xref: /freebsd/sys/dev/e1000/e1000_ich8lan.c (revision 193d9e768ba63fcfb187cfd17f461f7d41345048)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 					      u8 *mc_addr_list,
85 					      u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 					    bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 					    bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 				   u16 words, u16 *data);
95 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
96 			       u16 *data);
97 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
98 				    u16 words, u16 *data);
99 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
100 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
102 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
103 					    u16 *data);
104 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
105 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
111 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
112 					   u16 *speed, u16 *duplex);
113 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
114 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
117 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
118 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
121 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
123 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
124 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
126 					  u32 offset, u8 *data);
127 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
128 					  u8 size, u16 *data);
129 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
130 					    u32 *data);
131 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
132 					   u32 offset, u32 *data);
133 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
134 					     u32 offset, u32 data);
135 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
136 						  u32 offset, u32 dword);
137 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
138 					  u32 offset, u16 *data);
139 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
140 						 u32 offset, u8 byte);
141 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
142 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
143 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
148 
149 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
150 /* Offset 04h HSFSTS */
151 union ich8_hws_flash_status {
152 	struct ich8_hsfsts {
153 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
154 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
155 		u16 dael:1; /* bit 2 Direct Access error Log */
156 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
157 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
158 		u16 reserved1:2; /* bit 13:6 Reserved */
159 		u16 reserved2:6; /* bit 13:6 Reserved */
160 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
161 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
162 	} hsf_status;
163 	u16 regval;
164 };
165 
166 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
167 /* Offset 06h FLCTL */
168 union ich8_hws_flash_ctrl {
169 	struct ich8_hsflctl {
170 		u16 flcgo:1;   /* 0 Flash Cycle Go */
171 		u16 flcycle:2;   /* 2:1 Flash Cycle */
172 		u16 reserved:5;   /* 7:3 Reserved  */
173 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
174 		u16 flockdn:6;   /* 15:10 Reserved */
175 	} hsf_ctrl;
176 	u16 regval;
177 };
178 
179 /* ICH Flash Region Access Permissions */
180 union ich8_hws_flash_regacc {
181 	struct ich8_flracc {
182 		u32 grra:8; /* 0:7 GbE region Read Access */
183 		u32 grwa:8; /* 8:15 GbE region Write Access */
184 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
185 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
186 	} hsf_flregacc;
187 	u16 regval;
188 };
189 
190 /**
191  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
192  *  @hw: pointer to the HW structure
193  *
194  *  Test access to the PHY registers by reading the PHY ID registers.  If
195  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
196  *  otherwise assume the read PHY ID is correct if it is valid.
197  *
198  *  Assumes the sw/fw/hw semaphore is already acquired.
199  **/
200 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
201 {
202 	u16 phy_reg = 0;
203 	u32 phy_id = 0;
204 	s32 ret_val = 0;
205 	u16 retry_count;
206 	u32 mac_reg = 0;
207 
208 	for (retry_count = 0; retry_count < 2; retry_count++) {
209 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
210 		if (ret_val || (phy_reg == 0xFFFF))
211 			continue;
212 		phy_id = (u32)(phy_reg << 16);
213 
214 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
215 		if (ret_val || (phy_reg == 0xFFFF)) {
216 			phy_id = 0;
217 			continue;
218 		}
219 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
220 		break;
221 	}
222 
223 	if (hw->phy.id) {
224 		if  (hw->phy.id == phy_id)
225 			goto out;
226 	} else if (phy_id) {
227 		hw->phy.id = phy_id;
228 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
229 		goto out;
230 	}
231 
232 	/* In case the PHY needs to be in mdio slow mode,
233 	 * set slow mode and try to get the PHY id again.
234 	 */
235 	if (hw->mac.type < e1000_pch_lpt) {
236 		hw->phy.ops.release(hw);
237 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
238 		if (!ret_val)
239 			ret_val = e1000_get_phy_id(hw);
240 		hw->phy.ops.acquire(hw);
241 	}
242 
243 	if (ret_val)
244 		return FALSE;
245 out:
246 	if (hw->mac.type >= e1000_pch_lpt) {
247 		/* Only unforce SMBus if ME is not active */
248 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
249 		    E1000_ICH_FWSM_FW_VALID)) {
250 			/* Unforce SMBus mode in PHY */
251 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
252 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
253 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
254 
255 			/* Unforce SMBus mode in MAC */
256 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
257 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
258 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
259 		}
260 	}
261 
262 	return TRUE;
263 }
264 
265 /**
266  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
267  *  @hw: pointer to the HW structure
268  *
269  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
270  *  used to reset the PHY to a quiescent state when necessary.
271  **/
272 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
273 {
274 	u32 mac_reg;
275 
276 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
277 
278 	/* Set Phy Config Counter to 50msec */
279 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
280 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
281 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
282 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
283 
284 	/* Toggle LANPHYPC Value bit */
285 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
286 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
287 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
288 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
289 	E1000_WRITE_FLUSH(hw);
290 	msec_delay(1);
291 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
292 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
293 	E1000_WRITE_FLUSH(hw);
294 
295 	if (hw->mac.type < e1000_pch_lpt) {
296 		msec_delay(50);
297 	} else {
298 		u16 count = 20;
299 
300 		do {
301 			msec_delay(5);
302 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
303 			   E1000_CTRL_EXT_LPCD) && count--);
304 
305 		msec_delay(30);
306 	}
307 }
308 
309 /**
310  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
311  *  @hw: pointer to the HW structure
312  *
313  *  Workarounds/flow necessary for PHY initialization during driver load
314  *  and resume paths.
315  **/
316 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
317 {
318 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
319 	s32 ret_val;
320 
321 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
322 
323 	/* Gate automatic PHY configuration by hardware on managed and
324 	 * non-managed 82579 and newer adapters.
325 	 */
326 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
327 
328 	/* It is not possible to be certain of the current state of ULP
329 	 * so forcibly disable it.
330 	 */
331 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
332 	e1000_disable_ulp_lpt_lp(hw, TRUE);
333 
334 	ret_val = hw->phy.ops.acquire(hw);
335 	if (ret_val) {
336 		DEBUGOUT("Failed to initialize PHY flow\n");
337 		goto out;
338 	}
339 
340 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
341 	 * inaccessible and resetting the PHY is not blocked, toggle the
342 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
343 	 */
344 	switch (hw->mac.type) {
345 	case e1000_pch_lpt:
346 	case e1000_pch_spt:
347 		if (e1000_phy_is_accessible_pchlan(hw))
348 			break;
349 
350 		/* Before toggling LANPHYPC, see if PHY is accessible by
351 		 * forcing MAC to SMBus mode first.
352 		 */
353 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
354 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
355 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
356 
357 		/* Wait 50 milliseconds for MAC to finish any retries
358 		 * that it might be trying to perform from previous
359 		 * attempts to acknowledge any phy read requests.
360 		 */
361 		 msec_delay(50);
362 
363 		/* fall-through */
364 	case e1000_pch2lan:
365 		if (e1000_phy_is_accessible_pchlan(hw))
366 			break;
367 
368 		/* fall-through */
369 	case e1000_pchlan:
370 		if ((hw->mac.type == e1000_pchlan) &&
371 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
372 			break;
373 
374 		if (hw->phy.ops.check_reset_block(hw)) {
375 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
376 			ret_val = -E1000_ERR_PHY;
377 			break;
378 		}
379 
380 		/* Toggle LANPHYPC Value bit */
381 		e1000_toggle_lanphypc_pch_lpt(hw);
382 		if (hw->mac.type >= e1000_pch_lpt) {
383 			if (e1000_phy_is_accessible_pchlan(hw))
384 				break;
385 
386 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
387 			 * so ensure that the MAC is also out of SMBus mode
388 			 */
389 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
390 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
391 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
392 
393 			if (e1000_phy_is_accessible_pchlan(hw))
394 				break;
395 
396 			ret_val = -E1000_ERR_PHY;
397 		}
398 		break;
399 	default:
400 		break;
401 	}
402 
403 	hw->phy.ops.release(hw);
404 	if (!ret_val) {
405 
406 		/* Check to see if able to reset PHY.  Print error if not */
407 		if (hw->phy.ops.check_reset_block(hw)) {
408 			ERROR_REPORT("Reset blocked by ME\n");
409 			goto out;
410 		}
411 
412 		/* Reset the PHY before any access to it.  Doing so, ensures
413 		 * that the PHY is in a known good state before we read/write
414 		 * PHY registers.  The generic reset is sufficient here,
415 		 * because we haven't determined the PHY type yet.
416 		 */
417 		ret_val = e1000_phy_hw_reset_generic(hw);
418 		if (ret_val)
419 			goto out;
420 
421 		/* On a successful reset, possibly need to wait for the PHY
422 		 * to quiesce to an accessible state before returning control
423 		 * to the calling function.  If the PHY does not quiesce, then
424 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
425 		 *  the PHY is in.
426 		 */
427 		ret_val = hw->phy.ops.check_reset_block(hw);
428 		if (ret_val)
429 			ERROR_REPORT("ME blocked access to PHY after reset\n");
430 	}
431 
432 out:
433 	/* Ungate automatic PHY configuration on non-managed 82579 */
434 	if ((hw->mac.type == e1000_pch2lan) &&
435 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
436 		msec_delay(10);
437 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
438 	}
439 
440 	return ret_val;
441 }
442 
443 /**
444  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
445  *  @hw: pointer to the HW structure
446  *
447  *  Initialize family-specific PHY parameters and function pointers.
448  **/
449 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
450 {
451 	struct e1000_phy_info *phy = &hw->phy;
452 	s32 ret_val;
453 
454 	DEBUGFUNC("e1000_init_phy_params_pchlan");
455 
456 	phy->addr		= 1;
457 	phy->reset_delay_us	= 100;
458 
459 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
460 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
461 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
462 	phy->ops.set_page	= e1000_set_page_igp;
463 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
464 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
465 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
466 	phy->ops.release	= e1000_release_swflag_ich8lan;
467 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
468 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
469 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
470 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
471 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
472 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
473 	phy->ops.power_up	= e1000_power_up_phy_copper;
474 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
475 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 
477 	phy->id = e1000_phy_unknown;
478 
479 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
480 	if (ret_val)
481 		return ret_val;
482 
483 	if (phy->id == e1000_phy_unknown)
484 		switch (hw->mac.type) {
485 		default:
486 			ret_val = e1000_get_phy_id(hw);
487 			if (ret_val)
488 				return ret_val;
489 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
490 				break;
491 			/* fall-through */
492 		case e1000_pch2lan:
493 		case e1000_pch_lpt:
494 		case e1000_pch_spt:
495 			/* In case the PHY needs to be in mdio slow mode,
496 			 * set slow mode and try to get the PHY id again.
497 			 */
498 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
499 			if (ret_val)
500 				return ret_val;
501 			ret_val = e1000_get_phy_id(hw);
502 			if (ret_val)
503 				return ret_val;
504 			break;
505 		}
506 	phy->type = e1000_get_phy_type_from_id(phy->id);
507 
508 	switch (phy->type) {
509 	case e1000_phy_82577:
510 	case e1000_phy_82579:
511 	case e1000_phy_i217:
512 		phy->ops.check_polarity = e1000_check_polarity_82577;
513 		phy->ops.force_speed_duplex =
514 			e1000_phy_force_speed_duplex_82577;
515 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
516 		phy->ops.get_info = e1000_get_phy_info_82577;
517 		phy->ops.commit = e1000_phy_sw_reset_generic;
518 		break;
519 	case e1000_phy_82578:
520 		phy->ops.check_polarity = e1000_check_polarity_m88;
521 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
522 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
523 		phy->ops.get_info = e1000_get_phy_info_m88;
524 		break;
525 	default:
526 		ret_val = -E1000_ERR_PHY;
527 		break;
528 	}
529 
530 	return ret_val;
531 }
532 
533 /**
534  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
535  *  @hw: pointer to the HW structure
536  *
537  *  Initialize family-specific PHY parameters and function pointers.
538  **/
539 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
540 {
541 	struct e1000_phy_info *phy = &hw->phy;
542 	s32 ret_val;
543 	u16 i = 0;
544 
545 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
546 
547 	phy->addr		= 1;
548 	phy->reset_delay_us	= 100;
549 
550 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
551 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
552 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
553 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
554 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
555 	phy->ops.release	= e1000_release_swflag_ich8lan;
556 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
557 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
558 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
559 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
560 	phy->ops.power_up	= e1000_power_up_phy_copper;
561 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
562 
563 	/* We may need to do this twice - once for IGP and if that fails,
564 	 * we'll set BM func pointers and try again
565 	 */
566 	ret_val = e1000_determine_phy_address(hw);
567 	if (ret_val) {
568 		phy->ops.write_reg = e1000_write_phy_reg_bm;
569 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
570 		ret_val = e1000_determine_phy_address(hw);
571 		if (ret_val) {
572 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
573 			return ret_val;
574 		}
575 	}
576 
577 	phy->id = 0;
578 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
579 	       (i++ < 100)) {
580 		msec_delay(1);
581 		ret_val = e1000_get_phy_id(hw);
582 		if (ret_val)
583 			return ret_val;
584 	}
585 
586 	/* Verify phy id */
587 	switch (phy->id) {
588 	case IGP03E1000_E_PHY_ID:
589 		phy->type = e1000_phy_igp_3;
590 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
591 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
592 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
593 		phy->ops.get_info = e1000_get_phy_info_igp;
594 		phy->ops.check_polarity = e1000_check_polarity_igp;
595 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
596 		break;
597 	case IFE_E_PHY_ID:
598 	case IFE_PLUS_E_PHY_ID:
599 	case IFE_C_E_PHY_ID:
600 		phy->type = e1000_phy_ife;
601 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
602 		phy->ops.get_info = e1000_get_phy_info_ife;
603 		phy->ops.check_polarity = e1000_check_polarity_ife;
604 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
605 		break;
606 	case BME1000_E_PHY_ID:
607 		phy->type = e1000_phy_bm;
608 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
609 		phy->ops.read_reg = e1000_read_phy_reg_bm;
610 		phy->ops.write_reg = e1000_write_phy_reg_bm;
611 		phy->ops.commit = e1000_phy_sw_reset_generic;
612 		phy->ops.get_info = e1000_get_phy_info_m88;
613 		phy->ops.check_polarity = e1000_check_polarity_m88;
614 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
615 		break;
616 	default:
617 		return -E1000_ERR_PHY;
618 		break;
619 	}
620 
621 	return E1000_SUCCESS;
622 }
623 
624 /**
625  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
626  *  @hw: pointer to the HW structure
627  *
628  *  Initialize family-specific NVM parameters and function
629  *  pointers.
630  **/
631 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
632 {
633 	struct e1000_nvm_info *nvm = &hw->nvm;
634 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
635 	u32 gfpreg, sector_base_addr, sector_end_addr;
636 	u16 i;
637 	u32 nvm_size;
638 
639 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
640 
641 	nvm->type = e1000_nvm_flash_sw;
642 
643 	if (hw->mac.type >= e1000_pch_spt) {
644 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
645 		 * STRAP register. This is because in SPT the GbE Flash region
646 		 * is no longer accessed through the flash registers. Instead,
647 		 * the mechanism has changed, and the Flash region access
648 		 * registers are now implemented in GbE memory space.
649 		 */
650 		nvm->flash_base_addr = 0;
651 		nvm_size =
652 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
653 		    * NVM_SIZE_MULTIPLIER;
654 		nvm->flash_bank_size = nvm_size / 2;
655 		/* Adjust to word count */
656 		nvm->flash_bank_size /= sizeof(u16);
657 		/* Set the base address for flash register access */
658 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
659 	} else {
660 		/* Can't read flash registers if register set isn't mapped. */
661 		if (!hw->flash_address) {
662 			DEBUGOUT("ERROR: Flash registers not mapped\n");
663 			return -E1000_ERR_CONFIG;
664 		}
665 
666 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
667 
668 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
669 		 * Add 1 to sector_end_addr since this sector is included in
670 		 * the overall size.
671 		 */
672 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
673 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
674 
675 		/* flash_base_addr is byte-aligned */
676 		nvm->flash_base_addr = sector_base_addr
677 				       << FLASH_SECTOR_ADDR_SHIFT;
678 
679 		/* find total size of the NVM, then cut in half since the total
680 		 * size represents two separate NVM banks.
681 		 */
682 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
683 					<< FLASH_SECTOR_ADDR_SHIFT);
684 		nvm->flash_bank_size /= 2;
685 		/* Adjust to word count */
686 		nvm->flash_bank_size /= sizeof(u16);
687 	}
688 
689 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
690 
691 	/* Clear shadow ram */
692 	for (i = 0; i < nvm->word_size; i++) {
693 		dev_spec->shadow_ram[i].modified = FALSE;
694 		dev_spec->shadow_ram[i].value    = 0xFFFF;
695 	}
696 
697 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
698 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
699 
700 	/* Function Pointers */
701 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
702 	nvm->ops.release	= e1000_release_nvm_ich8lan;
703 	if (hw->mac.type >= e1000_pch_spt) {
704 		nvm->ops.read	= e1000_read_nvm_spt;
705 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
706 	} else {
707 		nvm->ops.read	= e1000_read_nvm_ich8lan;
708 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
709 	}
710 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
711 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
712 	nvm->ops.write		= e1000_write_nvm_ich8lan;
713 
714 	return E1000_SUCCESS;
715 }
716 
717 /**
718  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
719  *  @hw: pointer to the HW structure
720  *
721  *  Initialize family-specific MAC parameters and function
722  *  pointers.
723  **/
724 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
725 {
726 	struct e1000_mac_info *mac = &hw->mac;
727 
728 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
729 
730 	/* Set media type function pointer */
731 	hw->phy.media_type = e1000_media_type_copper;
732 
733 	/* Set mta register count */
734 	mac->mta_reg_count = 32;
735 	/* Set rar entry count */
736 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
737 	if (mac->type == e1000_ich8lan)
738 		mac->rar_entry_count--;
739 	/* Set if part includes ASF firmware */
740 	mac->asf_firmware_present = TRUE;
741 	/* FWSM register */
742 	mac->has_fwsm = TRUE;
743 	/* ARC subsystem not supported */
744 	mac->arc_subsystem_valid = FALSE;
745 	/* Adaptive IFS supported */
746 	mac->adaptive_ifs = TRUE;
747 
748 	/* Function pointers */
749 
750 	/* bus type/speed/width */
751 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
752 	/* function id */
753 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
754 	/* reset */
755 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
756 	/* hw initialization */
757 	mac->ops.init_hw = e1000_init_hw_ich8lan;
758 	/* link setup */
759 	mac->ops.setup_link = e1000_setup_link_ich8lan;
760 	/* physical interface setup */
761 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
762 	/* check for link */
763 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
764 	/* link info */
765 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
766 	/* multicast address update */
767 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
768 	/* clear hardware counters */
769 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
770 
771 	/* LED and other operations */
772 	switch (mac->type) {
773 	case e1000_ich8lan:
774 	case e1000_ich9lan:
775 	case e1000_ich10lan:
776 		/* check management mode */
777 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
778 		/* ID LED init */
779 		mac->ops.id_led_init = e1000_id_led_init_generic;
780 		/* blink LED */
781 		mac->ops.blink_led = e1000_blink_led_generic;
782 		/* setup LED */
783 		mac->ops.setup_led = e1000_setup_led_generic;
784 		/* cleanup LED */
785 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
786 		/* turn on/off LED */
787 		mac->ops.led_on = e1000_led_on_ich8lan;
788 		mac->ops.led_off = e1000_led_off_ich8lan;
789 		break;
790 	case e1000_pch2lan:
791 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
792 		mac->ops.rar_set = e1000_rar_set_pch2lan;
793 		/* fall-through */
794 	case e1000_pch_lpt:
795 	case e1000_pch_spt:
796 		/* multicast address update for pch2 */
797 		mac->ops.update_mc_addr_list =
798 			e1000_update_mc_addr_list_pch2lan;
799 		/* fall-through */
800 	case e1000_pchlan:
801 		/* check management mode */
802 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
803 		/* ID LED init */
804 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
805 		/* setup LED */
806 		mac->ops.setup_led = e1000_setup_led_pchlan;
807 		/* cleanup LED */
808 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
809 		/* turn on/off LED */
810 		mac->ops.led_on = e1000_led_on_pchlan;
811 		mac->ops.led_off = e1000_led_off_pchlan;
812 		break;
813 	default:
814 		break;
815 	}
816 
817 	if (mac->type >= e1000_pch_lpt) {
818 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
819 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
820 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
821 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
822 	}
823 
824 	/* Enable PCS Lock-loss workaround for ICH8 */
825 	if (mac->type == e1000_ich8lan)
826 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
827 
828 	return E1000_SUCCESS;
829 }
830 
831 /**
832  *  __e1000_access_emi_reg_locked - Read/write EMI register
833  *  @hw: pointer to the HW structure
834  *  @addr: EMI address to program
835  *  @data: pointer to value to read/write from/to the EMI address
836  *  @read: boolean flag to indicate read or write
837  *
838  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
839  **/
840 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
841 					 u16 *data, bool read)
842 {
843 	s32 ret_val;
844 
845 	DEBUGFUNC("__e1000_access_emi_reg_locked");
846 
847 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
848 	if (ret_val)
849 		return ret_val;
850 
851 	if (read)
852 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
853 						      data);
854 	else
855 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
856 						       *data);
857 
858 	return ret_val;
859 }
860 
861 /**
862  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
863  *  @hw: pointer to the HW structure
864  *  @addr: EMI address to program
865  *  @data: value to be read from the EMI address
866  *
867  *  Assumes the SW/FW/HW Semaphore is already acquired.
