000_phy_hw_reset_generic(hw); 5779 5780 ret_val = hw->phy.ops.acquire(hw); 5781 if (ret_val) 5782 return; 5783 e1000_write_smbus_addr(hw); 5784 hw->phy.ops.release(hw); 5785 } 5786 5787 return; 5788 } 5789 5790 /** 5791 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5792 * @hw: pointer to the HW structure 5793 * 5794 * During Sx to S0 transitions on non-managed devices or managed devices 5795 * on which PHY resets are not blocked, if the PHY registers cannot be 5796 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5797 * the PHY. 5798 * On i217, setup Intel Rapid Start Technology. 5799 **/ 5800 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5801 { 5802 s32 ret_val; 5803 5804 DEBUGFUNC("e1000_resume_workarounds_pchlan"); 5805 if (hw->mac.type < e1000_pch2lan) 5806 return E1000_SUCCESS; 5807 5808 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5809 if (ret_val) { 5810 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); 5811 return ret_val; 5812 } 5813 5814 /* For i217 Intel Rapid Start Technology support when the system 5815 * is transitioning from Sx and no manageability engine is present 5816 * configure SMBus to restore on reset, disable proxy, and enable 5817 * the reset on MTA (Multicast table array). 5818 */ 5819 if (hw->phy.type == e1000_phy_i217) { 5820 u16 phy_reg; 5821 5822 ret_val = hw->phy.ops.acquire(hw); 5823 if (ret_val) { 5824 DEBUGOUT("Failed to setup iRST\n"); 5825 return ret_val; 5826 } 5827 5828 /* Clear Auto Enable LPI after link up */ 5829 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5830 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5831 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5832 5833 if (!(E1000_READ_REG(hw, E1000_FWSM) & 5834 E1000_ICH_FWSM_FW_VALID)) { 5835 /* Restore clear on SMB if no manageability engine 5836 * is present 5837 */ 5838 ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, 5839 &phy_reg); 5840 if (ret_val) 5841 goto release; 5842 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5843 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); 5844 5845 /* Disable Proxy */ 5846 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); 5847 } 5848 /* Enable reset on MTA */ 5849 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, 5850 &phy_reg); 5851 if (ret_val) 5852 goto release; 5853 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5854 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); 5855 release: 5856 if (ret_val) 5857 DEBUGOUT1("Error %d in resume workarounds\n", ret_val); 5858 hw->phy.ops.release(hw); 5859 return ret_val; 5860 } 5861 return E1000_SUCCESS; 5862 } 5863 5864 /** 5865 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5866 * @hw: pointer to the HW structure 5867 * 5868 * Return the LED back to the default configuration. 5869 **/ 5870 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5871 { 5872 DEBUGFUNC("e1000_cleanup_led_ich8lan"); 5873 5874 if (hw->phy.type == e1000_phy_ife) 5875 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5876 0); 5877 5878 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); 5879 return E1000_SUCCESS; 5880 } 5881 5882 /** 5883 * e1000_led_on_ich8lan - Turn LEDs on 5884 * @hw: pointer to the HW structure 5885 * 5886 * Turn on the LEDs. 5887 **/ 5888 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5889 { 5890 DEBUGFUNC("e1000_led_on_ich8lan"); 5891 5892 if (hw->phy.type == e1000_phy_ife) 5893 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5894 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5895 5896 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); 5897 return E1000_SUCCESS; 5898 } 5899 5900 /** 5901 * e1000_led_off_ich8lan - Turn LEDs off 5902 * @hw: pointer to the HW structure 5903 * 5904 * Turn off the LEDs. 5905 **/ 5906 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5907 { 5908 DEBUGFUNC("e1000_led_off_ich8lan"); 5909 5910 if (hw->phy.type == e1000_phy_ife) 5911 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5912 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); 5913 5914 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); 5915 return E1000_SUCCESS; 5916 } 5917 5918 /** 5919 * e1000_setup_led_pchlan - Configures SW controllable LED 5920 * @hw: pointer to the HW structure 5921 * 5922 * This prepares the SW controllable LED for use. 5923 **/ 5924 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5925 { 5926 DEBUGFUNC("e1000_setup_led_pchlan"); 5927 5928 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, 5929 (u16)hw->mac.ledctl_mode1); 5930 } 5931 5932 /** 5933 * e1000_cleanup_led_pchlan - Restore the default LED operation 5934 * @hw: pointer to the HW structure 5935 * 5936 * Return the LED back to the default configuration. 