xref: /freebsd/sys/dev/e1000/e1000_i210.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2012, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 
38 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
39 static void e1000_release_nvm_i210(struct e1000_hw *hw);
40 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
41 static void e1000_put_hw_semaphore_i210(struct e1000_hw *hw);
42 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
43 				u16 *data);
44 static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
45 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
46 static s32 e1000_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
47 			       u16 *data);
48 
49 /**
50  *  e1000_acquire_nvm_i210 - Request for access to EEPROM
51  *  @hw: pointer to the HW structure
52  *
53  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
54  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
55  *  Return successful if access grant bit set, else clear the request for
56  *  EEPROM access and return -E1000_ERR_NVM (-1).
57  **/
58 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
59 {
60 	s32 ret_val;
61 
62 	DEBUGFUNC("e1000_acquire_nvm_i210");
63 
64 	ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
65 
66 	return ret_val;
67 }
68 
69 /**
70  *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
71  *  @hw: pointer to the HW structure
72  *
73  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
74  *  then release the semaphores acquired.
75  **/
76 static void e1000_release_nvm_i210(struct e1000_hw *hw)
77 {
78 	DEBUGFUNC("e1000_release_nvm_i210");
79 
80 	e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
81 }
82 
83 /**
84  *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
85  *  @hw: pointer to the HW structure
86  *  @mask: specifies which semaphore to acquire
87  *
88  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
89  *  will also specify which port we're acquiring the lock for.
90  **/
91 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
92 {
93 	u32 swfw_sync;
94 	u32 swmask = mask;
95 	u32 fwmask = mask << 16;
96 	s32 ret_val = E1000_SUCCESS;
97 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
98 
99 	DEBUGFUNC("e1000_acquire_swfw_sync_i210");
100 
101 	while (i < timeout) {
102 		if (e1000_get_hw_semaphore_i210(hw)) {
103 			ret_val = -E1000_ERR_SWFW_SYNC;
104 			goto out;
105 		}
106 
107 		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
108 		if (!(swfw_sync & fwmask))
109 			break;
110 
111 		/*
112 		 * Firmware currently using resource (fwmask)
113 		 */
114 		e1000_put_hw_semaphore_i210(hw);
115 		msec_delay_irq(5);
116 		i++;
117 	}
118 
119 	if (i == timeout) {
120 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
121 		ret_val = -E1000_ERR_SWFW_SYNC;
122 		goto out;
123 	}
124 
125 	swfw_sync |= swmask;
126 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
127 
128 	e1000_put_hw_semaphore_i210(hw);
129 
130 out:
131 	return ret_val;
132 }
133 
134 /**
135  *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
136  *  @hw: pointer to the HW structure
137  *  @mask: specifies which semaphore to acquire
138  *
139  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
140  *  will also specify which port we're releasing the lock for.
141  **/
142 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
143 {
144 	u32 swfw_sync;
145 
146 	DEBUGFUNC("e1000_release_swfw_sync_i210");
147 
148 	while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
149 		; /* Empty */
150 
151 	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
152 	swfw_sync &= ~mask;
153 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
154 
155 	e1000_put_hw_semaphore_i210(hw);
156 }
157 
158 /**
159  *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
160  *  @hw: pointer to the HW structure
161  *
162  *  Acquire the HW semaphore to access the PHY or NVM
163  **/
164 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
165 {
166 	u32 swsm;
167 	s32 ret_val = E1000_SUCCESS;
168 	s32 timeout = hw->nvm.word_size + 1;
169 	s32 i = 0;
170 
171 	DEBUGFUNC("e1000_get_hw_semaphore_i210");
172 
173 	/* Get the FW semaphore. */
174 	for (i = 0; i < timeout; i++) {
175 		swsm = E1000_READ_REG(hw, E1000_SWSM);
176 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
177 
178 		/* Semaphore acquired if bit latched */
179 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
180 			break;
181 
182 		usec_delay(50);
183 	}
184 
185 	if (i == timeout) {
186 		/* Release semaphores */
187 		e1000_put_hw_semaphore_generic(hw);
188 		DEBUGOUT("Driver can't access the NVM\n");
189 		ret_val = -E1000_ERR_NVM;
190 		goto out;
191 	}
192 
193 out:
194 	return ret_val;
195 }
196 
197 /**
198  *  e1000_put_hw_semaphore_i210 - Release hardware semaphore
199  *  @hw: pointer to the HW structure
200  *
201  *  Release hardware semaphore used to access the PHY or NVM
202  **/
203 static void e1000_put_hw_semaphore_i210(struct e1000_hw *hw)
204 {
205 	u32 swsm;
206 
207 	DEBUGFUNC("e1000_put_hw_semaphore_i210");
208 
209 	swsm = E1000_READ_REG(hw, E1000_SWSM);
210 
211 	swsm &= ~E1000_SWSM_SWESMBI;
212 
213 	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
214 }
215 
216 /**
217  *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
218  *  @hw: pointer to the HW structure
219  *  @offset: offset of word in the Shadow Ram to read
220  *  @words: number of words to read
221  *  @data: word read from the Shadow Ram
222  *
223  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
224  *  Uses necessary synchronization semaphores.