868  **/
869 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
870 {
871 	DEBUGFUNC("e1000_read_emi_reg_locked");
872 
873 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
874 }
875 
876 /**
877  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
878  *  @hw: pointer to the HW structure
879  *  @addr: EMI address to program
880  *  @data: value to be written to the EMI address
881  *
882  *  Assumes the SW/FW/HW Semaphore is already acquired.
883  **/
884 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
885 {
886 	DEBUGFUNC("e1000_read_emi_reg_locked");
887 
888 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
889 }
890 
891 /**
892  *  e1000_set_eee_pchlan - Enable/disable EEE support
893  *  @hw: pointer to the HW structure
894  *
895  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
896  *  the link and the EEE capabilities of the link partner.  The LPI Control
897  *  register bits will remain set only if/when link is up.
898  *
899  *  EEE LPI must not be asserted earlier than one second after link is up.
900  *  On 82579, EEE LPI should not be enabled until such time otherwise there
901  *  can be link issues with some switches.  Other devices can have EEE LPI
902  *  enabled immediately upon link up since they have a timer in hardware which
903  *  prevents LPI from being asserted too early.
904  **/
905 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
906 {
907 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
908 	s32 ret_val;
909 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
910 
911 	DEBUGFUNC("e1000_set_eee_pchlan");
912 
913 	switch (hw->phy.type) {
914 	case e1000_phy_82579:
915 		lpa = I82579_EEE_LP_ABILITY;
916 		pcs_status = I82579_EEE_PCS_STATUS;
917 		adv_addr = I82579_EEE_ADVERTISEMENT;
918 		break;
919 	case e1000_phy_i217:
920 		lpa = I217_EEE_LP_ABILITY;
921 		pcs_status = I217_EEE_PCS_STATUS;
922 		adv_addr = I217_EEE_ADVERTISEMENT;
923 		break;
924 	default:
925 		return E1000_SUCCESS;
926 	}
927 
928 	ret_val = hw->phy.ops.acquire(hw);
929 	if (ret_val)
930 		return ret_val;
931 
932 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
933 	if (ret_val)
934 		goto release;
935 
936 	/* Clear bits that enable EEE in various speeds */
937 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
938 
939 	/* Enable EEE if not disabled by user */
940 	if (!dev_spec->eee_disable) {
941 		/* Save off link partner's EEE ability */
942 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
943 						    &dev_spec->eee_lp_ability);
944 		if (ret_val)
945 			goto release;
946 
947 		/* Read EEE advertisement */
948 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
949 		if (ret_val)
950 			goto release;
951 
952 		/* Enable EEE only for speeds in which the link partner is
953 		 * EEE capable and for which we advertise EEE.
954 		 */
955 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
956 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
957 
958 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
959 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
960 			if (data & NWAY_LPAR_100TX_FD_CAPS)
961 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
962 			else
963 				/* EEE is not supported in 100Half, so ignore
964 				 * partner's EEE in 100 ability if full-duplex
965 				 * is not advertised.
966 				 */
967 				dev_spec->eee_lp_ability &=
968 				    ~I82579_EEE_100_SUPPORTED;
969 		}
970 	}
971 
972 	if (hw->phy.type == e1000_phy_82579) {
973 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
974 						    &data);
975 		if (ret_val)
976 			goto release;
977 
978 		data &= ~I82579_LPI_100_PLL_SHUT;
979 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
980 						     data);
981 	}
982 
983 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
984 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
985 	if (ret_val)
986 		goto release;
987 
988 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
989 release:
990 	hw->phy.ops.release(hw);
991 
992 	return ret_val;
993 }
994 
995 /**
996  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
997  *  @hw:   pointer to the HW structure
998  *  @link: link up bool flag
999  *
1000  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1001  *  preventing further DMA write requests.  Workaround the issue by disabling
1002  *  the de-assertion of the clock request when in 1Gpbs mode.
1003  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1004  *  speeds in order to avoid Tx hangs.
1005  **/
1006 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1007 {
1008 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1009 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1010 	s32 ret_val = E1000_SUCCESS;
1011 	u16 reg;
1012 
1013 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1014 		ret_val = hw->phy.ops.acquire(hw);
1015 		if (ret_val)
1016 			return ret_val;
1017 
1018 		ret_val =
1019 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1020 					       &reg);
1021 		if (ret_val)
1022 			goto release;
1023 
1024 		ret_val =
1025 		    e1000_write_kmrn_reg_locked(hw,
1026 						E1000_KMRNCTRLSTA_K1_CONFIG,
1027 						reg &
1028 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1029 		if (ret_val)
1030 			goto release;
1031 
1032 		usec_delay(10);
1033 
1034 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1035 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1036 
1037 		ret_val =
1038 		    e1000_write_kmrn_reg_locked(hw,
1039 						E1000_KMRNCTRLSTA_K1_CONFIG,
1040 						reg);
1041 release:
1042 		hw->phy.ops.release(hw);
1043 	} else {
1044 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1045 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1046 
1047 		if ((hw->phy.revision > 5) || !link ||
1048 		    ((status & E1000_STATUS_SPEED_100) &&
1049 		     (status & E1000_STATUS_FD)))
1050 			goto update_fextnvm6;
1051 
1052 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1053 		if (ret_val)
1054 			return ret_val;
1055 
1056 		/* Clear link status transmit timeout */
1057 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1058 
1059 		if (status & E1000_STATUS_SPEED_100) {
1060 			/* Set inband Tx timeout to 5x10us for 100Half */
1061 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1062 
1063 			/* Do not extend the K1 entry latency for 100Half */
1064 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1065 		} else {
1066 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1067 			reg |= 50 <<
1068 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1069 
1070 			/* Extend the K1 entry latency for 10 Mbps */
1071 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1072 		}
1073 
1074 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1075 		if (ret_val)
1076 			return ret_val;
1077 
1078 update_fextnvm6:
1079 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1080 	}
1081 
1082 	return ret_val;
1083 }
1084 
1085 static u64 e1000_ltr2ns(u16 ltr)
1086 {
1087 	u32 value, scale;
1088 
1089 	/* Determine the latency in nsec based on the LTR value & scale */
1090 	value = ltr & E1000_LTRV_VALUE_MASK;
1091 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1092 
1093 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1094 }
1095 
1096 /**
1097  *  e1000_platform_pm_pch_lpt - Set platform power management values
1098  *  @hw: pointer to the HW structure
1099  *  @link: bool indicating link status
1100  *
1101  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1102  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1103  *  when link is up (which must not exceed the maximum latency supported
1104  *  by the platform), otherwise specify there is no LTR requirement.
1105  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1106  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1107  *  Capability register set, on this device LTR is set by writing the
1108  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1109  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1110  *  message to the PMC.
1111  *
1112  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1113  *  high-water mark.
1114  **/
1115 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1116 {
1117 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1118 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1119 	u16 lat_enc = 0;	/* latency encoded */
1120 	s32 obff_hwm = 0;
1121 
1122 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1123 
1124 	if (link) {
1125 		u16 speed, duplex, scale = 0;
1126 		u16 max_snoop, max_nosnoop;
1127 		u16 max_ltr_enc;	/* max LTR latency encoded */
1128 		s64 lat_ns;
1129 		s64 value;
1130 		u32 rxa;
1131 
1132 		if (!hw->mac.max_frame_size) {
1133 			DEBUGOUT("max_frame_size not set.\n");
1134 			return -E1000_ERR_CONFIG;
1135 		}
1136 
1137 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1138 		if (!speed) {
1139 			DEBUGOUT("Speed not set.\n");
1140 			return -E1000_ERR_CONFIG;
1141 		}
1142 
1143 		/* Rx Packet Buffer Allocation size (KB) */
1144 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1145 
1146 		/* Determine the maximum latency tolerated by the device.
1147 		 *
1148 		 * Per the PCIe spec, the tolerated latencies are encoded as
1149 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1150 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1151 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1152 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1153 		 */
1154 		lat_ns = ((s64)rxa * 1024 -
1155 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1156 		if (lat_ns < 0)
1157 			lat_ns = 0;
1158 		else
1159 			lat_ns /= speed;
1160 		value = lat_ns;
1161 
1162 		while (value > E1000_LTRV_VALUE_MASK) {
1163 			scale++;
1164 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1165 		}
1166 		if (scale > E1000_LTRV_SCALE_MAX) {
1167 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1168 			return -E1000_ERR_CONFIG;
1169 		}
1170 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1171 
1172 		/* Determine the maximum latency tolerated by the platform */
1173 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1174 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1175 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1176 
1177 		if (lat_enc > max_ltr_enc) {
1178 			lat_enc = max_ltr_enc;
1179 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1180 		}
1181 
1182 		if (lat_ns) {
1183 			lat_ns *= speed * 1000;
1184 			lat_ns /= 8;
1185 			lat_ns /= 1000000000;
1186 			obff_hwm = (s32)(rxa - lat_ns);
1187 		}
1188 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1189 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1190 			return -E1000_ERR_CONFIG;
1191 		}
1192 	}
1193 
1194 	/* Set Snoop and No-Snoop latencies the same */
1195 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1196 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1197 
1198 	/* Set OBFF high water mark */
1199 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1200 	reg |= obff_hwm;
1201 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1202 
1203 	/* Enable OBFF */
1204 	reg = E1000_READ_REG(hw, E1000_SVCR);
1205 	reg |= E1000_SVCR_OFF_EN;
1206 	/* Always unblock interrupts to the CPU even when the system is
1207 	 * in OBFF mode. This ensures that small round-robin traffic
1208 	 * (like ping) does not get dropped or experience long latency.
1209 	 */
1210 	reg |= E1000_SVCR_OFF_MASKINT;
1211 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1212 
1213 	return E1000_SUCCESS;
1214 }
1215 
1216 /**
1217  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1218  *  @hw: pointer to the HW structure
1219  *  @itr: interrupt throttling rate
1220  *
1221  *  Configure OBFF with the updated interrupt rate.
1222  **/
1223 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1224 {
1225 	u32 svcr;
1226 	s32 timer;
1227 
1228 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1229 
1230 	/* Convert ITR value into microseconds for OBFF timer */
1231 	timer = itr & E1000_ITR_MASK;
1232 	timer = (timer * E1000_ITR_MULT) / 1000;
1233 
1234 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1235 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1236 		return -E1000_ERR_CONFIG;
1237 	}
1238 
1239 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1240 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1241 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1242 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1243 
1244 	return E1000_SUCCESS;
1245 }
1246 
1247 /**
1248  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1249  *  @hw: pointer to the HW structure
1250  *  @to_sx: boolean indicating a system power state transition to Sx
1251  *
1252  *  When link is down, configure ULP mode to significantly reduce the power
1253  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1254  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1255  *  system, configure the ULP mode by software.
1256  */
1257 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1258 {
1259 	u32 mac_reg;
1260 	s32 ret_val = E1000_SUCCESS;
1261 	u16 phy_reg;
1262 	u16 oem_reg = 0;
1263 
1264 	if ((hw->mac.type < e1000_pch_lpt) ||
1265 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1266 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1267 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1268 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1269 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1270 		return 0;
1271 
1272 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1273 		/* Request ME configure ULP mode in the PHY */
1274 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1275 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1276 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1277 
1278 		goto out;
1279 	}
1280 
1281 	if (!to_sx) {
1282 		int i = 0;
1283 
1284 		/* Poll up to 5 seconds for Cable Disconnected indication */
1285 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1286 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1287 			/* Bail if link is re-acquired */
1288 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1289 				return -E1000_ERR_PHY;
1290 
1291 			if (i++ == 100)
1292 				break;
1293 
1294 			msec_delay(50);
1295 		}
1296 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1297 			 (E1000_READ_REG(hw, E1000_FEXT) &
1298 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1299 			 i * 50);
1300 	}
1301 
1302 	ret_val = hw->phy.ops.acquire(hw);
1303 	if (ret_val)
1304 		goto out;
1305 
1306 	/* Force SMBus mode in PHY */
1307 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1308 	if (ret_val)
1309 		goto release;
1310 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1311 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1312 
1313 	/* Force SMBus mode in MAC */
1314 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1315 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1316 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1317 
1318 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1319 	 * LPLU and disable Gig speed when entering ULP
1320 	 */
1321 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1322 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1323 						       &oem_reg);
1324 		if (ret_val)
1325 			goto release;
1326 
1327 		phy_reg = oem_reg;
1328 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1329 
1330 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1331 							phy_reg);
1332 
1333 		if (ret_val)
1334 			goto release;
1335 	}
1336 
1337 	/* Set Inband ULP Exit, Reset to SMBus mode and
1338 	 * Disable SMBus Release on PERST# in PHY
1339 	 */
1340 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1341 	if (ret_val)
1342 		goto release;
1343 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1344 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1345 	if (to_sx) {
1346 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1347 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1348 		else
1349 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1350 
1351 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1352 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1353 	} else {
1354 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1355 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1356 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1357 	}
1358 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1359 
1360 	/* Set Disable SMBus Release on PERST# in MAC */
1361 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1362 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1363 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1364 
1365 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1366 	phy_reg |= I218_ULP_CONFIG1_START;
1367 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1368 
1369 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1370 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1371 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1372 							oem_reg);
1373 		if (ret_val)
1374 			goto release;
1375 	}
1376 
1377 release:
1378 	hw->phy.ops.release(hw);
1379 out:
1380 	if (ret_val)
1381 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1382 	else
1383 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1384 
1385 	return ret_val;
1386 }
1387 
1388 /**
1389  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1390  *  @hw: pointer to the HW structure
1391  *  @force: boolean indicating whether or not to force disabling ULP
1392  *
1393  *  Un-configure ULP mode when link is up, the system is transitioned from
1394  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1395  *  system, poll for an indication from ME that ULP has been un-configured.
1396  *  If not on an ME enabled system, un-configure the ULP mode by software.
1397  *
1398  *  During nominal operation, this function is called when link is acquired
1399  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1400  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1401  *  to forcibly disable ULP.
1402  */
1403 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1404 {
1405 	s32 ret_val = E1000_SUCCESS;
1406 	u32 mac_reg;
1407 	u16 phy_reg;
1408 	int i = 0;
1409 
1410 	if ((hw->mac.type < e1000_pch_lpt) ||
1411 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1412 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1413 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1414 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1415 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1416 		return 0;
1417 
1418 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1419 		if (force) {
1420 			/* Request ME un-configure ULP mode in the PHY */
1421 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1422 			mac_reg &= ~E1000_H2ME_ULP;
1423 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1424 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1425 		}
1426 
1427 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1428 		while (E1000_READ_REG(hw, E1000_FWSM) &
1429 		       E1000_FWSM_ULP_CFG_DONE) {
1430 			if (i++ == 30) {
1431 				ret_val = -E1000_ERR_PHY;
1432 				goto out;
1433 			}
1434 
1435 			msec_delay(10);
1436 		}
1437 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1438 
1439 		if (force) {
1440 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1441 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1442 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1443 		} else {
1444 			/* Clear H2ME.ULP after ME ULP configuration */
1445 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1446 			mac_reg &= ~E1000_H2ME_ULP;
1447 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1448 		}
1449 
1450 		goto out;
1451 	}
1452 
1453 	ret_val = hw->phy.ops.acquire(hw);
1454 	if (ret_val)
1455 		goto out;
1456 
1457 	if (force)
1458 		/* Toggle LANPHYPC Value bit */
1459 		e1000_toggle_lanphypc_pch_lpt(hw);
1460 
1461 	/* Unforce SMBus mode in PHY */
1462 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1463 	if (ret_val) {
1464 		/* The MAC might be in PCIe mode, so temporarily force to
1465 		 * SMBus mode in order to access the PHY.
1466 		 */
1467 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1468 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1469 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1470 
1471 		msec_delay(50);
1472 
1473 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1474 						       &phy_reg);
1475 		if (ret_val)
1476 			goto release;
1477 	}
1478 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1479 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1480 
1481 	/* Unforce SMBus mode in MAC */
1482 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1483 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1484 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1485 
1486 	/* When ULP mode was previously entered, K1 was disabled by the
1487 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1488 	 */
1489 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1490 	if (ret_val)
1491 		goto release;
1492 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1493 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1494 
1495 	/* Clear ULP enabled configuration */
1496 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1497 	if (ret_val)
1498 		goto release;
1499 		phy_reg &= ~(I218_ULP_CONFIG1_IND |
1500 			     I218_ULP_CONFIG1_STICKY_ULP |
1501 			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1502 			     I218_ULP_CONFIG1_WOL_HOST |
1503 			     I218_ULP_CONFIG1_INBAND_EXIT |
1504 			     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1505 			     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1506 			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1507 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1508 
1509 		/* Commit ULP changes by starting auto ULP configuration */
1510 		phy_reg |= I218_ULP_CONFIG1_START;
1511 		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1512 
1513 		/* Clear Disable SMBus Release on PERST# in MAC */
1514 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1515 		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1516 		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1517 
1518 release:
1519 	hw->phy.ops.release(hw);
1520 	if (force) {
1521 		hw->phy.ops.reset(hw);
1522 		msec_delay(50);
1523 	}
1524 out:
1525 	if (ret_val)
1526 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1527 	else
1528 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1529 
1530 	return ret_val;
1531 }
1532 
1533 /**
1534  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1535  *  @hw: pointer to the HW structure
1536  *
1537  *  Checks to see of the link status of the hardware has changed.  If a
1538  *  change in link status has been detected, then we read the PHY registers
1539  *  to get the current speed/duplex if link exists.
1540  **/
1541 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1542 {
1543 	struct e1000_mac_info *mac = &hw->mac;
1544 	s32 ret_val, tipg_reg = 0;
1545 	u16 emi_addr, emi_val = 0;
1546 	bool link;
1547 	u16 phy_reg;
1548 
1549 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1550 
1551 	/* We only want to go out to the PHY registers to see if Auto-Neg
1552 	 * has completed and/or if our link status has changed.  The
1553 	 * get_link_status flag is set upon receiving a Link Status
1554 	 * Change or Rx Sequence Error interrupt.
1555 	 */
1556 	if (!mac->get_link_status)
1557 		return E1000_SUCCESS;
1558 
1559 		/* First we want to see if the MII Status Register reports
1560 		 * link.  If so, then we want to get the current speed/duplex
1561 		 * of the PHY.
1562 		 */
1563 		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1564 		if (ret_val)
1565 			return ret_val;
1566 
1567 	if (hw->mac.type == e1000_pchlan) {
1568 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1569 		if (ret_val)
1570 			return ret_val;
1571 	}
1572 
1573 	/* When connected at 10Mbps half-duplex, some parts are excessively
1574 	 * aggressive resulting in many collisions. To avoid this, increase
1575 	 * the IPG and reduce Rx latency in the PHY.