5937 **/ 5938 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5939 { 5940 DEBUGFUNC("e1000_cleanup_led_pchlan"); 5941 5942 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, 5943 (u16)hw->mac.ledctl_default); 5944 } 5945 5946 /** 5947 * e1000_led_on_pchlan - Turn LEDs on 5948 * @hw: pointer to the HW structure 5949 * 5950 * Turn on the LEDs. 5951 **/ 5952 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5953 { 5954 u16 data = (u16)hw->mac.ledctl_mode2; 5955 u32 i, led; 5956 5957 DEBUGFUNC("e1000_led_on_pchlan"); 5958 5959 /* If no link, then turn LED on by setting the invert bit 5960 * for each LED that's mode is "link_up" in ledctl_mode2. 5961 */ 5962 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { 5963 for (i = 0; i < 3; i++) { 5964 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5965 if ((led & E1000_PHY_LED0_MODE_MASK) != 5966 E1000_LEDCTL_MODE_LINK_UP) 5967 continue; 5968 if (led & E1000_PHY_LED0_IVRT) 5969 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5970 else 5971 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5972 } 5973 } 5974 5975 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); 5976 } 5977 5978 /** 5979 * e1000_led_off_pchlan - Turn LEDs off 5980 * @hw: pointer to the HW structure 5981 * 5982 * Turn off the LEDs. 5983 **/ 5984 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5985 { 5986 u16 data = (u16)hw->mac.ledctl_mode1; 5987 u32 i, led; 5988 5989 DEBUGFUNC("e1000_led_off_pchlan"); 5990 5991 /* If no link, then turn LED off by clearing the invert bit 5992 * for each LED that's mode is "link_up" in ledctl_mode1. 5993 */ 5994 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { 5995 for (i = 0; i < 3; i++) { 5996 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5997 if ((led & E1000_PHY_LED0_MODE_MASK) != 5998 E1000_LEDCTL_MODE_LINK_UP) 5999 continue; 6000 if (led & E1000_PHY_LED0_IVRT) 6001 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 6002 else 6003 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 6004 } 6005 } 6006 6007 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); 6008 } 6009 6010 /** 6011 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 6012 * @hw: pointer to the HW structure 6013 * 6014 * Read appropriate register for the config done bit for completion status 6015 * and configure the PHY through s/w for EEPROM-less parts. 6016 * 6017 * NOTE: some silicon which is EEPROM-less will fail trying to read the 6018 * config done bit, so only an error is logged and continues. If we were 6019 * to return with error, EEPROM-less silicon would not be able to be reset 6020 * or change link. 6021 **/ 6022 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 6023 { 6024 s32 ret_val = E1000_SUCCESS; 6025 u32 bank = 0; 6026 u32 status; 6027 6028 DEBUGFUNC("e1000_get_cfg_done_ich8lan"); 6029 6030 e1000_get_cfg_done_generic(hw); 6031 6032 /* Wait for indication from h/w that it has completed basic config */ 6033 if (hw->mac.type >= e1000_ich10lan) { 6034 e1000_lan_init_done_ich8lan(hw); 6035 } else { 6036 ret_val = e1000_get_auto_rd_done_generic(hw); 6037 if (ret_val) { 6038 /* When auto config read does not complete, do not 6039 * return with an error. This can happen in situations 6040 * where there is no eeprom and prevents getting link. 6041 */ 6042 DEBUGOUT("Auto Read Done did not complete\n"); 6043 ret_val = E1000_SUCCESS; 6044 } 6045 } 6046 6047 /* Clear PHY Reset Asserted bit */ 6048 status = E1000_READ_REG(hw, E1000_STATUS); 6049 if (status & E1000_STATUS_PHYRA) 6050 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); 6051 else 6052 DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); 6053 6054 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 6055 if (hw->mac.type <= e1000_ich9lan) { 6056 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && 6057 (hw->phy.type == e1000_phy_igp_3)) { 6058 e1000_phy_init_script_igp3(hw); 6059 } 6060 } else { 6061 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 6062 /* Maybe we should do a basic PHY config */ 6063 DEBUGOUT("EEPROM not present\n"); 6064 ret_val = -E1000_ERR_CONFIG; 6065 } 6066 } 6067 6068 return ret_val; 6069 } 6070 6071 /** 6072 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 6073 * @hw: pointer to the HW structure 6074 * 6075 * In the case of a PHY power down to save power, or to turn off link during a 6076 * driver unload, or wake on lan is not enabled, remove the link. 6077 **/ 6078 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 6079 { 6080 /* If the management interface is not enabled, then power down */ 6081 if (!