225  **/
226 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
227 			     u16 *data)
228 {
229 	s32 status = E1000_SUCCESS;
230 	u16 i, count;
231 
232 	DEBUGFUNC("e1000_read_nvm_srrd_i210");
233 
234 	/* We cannot hold synchronization semaphores for too long,
235 	 * because of forceful takeover procedure. However it is more efficient
236 	 * to read in bursts than synchronizing access for each word. */
237 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
238 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
239 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
240 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
241 			status = e1000_read_nvm_eerd(hw, offset, count,
242 						     data + i);
243 			hw->nvm.ops.release(hw);
244 		} else {
245 			status = E1000_ERR_SWFW_SYNC;
246 		}
247 
248 		if (status != E1000_SUCCESS)
249 			break;
250 	}
251 
252 	return status;
253 }
254 
255 /**
256  *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
257  *  @hw: pointer to the HW structure
258  *  @offset: offset within the Shadow RAM to be written to
259  *  @words: number of words to write
260  *  @data: 16 bit word(s) to be written to the Shadow RAM
261  *
262  *  Writes data to Shadow RAM at offset using EEWR register.
263  *
264  *  If e1000_update_nvm_checksum is not called after this function , the
265  *  data will not be committed to FLASH and also Shadow RAM will most likely
266  *  contain an invalid checksum.
267  *
268  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
269  *  partially written.
270  **/
271 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
272 			      u16 *data)
273 {
274 	s32 status = E1000_SUCCESS;
275 	u16 i, count;
276 
277 	DEBUGFUNC("e1000_write_nvm_srwr_i210");
278 
279 	/* We cannot hold synchronization semaphores for too long,
280 	 * because of forceful takeover procedure. However it is more efficient
281 	 * to write in bursts than synchronizing access for each word. */
282 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
283 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
284 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
285 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
286 			status = e1000_write_nvm_srwr(hw, offset, count,
287 						      data + i);
288 			hw->nvm.ops.release(hw);
289 		} else {
290 			status = E1000_ERR_SWFW_SYNC;
291 		}
292 
293 		if (status != E1000_SUCCESS)
294 			break;
295 	}
296 
297 	return status;
298 }
299 
300 /**
301  *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
302  *  @hw: pointer to the HW structure
303  *  @offset: offset within the Shadow Ram to be written to
304  *  @words: number of words to write
305  *  @data: 16 bit word(s) to be written to the Shadow Ram
306  *
307  *  Writes data to Shadow Ram at offset using EEWR register.
308  *
309  *  If e1000_update_nvm_checksum is not called after this function , the
310  *  Shadow Ram will most likely contain an invalid checksum.
311  **/
312 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
313 				u16 *data)
314 {
315 	struct e1000_nvm_info *nvm = &hw->nvm;
316 	u32 i, k, eewr = 0;
317 	u32 attempts = 100000;
318 	s32 ret_val = E1000_SUCCESS;
319 
320 	DEBUGFUNC("e1000_write_nvm_srwr");
321 
322 	/*
323 	 * A check for invalid values:  offset too large, too many words,
324 	 * too many words for the offset, and not enough words.