1576 	 */
1577 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1578 		u16 speed, duplex;
1579 
1580 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1581 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1582 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1583 
1584 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1585 			tipg_reg |= 0xFF;
1586 			/* Reduce Rx latency in analog PHY */
1587 			emi_val = 0;
1588 		} else if (hw->mac.type >= e1000_pch_spt &&
1589 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1590 			tipg_reg |= 0xC;
1591 			emi_val = 1;
1592 		} else {
1593 			/* Roll back the default values */
1594 			tipg_reg |= 0x08;
1595 			emi_val = 1;
1596 		}
1597 
1598 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1599 
1600 		ret_val = hw->phy.ops.acquire(hw);
1601 		if (ret_val)
1602 			return ret_val;
1603 
1604 		if (hw->mac.type == e1000_pch2lan)
1605 			emi_addr = I82579_RX_CONFIG;
1606 		else
1607 			emi_addr = I217_RX_CONFIG;
1608 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1609 
1610 
1611 		if (hw->mac.type >= e1000_pch_lpt) {
1612 			u16 phy_reg;
1613 
1614 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1615 						    &phy_reg);
1616 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1617 			if (speed == SPEED_100 || speed == SPEED_10)
1618 				phy_reg |= 0x3E8;
1619 			else
1620 				phy_reg |= 0xFA;
1621 			hw->phy.ops.write_reg_locked(hw,
1622 						     I217_PLL_CLOCK_GATE_REG,
1623 						     phy_reg);
1624 
1625 			if (speed == SPEED_1000) {
1626 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1627 							    &phy_reg);
1628 
1629 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1630 
1631 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1632 							     phy_reg);
1633 				}
1634 		 }
1635 		hw->phy.ops.release(hw);
1636 
1637 		if (ret_val)
1638 			return ret_val;
1639 
1640 		if (hw->mac.type >= e1000_pch_spt) {
1641 			u16 data;
1642 			u16 ptr_gap;
1643 
1644 			if (speed == SPEED_1000) {
1645 				ret_val = hw->phy.ops.acquire(hw);
1646 				if (ret_val)
1647 					return ret_val;
1648 
1649 				ret_val = hw->phy.ops.read_reg_locked(hw,
1650 							      PHY_REG(776, 20),
1651 							      &data);
1652 				if (ret_val) {
1653 					hw->phy.ops.release(hw);
1654 					return ret_val;
1655 				}
1656 
1657 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1658 				if (ptr_gap < 0x18) {
1659 					data &= ~(0x3FF << 2);
1660 					data |= (0x18 << 2);
1661 					ret_val =
1662 						hw->phy.ops.write_reg_locked(hw,
1663 							PHY_REG(776, 20), data);
1664 				}
1665 				hw->phy.ops.release(hw);
1666 				if (ret_val)
1667 					return ret_val;
1668 			} else {
1669 				ret_val = hw->phy.ops.acquire(hw);
1670 				if (ret_val)
1671 					return ret_val;
1672 
1673 				ret_val = hw->phy.ops.write_reg_locked(hw,
1674 							     PHY_REG(776, 20),
1675 							     0xC023);
1676 				hw->phy.ops.release(hw);
1677 				if (ret_val)
1678 					return ret_val;
1679 
1680 			}
1681 		}
1682 	}
1683 
1684 	/* I217 Packet Loss issue:
1685 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1686 	 * on power up.
1687 	 * Set the Beacon Duration for I217 to 8 usec
1688 	 */
1689 	if (hw->mac.type >= e1000_pch_lpt) {
1690 		u32 mac_reg;
1691 
1692 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1693 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1694 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1695 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1696 	}
1697 
1698 	/* Work-around I218 hang issue */
1699 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1700 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1701 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1702 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1703 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1704 		if (ret_val)
1705 			return ret_val;
1706 	}
1707 	if (hw->mac.type >= e1000_pch_lpt) {
1708 		/* Set platform power management values for
1709 		 * Latency Tolerance Reporting (LTR)
1710 		 * Optimized Buffer Flush/Fill (OBFF)
1711 		 */
1712 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1713 		if (ret_val)
1714 			return ret_val;
1715 	}
1716 
1717 	/* Clear link partner's EEE ability */
1718 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1719 
1720 	if (hw->mac.type >= e1000_pch_lpt) {
1721 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1722 
1723 		if (hw->mac.type == e1000_pch_spt) {
1724 			/* FEXTNVM6 K1-off workaround - for SPT only */
1725 			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1726 
1727 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1728 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1729 			else
1730 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1731 		}
1732 
1733 		if (hw->dev_spec.ich8lan.disable_k1_off == TRUE)
1734 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1735 
1736 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1737 	}
1738 
1739 	if (!link)
1740 		return E1000_SUCCESS; /* No link detected */
1741 
1742 	mac->get_link_status = FALSE;
1743 
1744 	switch (hw->mac.type) {
1745 	case e1000_pch2lan:
1746 		ret_val = e1000_k1_workaround_lv(hw);
1747 		if (ret_val)
1748 			return ret_val;
1749 		/* fall-thru */
1750 	case e1000_pchlan:
1751 		if (hw->phy.type == e1000_phy_82578) {
1752 			ret_val = e1000_link_stall_workaround_hv(hw);
1753 			if (ret_val)
1754 				return ret_val;
1755 		}
1756 
1757 		/* Workaround for PCHx parts in half-duplex:
1758 		 * Set the number of preambles removed from the packet
1759 		 * when it is passed from the PHY to the MAC to prevent
1760 		 * the MAC from misinterpreting the packet type.
1761 		 */
1762 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1763 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1764 
1765 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1766 		    E1000_STATUS_FD)
1767 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1768 
1769 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1770 		break;
1771 	default:
1772 		break;
1773 	}
1774 
1775 	/* Check if there was DownShift, must be checked
1776 	 * immediately after link-up
1777 	 */
1778 	e1000_check_downshift_generic(hw);
1779 
1780 	/* Enable/Disable EEE after link up */
1781 	if (hw->phy.type > e1000_phy_82579) {
1782 		ret_val = e1000_set_eee_pchlan(hw);
1783 		if (ret_val)
1784 			return ret_val;
1785 	}
1786 
1787 	/* If we are forcing speed/duplex, then we simply return since
1788 	 * we have already determined whether we have link or not.
1789 	 */
1790 	if (!mac->autoneg)
1791 		return -E1000_ERR_CONFIG;
1792 
1793 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1794 	 * of MAC speed/duplex configuration.  So we only need to
1795 	 * configure Collision Distance in the MAC.
1796 	 */
1797 	mac->ops.config_collision_dist(hw);
1798 
1799 	/* Configure Flow Control now that Auto-Neg has completed.
1800 	 * First, we need to restore the desired flow control
1801 	 * settings because we may have had to re-autoneg with a
1802 	 * different link partner.
1803 	 */
1804 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1805 	if (ret_val)
1806 		DEBUGOUT("Error configuring flow control\n");
1807 
1808 	return ret_val;
1809 }
1810 
1811 /**
1812  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1813  *  @hw: pointer to the HW structure
1814  *
1815  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1816  **/
1817 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1818 {
1819 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1820 
1821 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1822 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1823 	switch (hw->mac.type) {
1824 	case e1000_ich8lan:
1825 	case e1000_ich9lan:
1826 	case e1000_ich10lan:
1827 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1828 		break;
1829 	case e1000_pchlan:
1830 	case e1000_pch2lan:
1831 	case e1000_pch_lpt:
1832 	case e1000_pch_spt:
1833 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1834 		break;
1835 	default:
1836 		break;
1837 	}
1838 }
1839 
1840 /**
1841  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1842  *  @hw: pointer to the HW structure
1843  *
1844  *  Acquires the mutex for performing NVM operations.
1845  **/
1846 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1847 {
1848 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1849 
1850 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1851 
1852 	return E1000_SUCCESS;
1853 }
1854 
1855 /**
1856  *  e1000_release_nvm_ich8lan - Release NVM mutex
1857  *  @hw: pointer to the HW structure
1858  *
1859  *  Releases the mutex used while performing NVM operations.
1860  **/
1861 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1862 {
1863 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1864 
1865 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1866 
1867 	return;
1868 }
1869 
1870 /**
1871  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1872  *  @hw: pointer to the HW structure
1873  *
1874  *  Acquires the software control flag for performing PHY and select
1875  *  MAC CSR accesses.
1876  **/
1877 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1878 {
1879 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1880 	s32 ret_val = E1000_SUCCESS;
1881 
1882 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1883 
1884 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1885 
1886 	while (timeout) {
1887 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1888 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1889 			break;
1890 
1891 		msec_delay_irq(1);
1892 		timeout--;
1893 	}
1894 
1895 	if (!timeout) {
1896 		DEBUGOUT("SW has already locked the resource.\n");
1897 		ret_val = -E1000_ERR_CONFIG;
1898 		goto out;
1899 	}
1900 
1901 	timeout = SW_FLAG_TIMEOUT;
1902 
1903 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1904 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1905 
1906 	while (timeout) {
1907 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1908 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1909 			break;
1910 
1911 		msec_delay_irq(1);
1912 		timeout--;
1913 	}
1914 
1915 	if (!timeout) {
1916 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1917 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1918 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1919 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1920 		ret_val = -E1000_ERR_CONFIG;
1921 		goto out;
1922 	}
1923 
1924 out:
1925 	if (ret_val)
1926 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1927 
1928 	return ret_val;
1929 }
1930 
1931 /**
1932  *  e1000_release_swflag_ich8lan - Release software control flag
1933  *  @hw: pointer to the HW structure
1934  *
1935  *  Releases the software control flag for performing PHY and select
1936  *  MAC CSR accesses.
1937  **/
1938 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1939 {
1940 	u32 extcnf_ctrl;
1941 
1942 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1943 
1944 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1945 
1946 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1947 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1948 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1949 	} else {
1950 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1951 	}
1952 
1953 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1954 
1955 	return;
1956 }
1957 
1958 /**
1959  *  e1000_check_mng_mode_ich8lan - Checks management mode
1960  *  @hw: pointer to the HW structure
1961  *
1962  *  This checks if the adapter has any manageability enabled.
1963  *  This is a function pointer entry point only called by read/write
1964  *  routines for the PHY and NVM parts.
1965  **/
1966 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1967 {
1968 	u32 fwsm;
1969 
1970 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1971 
1972 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1973 
1974 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1975 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1976 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1977 }
1978 
1979 /**
1980  *  e1000_check_mng_mode_pchlan - Checks management mode
1981  *  @hw: pointer to the HW structure
1982  *
1983  *  This checks if the adapter has iAMT enabled.
1984  *  This is a function pointer entry point only called by read/write
1985  *  routines for the PHY and NVM parts.
1986  **/
1987 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1988 {
1989 	u32 fwsm;
1990 
1991 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1992 
1993 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1994 
1995 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1996 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1997 }
1998 
1999 /**
2000  *  e1000_rar_set_pch2lan - Set receive address register
2001  *  @hw: pointer to the HW structure
2002  *  @addr: pointer to the receive address
2003  *  @index: receive address array register
2004  *
2005  *  Sets the receive address array register at index to the address passed
2006  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2007  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2008  *  Use SHRA[0-3] in place of those reserved for ME.
2009  **/
2010 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2011 {
2012 	u32 rar_low, rar_high;
2013 
2014 	DEBUGFUNC("e1000_rar_set_pch2lan");
2015 
2016 	/* HW expects these in little endian so we reverse the byte order
2017 	 * from network order (big endian) to little endian
2018 	 */
2019 	rar_low = ((u32) addr[0] |
2020 		   ((u32) addr[1] << 8) |
2021 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2022 
2023 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2024 
2025 	/* If MAC address zero, no need to set the AV bit */
2026 	if (rar_low || rar_high)
2027 		rar_high |= E1000_RAH_AV;
2028 
2029 	if (index == 0) {
2030 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2031 		E1000_WRITE_FLUSH(hw);
2032 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2033 		E1000_WRITE_FLUSH(hw);
2034 		return E1000_SUCCESS;
2035 	}
2036 
2037 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2038 	 * next address into the SHRA register array.
2039 	 */
2040 	if (index < (u32) (hw->mac.rar_entry_count)) {
2041 		s32 ret_val;
2042 
2043 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2044 		if (ret_val)
2045 			goto out;
2046 
2047 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2048 		E1000_WRITE_FLUSH(hw);
2049 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2050 		E1000_WRITE_FLUSH(hw);
2051 
2052 		e1000_release_swflag_ich8lan(hw);
2053 
2054 		/* verify the register updates */
2055 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2056 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2057 			return E1000_SUCCESS;
2058 
2059 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2060 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2061 	}
2062 
2063 out:
2064 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2065 	return -E1000_ERR_CONFIG;
2066 }
2067 
2068 /**
2069  *  e1000_rar_set_pch_lpt - Set receive address registers
2070  *  @hw: pointer to the HW structure
2071  *  @addr: pointer to the receive address
2072  *  @index: receive address array register
2073  *
2074  *  Sets the receive address register array at index to the address passed
2075  *  in by addr. For LPT, RAR[0] is the base address register that is to
2076  *  contain the MAC address. SHRA[0-10] are the shared receive address
2077  *  registers that are shared between the Host and manageability engine (ME).
2078  **/
2079 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2080 {
2081 	u32 rar_low, rar_high;
2082 	u32 wlock_mac;
2083 
2084 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2085 
2086 	/* HW expects these in little endian so we reverse the byte order
2087 	 * from network order (big endian) to little endian
2088 	 */
2089 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2090 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2091 
2092 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2093 
2094 	/* If MAC address zero, no need to set the AV bit */
2095 	if (rar_low || rar_high)
2096 		rar_high |= E1000_RAH_AV;
2097 
2098 	if (index == 0) {
2099 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2100 		E1000_WRITE_FLUSH(hw);
2101 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2102 		E1000_WRITE_FLUSH(hw);
2103 		return E1000_SUCCESS;
2104 	}
2105 
2106 	/* The manageability engine (ME) can lock certain SHRAR registers that
2107 	 * it is using - those registers are unavailable for use.
2108 	 */
2109 	if (index < hw->mac.rar_entry_count) {
2110 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2111 			    E1000_FWSM_WLOCK_MAC_MASK;
2112 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2113 
2114 		/* Check if all SHRAR registers are locked */
2115 		if (wlock_mac == 1)
2116 			goto out;
2117 
2118 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2119 			s32 ret_val;
2120 
2121 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2122 
2123 			if (ret_val)
2124 				goto out;
2125 
2126 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2127 					rar_low);
2128 			E1000_WRITE_FLUSH(hw);
2129 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2130 					rar_high);
2131 			E1000_WRITE_FLUSH(hw);
2132 
2133 			e1000_release_swflag_ich8lan(hw);
2134 
2135 			/* verify the register updates */
2136 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2137 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2138 				return E1000_SUCCESS;
2139 		}
2140 	}
2141 
2142 out:
2143 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2144 	return -E1000_ERR_CONFIG;
2145 }
2146 
2147 /**
2148  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2149  *  @hw: pointer to the HW structure
2150  *  @mc_addr_list: array of multicast addresses to program
2151  *  @mc_addr_count: number of multicast addresses to program
2152  *
2153  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2154  *  The caller must have a packed mc_addr_list of multicast addresses.
2155  **/
2156 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2157 					      u8 *mc_addr_list,
2158 					      u32 mc_addr_count)
2159 {
2160 	u16 phy_reg = 0;
2161 	int i;
2162 	s32 ret_val;
2163 
2164 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2165 
2166 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2167 
2168 	ret_val = hw->phy.ops.acquire(hw);
2169 	if (ret_val)
2170 		return;
2171 
2172 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2173 	if (ret_val)
2174 		goto release;
2175 
2176 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2177 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2178 					   (u16)(hw->mac.mta_shadow[i] &
2179 						 0xFFFF));
2180 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2181 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2182 						 0xFFFF));
2183 	}
2184 
2185 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2186 
2187 release:
2188 	hw->phy.ops.release(hw);
2189 }
2190 
2191 /**
2192  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2193  *  @hw: pointer to the HW structure
2194  *
2195  *  Checks if firmware is blocking the reset of the PHY.
2196  *  This is a function pointer entry point only called by
2197  *  reset routines.
2198  **/
2199 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2200 {
2201 	u32 fwsm;
2202 	bool blocked = FALSE;
2203 	int i = 0;
2204 
2205 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2206 
2207 	do {
2208 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2209 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2210 			blocked = TRUE;
2211 			msec_delay(10);
2212 			continue;
2213 		}
2214 		blocked = FALSE;
2215 	} while (blocked && (i++ < 30));
2216 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2217 }
2218 
2219 /**
2220  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2221  *  @hw: pointer to the HW structure
2222  *
2223  *  Assumes semaphore already acquired.
2224  *
2225  **/
2226 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2227 {
2228 	u16 phy_data;
2229 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2230 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2231 		E1000_STRAP_SMT_FREQ_SHIFT;
2232 	s32 ret_val;
2233 
2234 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2235 
2236 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2237 	if (ret_val)
2238 		return ret_val;
2239 
2240 	phy_data &= ~HV_SMB_ADDR_MASK;
2241 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2242 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2243 
2244 	if (hw->phy.type == e1000_phy_i217) {
2245 		/* Restore SMBus frequency */
2246 		if (freq--) {
2247 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2248 			phy_data |= (freq & (1 << 0)) <<
2249 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2250 			phy_data |= (freq & (1 << 1)) <<
2251 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2252 		} else {
2253 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2254 		}
2255 	}
2256 
2257 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2258 }
2259 
2260 /**
2261  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2262  *  @hw:   pointer to the HW structure
2263  *
2264  *  SW should configure the LCD from the NVM extended configuration region
2265  *  as a workaround for certain parts.
2266  **/
2267 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2268 {
2269 	struct e1000_phy_info *phy = &hw->phy;
2270 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2271 	s32 ret_val = E1000_SUCCESS;
2272 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2273 
2274 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2275 
2276 	/* Initialize the PHY from the NVM on ICH platforms.  This
2277 	 * is needed due to an issue where the NVM configuration is
2278 	 * not properly autoloaded after power transitions.
2279 	 * Therefore, after each PHY reset, we will load the
2280 	 * configuration data out of the NVM manually.
2281 	 */
2282 	switch (hw->mac.type) {
2283 	case e1000_ich8lan:
2284 		if (phy->type != e1000_phy_igp_3)
2285 			return ret_val;
2286 
2287 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2288 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2289 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2290 			break;
2291 		}
2292 		/* Fall-thru */
2293 	case e1000_pchlan:
2294 	case e1000_pch2lan:
2295 	case e1000_pch_lpt:
2296 	case e1000_pch_spt:
2297 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2298 		break;
2299 	default:
2300 		return ret_val;
2301 	}
2302 
2303 	ret_val = hw->phy.ops.acquire(hw);
2304 	if (ret_val)
2305 		return ret_val;
2306 
2307 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2308 	if (!(data & sw_cfg_mask))
2309 		goto release;
2310 
2311 	/* Make sure HW does not configure LCD from PHY
2312 	 * extended configuration before SW configuration
2313 	 */
2314 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2315 	if ((hw->mac.type < e1000_pch2lan) &&
2316 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2317 			goto release;
2318 
2319 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2320 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2321 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2322 	if (!cnf_size)
2323 		goto release;
2324 
2325 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2326 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2327 
2328 	if (((hw->mac.type == e1000_pchlan) &&
2329 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2330 	    (hw->mac.type > e1000_pchlan)) {
2331 		/* HW configures the SMBus address and LEDs when the
2332 		 * OEM and LCD Write Enable bits are set in the NVM.
2333 		 * When both NVM bits are cleared, SW will configure
2334 		 * them instead.
2335 		 */
2336 		ret_val = e1000_write_smbus_addr(hw);
2337 		if (ret_val)
2338 			goto release;
2339 
2340 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2341 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2342 							(u16)data);
2343 		if (ret_val)
2344 			goto release;
2345 	}
2346 
2347 	/* Configure LCD from extended configuration region. */
2348 
2349 	/* cnf_base_addr is in DWORD */
2350 	word_addr = (u16)(cnf_base_addr << 1);
2351 
2352 	for (i = 0; i < cnf_size; i++) {
2353 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2354 					   &reg_data);
2355 		if (ret_val)
2356 			goto release;
2357 
2358 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2359 					   1, &reg_addr);
2360 		if (ret_val)
2361 			goto release;
2362 
2363 		/* Save off the PHY page for future writes. */
2364 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2365 			phy_page = reg_data;
2366 			continue;
2367 		}
2368 
2369 		reg_addr &= PHY_REG_MASK;
2370 		reg_addr |= phy_page;
2371 
2372 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2373 						    reg_data);
2374 		if (ret_val)
2375 			goto release;
2376 	}
2377 
2378 release:
2379 	hw->phy.ops.release(hw);
2380 	return ret_val;
2381 }
2382 
2383 /**
2384  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2385  *  @hw:   pointer to the HW structure
2386  *  @link: link up bool flag
2387  *
2388  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2389  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2390  *  If link is down, the function will restore the default K1 setting located
2391  *  in the NVM.
2392  **/
2393 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2394 {
2395 	s32 ret_val = E1000_SUCCESS;
2396 	u16 status_reg = 0;
2397 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2398 
2399 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2400 
2401 	if (hw->mac.type != e1000_pchlan)
2402 		return E1000_SUCCESS;
2403 
2404 	/* Wrap the whole flow with the sw flag */
2405 	ret_val = hw->phy.ops.acquire(hw);
2406 	if (ret_val)
2407 		return ret_val;
2408 
2409 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2410 	if (link) {
2411 		if (hw->phy.type == e1000_phy_82578) {
2412 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2413 							      &status_reg);
2414 			if (ret_val)
2415 				goto release;
2416 
2417 			status_reg &= (BM_CS_STATUS_LINK_UP |
2418 				       BM_CS_STATUS_RESOLVED |
2419 				       BM_CS_STATUS_SPEED_MASK);
2420 
2421 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2422 					   BM_CS_STATUS_RESOLVED |
2423 					   BM_CS_STATUS_SPEED_1000))
2424 				k1_enable = FALSE;
2425 		}
2426 
2427 		if (hw->phy.type == e1000_phy_82577) {
2428 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2429 							      &status_reg);
2430 			if (ret_val)
2431 				goto release;
2432 
2433 			status_reg &= (HV_M_STATUS_LINK_UP |
2434 				       HV_M_STATUS_AUTONEG_COMPLETE |
2435 				       HV_M_STATUS_SPEED_MASK);
2436 
2437 			if (status_reg == (HV_M_STATUS_LINK_UP |
2438 					   HV_M_STATUS_AUTONEG_COMPLETE |
2439 					   HV_M_STATUS_SPEED_1000))
2440 				k1_enable = FALSE;
2441 		}
2442 
2443 		/* Link stall fix for link up */
2444 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2445 						       0x0100);
2446 		if (ret_val)
2447 			goto release;
2448 
2449 	} else {
2450 		/* Link stall fix for link down */
2451 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2452 						       0x4100);
2453 		if (ret_val)
2454 			goto release;
2455 	}
2456 
2457 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2458 
2459 release:
2460 	hw->phy.ops.release(hw);
2461 
2462 	return ret_val;
2463 }
2464 
2465 /**
2466  *  e1000_configure_k1_ich8lan - Configure K1 power state
2467  *  @hw: pointer to the HW structure
2468  *  @enable: K1 state to configure
2469  *
2470  *  Configure the K1 power state based on the provided parameter.