(hw->mac.ops.check_mng_mode(hw) || 6082 hw->phy.ops.check_reset_block(hw))) 6083 e1000_power_down_phy_copper(hw); 6084 6085 return; 6086 } 6087 6088 /** 6089 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 6090 * @hw: pointer to the HW structure 6091 * 6092 * Clears hardware counters specific to the silicon family and calls 6093 * clear_hw_cntrs_generic to clear all general purpose counters. 6094 **/ 6095 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 6096 { 6097 u16 phy_data; 6098 s32 ret_val; 6099 6100 DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); 6101 6102 e1000_clear_hw_cntrs_base_generic(hw); 6103 6104 E1000_READ_REG(hw, E1000_ALGNERRC); 6105 E1000_READ_REG(hw, E1000_RXERRC); 6106 E1000_READ_REG(hw, E1000_TNCRS); 6107 E1000_READ_REG(hw, E1000_CEXTERR); 6108 E1000_READ_REG(hw, E1000_TSCTC); 6109 E1000_READ_REG(hw, E1000_TSCTFC); 6110 6111 E1000_READ_REG(hw, E1000_MGTPRC); 6112 E1000_READ_REG(hw, E1000_MGTPDC); 6113 E1000_READ_REG(hw, E1000_MGTPTC); 6114 6115 E1000_READ_REG(hw, E1000_IAC); 6116 E1000_READ_REG(hw, E1000_ICRXOC); 6117 6118 /* Clear PHY statistics registers */ 6119 if ((hw->phy.type == e1000_phy_82578) || 6120 (hw->phy.type == e1000_phy_82579) || 6121 (hw->phy.type == e1000_phy_i217) || 6122 (hw->phy.type == e1000_phy_82577)) { 6123 ret_val = hw->phy.ops.acquire(hw); 6124 if (ret_val) 6125 return; 6126 ret_val = hw->phy.ops.set_page(hw, 6127 HV_STATS_PAGE << IGP_PAGE_SHIFT); 6128 if (ret_val) 6129 goto release; 6130 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 6131 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 6132 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 6133 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 6134 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 6135 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 6136 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 6137 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 6138 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 6139 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 6140 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 6141 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 6142 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 6143 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 6144 release: 6145 hw->phy.ops.release(hw); 6146 } 6147 } 6148 6149 /** 6150 * e1000_configure_k0s_lpt - Configure K0s power state 6151 * @hw: pointer to the HW structure 6152 * @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3. 6153 * 0 corresponds to 128ns, each value over 0 doubles the duration. 6154 * @min_time: Minimum Tx idle period allowed - valid values are 0 to 4. 6155 * 0 corresponds to 128ns, each value over 0 doubles the duration. 6156 * 6157 * Configure the K1 power state based on the provided parameter. 6158 * Assumes semaphore already acquired. 6159 * 6160 * Success returns 0, Failure returns: 6161 * -E1000_ERR_PHY (-2) in case of access error 6162 * -E1000_ERR_PARAM (-4) in case of parameters error 6163 **/ 6164 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time) 6165 { 6166 s32 ret_val; 6167 u16 kmrn_reg = 0; 6168 6169 DEBUGFUNC("e1000_configure_k0s_lpt"); 6170 6171 if (entry_latency > 3 || min_time > 4) 6172 return -E1000_ERR_PARAM; 6173 6174 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL, 6175 &kmrn_reg); 6176 if (ret_val) 6177 return ret_val; 6178 6179 /* for now don't touch the latency */ 6180 kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK); 6181 kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT)); 6182 6183 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL, 6184 kmrn_reg); 6185 if (ret_val) 6186 return ret_val; 6187 6188 return E1000_SUCCESS; 6189 } 6190