325 	 */
326 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
327 	    (words == 0)) {
328 		DEBUGOUT("nvm parameter(s) out of bounds\n");
329 		ret_val = -E1000_ERR_NVM;
330 		goto out;
331 	}
332 
333 	for (i = 0; i < words; i++) {
334 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
335 			(data[i] << E1000_NVM_RW_REG_DATA) |
336 			E1000_NVM_RW_REG_START;
337 
338 		E1000_WRITE_REG(hw, E1000_SRWR, eewr);
339 
340 		for (k = 0; k < attempts; k++) {
341 			if (E1000_NVM_RW_REG_DONE &
342 			    E1000_READ_REG(hw, E1000_SRWR)) {
343 				ret_val = E1000_SUCCESS;
344 				break;
345 			}
346 			usec_delay(5);
347 		}
348 
349 		if (ret_val != E1000_SUCCESS) {
350 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
351 			break;
352 		}
353 	}
354 
355 out:
356 	return ret_val;
357 }
358 
359 /**
360  *  e1000_read_nvm_i211 - Read NVM wrapper function for I211
361  *  @hw: pointer to the HW structure
362  *  @address: the word address (aka eeprom offset) to read
363  *  @data: pointer to the data read
364  *
365  *  Wrapper function to return data formerly found in the NVM.
366  **/
367 static s32 e1000_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
368 			       u16 *data)
369 {
370 	s32 ret_val = E1000_SUCCESS;
371 
372 	DEBUGFUNC("e1000_read_nvm_i211");
373 
374 	/* Only the MAC addr is required to be present in the iNVM */
375 	switch (offset) {
376 	case NVM_MAC_ADDR:
377 		ret_val = e1000_read_invm_i211(hw, (u8)offset, &data[0]);
378 		ret_val |= e1000_read_invm_i211(hw, (u8)offset+1, &data[1]);
379 		ret_val |= e1000_read_invm_i211(hw, (u8)offset+2, &data[2]);
380 		if (ret_val != E1000_SUCCESS)
381 			DEBUGOUT("MAC Addr not found in iNVM\n");
382 		break;
383 	case NVM_ID_LED_SETTINGS:
384 	case NVM_INIT_CTRL_2:
385 	case NVM_INIT_CTRL_4:
386 	case NVM_LED_1_CFG:
387 	case NVM_LED_0_2_CFG:
388 		e1000_read_invm_i211(hw, (u8)offset, data);
389 		break;
390 	case NVM_COMPAT:
391 		*data = ID_LED_DEFAULT_I210;
392 		break;
393 	case NVM_SUB_DEV_ID:
394 		*data = hw->subsystem_device_id;
395 		break;
396 	case NVM_SUB_VEN_ID:
397 		*data = hw->subsystem_vendor_id;
398 		break;
399 	case NVM_DEV_ID:
400 		*data = hw->device_id;
401 		break;
402 	case NVM_VEN_ID:
403 		*data = hw->vendor_id;
404 		break;
405 	default:
406 		DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
407 		*data = NVM_RESERVED_WORD;
408 		break;
409 	}
410 	return ret_val;
411 }
412 
413 /**
414  *  e1000_read_invm_i211 - Reads OTP
415  *  @hw: pointer to the HW structure
416  *  @address: the word address (aka eeprom offset) to read
417  *  @data: pointer to the data read
418  *
419  *  Reads 16-bit words from the OTP. Return error when the word is not
420  *  stored in OTP.
421  **/
422 s32 e1000_read_invm_i211(struct e1000_hw *hw, u8 address, u16 *data)
423 {
424 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
425 	u32 invm_dword;
426 	u16 i;
427 	u8 record_type, word_address;
428 
429 	DEBUGFUNC("e1000_read_invm_i211");
430 
431 	for (i = 0; i < E1000_INVM_SIZE; i++) {
432 		invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
433 		/* Get record type */
434 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
435 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
436 			break;
437 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
438 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
439 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
440 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
441 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
442 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
443 			if (word_address == address) {
444 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
445 				DEBUGOUT2("Read INVM Word 0x%02x = %x",
446 					  address, *data);
447 				status = E1000_SUCCESS;
448 				break;
449 			}
450 		}
451 	}
452 	if (status != E1000_SUCCESS)
453 		DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
454 	return status;
455 }
456 
457 /**
458  *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
459  *  @hw: pointer to the HW structure
460  *
461  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
462  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
463  **/
464 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
465 {
466 	s32 status = E1000_SUCCESS;
467 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
468 
469 	DEBUGFUNC("e1000_validate_nvm_checksum_i210");
470 
471 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
472 
473 		/*
474 		 * Replace the read function with semaphore grabbing with
475 		 * the one that skips this for a while.