2471  *  Assumes semaphore already acquired.
2472  *
2473  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2474  **/
2475 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2476 {
2477 	s32 ret_val;
2478 	u32 ctrl_reg = 0;
2479 	u32 ctrl_ext = 0;
2480 	u32 reg = 0;
2481 	u16 kmrn_reg = 0;
2482 
2483 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2484 
2485 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2486 					     &kmrn_reg);
2487 	if (ret_val)
2488 		return ret_val;
2489 
2490 	if (k1_enable)
2491 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2492 	else
2493 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2494 
2495 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2496 					      kmrn_reg);
2497 	if (ret_val)
2498 		return ret_val;
2499 
2500 	usec_delay(20);
2501 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2502 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2503 
2504 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2505 	reg |= E1000_CTRL_FRCSPD;
2506 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2507 
2508 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2509 	E1000_WRITE_FLUSH(hw);
2510 	usec_delay(20);
2511 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2512 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2513 	E1000_WRITE_FLUSH(hw);
2514 	usec_delay(20);
2515 
2516 	return E1000_SUCCESS;
2517 }
2518 
2519 /**
2520  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2521  *  @hw:       pointer to the HW structure
2522  *  @d0_state: boolean if entering d0 or d3 device state
2523  *
2524  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2525  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2526  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2527  **/
2528 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2529 {
2530 	s32 ret_val = 0;
2531 	u32 mac_reg;
2532 	u16 oem_reg;
2533 
2534 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2535 
2536 	if (hw->mac.type < e1000_pchlan)
2537 		return ret_val;
2538 
2539 	ret_val = hw->phy.ops.acquire(hw);
2540 	if (ret_val)
2541 		return ret_val;
2542 
2543 	if (hw->mac.type == e1000_pchlan) {
2544 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2545 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2546 			goto release;
2547 	}
2548 
2549 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2550 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2551 		goto release;
2552 
2553 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2554 
2555 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2556 	if (ret_val)
2557 		goto release;
2558 
2559 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2560 
2561 	if (d0_state) {
2562 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2563 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2564 
2565 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2566 			oem_reg |= HV_OEM_BITS_LPLU;
2567 	} else {
2568 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2569 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2570 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2571 
2572 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2573 		    E1000_PHY_CTRL_NOND0A_LPLU))
2574 			oem_reg |= HV_OEM_BITS_LPLU;
2575 	}
2576 
2577 	/* Set Restart auto-neg to activate the bits */
2578 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2579 	    !hw->phy.ops.check_reset_block(hw))
2580 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2581 
2582 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2583 
2584 release:
2585 	hw->phy.ops.release(hw);
2586 
2587 	return ret_val;
2588 }
2589 
2590 
2591 /**
2592  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2593  *  @hw:   pointer to the HW structure
2594  **/
2595 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2596 {
2597 	s32 ret_val;
2598 	u16 data;
2599 
2600 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2601 
2602 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2603 	if (ret_val)
2604 		return ret_val;
2605 
2606 	data |= HV_KMRN_MDIO_SLOW;
2607 
2608 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2609 
2610 	return ret_val;
2611 }
2612 
2613 /**
2614  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2615  *  done after every PHY reset.
2616  **/
2617 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2618 {
2619 	s32 ret_val = E1000_SUCCESS;
2620 	u16 phy_data;
2621 
2622 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2623 
2624 	if (hw->mac.type != e1000_pchlan)
2625 		return E1000_SUCCESS;
2626 
2627 	/* Set MDIO slow mode before any other MDIO access */
2628 	if (hw->phy.type == e1000_phy_82577) {
2629 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2630 		if (ret_val)
2631 			return ret_val;
2632 	}
2633 
2634 	if (((hw->phy.type == e1000_phy_82577) &&
2635 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2636 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2637 		/* Disable generation of early preamble */
2638 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2639 		if (ret_val)
2640 			return ret_val;
2641 
2642 		/* Preamble tuning for SSC */
2643 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2644 						0xA204);
2645 		if (ret_val)
2646 			return ret_val;
2647 	}
2648 
2649 	if (hw->phy.type == e1000_phy_82578) {
2650 		/* Return registers to default by doing a soft reset then
2651 		 * writing 0x3140 to the control register.
2652 		 */
2653 		if (hw->phy.revision < 2) {
2654 			e1000_phy_sw_reset_generic(hw);
2655 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2656 							0x3140);
2657 		}
2658 	}
2659 
2660 	/* Select page 0 */
2661 	ret_val = hw->phy.ops.acquire(hw);
2662 	if (ret_val)
2663 		return ret_val;
2664 
2665 	hw->phy.addr = 1;
2666 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2667 	hw->phy.ops.release(hw);
2668 	if (ret_val)
2669 		return ret_val;
2670 
2671 	/* Configure the K1 Si workaround during phy reset assuming there is
2672 	 * link so that it disables K1 if link is in 1Gbps.
2673 	 */
2674 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2675 	if (ret_val)
2676 		return ret_val;
2677 
2678 	/* Workaround for link disconnects on a busy hub in half duplex */
2679 	ret_val = hw->phy.ops.acquire(hw);
2680 	if (ret_val)
2681 		return ret_val;
2682 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2683 	if (ret_val)
2684 		goto release;
2685 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2686 					       phy_data & 0x00FF);
2687 	if (ret_val)
2688 		goto release;
2689 
2690 	/* set MSE higher to enable link to stay up when noise is high */
2691 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2692 release:
2693 	hw->phy.ops.release(hw);
2694 
2695 	return ret_val;
2696 }
2697 
2698 /**
2699  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2700  *  @hw:   pointer to the HW structure
2701  **/
2702 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2703 {
2704 	u32 mac_reg;
2705 	u16 i, phy_reg = 0;
2706 	s32 ret_val;
2707 
2708 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2709 
2710 	ret_val = hw->phy.ops.acquire(hw);
2711 	if (ret_val)
2712 		return;
2713 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2714 	if (ret_val)
2715 		goto release;
2716 
2717 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2718 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2719 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2720 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2721 					   (u16)(mac_reg & 0xFFFF));
2722 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2723 					   (u16)((mac_reg >> 16) & 0xFFFF));
2724 
2725 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2726 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2727 					   (u16)(mac_reg & 0xFFFF));
2728 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2729 					   (u16)((mac_reg & E1000_RAH_AV)
2730 						 >> 16));
2731 	}
2732 
2733 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2734 
2735 release:
2736 	hw->phy.ops.release(hw);
2737 }
2738 
2739 static u32 e1000_calc_rx_da_crc(u8 mac[])
2740 {
2741 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2742 	u32 i, j, mask, crc;
2743 
2744 	DEBUGFUNC("e1000_calc_rx_da_crc");
2745 
2746 	crc = 0xffffffff;
2747 	for (i = 0; i < 6; i++) {
2748 		crc = crc ^ mac[i];
2749 		for (j = 8; j > 0; j--) {
2750 			mask = (crc & 1) * (-1);
2751 			crc = (crc >> 1) ^ (poly & mask);
2752 		}
2753 	}
2754 	return ~crc;
2755 }
2756 
2757 /**
2758  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2759  *  with 82579 PHY
2760  *  @hw: pointer to the HW structure
2761  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2762  **/
2763 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2764 {
2765 	s32 ret_val = E1000_SUCCESS;
2766 	u16 phy_reg, data;
2767 	u32 mac_reg;
2768 	u16 i;
2769 
2770 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2771 
2772 	if (hw->mac.type < e1000_pch2lan)
2773 		return E1000_SUCCESS;
2774 
2775 	/* disable Rx path while enabling/disabling workaround */
2776 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2777 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2778 					phy_reg | (1 << 14));
2779 	if (ret_val)
2780 		return ret_val;
2781 
2782 	if (enable) {
2783 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2784 		 * SHRAL/H) and initial CRC values to the MAC
2785 		 */
2786 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2787 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2788 			u32 addr_high, addr_low;
2789 
2790 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2791 			if (!(addr_high & E1000_RAH_AV))
2792 				continue;
2793 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2794 			mac_addr[0] = (addr_low & 0xFF);
2795 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2796 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2797 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2798 			mac_addr[4] = (addr_high & 0xFF);
2799 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2800 
2801 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2802 					e1000_calc_rx_da_crc(mac_addr));
2803 		}
2804 
2805 		/* Write Rx addresses to the PHY */
2806 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2807 
2808 		/* Enable jumbo frame workaround in the MAC */
2809 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2810 		mac_reg &= ~(1 << 14);
2811 		mac_reg |= (7 << 15);
2812 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2813 
2814 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2815 		mac_reg |= E1000_RCTL_SECRC;
2816 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2817 
2818 		ret_val = e1000_read_kmrn_reg_generic(hw,
2819 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2820 						&data);
2821 		if (ret_val)
2822 			return ret_val;
2823 		ret_val = e1000_write_kmrn_reg_generic(hw,
2824 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2825 						data | (1 << 0));
2826 		if (ret_val)
2827 			return ret_val;
2828 		ret_val = e1000_read_kmrn_reg_generic(hw,
2829 						E1000_KMRNCTRLSTA_HD_CTRL,
2830 						&data);
2831 		if (ret_val)
2832 			return ret_val;
2833 		data &= ~(0xF << 8);
2834 		data |= (0xB << 8);
2835 		ret_val = e1000_write_kmrn_reg_generic(hw,
2836 						E1000_KMRNCTRLSTA_HD_CTRL,
2837 						data);
2838 		if (ret_val)
2839 			return ret_val;
2840 
2841 		/* Enable jumbo frame workaround in the PHY */
2842 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2843 		data &= ~(0x7F << 5);
2844 		data |= (0x37 << 5);
2845 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2846 		if (ret_val)
2847 			return ret_val;
2848 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2849 		data &= ~(1 << 13);
2850 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2851 		if (ret_val)
2852 			return ret_val;
2853 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2854 		data &= ~(0x3FF << 2);
2855 		data |= (E1000_TX_PTR_GAP << 2);
2856 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2857 		if (ret_val)
2858 			return ret_val;
2859 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2860 		if (ret_val)
2861 			return ret_val;
2862 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2863 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2864 						(1 << 10));
2865 		if (ret_val)
2866 			return ret_val;
2867 	} else {
2868 		/* Write MAC register values back to h/w defaults */
2869 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2870 		mac_reg &= ~(0xF << 14);
2871 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2872 
2873 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2874 		mac_reg &= ~E1000_RCTL_SECRC;
2875 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2876 
2877 		ret_val = e1000_read_kmrn_reg_generic(hw,
2878 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2879 						&data);
2880 		if (ret_val)
2881 			return ret_val;
2882 		ret_val = e1000_write_kmrn_reg_generic(hw,
2883 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2884 						data & ~(1 << 0));
2885 		if (ret_val)
2886 			return ret_val;
2887 		ret_val = e1000_read_kmrn_reg_generic(hw,
2888 						E1000_KMRNCTRLSTA_HD_CTRL,
2889 						&data);
2890 		if (ret_val)
2891 			return ret_val;
2892 		data &= ~(0xF << 8);
2893 		data |= (0xB << 8);
2894 		ret_val = e1000_write_kmrn_reg_generic(hw,
2895 						E1000_KMRNCTRLSTA_HD_CTRL,
2896 						data);
2897 		if (ret_val)
2898 			return ret_val;
2899 
2900 		/* Write PHY register values back to h/w defaults */
2901 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2902 		data &= ~(0x7F << 5);
2903 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2904 		if (ret_val)
2905 			return ret_val;
2906 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2907 		data |= (1 << 13);
2908 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2909 		if (ret_val)
2910 			return ret_val;
2911 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2912 		data &= ~(0x3FF << 2);
2913 		data |= (0x8 << 2);
2914 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2915 		if (ret_val)
2916 			return ret_val;
2917 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2918 		if (ret_val)
2919 			return ret_val;
2920 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2921 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2922 						~(1 << 10));
2923 		if (ret_val)
2924 			return ret_val;
2925 	}
2926 
2927 	/* re-enable Rx path after enabling/disabling workaround */
2928 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2929 				     ~(1 << 14));
2930 }
2931 
2932 /**
2933  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2934  *  done after every PHY reset.
2935  **/
2936 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2937 {
2938 	s32 ret_val = E1000_SUCCESS;
2939 
2940 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2941 
2942 	if (hw->mac.type != e1000_pch2lan)
2943 		return E1000_SUCCESS;
2944 
2945 	/* Set MDIO slow mode before any other MDIO access */
2946 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2947 	if (ret_val)
2948 		return ret_val;
2949 
2950 	ret_val = hw->phy.ops.acquire(hw);
2951 	if (ret_val)
2952 		return ret_val;
2953 	/* set MSE higher to enable link to stay up when noise is high */
2954 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2955 	if (ret_val)
2956 		goto release;
2957 	/* drop link after 5 times MSE threshold was reached */
2958 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2959 release:
2960 	hw->phy.ops.release(hw);
2961 
2962 	return ret_val;
2963 }
2964 
2965 /**
2966  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2967  *  @hw:   pointer to the HW structure
2968  *
2969  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2970  *  Disable K1 for 1000 and 100 speeds
2971  **/
2972 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2973 {
2974 	s32 ret_val = E1000_SUCCESS;
2975 	u16 status_reg = 0;
2976 
2977 	DEBUGFUNC("e1000_k1_workaround_lv");
2978 
2979 	if (hw->mac.type != e1000_pch2lan)
2980 		return E1000_SUCCESS;
2981 
2982 	/* Set K1 beacon duration based on 10Mbs speed */
2983 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2984 	if (ret_val)
2985 		return ret_val;
2986 
2987 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2988 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2989 		if (status_reg &
2990 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2991 			u16 pm_phy_reg;
2992 
2993 			/* LV 1G/100 Packet drop issue wa  */
2994 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2995 						       &pm_phy_reg);
2996 			if (ret_val)
2997 				return ret_val;
2998 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2999 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3000 							pm_phy_reg);
3001 			if (ret_val)
3002 				return ret_val;
3003 		} else {
3004 			u32 mac_reg;
3005 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3006 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3007 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3008 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3009 		}
3010 	}
3011 
3012 	return ret_val;
3013 }
3014 
3015 /**
3016  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3017  *  @hw:   pointer to the HW structure
3018  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3019  *
3020  *  Gate/ungate the automatic PHY configuration via hardware; perform
3021  *  the configuration via software instead.
3022  **/
3023 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3024 {
3025 	u32 extcnf_ctrl;
3026 
3027 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3028 
3029 	if (hw->mac.type < e1000_pch2lan)
3030 		return;
3031 
3032 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3033 
3034 	if (gate)
3035 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3036 	else
3037 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3038 
3039 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3040 }
3041 
3042 /**
3043  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3044  *  @hw: pointer to the HW structure
3045  *
3046  *  Check the appropriate indication the MAC has finished configuring the
3047  *  PHY after a software reset.
3048  **/
3049 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3050 {
3051 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3052 
3053 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3054 
3055 	/* Wait for basic configuration completes before proceeding */
3056 	do {
3057 		data = E1000_READ_REG(hw, E1000_STATUS);
3058 		data &= E1000_STATUS_LAN_INIT_DONE;
3059 		usec_delay(100);
3060 	} while ((!data) && --loop);
3061 
3062 	/* If basic configuration is incomplete before the above loop
3063 	 * count reaches 0, loading the configuration from NVM will
3064 	 * leave the PHY in a bad state possibly resulting in no link.
3065 	 */
3066 	if (loop == 0)
3067 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3068 
3069 	/* Clear the Init Done bit for the next init event */
3070 	data = E1000_READ_REG(hw, E1000_STATUS);
3071 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3072 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3073 }
3074 
3075 /**
3076  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3077  *  @hw: pointer to the HW structure
3078  **/
3079 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3080 {
3081 	s32 ret_val = E1000_SUCCESS;
3082 	u16 reg;
3083 
3084 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3085 
3086 	if (hw->phy.ops.check_reset_block(hw))
3087 		return E1000_SUCCESS;
3088 
3089 	/* Allow time for h/w to get to quiescent state after reset */
3090 	msec_delay(10);
3091 
3092 	/* Perform any necessary post-reset workarounds */
3093 	switch (hw->mac.type) {
3094 	case e1000_pchlan:
3095 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3096 		if (ret_val)
3097 			return ret_val;
3098 		break;
3099 	case e1000_pch2lan:
3100 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3101 		if (ret_val)
3102 			return ret_val;
3103 		break;
3104 	default:
3105 		break;
3106 	}
3107 
3108 	/* Clear the host wakeup bit after lcd reset */
3109 	if (hw->mac.type >= e1000_pchlan) {
3110 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3111 		reg &= ~BM_WUC_HOST_WU_BIT;
3112 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3113 	}
3114 
3115 	/* Configure the LCD with the extended configuration region in NVM */
3116 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3117 	if (ret_val)
3118 		return ret_val;
3119 
3120 	/* Configure the LCD with the OEM bits in NVM */
3121 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3122 
3123 	if (hw->mac.type == e1000_pch2lan) {
3124 		/* Ungate automatic PHY configuration on non-managed 82579 */
3125 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3126 		    E1000_ICH_FWSM_FW_VALID)) {
3127 			msec_delay(10);
3128 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3129 		}
3130 
3131 		/* Set EEE LPI Update Timer to 200usec */
3132 		ret_val = hw->phy.ops.acquire(hw);
3133 		if (ret_val)
3134 			return ret_val;
3135 		ret_val = e1000_write_emi_reg_locked(hw,
3136 						     I82579_LPI_UPDATE_TIMER,
3137 						     0x1387);
3138 		hw->phy.ops.release(hw);
3139 	}
3140 
3141 	return ret_val;
3142 }
3143 
3144 /**
3145  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3146  *  @hw: pointer to the HW structure
3147  *
3148  *  Resets the PHY
3149  *  This is a function pointer entry point called by drivers
3150  *  or other shared routines.
3151  **/
3152 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3153 {
3154 	s32 ret_val = E1000_SUCCESS;
3155 
3156 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3157 
3158 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3159 	if ((hw->mac.type == e1000_pch2lan) &&
3160 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3161 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3162 
3163 	ret_val = e1000_phy_hw_reset_generic(hw);
3164 	if (ret_val)
3165 		return ret_val;
3166 
3167 	return e1000_post_phy_reset_ich8lan(hw);
3168 }
3169 
3170 /**
3171  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3172  *  @hw: pointer to the HW structure
3173  *  @active: TRUE to enable LPLU, FALSE to disable
3174  *
3175  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3176  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3177  *  the phy speed. This function will manually set the LPLU bit and restart
3178  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3179  *  since it configures the same bit.
3180  **/
3181 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3182 {
3183 	s32 ret_val;
3184 	u16 oem_reg;
3185 
3186 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3187 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3188 	if (ret_val)
3189 		return ret_val;
3190 
3191 	if (active)
3192 		oem_reg |= HV_OEM_BITS_LPLU;
3193 	else
3194 		oem_reg &= ~HV_OEM_BITS_LPLU;
3195 
3196 	if (!hw->phy.ops.check_reset_block(hw))
3197 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3198 
3199 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3200 }
3201 
3202 /**
3203  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3204  *  @hw: pointer to the HW structure
3205  *  @active: TRUE to enable LPLU, FALSE to disable
3206  *
3207  *  Sets the LPLU D0 state according to the active flag.  When
3208  *  activating LPLU this function also disables smart speed
3209  *  and vice versa.  LPLU will not be activated unless the
3210  *  device autonegotiation advertisement meets standards of
3211  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3212  *  This is a function pointer entry point only called by
3213  *  PHY setup routines.
3214  **/
3215 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3216 {
3217 	struct e1000_phy_info *phy = &hw->phy;
3218 	u32 phy_ctrl;
3219 	s32 ret_val = E1000_SUCCESS;
3220 	u16 data;
3221 
3222 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3223 
3224 	if (phy->type == e1000_phy_ife)
3225 		return E1000_SUCCESS;
3226 
3227 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3228 
3229 	if (active) {
3230 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3231 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3232 
3233 		if (phy->type != e1000_phy_igp_3)
3234 			return E1000_SUCCESS;
3235 
3236 		/* Call gig speed drop workaround on LPLU before accessing
3237 		 * any PHY registers
3238 		 */
3239 		if (hw->mac.type == e1000_ich8lan)
3240 			e1000_gig_downshift_workaround_ich8lan(hw);
3241 
3242 		/* When LPLU is enabled, we should disable SmartSpeed */
3243 		ret_val = phy->ops.read_reg(hw,
3244 					    IGP01E1000_PHY_PORT_CONFIG,
3245 					    &data);
3246 		if (ret_val)
3247 			return ret_val;
3248 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3249 		ret_val = phy->ops.write_reg(hw,
3250 					     IGP01E1000_PHY_PORT_CONFIG,
3251 					     data);
3252 		if (ret_val)
3253 			return ret_val;
3254 	} else {
3255 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3256 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3257 
3258 		if (phy->type != e1000_phy_igp_3)
3259 			return E1000_SUCCESS;
3260 
3261 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3262 		 * during Dx states where the power conservation is most
3263 		 * important.  During driver activity we should enable
3264 		 * SmartSpeed, so performance is maintained.
3265 		 */
3266 		if (phy->smart_speed == e1000_smart_speed_on) {
3267 			ret_val = phy->ops.read_reg(hw,
3268 						    IGP01E1000_PHY_PORT_CONFIG,
3269 						    &data);
3270 			if (ret_val)
3271 				return ret_val;
3272 
3273 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3274 			ret_val = phy->ops.write_reg(hw,
3275 						     IGP01E1000_PHY_PORT_CONFIG,
3276 						     data);
3277 			if (ret_val)
3278 				return ret_val;
3279 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3280 			ret_val = phy->ops.read_reg(hw,
3281 						    IGP01E1000_PHY_PORT_CONFIG,
3282 						    &data);
3283 			if (ret_val)
3284 				return ret_val;
3285 
3286 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3287 			ret_val = phy->ops.write_reg(hw,
3288 						     IGP01E1000_PHY_PORT_CONFIG,
3289 						     data);
3290 			if (ret_val)
3291 				return ret_val;
3292 		}
3293 	}
3294 
3295 	return E1000_SUCCESS;
3296 }
3297 
3298 /**
3299  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3300  *  @hw: pointer to the HW structure
3301  *  @active: TRUE to enable LPLU, FALSE to disable
3302  *
3303  *  Sets the LPLU D3 state according to the active flag.  When
3304  *  activating LPLU this function also disables smart speed
3305  *  and vice versa.  LPLU will not be activated unless the
3306  *  device autonegotiation advertisement meets standards of
3307  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3308  *  This is a function pointer entry point only called by
3309  *  PHY setup routines.
3310  **/
3311 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3312 {
3313 	struct e1000_phy_info *phy = &hw->phy;
3314 	u32 phy_ctrl;
3315 	s32 ret_val = E1000_SUCCESS;
3316 	u16 data;
3317 
3318 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3319 
3320 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3321 
3322 	if (!active) {
3323 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3324 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3325 
3326 		if (phy->type != e1000_phy_igp_3)
3327 			return E1000_SUCCESS;
3328 
3329 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3330 		 * during Dx states where the power conservation is most
3331 		 * important.  During driver activity we should enable
3332 		 * SmartSpeed, so performance is maintained.
3333 		 */
3334 		if (phy->smart_speed == e1000_smart_speed_on) {
3335 			ret_val = phy->ops.read_reg(hw,
3336 						    IGP01E1000_PHY_PORT_CONFIG,
3337 						    &data);
3338 			if (ret_val)
3339 				return ret_val;
3340 
3341 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3342 			ret_val = phy->ops.write_reg(hw,
3343 						     IGP01E1000_PHY_PORT_CONFIG,
3344 						     data);
3345 			if (ret_val)
3346 				return ret_val;
3347 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3348 			ret_val = phy->ops.read_reg(hw,
3349 						    IGP01E1000_PHY_PORT_CONFIG,
3350 						    &data);
3351 			if (ret_val)
3352 				return ret_val;
3353 
3354 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3355 			ret_val = phy->ops.write_reg(hw,
3356 						     IGP01E1000_PHY_PORT_CONFIG,
3357 						     data);
3358 			if (ret_val)
3359 				return ret_val;
3360 		}
3361 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3362 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3363 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3364 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3365 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3366 
3367 		if (phy->type != e1000_phy_igp_3)
3368 			return E1000_SUCCESS;
3369 
3370 		/* Call gig speed drop workaround on LPLU before accessing
3371 		 * any PHY registers
3372 		 */
3373 		if (hw->mac.type == e1000_ich8lan)
3374 			e1000_gig_downshift_workaround_ich8lan(hw);
3375 
3376 		/* When LPLU is enabled, we should disable SmartSpeed */
3377 		ret_val = phy->ops.read_reg(hw,
3378 					    IGP01E1000_PHY_PORT_CONFIG,
3379 					    &data);
3380 		if (ret_val)
3381 			return ret_val;
3382 
3383 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3384 		ret_val = phy->ops.write_reg(hw,
3385 					     IGP01E1000_PHY_PORT_CONFIG,
3386 					     data);
3387 	}
3388 
3389 	return ret_val;
3390 }
3391 
3392 /**
3393  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3394  *  @hw: pointer to the HW structure
3395  *  @bank:  pointer to the variable that returns the active bank
3396  *
3397  *  Reads signature byte from the NVM using the flash access registers.
3398  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3399  **/
3400 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3401 {
3402 	u32 eecd;
3403 	struct e1000_nvm_info *nvm = &hw->nvm;
3404 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3405 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3406 	u32 nvm_dword = 0;
3407 	u8 sig_byte = 0;
3408 	s32 ret_val;
3409 
3410 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3411 
3412 	switch (hw->mac.type) {
3413 	case e1000_pch_spt:
3414 		bank1_offset = nvm->flash_bank_size;
3415 		act_offset = E1000_ICH_NVM_SIG_WORD;
3416 
3417 		/* set bank to 0 in case flash read fails */
3418 		*bank = 0;
3419 
3420 		/* Check bank 0 */
3421 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3422 							 &nvm_dword);
3423 		if (ret_val)
3424 			return ret_val;
3425 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3426 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3427 		    E1000_ICH_NVM_SIG_VALUE) {
3428 			*bank = 0;
3429 			return E1000_SUCCESS;
3430 		}
3431 
3432 		/* Check bank 1 */
3433 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3434 							 bank1_offset,
3435 							 &nvm_dword);
3436 		if (ret_val)
3437 			return ret_val;
3438 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3439 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3440 		    E1000_ICH_NVM_SIG_VALUE) {
3441 			*bank = 1;
3442 			return E1000_SUCCESS;
3443 		}
3444 
3445 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3446 		return -E1000_ERR_NVM;
3447 	case e1000_ich8lan:
3448 	case e1000_ich9lan:
3449 		eecd = E1000_READ_REG(hw, E1000_EECD);
3450 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3451 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3452 			if (eecd & E1000_EECD_SEC1VAL)
3453 				*bank = 1;
3454 			else
3455 				*bank = 0;
3456 
3457 			return E1000_SUCCESS;
3458 		}
3459 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3460 		/* fall-thru */
3461 	default:
3462 		/* set bank to 0 in case flash read fails */
3463 		*bank = 0;
3464 
3465 		/* Check bank 0 */
3466 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3467 							&sig_byte);
3468 		if (ret_val)
3469 			return ret_val;
3470 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3471 		    E1000_ICH_NVM_SIG_VALUE) {
3472 			*bank = 0;
3473 			return E1000_SUCCESS;
3474 		}
3475 
3476 		/* Check bank 1 */
3477 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3478 							bank1_offset,
3479 							&sig_byte);
3480 		if (ret_val)
3481 			return ret_val;
3482 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3483 		    E1000_ICH_NVM_SIG_VALUE) {
3484 			*bank = 1;
3485 			return E1000_SUCCESS;
3486 		}
3487 
3488 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3489 		return -E1000_ERR_NVM;
3490 	}
3491 }
3492 
3493 /**
3494  *  e1000_read_nvm_spt - NVM access for SPT
3495  *  @hw: pointer to the HW structure
3496  *  @offset: The offset (in bytes) of the word(s) to read.
3497  *  @words: Size of data to read in words.
3498  *  @data: pointer to the word(s) to read at offset.
3499  *
3500  *  Reads a word(s) from the NVM
3501  **/
3502 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3503 			      u16 *data)
3504 {
3505 	struct e1000_nvm_info *nvm = &hw->nvm;
3506 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3507 	u32 act_offset;
3508 	s32 ret_val = E1000_SUCCESS;
3509 	u32 bank = 0;
3510 	u32 dword = 0;
3511 	u16 offset_to_read;
3512 	u16 i;
3513 
3514 	DEBUGFUNC("e1000_read_nvm_spt");
3515 
3516 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3517 	    (words == 0)) {
3518 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3519 		ret_val = -E1000_ERR_NVM;
3520 		goto out;
3521 	}
3522 
3523 	nvm->ops.acquire(hw);
3524 
3525 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3526 	if (ret_val != E1000_SUCCESS) {
3527 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3528 		bank = 0;
3529 	}
3530 
3531 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3532 	act_offset += offset;
3533 
3534 	ret_val = E1000_SUCCESS;
3535 
3536 	for (i = 0; i < words; i += 2) {
3537 		if (words - i == 1) {
3538 			if (dev_spec->shadow_ram[offset+i].modified) {
3539 				data[i] = dev_spec->shadow_ram[offset+i].value;
3540 			} else {
3541 				offset_to_read = act_offset + i -
3542 						 ((act_offset + i) % 2);
3543 				ret_val =
3544 				   e1000_read_flash_dword_ich8lan(hw,
3545 								 offset_to_read,
3546 								 &dword);
3547 				if (ret_val)
3548 					break;
3549 				if ((act_offset + i) % 2 == 0)
3550 					data[i] = (u16)(dword & 0xFFFF);
3551 				else
3552 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3553 			}
3554 		} else {
3555 			offset_to_read = act_offset + i;
3556 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3557 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3558 				ret_val =
3559 				   e1000_read_flash_dword_ich8lan(hw,
3560 								 offset_to_read,
3561 								 &dword);
3562 				if (ret_val)
3563 					break;
3564 			}
3565 			if (dev_spec->shadow_ram[offset+i].modified)
3566 				data[i] = dev_spec->shadow_ram[offset+i].value;
3567 			else
3568 				data[i] = (u16) (dword & 0xFFFF);
3569 			if (dev_spec->shadow_ram[offset+i].modified)
3570 				data[i+1] =
3571 				   dev_spec->shadow_ram[offset+i+1].value;
3572 			else
3573 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3574 		}
3575 	}
3576 
3577 	nvm->ops.release(hw);
3578 
3579 out:
3580 	if (ret_val)
3581 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3582 
3583 	return ret_val;
3584 }
3585 
3586 /**
3587  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3588  *  @hw: pointer to the HW structure
3589  *  @offset: The offset (in bytes) of the word(s) to read.
3590  *  @words: Size of data to read in words
3591  *  @data: Pointer to the word(s) to read at offset.
3592  *
3593  *  Reads a word(s) from the NVM using the flash access registers.
3594  **/
3595 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3596 				  u16 *data)
3597 {
3598 	struct e1000_nvm_info *nvm = &hw->nvm;
3599 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3600 	u32 act_offset;
3601 	s32 ret_val = E1000_SUCCESS;
3602 	u32 bank = 0;
3603 	u16 i, word;
3604 
3605 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3606 
3607 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3608 	    (words == 0)) {
3609 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3610 		ret_val = -E1000_ERR_NVM;
3611 		goto out;
3612 	}
3613 
3614 	nvm->ops.acquire(hw);
3615 
3616 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3617 	if (ret_val != E1000_SUCCESS) {
3618 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3619 		bank = 0;
3620 	}
3621 
3622 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3623 	act_offset += offset;
3624 
3625 	ret_val = E1000_SUCCESS;
3626 	for (i = 0; i < words; i++) {
3627 		if (dev_spec->shadow_ram[offset+i].modified) {
3628 			data[i] = dev_spec->shadow_ram[offset+i].value;
3629 		} else {
3630 			ret_val = e1000_read_flash_word_ich8lan(hw,
3631 								act_offset + i,
3632 								&word);
3633 			if (ret_val)
3634 				break;
3635 			data[i] = word;
3636 		}
3637 	}
3638 
3639 	nvm->ops.release(hw);
3640 
3641 out:
3642 	if (ret_val)
3643 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3644 
3645 	return ret_val;
3646 }
3647 
3648 /**
3649  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3650  *  @hw: pointer to the HW structure
3651  *
3652  *  This function does initial flash setup so that a new read/write/erase cycle
3653  *  can be started.
3654  **/
3655 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3656 {
3657 	union ich8_hws_flash_status hsfsts;
3658 	s32 ret_val = -E1000_ERR_NVM;
3659 
3660 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3661 
3662 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3663 
3664 	/* Check if the flash descriptor is valid */
3665 	if (!hsfsts.hsf_status.fldesvalid) {
3666 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3667 		return -E1000_ERR_NVM;
3668 	}
3669 
3670 	/* Clear FCERR and DAEL in hw status by writing 1 */
3671 	hsfsts.hsf_status.flcerr = 1;
3672 	hsfsts.hsf_status.dael = 1;
3673 	if (hw->mac.type >= e1000_pch_spt)
3674 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3675 				      hsfsts.regval & 0xFFFF);
3676 	else
3677 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3678 
3679 	/* Either we should have a hardware SPI cycle in progress
3680 	 * bit to check against, in order to start a new cycle or
3681 	 * FDONE bit should be changed in the hardware so that it
3682 	 * is 1 after hardware reset, which can then be used as an
3683 	 * indication whether a cycle is in progress or has been
3684 	 * completed.
3685 	 */
3686 
3687 	if (!hsfsts.hsf_status.flcinprog) {
3688 		/* There is no cycle running at present,
3689 		 * so we can start a cycle.
3690 		 * Begin by setting Flash Cycle Done.
3691 		 */
3692 		hsfsts.hsf_status.flcdone = 1;
3693 		if (hw->mac.type >= e1000_pch_spt)
3694 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3695 					      hsfsts.regval & 0xFFFF);
3696 		else
3697 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3698 						hsfsts.regval);
3699 		ret_val = E1000_SUCCESS;
3700 	} else {
3701 		s32 i;
3702 
3703 		/* Otherwise poll for sometime so the current
3704 		 * cycle has a chance to end before giving up.
3705 		 */
3706 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3707 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3708 							      ICH_FLASH_HSFSTS);
3709 			if (!hsfsts.hsf_status.flcinprog) {
3710 				ret_val = E1000_SUCCESS;
3711 				break;
3712 			}
3713 			usec_delay(1);
3714 		}
3715 		if (ret_val == E1000_SUCCESS) {
3716 			/* Successful in waiting for previous cycle to timeout,
3717 			 * now set the Flash Cycle Done.
3718 			 */
3719 			hsfsts.hsf_status.flcdone = 1;
3720 			if (hw->mac.type >= e1000_pch_spt)
3721 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3722 						      hsfsts.regval & 0xFFFF);
3723 			else
3724 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3725 							hsfsts.regval);
3726 		} else {
3727 			DEBUGOUT("Flash controller busy, cannot get access\n");
3728 		}
3729 	}
3730 
3731 	return ret_val;
3732 }
3733 
3734 /**
3735  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3736  *  @hw: pointer to the HW structure
3737  *  @timeout: maximum time to wait for completion
3738  *
3739  *  This function starts a flash cycle and waits for its completion.
3740  **/
3741 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3742 {
3743 	union ich8_hws_flash_ctrl hsflctl;
3744 	union ich8_hws_flash_status hsfsts;
3745 	u32 i = 0;
3746 
3747 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3748 
3749 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3750 	if (hw->mac.type >= e1000_pch_spt)
3751 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3752 	else
3753 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3754 	hsflctl.hsf_ctrl.flcgo = 1;
3755 
3756 	if (hw->mac.type >= e1000_pch_spt)
3757 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3758 				      hsflctl.regval << 16);
3759 	else
3760 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3761 
3762 	/* wait till FDONE bit is set to 1 */
3763 	do {
3764 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3765 		if (hsfsts.hsf_status.flcdone)
3766 			break;
3767 		usec_delay(1);
3768 	} while (i++ < timeout);
3769 
3770 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3771 		return E1000_SUCCESS;
3772 
3773 	return -E1000_ERR_NVM;
3774 }
3775 
3776 /**
3777  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3778  *  @hw: pointer to the HW structure
3779  *  @offset: offset to data location
3780  *  @data: pointer to the location for storing the data
3781  *
3782  *  Reads the flash dword at offset into data.  Offset is converted
3783  *  to bytes before read.
3784  **/
3785 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3786 					  u32 *data)
3787 {
3788 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3789 
3790 	if (!data)
3791 		return -E1000_ERR_NVM;
3792 
3793 	/* Must convert word offset into bytes. */
3794 	offset <<= 1;
3795 
3796 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3797 }
3798 
3799 /**
3800  *  e1000_read_flash_word_ich8lan - Read word from flash
3801  *  @hw: pointer to the HW structure
3802  *  @offset: offset to data location
3803  *  @data: pointer to the location for storing the data
3804  *
3805  *  Reads the flash word at offset into data.  Offset is converted
3806  *  to bytes before read.
3807  **/
3808 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3809 					 u16 *data)
3810 {
3811 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3812 
3813 	if (!data)
3814 		return -E1000_ERR_NVM;
3815 
3816 	/* Must convert offset into bytes. */
3817 	offset <<= 1;
3818 
3819 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3820 }
3821 
3822 /**
3823  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3824  *  @hw: pointer to the HW structure
3825  *  @offset: The offset of the byte to read.
3826  *  @data: Pointer to a byte to store the value read.
3827  *
3828  *  Reads a single byte from the NVM using the flash access registers.
3829  **/
3830 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3831 					 u8 *data)
3832 {
3833 	s32 ret_val;
3834 	u16 word = 0;
3835 
3836 	/* In SPT, only 32 bits access is supported,
3837 	 * so this function should not be called.
3838 	 */
3839 	if (hw->mac.type >= e1000_pch_spt)
3840 		return -E1000_ERR_NVM;
3841 	else
3842 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3843 
3844 	if (ret_val)
3845 		return ret_val;
3846 
3847 	*data = (u8)word;
3848 
3849 	return E1000_SUCCESS;
3850 }
3851 
3852 /**
3853  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3854  *  @hw: pointer to the HW structure
3855  *  @offset: The offset (in bytes) of the byte or word to read.
3856  *  @size: Size of data to read, 1=byte 2=word
3857  *  @data: Pointer to the word to store the value read.
3858  *
3859  *  Reads a byte or word from the NVM using the flash access registers.
3860  **/
3861 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3862 					 u8 size, u16 *data)
3863 {
3864 	union ich8_hws_flash_status hsfsts;
3865 	union ich8_hws_flash_ctrl hsflctl;
3866 	u32 flash_linear_addr;
3867 	u32 flash_data = 0;
3868 	s32 ret_val = -E1000_ERR_NVM;
3869 	u8 count = 0;
3870 
3871 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3872 
3873 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3874 		return -E1000_ERR_NVM;
3875 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3876 			     hw->nvm.flash_base_addr);
3877 
3878 	do {
3879 		usec_delay(1);
3880 		/* Steps */
3881 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3882 		if (ret_val != E1000_SUCCESS)
3883 			break;
3884 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3885 
3886 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3887 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3888 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3889 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3890 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3891 
3892 		ret_val = e1000_flash_cycle_ich8lan(hw,
3893 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3894 
3895 		/* Check if FCERR is set to 1, if set to 1, clear it
3896 		 * and try the whole sequence a few more times, else
3897 		 * read in (shift in) the Flash Data0, the order is
3898 		 * least significant byte first msb to lsb
3899 		 */
3900 		if (ret_val == E1000_SUCCESS) {
3901 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3902 			if (size == 1)
3903 				*data = (u8)(flash_data & 0x000000FF);
3904 			else if (size == 2)
3905 				*data = (u16)(flash_data & 0x0000FFFF);
3906 			break;
3907 		} else {
3908 			/* If we've gotten here, then things are probably
3909 			 * completely hosed, but if the error condition is
3910 			 * detected, it won't hurt to give it another try...
3911 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3912 			 */
3913 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3914 							      ICH_FLASH_HSFSTS);
3915 			if (hsfsts.hsf_status.flcerr) {
3916 				/* Repeat for some time before giving up. */
3917 				continue;
3918 			} else if (!hsfsts.hsf_status.flcdone) {
3919 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3920 				break;
3921 			}
3922 		}
3923 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3924 
3925 	return ret_val;
3926 }
3927 
3928 /**
3929  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3930  *  @hw: pointer to the HW structure
3931  *  @offset: The offset (in bytes) of the dword to read.
3932  *  @data: Pointer to the dword to store the value read.
3933  *
3934  *  Reads a byte or word from the NVM using the flash access registers.
3935  **/
3936 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3937 					   u32 *data)
3938 {
3939 	union ich8_hws_flash_status hsfsts;
3940 	union ich8_hws_flash_ctrl hsflctl;
3941 	u32 flash_linear_addr;
3942 	s32 ret_val = -E1000_ERR_NVM;
3943 	u8 count = 0;
3944 
3945 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3946 
3947 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3948 		    hw->mac.type < e1000_pch_spt)
3949 			return -E1000_ERR_NVM;
3950 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3951 			     hw->nvm.flash_base_addr);
3952 
3953 	do {
3954 		usec_delay(1);
3955 		/* Steps */
3956 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3957 		if (ret_val != E1000_SUCCESS)
3958 			break;
3959 		/* In SPT, This register is in Lan memory space, not flash.
3960 		 * Therefore, only 32 bit access is supported
3961 		 */
3962 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3963 
3964 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3965 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3966 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3967 		/* In SPT, This register is in Lan memory space, not flash.
3968 		 * Therefore, only 32 bit access is supported
3969 		 */
3970 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3971 				      (u32)hsflctl.regval << 16);
3972 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3973 
3974 		ret_val = e1000_flash_cycle_ich8lan(hw,
3975 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3976 
3977 		/* Check if FCERR is set to 1, if set to 1, clear it
3978 		 * and try the whole sequence a few more times, else
3979 		 * read in (shift in) the Flash Data0, the order is
3980 		 * least significant byte first msb to lsb
3981 		 */
3982 		if (ret_val == E1000_SUCCESS) {
3983 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3984 			break;
3985 		} else {
3986 			/* If we've gotten here, then things are probably
3987 			 * completely hosed, but if the error condition is
3988 			 * detected, it won't hurt to give it another try...
3989 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3990 			 */
3991 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3992 							      ICH_FLASH_HSFSTS);
3993 			if (hsfsts.hsf_status.flcerr) {
3994 				/* Repeat for some time before giving up. */
3995 				continue;
3996 			} else if (!hsfsts.hsf_status.flcdone) {
3997 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3998 				break;
3999 			}
4000 		}
4001 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4002 
4003 	return ret_val;
4004 }
4005 
4006 /**
4007  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4008  *  @hw: pointer to the HW structure
4009  *  @offset: The offset (in bytes) of the word(s) to write.
4010  *  @words: Size of data to write in words
4011  *  @data: Pointer to the word(s) to write at offset.
4012  *
4013  *  Writes a byte or word to the NVM using the flash access registers.
4014  **/
4015 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4016 				   u16 *data)
4017 {
4018 	struct e1000_nvm_info *nvm = &hw->nvm;
4019 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4020 	u16 i;
4021 
4022 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4023 
4024 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4025 	    (words == 0)) {
4026 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4027 		return -E1000_ERR_NVM;
4028 	}
4029 
4030 	nvm->ops.acquire(hw);
4031 
4032 	for (i = 0; i < words; i++) {
4033 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4034 		dev_spec->shadow_ram[offset+i].value = data[i];
4035 	}
4036 
4037 	nvm->ops.release(hw);
4038 
4039 	return E1000_SUCCESS;
4040 }
4041 
4042 /**
4043  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4044  *  @hw: pointer to the HW structure
4045  *
4046  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4047  *  which writes the checksum to the shadow ram.  The changes in the shadow
4048  *  ram are then committed to the EEPROM by processing each bank at a time
4049  *  checking for the modified bit and writing only the pending changes.
4050  *  After a successful commit, the shadow ram is cleared and is ready for
4051  *  future writes.
4052  **/
4053 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4054 {
4055 	struct e1000_nvm_info *nvm = &hw->nvm;
4056 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4057 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4058 	s32 ret_val;
4059 	u32 dword = 0;
4060 
4061 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4062 
4063 	ret_val = e1000_update_nvm_checksum_generic(hw);
4064 	if (ret_val)
4065 		goto out;
4066 
4067 	if (nvm->type != e1000_nvm_flash_sw)
4068 		goto out;
4069 
4070 	nvm->ops.acquire(hw);
4071 
4072 	/* We're writing to the opposite bank so if we're on bank 1,
4073 	 * write to bank 0 etc.  We also need to erase the segment that
4074 	 * is going to be written
4075 	 */
4076 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4077 	if (ret_val != E1000_SUCCESS) {
4078 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4079 		bank = 0;
4080 	}
4081 
4082 	if (bank == 0) {
4083 		new_bank_offset = nvm->flash_bank_size;
4084 		old_bank_offset = 0;
4085 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4086 		if (ret_val)
4087 			goto release;
4088 	} else {
4089 		old_bank_offset = nvm->flash_bank_size;
4090 		new_bank_offset = 0;
4091 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4092 		if (ret_val)
4093 			goto release;
4094 	}
4095 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4096 		/* Determine whether to write the value stored
4097 		 * in the other NVM bank or a modified value stored
4098 		 * in the shadow RAM
4099 		 */
4100 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4101 							 i + old_bank_offset,
4102 							 &dword);
4103 
4104 		if (dev_spec->shadow_ram[i].modified) {
4105 			dword &= 0xffff0000;
4106 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4107 		}
4108 		if (dev_spec->shadow_ram[i + 1].modified) {
4109 			dword &= 0x0000ffff;
4110 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4111 				  << 16);
4112 		}
4113 		if (ret_val)
4114 			break;
4115 
4116 		/* If the word is 0x13, then make sure the signature bits
4117 		 * (15:14) are 11b until the commit has completed.
4118 		 * This will allow us to write 10b which indicates the
4119 		 * signature is valid.  We want to do this after the write
4120 		 * has completed so that we don't mark the segment valid
4121 		 * while the write is still in progress
4122 		 */
4123 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4124 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4125 
4126 		/* Convert offset to bytes. */
4127 		act_offset = (i + new_bank_offset) << 1;
4128 
4129 		usec_delay(100);
4130 
4131 		/* Write the data to the new bank. Offset in words*/
4132 		act_offset = i + new_bank_offset;
4133 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4134 								dword);
4135 		if (ret_val)
4136 			break;
4137 	 }
4138 
4139 	/* Don't bother writing the segment valid bits if sector
4140 	 * programming failed.
4141 	 */
4142 	if (ret_val) {
4143 		DEBUGOUT("Flash commit failed.\n");
4144 		goto release;
4145 	}
4146 
4147 	/* Finally validate the new segment by setting bit 15:14
4148 	 * to 10b in word 0x13 , this can be done without an
4149 	 * erase as well since these bits are 11 to start with
4150 	 * and we need to change bit 14 to 0b
4151 	 */
4152 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4153 
4154 	/*offset in words but we read dword*/
4155 	--act_offset;
4156 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4157 
4158 	if (ret_val)
4159 		goto release;
4160 
4161 	dword &= 0xBFFFFFFF;
4162 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4163 
4164 	if (ret_val)
4165 		goto release;
4166 
4167 	/* And invalidate the previously valid segment by setting
4168 	 * its signature word (0x13) high_byte to 0b. This can be
4169 	 * done without an erase because flash erase sets all bits
4170 	 * to 1's. We can write 1's to 0's without an erase
4171 	 */
4172 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4173 
4174 	/* offset in words but we read dword*/
4175 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4176 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4177 
4178 	if (ret_val)
4179 		goto release;
4180 
4181 	dword &= 0x00FFFFFF;
4182 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4183 
4184 	if (ret_val)
4185 		goto release;
4186 
4187 	/* Great!  Everything worked, we can now clear the cached entries. */
4188 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4189 		dev_spec->shadow_ram[i].modified = FALSE;
4190 		dev_spec->shadow_ram[i].value = 0xFFFF;
4191 	}
4192 
4193 release:
4194 	nvm->ops.release(hw);
4195 
4196 	/* Reload the EEPROM, or else modifications will not appear
4197 	 * until after the next adapter reset.
4198 	 */
4199 	if (!ret_val) {
4200 		nvm->ops.reload(hw);
4201 		msec_delay(10);
4202 	}
4203 
4204 out:
4205 	if (ret_val)
4206 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4207 
4208 	return ret_val;
4209 }
4210 
4211 /**
4212  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4213  *  @hw: pointer to the HW structure
4214  *
4215  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4216  *  which writes the checksum to the shadow ram.  The changes in the shadow
4217  *  ram are then committed to the EEPROM by processing each bank at a time
4218  *  checking for the modified bit and writing only the pending changes.
4219  *  After a successful commit, the shadow ram is cleared and is ready for
4220  *  future writes.
4221  **/
4222 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4223 {
4224 	struct e1000_nvm_info *nvm = &hw->nvm;
4225 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4226 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4227 	s32 ret_val;
4228 	u16 data = 0;
4229 
4230 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4231 
4232 	ret_val = e1000_update_nvm_checksum_generic(hw);
4233 	if (ret_val)
4234 		goto out;
4235 
4236 	if (nvm->type != e1000_nvm_flash_sw)
4237 		goto out;
4238 
4239 	nvm->ops.acquire(hw);
4240 
4241 	/* We're writing to the opposite bank so if we're on bank 1,
4242 	 * write to bank 0 etc.  We also need to erase the segment that
4243 	 * is going to be written
4244 	 */
4245 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4246 	if (ret_val != E1000_SUCCESS) {
4247 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4248 		bank = 0;
4249 	}
4250 
4251 	if (bank == 0) {
4252 		new_bank_offset = nvm->flash_bank_size;
4253 		old_bank_offset = 0;
4254 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4255 		if (ret_val)
4256 			goto release;
4257 	} else {
4258 		old_bank_offset = nvm->flash_bank_size;
4259 		new_bank_offset = 0;
4260 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4261 		if (ret_val)
4262 			goto release;
4263 	}
4264 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4265 		if (dev_spec->shadow_ram[i].modified) {
4266 			data = dev_spec->shadow_ram[i].value;
4267 		} else {
4268 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4269 								old_bank_offset,
4270 								&data);
4271 			if (ret_val)
4272 				break;
4273 		}
4274 		/* If the word is 0x13, then make sure the signature bits
4275 		 * (15:14) are 11b until the commit has completed.
4276 		 * This will allow us to write 10b which indicates the
4277 		 * signature is valid.  We want to do this after the write
4278 		 * has completed so that we don't mark the segment valid
4279 		 * while the write is still in progress
4280 		 */
4281 		if (i == E1000_ICH_NVM_SIG_WORD)
4282 			data |= E1000_ICH_NVM_SIG_MASK;
4283 
4284 		/* Convert offset to bytes. */
4285 		act_offset = (i + new_bank_offset) << 1;
4286 
4287 		usec_delay(100);
4288 
4289 		/* Write the bytes to the new bank. */
4290 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4291 							       act_offset,
4292 							       (u8)data);
4293 		if (ret_val)
4294 			break;
4295 
4296 		usec_delay(100);
4297 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4298 							  act_offset + 1,
4299 							  (u8)(data >> 8));
4300 		if (ret_val)
4301 			break;
4302 	 }
4303 
4304 	/* Don't bother writing the segment valid bits if sector
4305 	 * programming failed.
4306 	 */
4307 	if (ret_val) {
4308 		DEBUGOUT("Flash commit failed.\n");
4309 		goto release;
4310 	}
4311 
4312 	/* Finally validate the new segment by setting bit 15:14
4313 	 * to 10b in word 0x13 , this can be done without an
4314 	 * erase as well since these bits are 11 to start with
4315 	 * and we need to change bit 14 to 0b
4316 	 */
4317 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4318 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4319 	if (ret_val)
4320 		goto release;
4321 
4322 	data &= 0xBFFF;
4323 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4324 						       (u8)(data >> 8));
4325 	if (ret_val)
4326 		goto release;
4327 
4328 	/* And invalidate the previously valid segment by setting
4329 	 * its signature word (0x13) high_byte to 0b. This can be
4330 	 * done without an erase because flash erase sets all bits
4331 	 * to 1's. We can write 1's to 0's without an erase
4332 	 */
4333 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4334 
4335 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4336 
4337 	if (ret_val)
4338 		goto release;
4339 
4340 	/* Great!  Everything worked, we can now clear the cached entries. */
4341 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4342 		dev_spec->shadow_ram[i].modified = FALSE;
4343 		dev_spec->shadow_ram[i].value = 0xFFFF;
4344 	}
4345 
4346 release:
4347 	nvm->ops.release(hw);
4348 
4349 	/* Reload the EEPROM, or else modifications will not appear
4350 	 * until after the next adapter reset.
4351 	 */
4352 	if (!ret_val) {
4353 		nvm->ops.reload(hw);
4354 		msec_delay(10);
4355 	}
4356 
4357 out:
4358 	if (ret_val)
4359 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4360 
4361 	return ret_val;
4362 }
4363 
4364 /**
4365  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4366  *  @hw: pointer to the HW structure
4367  *
4368  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4369  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4370  *  calculated, in which case we need to calculate the checksum and set bit 6.
4371  **/
4372 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4373 {
4374 	s32 ret_val;
4375 	u16 data;
4376 	u16 word;
4377 	u16 valid_csum_mask;
4378 
4379 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4380 
4381 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4382 	 * the checksum needs to be fixed.  This bit is an indication that
4383 	 * the NVM was prepared by OEM software and did not calculate
4384 	 * the checksum...a likely scenario.
4385 	 */
4386 	switch (hw->mac.type) {
4387 	case e1000_pch_lpt:
4388 	case e1000_pch_spt:
4389 		word = NVM_COMPAT;
4390 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4391 		break;
4392 	default:
4393 		word = NVM_FUTURE_INIT_WORD1;
4394 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4395 		break;
4396 	}
4397 
4398 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4399 	if (ret_val)
4400 		return ret_val;
4401 
4402 	if (!(data & valid_csum_mask)) {
4403 		data |= valid_csum_mask;
4404 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4405 		if (ret_val)
4406 			return ret_val;
4407 		ret_val = hw->nvm.ops.update(hw);
4408 		if (ret_val)
4409 			return ret_val;
4410 	}
4411 
4412 	return e1000_validate_nvm_checksum_generic(hw);
4413 }
4414 
4415 /**
4416  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4417  *  @hw: pointer to the HW structure
4418  *  @offset: The offset (in bytes) of the byte/word to read.
4419  *  @size: Size of data to read, 1=byte 2=word
4420  *  @data: The byte(s) to write to the NVM.
4421  *
4422  *  Writes one/two bytes to the NVM using the flash access registers.
4423  **/
4424 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4425 					  u8 size, u16 data)
4426 {
4427 	union ich8_hws_flash_status hsfsts;
4428 	union ich8_hws_flash_ctrl hsflctl;
4429 	u32 flash_linear_addr;
4430 	u32 flash_data = 0;
4431 	s32 ret_val;
4432 	u8 count = 0;
4433 
4434 	DEBUGFUNC("e1000_write_ich8_data");
4435 
4436 	if (hw->mac.type >= e1000_pch_spt) {
4437 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4438 			return -E1000_ERR_NVM;
4439 	} else {
4440 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4441 			return -E1000_ERR_NVM;
4442 	}
4443 
4444 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4445 			     hw->nvm.flash_base_addr);
4446 
4447 	do {
4448 		usec_delay(1);
4449 		/* Steps */
4450 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4451 		if (ret_val != E1000_SUCCESS)
4452 			break;
4453 		/* In SPT, This register is in Lan memory space, not
4454 		 * flash.  Therefore, only 32 bit access is supported
4455 		 */
4456 		if (hw->mac.type >= e1000_pch_spt)
4457 			hsflctl.regval =
4458 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4459 		else
4460 			hsflctl.regval =
4461 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4462 
4463 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4464 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4465 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4466 		/* In SPT, This register is in Lan memory space,
4467 		 * not flash.  Therefore, only 32 bit access is
4468 		 * supported
4469 		 */
4470 		if (hw->mac.type >= e1000_pch_spt)
4471 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4472 					      hsflctl.regval << 16);
4473 		else
4474 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4475 						hsflctl.regval);
4476 
4477 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4478 
4479 		if (size == 1)
4480 			flash_data = (u32)data & 0x00FF;
4481 		else
4482 			flash_data = (u32)data;
4483 
4484 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4485 
4486 		/* check if FCERR is set to 1 , if set to 1, clear it
4487 		 * and try the whole sequence a few more times else done
4488 		 */
4489 		ret_val =
4490 		    e1000_flash_cycle_ich8lan(hw,
4491 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4492 		if (ret_val == E1000_SUCCESS)
4493 			break;
4494 
4495 		/* If we're here, then things are most likely
4496 		 * completely hosed, but if the error condition
4497 		 * is detected, it won't hurt to give it another
4498 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4499 		 */
4500 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4501 		if (hsfsts.hsf_status.flcerr)
4502 			/* Repeat for some time before giving up. */
4503 			continue;
4504 		if (!hsfsts.hsf_status.flcdone) {
4505 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4506 			break;
4507 		}
4508 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4509 
4510 	return ret_val;
4511 }
4512 
4513 /**
4514 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4515 *  @hw: pointer to the HW structure
4516 *  @offset: The offset (in bytes) of the dwords to read.
4517 *  @data: The 4 bytes to write to the NVM.
4518 *
4519 *  Writes one/two/four bytes to the NVM using the flash access registers.
4520 **/
4521 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4522 					    u32 data)
4523 {
4524 	union ich8_hws_flash_status hsfsts;
4525 	union ich8_hws_flash_ctrl hsflctl;
4526 	u32 flash_linear_addr;
4527 	s32 ret_val;
4528 	u8 count = 0;
4529 
4530 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4531 
4532 	if (hw->mac.type >= e1000_pch_spt) {
4533 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4534 			return -E1000_ERR_NVM;
4535 	}
4536 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4537 			     hw->nvm.flash_base_addr);
4538 	do {
4539 		usec_delay(1);
4540 		/* Steps */
4541 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4542 		if (ret_val != E1000_SUCCESS)
4543 			break;
4544 
4545 		/* In SPT, This register is in Lan memory space, not
4546 		 * flash.  Therefore, only 32 bit access is supported
4547 		 */
4548 		if (hw->mac.type >= e1000_pch_spt)
4549 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4550 							      ICH_FLASH_HSFSTS)
4551 					 >> 16;
4552 		else
4553 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4554 							      ICH_FLASH_HSFCTL);
4555 
4556 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4557 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4558 
4559 		/* In SPT, This register is in Lan memory space,
4560 		 * not flash.  Therefore, only 32 bit access is
4561 		 * supported
4562 		 */
4563 		if (hw->mac.type >= e1000_pch_spt)
4564 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4565 					      hsflctl.regval << 16);
4566 		else
4567 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4568 						hsflctl.regval);
4569 
4570 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4571 
4572 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4573 
4574 		/* check if FCERR is set to 1 , if set to 1, clear it
4575 		 * and try the whole sequence a few more times else done
4576 		 */
4577 		ret_val = e1000_flash_cycle_ich8lan(hw,
4578 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4579 
4580 		if (ret_val == E1000_SUCCESS)
4581 			break;
4582 
4583 		/* If we're here, then things are most likely
4584 		 * completely hosed, but if the error condition
4585 		 * is detected, it won't hurt to give it another
4586 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4587 		 */
4588 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4589 
4590 		if (hsfsts.hsf_status.flcerr)
4591 			/* Repeat for some time before giving up. */
4592 			continue;
4593 		if (!hsfsts.hsf_status.flcdone) {
4594 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4595 			break;
4596 		}
4597 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4598 
4599 	return ret_val;
4600 }
4601 
4602 /**
4603  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4604  *  @hw: pointer to the HW structure
4605  *  @offset: The index of the byte to read.
4606  *  @data: The byte to write to the NVM.
4607  *
4608  *  Writes a single byte to the NVM using the flash access registers.
4609  **/
4610 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4611 					  u8 data)
4612 {
4613 	u16 word = (u16)data;
4614 
4615 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4616 
4617 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4618 }
4619 
4620 /**
4621 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4622 *  @hw: pointer to the HW structure
4623 *  @offset: The offset of the word to write.
4624 *  @dword: The dword to write to the NVM.
4625 *
4626 *  Writes a single dword to the NVM using the flash access registers.
4627 *  Goes through a retry algorithm before giving up.
4628 **/
4629 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4630 						 u32 offset, u32 dword)
4631 {
4632 	s32 ret_val;
4633 	u16 program_retries;
4634 
4635 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4636 
4637 	/* Must convert word offset into bytes. */
4638 	offset <<= 1;
4639 
4640 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4641 
4642 	if (!ret_val)
4643 		return ret_val;
4644 	for (program_retries = 0; program_retries < 100; program_retries++) {
4645 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4646 		usec_delay(100);
4647 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4648 		if (ret_val == E1000_SUCCESS)
4649 			break;
4650 	}
4651 	if (program_retries == 100)
4652 		return -E1000_ERR_NVM;
4653 
4654 	return E1000_SUCCESS;
4655 }
4656 
4657 /**
4658  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4659  *  @hw: pointer to the HW structure
4660  *  @offset: The offset of the byte to write.
4661  *  @byte: The byte to write to the NVM.
4662  *
4663  *  Writes a single byte to the NVM using the flash access registers.
4664  *  Goes through a retry algorithm before giving up.
4665  **/
4666 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4667 						u32 offset, u8 byte)
4668 {
4669 	s32 ret_val;
4670 	u16 program_retries;
4671 
4672 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4673 
4674 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4675 	if (!ret_val)
4676 		return ret_val;
4677 
4678 	for (program_retries = 0; program_retries < 100; program_retries++) {
4679 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4680 		usec_delay(100);
4681 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4682 		if (ret_val == E1000_SUCCESS)
4683 			break;
4684 	}
4685 	if (program_retries == 100)
4686 		return -E1000_ERR_NVM;
4687 
4688 	return E1000_SUCCESS;
4689 }
4690 
4691 /**
4692  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4693  *  @hw: pointer to the HW structure
4694  *  @bank: 0 for first bank, 1 for second bank, etc.
4695  *
4696  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4697  *  bank N is 4096 * N + flash_reg_addr.
4698  **/
4699 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4700 {
4701 	struct e1000_nvm_info *nvm = &hw->nvm;
4702 	union ich8_hws_flash_status hsfsts;
4703 	union ich8_hws_flash_ctrl hsflctl;
4704 	u32 flash_linear_addr;
4705 	/* bank size is in 16bit words - adjust to bytes */
4706 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4707 	s32 ret_val;
4708 	s32 count = 0;
4709 	s32 j, iteration, sector_size;
4710 
4711 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4712 
4713 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4714 
4715 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4716 	 * register
4717 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4718 	 *     consecutive sectors.  The start index for the nth Hw sector
4719 	 *     can be calculated as = bank * 4096 + n * 256
4720 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4721 	 *     The start index for the nth Hw sector can be calculated
4722 	 *     as = bank * 4096
4723 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4724 	 *     (ich9 only, otherwise error condition)
4725 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4726 	 */
4727 	switch (hsfsts.hsf_status.berasesz) {
4728 	case 0:
4729 		/* Hw sector size 256 */
4730 		sector_size = ICH_FLASH_SEG_SIZE_256;
4731 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4732 		break;
4733 	case 1:
4734 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4735 		iteration = 1;
4736 		break;
4737 	case 2:
4738 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4739 		iteration = 1;
4740 		break;
4741 	case 3:
4742 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4743 		iteration = 1;
4744 		break;
4745 	default:
4746 		return -E1000_ERR_NVM;
4747 	}
4748 
4749 	/* Start with the base address, then add the sector offset. */
4750 	flash_linear_addr = hw->nvm.flash_base_addr;
4751 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4752 
4753 	for (j = 0; j < iteration; j++) {
4754 		do {
4755 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4756 
4757 			/* Steps */
4758 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4759 			if (ret_val)
4760 				return ret_val;
4761 
4762 			/* Write a value 11 (block Erase) in Flash
4763 			 * Cycle field in hw flash control
4764 			 */
4765 			if (hw->mac.type >= e1000_pch_spt)
4766 				hsflctl.regval =
4767 				    E1000_READ_FLASH_REG(hw,
4768 							 ICH_FLASH_HSFSTS)>>16;
4769 			else
4770 				hsflctl.regval =
4771 				    E1000_READ_FLASH_REG16(hw,
4772 							   ICH_FLASH_HSFCTL);
4773 
4774 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4775 			if (hw->mac.type >= e1000_pch_spt)
4776 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4777 						      hsflctl.regval << 16);
4778 			else
4779 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4780 							hsflctl.regval);
4781 
4782 			/* Write the last 24 bits of an index within the
4783 			 * block into Flash Linear address field in Flash
4784 			 * Address.
4785 			 */
4786 			flash_linear_addr += (j * sector_size);
4787 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4788 					      flash_linear_addr);
4789 
4790 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4791 			if (ret_val == E1000_SUCCESS)
4792 				break;
4793 
4794 			/* Check if FCERR is set to 1.  If 1,
4795 			 * clear it and try the whole sequence
4796 			 * a few more times else Done
4797 			 */
4798 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4799 						      ICH_FLASH_HSFSTS);
4800 			if (hsfsts.hsf_status.flcerr)
4801 				/* repeat for some time before giving up */
4802 				continue;
4803 			else if (!hsfsts.hsf_status.flcdone)
4804 				return ret_val;
4805 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4806 	}
4807 
4808 	return E1000_SUCCESS;
4809 }
4810 
4811 /**
4812  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4813  *  @hw: pointer to the HW structure
4814  *  @data: Pointer to the LED settings
4815  *
4816  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4817  *  settings is all 0's or F's, set the LED default to a valid LED default
4818  *  setting.
4819  **/
4820 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4821 {
4822 	s32 ret_val;
4823 
4824 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4825 
4826 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4827 	if (ret_val) {
4828 		DEBUGOUT("NVM Read Error\n");
4829 		return ret_val;
4830 	}
4831 
4832 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4833 		*data = ID_LED_DEFAULT_ICH8LAN;
4834 
4835 	return E1000_SUCCESS;
4836 }
4837 
4838 /**
4839  *  e1000_id_led_init_pchlan - store LED configurations
4840  *  @hw: pointer to the HW structure
4841  *
4842  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4843  *  the PHY LED configuration register.
4844  *
4845  *  PCH also does not have an "always on" or "always off" mode which
4846  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4847  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4848  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4849  *  link based on logic in e1000_led_[on|off]_pchlan().
4850  **/
4851 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4852 {
4853 	struct e1000_mac_info *mac = &hw->mac;
4854 	s32 ret_val;
4855 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4856 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4857 	u16 data, i, temp, shift;
4858 
4859 	DEBUGFUNC("e1000_id_led_init_pchlan");
4860 
4861 	/* Get default ID LED modes */
4862 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4863 	if (ret_val)
4864 		return ret_val;
4865 
4866 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4867 	mac->ledctl_mode1 = mac->ledctl_default;
4868 	mac->ledctl_mode2 = mac->ledctl_default;
4869 
4870 	for (i = 0; i < 4; i++) {
4871 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4872 		shift = (i * 5);
4873 		switch (temp) {
4874 		case ID_LED_ON1_DEF2:
4875 		case ID_LED_ON1_ON2:
4876 		case ID_LED_ON1_OFF2:
4877 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4878 			mac->ledctl_mode1 |= (ledctl_on << shift);
4879 			break;
4880 		case ID_LED_OFF1_DEF2:
4881 		case ID_LED_OFF1_ON2:
4882 		case ID_LED_OFF1_OFF2:
4883 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4884 			mac->ledctl_mode1 |= (ledctl_off << shift);
4885 			break;
4886 		default:
4887 			/* Do nothing */
4888 			break;
4889 		}
4890 		switch (temp) {
4891 		case ID_LED_DEF1_ON2:
4892 		case ID_LED_ON1_ON2:
4893 		case ID_LED_OFF1_ON2:
4894 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4895 			mac->ledctl_mode2 |= (ledctl_on << shift);
4896 			break;
4897 		case ID_LED_DEF1_OFF2:
4898 		case ID_LED_ON1_OFF2:
4899 		case ID_LED_OFF1_OFF2:
4900 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4901 			mac->ledctl_mode2 |= (ledctl_off << shift);
4902 			break;
4903 		default:
4904 			/* Do nothing */
4905 			break;
4906 		}
4907 	}
4908 
4909 	return E1000_SUCCESS;
4910 }
4911 
4912 /**
4913  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4914  *  @hw: pointer to the HW structure
4915  *
4916  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4917  *  register, so the bus width is hard coded.
4918  **/
4919 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4920 {
4921 	struct e1000_bus_info *bus = &hw->bus;
4922 	s32 ret_val;
4923 
4924 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4925 
4926 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4927 
4928 	/* ICH devices are "PCI Express"-ish.  They have
4929 	 * a configuration space, but do not contain
4930 	 * PCI Express Capability registers, so bus width
4931 	 * must be hardcoded.
4932 	 */
4933 	if (bus->width == e1000_bus_width_unknown)
4934 		bus->width = e1000_bus_width_pcie_x1;
4935 
4936 	return ret_val;
4937 }
4938 
4939 /**
4940  *  e1000_reset_hw_ich8lan - Reset the hardware
4941  *  @hw: pointer to the HW structure
4942  *
4943  *  Does a full reset of the hardware which includes a reset of the PHY and
4944  *  MAC.
4945  **/
4946 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4947 {
4948 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4949 	u16 kum_cfg;
4950 	u32 ctrl, reg;
4951 	s32 ret_val;
4952 
4953 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4954 
4955 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4956 	 * on the last TLP read/write transaction when MAC is reset.
4957 	 */
4958 	ret_val = e1000_disable_pcie_master_generic(hw);
4959 	if (ret_val)
4960 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4961 
4962 	DEBUGOUT("Masking off all interrupts\n");
4963 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4964 
4965 	/* Disable the Transmit and Receive units.  Then delay to allow
4966 	 * any pending transactions to complete before we hit the MAC
4967 	 * with the global reset.
4968 	 */
4969 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4970 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4971 	E1000_WRITE_FLUSH(hw);
4972 
4973 	msec_delay(10);
4974 
4975 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4976 	if (hw->mac.type == e1000_ich8lan) {
4977 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4978 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4979 		/* Set Packet Buffer Size to 16k. */
4980 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4981 	}
4982 
4983 	if (hw->mac.type == e1000_pchlan) {
4984 		/* Save the NVM K1 bit setting*/
4985 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4986 		if (ret_val)
4987 			return ret_val;
4988 
4989 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4990 			dev_spec->nvm_k1_enabled = TRUE;
4991 		else
4992 			dev_spec->nvm_k1_enabled = FALSE;
4993 	}
4994 
4995 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4996 
4997 	if (!hw->phy.ops.check_reset_block(hw)) {
4998 		/* Full-chip reset requires MAC and PHY reset at the same
4999 		 * time to make sure the interface between MAC and the
5000 		 * external PHY is reset.
5001 		 */
5002 		ctrl |= E1000_CTRL_PHY_RST;
5003 
5004 		/* Gate automatic PHY configuration by hardware on
5005 		 * non-managed 82579
5006 		 */
5007 		if ((hw->mac.type == e1000_pch2lan) &&
5008 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5009 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5010 	}
5011 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5012 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5013 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5014 	/* cannot issue a flush here because it hangs the hardware */
5015 	msec_delay(20);
5016 
5017 	/* Set Phy Config Counter to 50msec */
5018 	if (hw->mac.type == e1000_pch2lan) {
5019 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5020 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5021 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5022 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5023 	}
5024 
5025 	if (!ret_val)
5026 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5027 
5028 	if (ctrl & E1000_CTRL_PHY_RST) {
5029 		ret_val = hw->phy.ops.get_cfg_done(hw);
5030 		if (ret_val)
5031 			return ret_val;
5032 
5033 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5034 		if (ret_val)
5035 			return ret_val;
5036 	}
5037 
5038 	/* For PCH, this write will make sure that any noise
5039 	 * will be detected as a CRC error and be dropped rather than show up
5040 	 * as a bad packet to the DMA engine.
5041 	 */
5042 	if (hw->mac.type == e1000_pchlan)
5043 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5044 
5045 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5046 	E1000_READ_REG(hw, E1000_ICR);
5047 
5048 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5049 	reg |= E1000_KABGTXD_BGSQLBIAS;
5050 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5051 
5052 	return E1000_SUCCESS;
5053 }
5054 
5055 /**
5056  *  e1000_init_hw_ich8lan - Initialize the hardware
5057  *  @hw: pointer to the HW structure
5058  *
5059  *  Prepares the hardware for transmit and receive by doing the following:
5060  *   - initialize hardware bits
5061  *   - initialize LED identification
5062  *   - setup receive address registers
5063  *   - setup flow control
5064  *   - setup transmit descriptors
5065  *   - clear statistics
5066  **/
5067 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5068 {
5069 	struct e1000_mac_info *mac = &hw->mac;
5070 	u32 ctrl_ext, txdctl, snoop;
5071 	s32 ret_val;
5072 	u16 i;
5073 
5074 	DEBUGFUNC("e1000_init_hw_ich8lan");
5075 
5076 	e1000_initialize_hw_bits_ich8lan(hw);
5077 
5078 	/* Initialize identification LED */
5079 	ret_val = mac->ops.id_led_init(hw);
5080 	/* An error is not fatal and we should not stop init due to this */
5081 	if (ret_val)
5082 		DEBUGOUT("Error initializing identification LED\n");
5083 
5084 	/* Setup the receive address. */
5085 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5086 
5087 	/* Zero out the Multicast HASH table */
5088 	DEBUGOUT("Zeroing the MTA\n");
5089 	for (i = 0; i < mac->mta_reg_count; i++)
5090 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5091 
5092 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5093 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5094 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5095 	 */
5096 	if (hw->phy.type == e1000_phy_82578) {
5097 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5098 		i &= ~BM_WUC_HOST_WU_BIT;
5099 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5100 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5101 		if (ret_val)
5102 			return ret_val;
5103 	}
5104 
5105 	/* Setup link and flow control */
5106 	ret_val = mac->ops.setup_link(hw);
5107 
5108 	/* Set the transmit descriptor write-back policy for both queues */
5109 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5110 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5111 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5112 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5113 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5114 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5115 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5116 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5117 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5118 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5119 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5120 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5121 
5122 	/* ICH8 has opposite polarity of no_snoop bits.
5123 	 * By default, we should use snoop behavior.
5124 	 */
5125 	if (mac->type == e1000_ich8lan)
5126 		snoop = PCIE_ICH8_SNOOP_ALL;
5127 	else
5128 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5129 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5130 
5131 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5132 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5133 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5134 
5135 	/* Clear all of the statistics registers (clear on read).  It is
5136 	 * important that we do this after we have tried to establish link
5137 	 * because the symbol error count will increment wildly if there
5138 	 * is no link.
5139 	 */
5140 	e1000_clear_hw_cntrs_ich8lan(hw);
5141 
5142 	return ret_val;
5143 }
5144 
5145 /**
5146  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5147  *  @hw: pointer to the HW structure
5148  *
5149  *  Sets/Clears required hardware bits necessary for correctly setting up the
5150  *  hardware for transmit and receive.
5151  **/
5152 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5153 {
5154 	u32 reg;
5155 
5156 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5157 
5158 	/* Extended Device Control */
5159 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5160 	reg |= (1 << 22);
5161 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5162 	if (hw->mac.type >= e1000_pchlan)
5163 		reg |= E1000_CTRL_EXT_PHYPDEN;
5164 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5165 
5166 	/* Transmit Descriptor Control 0 */
5167 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5168 	reg |= (1 << 22);
5169 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5170 
5171 	/* Transmit Descriptor Control 1 */
5172 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5173 	reg |= (1 << 22);
5174 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5175 
5176 	/* Transmit Arbitration Control 0 */
5177 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5178 	if (hw->mac.type == e1000_ich8lan)
5179 		reg |= (1 << 28) | (1 << 29);
5180 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5181 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5182 
5183 	/* Transmit Arbitration Control 1 */
5184 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5185 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5186 		reg &= ~(1 << 28);
5187 	else
5188 		reg |= (1 << 28);
5189 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5190 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5191 
5192 	/* Device Status */
5193 	if (hw->mac.type == e1000_ich8lan) {
5194 		reg = E1000_READ_REG(hw, E1000_STATUS);
5195 		reg &= ~(1 << 31);
5196 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5197 	}
5198 
5199 	/* work-around descriptor data corruption issue during nfs v2 udp
5200 	 * traffic, just disable the nfs filtering capability
5201 	 */
5202 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5203 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5204 
5205 	/* Disable IPv6 extension header parsing because some malformed
5206 	 * IPv6 headers can hang the Rx.
5207 	 */
5208 	if (hw->mac.type == e1000_ich8lan)
5209 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5210 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5211 
5212 	/* Enable ECC on Lynxpoint */
5213 	if (hw->mac.type >= e1000_pch_lpt) {
5214 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5215 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5216 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5217 
5218 		reg = E1000_READ_REG(hw, E1000_CTRL);
5219 		reg |= E1000_CTRL_MEHE;
5220 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5221 	}
5222 
5223 	return;
5224 }
5225 
5226 /**
5227  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5228  *  @hw: pointer to the HW structure
5229  *
5230  *  Determines which flow control settings to use, then configures flow
5231  *  control.  Calls the appropriate media-specific link configuration
5232  *  function.  Assuming the adapter has a valid link partner, a valid link
5233  *  should be established.  Assumes the hardware has previously been reset
5234  *  and the transmitter and receiver are not enabled.
5235  **/
5236 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5237 {
5238 	s32 ret_val;
5239 
5240 	DEBUGFUNC("e1000_setup_link_ich8lan");
5241 
5242 	if (hw->phy.ops.check_reset_block(hw))
5243 		return E1000_SUCCESS;
5244 
5245 	/* ICH parts do not have a word in the NVM to determine
5246 	 * the default flow control setting, so we explicitly
5247 	 * set it to full.
5248 	 */
5249 	if (hw->fc.requested_mode == e1000_fc_default)
5250 		hw->fc.requested_mode = e1000_fc_full;
5251 
5252 	/* Save off the requested flow control mode for use later.  Depending
5253 	 * on the link partner's capabilities, we may or may not use this mode.
5254 	 */
5255 	hw->fc.current_mode = hw->fc.requested_mode;
5256 
5257 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5258 		hw->fc.current_mode);
5259 
5260 	/* Continue to configure the copper link. */
5261 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5262 	if (ret_val)
5263 		return ret_val;
5264 
5265 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5266 	if ((hw->phy.type == e1000_phy_82578) ||
5267 	    (hw->phy.type == e1000_phy_82579) ||
5268 	    (hw->phy.type == e1000_phy_i217) ||
5269 	    (hw->phy.type == e1000_phy_82577)) {
5270 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5271 
5272 		ret_val = hw->phy.ops.write_reg(hw,
5273 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5274 					     hw->fc.pause_time);
5275 		if (ret_val)
5276 			return ret_val;
5277 	}
5278 
5279 	return e1000_set_fc_watermarks_generic(hw);
5280 }
5281 
5282 /**
5283  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5284  *  @hw: pointer to the HW structure
5285  *
5286  *  Configures the kumeran interface to the PHY to wait the appropriate time
5287  *  when polling the PHY, then call the generic setup_copper_link to finish
5288  *  configuring the copper link.
5289  **/
5290 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5291 {
5292 	u32 ctrl;
5293 	s32 ret_val;
5294 	u16 reg_data;
5295 
5296 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5297 
5298 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5299 	ctrl |= E1000_CTRL_SLU;
5300 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5301 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5302 
5303 	/* Set the mac to wait the maximum time between each iteration
5304 	 * and increase the max iterations when polling the phy;
5305 	 * this fixes erroneous timeouts at 10Mbps.
5306 	 */
5307 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5308 					       0xFFFF);
5309 	if (ret_val)
5310 		return ret_val;
5311 	ret_val = e1000_read_kmrn_reg_generic(hw,
5312 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5313 					      &reg_data);
5314 	if (ret_val)
5315 		return ret_val;
5316 	reg_data |= 0x3F;
5317 	ret_val = e1000_write_kmrn_reg_generic(hw,
5318 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5319 					       reg_data);
5320 	if (ret_val)
5321 		return ret_val;
5322 
5323 	switch (hw->phy.type) {
5324 	case e1000_phy_igp_3:
5325 		ret_val = e1000_copper_link_setup_igp(hw);
5326 		if (ret_val)
5327 			return ret_val;
5328 		break;
5329 	case e1000_phy_bm:
5330 	case e1000_phy_82578:
5331 		ret_val = e1000_copper_link_setup_m88(hw);
5332 		if (ret_val)
5333 			return ret_val;
5334 		break;
5335 	case e1000_phy_82577:
5336 	case e1000_phy_82579:
5337 		ret_val = e1000_copper_link_setup_82577(hw);
5338 		if (ret_val)
5339 			return ret_val;
5340 		break;
5341 	case e1000_phy_ife:
5342 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5343 					       &reg_data);
5344 		if (ret_val)
5345 			return ret_val;
5346 
5347 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5348 
5349 		switch (hw->phy.mdix) {
5350 		case 1:
5351 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5352 			break;
5353 		case 2:
5354 			reg_data |= IFE_PMC_FORCE_MDIX;
5355 			break;
5356 		case 0:
5357 		default:
5358 			reg_data |= IFE_PMC_AUTO_MDIX;
5359 			break;
5360 		}
5361 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5362 						reg_data);
5363 		if (ret_val)
5364 			return ret_val;
5365 		break;
5366 	default:
5367 		break;
5368 	}
5369 
5370 	return e1000_setup_copper_link_generic(hw);
5371 }
5372 
5373 /**
5374  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5375  *  @hw: pointer to the HW structure
5376  *
5377  *  Calls the PHY specific link setup function and then calls the
5378  *  generic setup_copper_link to finish configuring the link for
5379  *  Lynxpoint PCH devices
5380  **/
5381 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5382 {
5383 	u32 ctrl;
5384 	s32 ret_val;
5385 
5386 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5387 
5388 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5389 	ctrl |= E1000_CTRL_SLU;
5390 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5391 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5392 
5393 	ret_val = e1000_copper_link_setup_82577(hw);
5394 	if (ret_val)
5395 		return ret_val;
5396 
5397 	return e1000_setup_copper_link_generic(hw);
5398 }
5399 
5400 /**
5401  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5402  *  @hw: pointer to the HW structure
5403  *  @speed: pointer to store current link speed
5404  *  @duplex: pointer to store the current link duplex
5405  *
5406  *  Calls the generic get_speed_and_duplex to retrieve the current link
5407  *  information and then calls the Kumeran lock loss workaround for links at
5408  *  gigabit speeds.
5409  **/
5410 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5411 					  u16 *duplex)
5412 {
5413 	s32 ret_val;
5414 
5415 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5416 
5417 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5418 	if (ret_val)
5419 		return ret_val;
5420 
5421 	if ((hw->mac.type == e1000_ich8lan) &&
5422 	    (hw->phy.type == e1000_phy_igp_3) &&
5423 	    (*speed == SPEED_1000)) {
5424 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5425 	}
5426 
5427 	return ret_val;
5428 }
5429 
5430 /**
5431  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5432  *  @hw: pointer to the HW structure
5433  *
5434  *  Work-around for 82566 Kumeran PCS lock loss:
5435  *  On link status change (i.e. PCI reset, speed change) and link is up and
5436  *  speed is gigabit-
5437  *    0) if workaround is optionally disabled do nothing
5438  *    1) wait 1ms for Kumeran link to come up
5439  *    2) check Kumeran Diagnostic register PCS lock loss bit
5440  *    3) if not set the link is locked (all is good), otherwise...
5441  *    4) reset the PHY
5442  *    5) repeat up to 10 times
5443  *  Note: this is only called for IGP3 copper when speed is 1gb.
5444  **/
5445 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5446 {
5447 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5448 	u32 phy_ctrl;
5449 	s32 ret_val;
5450 	u16 i, data;
5451 	bool link;
5452 
5453 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5454 
5455 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5456 		return E1000_SUCCESS;
5457 
5458 	/* Make sure link is up before proceeding.  If not just return.
5459 	 * Attempting this while link is negotiating fouled up link
5460 	 * stability
5461 	 */
5462 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5463 	if (!link)
5464 		return E1000_SUCCESS;
5465 
5466 	for (i = 0; i < 10; i++) {
5467 		/* read once to clear */
5468 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5469 		if (ret_val)
5470 			return ret_val;
5471 		/* and again to get new status */
5472 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5473 		if (ret_val)
5474 			return ret_val;
5475 
5476 		/* check for PCS lock */
5477 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5478 			return E1000_SUCCESS;
5479 
5480 		/* Issue PHY reset */
5481 		hw->phy.ops.reset(hw);
5482 		msec_delay_irq(5);
5483 	}
5484 	/* Disable GigE link negotiation */
5485 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5486 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5487 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5488 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5489 
5490 	/* Call gig speed drop workaround on Gig disable before accessing
5491 	 * any PHY registers
5492 	 */
5493 	e1000_gig_downshift_workaround_ich8lan(hw);
5494 
5495 	/* unable to acquire PCS lock */
5496 	return -E1000_ERR_PHY;
5497 }
5498 
5499 /**
5500  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5501  *  @hw: pointer to the HW structure
5502  *  @state: boolean value used to set the current Kumeran workaround state
5503  *
5504  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5505  *  /disabled - FALSE).
5506  **/
5507 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5508 						 bool state)
5509 {
5510 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5511 
5512 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5513 
5514 	if (hw->mac.type != e1000_ich8lan) {
5515 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5516 		return;
5517 	}
5518 
5519 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5520 
5521 	return;
5522 }
5523 
5524 /**
5525  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5526  *  @hw: pointer to the HW structure
5527  *
5528  *  Workaround for 82566 power-down on D3 entry:
5529  *    1) disable gigabit link
5530  *    2) write VR power-down enable
5531  *    3) read it back
5532  *  Continue if successful, else issue LCD reset and repeat
5533  **/
5534 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5535 {
5536 	u32 reg;
5537 	u16 data;
5538 	u8  retry = 0;
5539 
5540 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5541 
5542 	if (hw->phy.type != e1000_phy_igp_3)
5543 		return;
5544 
5545 	/* Try the workaround twice (if needed) */
5546 	do {
5547 		/* Disable link */
5548 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5549 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5550 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5551 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5552 
5553 		/* Call gig speed drop workaround on Gig disable before
5554 		 * accessing any PHY registers
5555 		 */
5556 		if (hw->mac.type == e1000_ich8lan)
5557 			e1000_gig_downshift_workaround_ich8lan(hw);
5558 
5559 		/* Write VR power-down enable */
5560 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5561 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5562 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5563 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5564 
5565 		/* Read it back and test */
5566 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5567 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5568 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5569 			break;
5570 
5571 		/* Issue PHY reset and repeat at most one more time */
5572 		reg = E1000_READ_REG(hw, E1000_CTRL);
5573 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5574 		retry++;
5575 	} while (retry);
5576 }
5577 
5578 /**
5579  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5580  *  @hw: pointer to the HW structure
5581  *
5582  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5583  *  LPLU, Gig disable, MDIC PHY reset):
5584  *    1) Set Kumeran Near-end loopback
5585  *    2) Clear Kumeran Near-end loopback
5586  *  Should only be called for ICH8[m] devices with any 1G Phy.
5587  **/
5588 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5589 {
5590 	s32 ret_val;
5591 	u16 reg_data;
5592 
5593 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5594 
5595 	if ((hw->mac.type != e1000_ich8lan) ||
5596 	    (hw->phy.type == e1000_phy_ife))
5597 		return;
5598 
5599 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5600 					      &reg_data);
5601 	if (ret_val)
5602 		return;
5603 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5604 	ret_val = e1000_write_kmrn_reg_generic(hw,
5605 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5606 					       reg_data);
5607 	if (ret_val)
5608 		return;
5609 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5610 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5611 				     reg_data);
5612 }
5613 
5614 /**
5615  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5616  *  @hw: pointer to the HW structure
5617  *
5618  *  During S0 to Sx transition, it is possible the link remains at gig
5619  *  instead of negotiating to a lower speed.  Before going to Sx, set
5620  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5621  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5622  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5623  *  needs to be written.
5624  *  Parts that support (and are linked to a partner which support) EEE in
5625  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5626  *  than 10Mbps w/o EEE.
5627  **/
5628 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5629 {
5630 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5631 	u32 phy_ctrl;
5632 	s32 ret_val;
5633 
5634 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5635 
5636 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5637 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5638 
5639 	if (hw->phy.type == e1000_phy_i217) {
5640 		u16 phy_reg, device_id = hw->device_id;
5641 
5642 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5643 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5644 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5645 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5646 		    (hw->mac.type >= e1000_pch_spt)) {
5647 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5648 
5649 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5650 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5651 		}
5652 
5653 		ret_val = hw->phy.ops.acquire(hw);
5654 		if (ret_val)
5655 			goto out;
5656 
5657 		if (!dev_spec->eee_disable) {
5658 			u16 eee_advert;
5659 
5660 			ret_val =
5661 			    e1000_read_emi_reg_locked(hw,
5662 						      I217_EEE_ADVERTISEMENT,
5663 						      &eee_advert);
5664 			if (ret_val)
5665 				goto release;
5666 
5667 			/* Disable LPLU if both link partners support 100BaseT
5668 			 * EEE and 100Full is advertised on both ends of the
5669 			 * link, and enable Auto Enable LPI since there will
5670 			 * be no driver to enable LPI while in Sx.
5671 			 */
5672 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5673 			    (dev_spec->eee_lp_ability &
5674 			     I82579_EEE_100_SUPPORTED) &&
5675 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5676 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5677 					      E1000_PHY_CTRL_NOND0A_LPLU);
5678 
5679 				/* Set Auto Enable LPI after link up */
5680 				hw->phy.ops.read_reg_locked(hw,
5681 							    I217_LPI_GPIO_CTRL,
5682 							    &phy_reg);
5683 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5684 				hw->phy.ops.write_reg_locked(hw,
5685 							     I217_LPI_GPIO_CTRL,
5686 							     phy_reg);
5687 			}
5688 		}
5689 
5690 		/* For i217 Intel Rapid Start Technology support,
5691 		 * when the system is going into Sx and no manageability engine
5692 		 * is present, the driver must configure proxy to reset only on
5693 		 * power good.  LPI (Low Power Idle) state must also reset only
5694 		 * on power good, as well as the MTA (Multicast table array).
5695 		 * The SMBus release must also be disabled on LCD reset.
5696 		 */
5697 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5698 		      E1000_ICH_FWSM_FW_VALID)) {
5699 			/* Enable proxy to reset only on power good. */
5700 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5701 						    &phy_reg);
5702 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5703 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5704 						     phy_reg);
5705 
5706 			/* Set bit enable LPI (EEE) to reset only on
5707 			 * power good.
5708 			*/
5709 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5710 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5711 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5712 
5713 			/* Disable the SMB release on LCD reset. */
5714 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5715 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5716 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5717 		}
5718 
5719 		/* Enable MTA to reset for Intel Rapid Start Technology
5720 		 * Support
5721 		 */
5722 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5723 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5724 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5725 
5726 release:
5727 		hw->phy.ops.release(hw);
5728 	}
5729 out:
5730 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5731 
5732 	if (hw->mac.type == e1000_ich8lan)
5733 		e1000_gig_downshift_workaround_ich8lan(hw);
5734 
5735 	if (hw->mac.type >= e1000_pchlan) {
5736 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5737 
5738 		/* Reset PHY to activate OEM bits on 82577/8 */
5739 		if (hw->mac.type == e1000_pchlan)
5740 			e1000_phy_hw_reset_generic(hw);
5741 
5742 		ret_val = hw->phy.ops.acquire(hw);
5743 		if (ret_val)
5744 			return;
5745 		e1000_write_smbus_addr(hw);
5746 		hw->phy.ops.release(hw);
5747 	}
5748 
5749 	return;
5750 }
5751 
5752 /**
5753  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5754  *  @hw: pointer to the HW structure
5755  *
5756  *  During Sx to S0 transitions on non-managed devices or managed devices
5757  *  on which PHY resets are not blocked, if the PHY registers cannot be
5758  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5759  *  the PHY.
5760  *  On i217, setup Intel Rapid Start Technology.
5761  **/
5762 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5763 {
5764 	s32 ret_val;
5765 
5766 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5767 	if (hw->mac.type < e1000_pch2lan)
5768 		return E1000_SUCCESS;
5769 
5770 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5771 	if (ret_val) {
5772 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5773 		return ret_val;
5774 	}
5775 
5776 	/* For i217 Intel Rapid Start Technology support when the system
5777 	 * is transitioning from Sx and no manageability engine is present
5778 	 * configure SMBus to restore on reset, disable proxy, and enable
5779 	 * the reset on MTA (Multicast table array).
5780 	 */
5781 	if (hw->phy.type == e1000_phy_i217) {
5782 		u16 phy_reg;
5783 
5784 		ret_val = hw->phy.ops.acquire(hw);
5785 		if (ret_val) {
5786 			DEBUGOUT("Failed to setup iRST\n");
5787 			return ret_val;
5788 		}
5789 
5790 		/* Clear Auto Enable LPI after link up */
5791 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5792 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5793 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5794 
5795 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5796 		    E1000_ICH_FWSM_FW_VALID)) {
5797 			/* Restore clear on SMB if no manageability engine
5798 			 * is present
5799 			 */
5800 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5801 							      &phy_reg);
5802 			if (ret_val)
5803 				goto release;
5804 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5805 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5806 
5807 			/* Disable Proxy */
5808 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5809 		}
5810 		/* Enable reset on MTA */
5811 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5812 						      &phy_reg);
5813 		if (ret_val)
5814 			goto release;
5815 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5816 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5817 release:
5818 		if (ret_val)
5819 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5820 		hw->phy.ops.release(hw);
5821 		return ret_val;
5822 	}
5823 	return E1000_SUCCESS;
5824 }
5825 
5826 /**
5827  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5828  *  @hw: pointer to the HW structure
5829  *
5830  *  Return the LED back to the default configuration.
5831  **/
5832 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5833 {
5834 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5835 
5836 	if (hw->phy.type == e1000_phy_ife)
5837 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5838 					     0);
5839 
5840 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5841 	return E1000_SUCCESS;
5842 }
5843 
5844 /**
5845  *  e1000_led_on_ich8lan - Turn LEDs on
5846  *  @hw: pointer to the HW structure
5847  *
5848  *  Turn on the LEDs.
5849  **/
5850 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5851 {
5852 	DEBUGFUNC("e1000_led_on_ich8lan");
5853 
5854 	if (hw->phy.type == e1000_phy_ife)
5855 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5856 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5857 
5858 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5859 	return E1000_SUCCESS;
5860 }
5861 
5862 /**
5863  *  e1000_led_off_ich8lan - Turn LEDs off
5864  *  @hw: pointer to the HW structure
5865  *
5866  *  Turn off the LEDs.
5867  **/
5868 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5869 {
5870 	DEBUGFUNC("e1000_led_off_ich8lan");
5871 
5872 	if (hw->phy.type == e1000_phy_ife)
5873 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5874 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5875 
5876 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5877 	return E1000_SUCCESS;
5878 }
5879 
5880 /**
5881  *  e1000_setup_led_pchlan - Configures SW controllable LED
5882  *  @hw: pointer to the HW structure
5883  *
5884  *  This prepares the SW controllable LED for use.
5885  **/
5886 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5887 {
5888 	DEBUGFUNC("e1000_setup_led_pchlan");
5889 
5890 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5891 				     (u16)hw->mac.ledctl_mode1);
5892 }
5893 
5894 /**
5895  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5896  *  @hw: pointer to the HW structure
5897  *
5898  *  Return the LED back to the default configuration.
5899  **/
5900 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5901 {
5902 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5903 
5904 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5905 				     (u16)hw->mac.ledctl_default);
5906 }
5907 
5908 /**
5909  *  e1000_led_on_pchlan - Turn LEDs on
5910  *  @hw: pointer to the HW structure
5911  *
5912  *  Turn on the LEDs.
5913  **/
5914 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5915 {
5916 	u16 data = (u16)hw->mac.ledctl_mode2;
5917 	u32 i, led;
5918 
5919 	DEBUGFUNC("e1000_led_on_pchlan");
5920 
5921 	/* If no link, then turn LED on by setting the invert bit
5922 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5923 	 */
5924 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5925 		for (i = 0; i < 3; i++) {
5926 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5927 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5928 			    E1000_LEDCTL_MODE_LINK_UP)
5929 				continue;
5930 			if (led & E1000_PHY_LED0_IVRT)
5931 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5932 			else
5933 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5934 		}
5935 	}
5936 
5937 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5938 }
5939 
5940 /**
5941  *  e1000_led_off_pchlan - Turn LEDs off
5942  *  @hw: pointer to the HW structure
5943  *
5944  *  Turn off the LEDs.
5945  **/
5946 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5947 {
5948 	u16 data = (u16)hw->mac.ledctl_mode1;
5949 	u32 i, led;
5950 
5951 	DEBUGFUNC("e1000_led_off_pchlan");
5952 
5953 	/* If no link, then turn LED off by clearing the invert bit
5954 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5955 	 */
5956 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5957 		for (i = 0; i < 3; i++) {
5958 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5959 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5960 			    E1000_LEDCTL_MODE_LINK_UP)
5961 				continue;
5962 			if (led & E1000_PHY_LED0_IVRT)
5963 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5964 			else
5965 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5966 		}
5967 	}
5968 
5969 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5970 }
5971 
5972 /**
5973  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5974  *  @hw: pointer to the HW structure
5975  *
5976  *  Read appropriate register for the config done bit for completion status
5977  *  and configure the PHY through s/w for EEPROM-less parts.
5978  *
5979  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5980  *  config done bit, so only an error is logged and continues.  If we were
5981  *  to return with error, EEPROM-less silicon would not be able to be reset
5982  *  or change link.
5983  **/
5984 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5985 {
5986 	s32 ret_val = E1000_SUCCESS;
5987 	u32 bank = 0;
5988 	u32 status;
5989 
5990 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5991 
5992 	e1000_get_cfg_done_generic(hw);
5993 
5994 	/* Wait for indication from h/w that it has completed basic config */
5995 	if (hw->mac.type >= e1000_ich10lan) {
5996 		e1000_lan_init_done_ich8lan(hw);
5997 	} else {
5998 		ret_val = e1000_get_auto_rd_done_generic(hw);
5999 		if (ret_val) {
6000 			/* When auto config read does not complete, do not
6001 			 * return with an error. This can happen in situations
6002 			 * where there is no eeprom and prevents getting link.
6003 			 */
6004 			DEBUGOUT("Auto Read Done did not complete\n");
6005 			ret_val = E1000_SUCCESS;
6006 		}
6007 	}
6008 
6009 	/* Clear PHY Reset Asserted bit */
6010 	status = E1000_READ_REG(hw, E1000_STATUS);
6011 	if (status & E1000_STATUS_PHYRA)
6012 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6013 	else
6014 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6015 
6016 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6017 	if (hw->mac.type <= e1000_ich9lan) {
6018 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6019 		    (hw->phy.type == e1000_phy_igp_3)) {
6020 			e1000_phy_init_script_igp3(hw);
6021 		}
6022 	} else {
6023 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6024 			/* Maybe we should do a basic PHY config */
6025 			DEBUGOUT("EEPROM not present\n");
6026 			ret_val = -E1000_ERR_CONFIG;
6027 		}
6028 	}
6029 
6030 	return ret_val;
6031 }
6032 
6033 /**
6034  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6035  * @hw: pointer to the HW structure
6036  *
6037  * In the case of a PHY power down to save power, or to turn off link during a
6038  * driver unload, or wake on lan is not enabled, remove the link.
6039  **/
6040 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6041 {
6042 	/* If the management interface is not enabled, then power down */
6043 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6044 	      hw->phy.ops.check_reset_block(hw)))
6045 		e1000_power_down_phy_copper(hw);
6046 
6047 	return;
6048 }
6049 
6050 /**
6051  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6052  *  @hw: pointer to the HW structure
6053  *
6054  *  Clears hardware counters specific to the silicon family and calls
6055  *  clear_hw_cntrs_generic to clear all general purpose counters.
6056  **/
6057 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6058 {
6059 	u16 phy_data;
6060 	s32 ret_val;
6061 
6062 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6063 
6064 	e1000_clear_hw_cntrs_base_generic(hw);
6065 
6066 	E1000_READ_REG(hw, E1000_ALGNERRC);
6067 	E1000_READ_REG(hw, E1000_RXERRC);
6068 	E1000_READ_REG(hw, E1000_TNCRS);
6069 	E1000_READ_REG(hw, E1000_CEXTERR);
6070 	E1000_READ_REG(hw, E1000_TSCTC);
6071 	E1000_READ_REG(hw, E1000_TSCTFC);
6072 
6073 	E1000_READ_REG(hw, E1000_MGTPRC);
6074 	E1000_READ_REG(hw, E1000_MGTPDC);
6075 	E1000_READ_REG(hw, E1000_MGTPTC);
6076 
6077 	E1000_READ_REG(hw, E1000_IAC);
6078 	E1000_READ_REG(hw, E1000_ICRXOC);
6079 
6080 	/* Clear PHY statistics registers */
6081 	if ((hw->phy.type == e1000_phy_82578) ||
6082 	    (hw->phy.type == e1000_phy_82579) ||
6083 	    (hw->phy.type == e1000_phy_i217) ||
6084 	    (hw->phy.type == e1000_phy_82577)) {
6085 		ret_val = hw->phy.ops.acquire(hw);
6086 		if (ret_val)
6087 			return;
6088 		ret_val = hw->phy.ops.set_page(hw,
6089 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6090 		if (ret_val)
6091 			goto release;
6092 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6093 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6094 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6095 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6096 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6097 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6098 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6099 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6100 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6101 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6102 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6103 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6104 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6105 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6106 release:
6107 		hw->phy.ops.release(hw);
6108 	}
6109 }
6110 
6111