476 		 * We have semaphore taken already here.
477 		 */
478 		read_op_ptr = hw->nvm.ops.read;
479 		hw->nvm.ops.read = e1000_read_nvm_eerd;
480 
481 		status = e1000_validate_nvm_checksum_generic(hw);
482 
483 		/* Revert original read operation. */
484 		hw->nvm.ops.read = read_op_ptr;
485 
486 		hw->nvm.ops.release(hw);
487 	} else {
488 		status = E1000_ERR_SWFW_SYNC;
489 	}
490 
491 	return status;
492 }
493 
494 
495 /**
496  *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
497  *  @hw: pointer to the HW structure
498  *
499  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
500  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
501  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
502  **/
503 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
504 {
505 	s32 ret_val = E1000_SUCCESS;
506 	u16 checksum = 0;
507 	u16 i, nvm_data;
508 
509 	DEBUGFUNC("e1000_update_nvm_checksum_i210");
510 
511 	/*
512 	 * Read the first word from the EEPROM. If this times out or fails, do
513 	 * not continue or we could be in for a very long wait while every
514 	 * EEPROM read fails
515 	 */
516 	ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
517 	if (ret_val != E1000_SUCCESS) {
518 		DEBUGOUT("EEPROM read failed\n");
519 		goto out;
520 	}
521 
522 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
523 		/*
524 		 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
525 		 * because we do not want to take the synchronization
526 		 * semaphores twice here.
527 		 */
528 
529 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
530 			ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
531 			if (ret_val) {
532 				hw->nvm.ops.release(hw);
533 				DEBUGOUT("NVM Read Error while updating checksum.\n");
534 				goto out;
535 			}
536 			checksum += nvm_data;
537 		}
538 		checksum = (u16) NVM_SUM - checksum;
539 		ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
540 						&checksum);
541 		if (ret_val != E1000_SUCCESS) {
542 			hw->nvm.ops.release(hw);
543 			DEBUGOUT("NVM Write Error while updating checksum.\n");
544 			goto out;
545 		}
546 
547 		hw->nvm.ops.release(hw);
548 
549 		ret_val = e1000_update_flash_i210(hw);
550 	} else {
551 		ret_val = E1000_ERR_SWFW_SYNC;
552 	}
553 out:
554 	return ret_val;
555 }
556 
557 /**
558  *  e1000_get_flash_presence_i210 - Check if flash device is detected.
559  *  @hw: pointer to the HW structure
560  *
561  **/
562 static bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
563 {
564 	u32 eec = 0;
565 	bool ret_val = FALSE;
566 
567 	DEBUGFUNC("e1000_get_flash_presence_i210");
568 
569 	eec = E1000_READ_REG(hw, E1000_EECD);
570 
571 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
572 		ret_val = TRUE;
573 
574 	return ret_val;
575 }
576 
577 /**
578  *  e1000_update_flash_i210 - Commit EEPROM to the flash
579  *  @hw: pointer to the HW structure
580  *
581  **/
582 s32 e1000_update_flash_i210(struct e1000_hw *hw)
583 {
584 	s32 ret_val = E1000_SUCCESS;
585 	u32 flup;
586 
587 	DEBUGFUNC("e1000_update_flash_i210");
588 
589 	ret_val = e1000_pool_flash_update_done_i210(hw);
590 	if (ret_val == -E1000_ERR_NVM) {
591 		DEBUGOUT("Flash update time out\n");
592 		goto out;
593 	}
594 
595 	flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
596 	E1000_WRITE_REG(hw, E1000_EECD, flup);
597 
598 	ret_val = e1000_pool_flash_update_done_i210(hw);
599 	if (ret_val == E1000_SUCCESS)
600 		DEBUGOUT("Flash update complete\n");
601 	else
602 		DEBUGOUT("Flash update time out\n");
603 
604 out:
605 	return ret_val;
606 }
607 
608 /**
609  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
610  *  @hw: pointer to the HW structure
611  *
612  **/
613 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
614 {
615 	s32 ret_val = -E1000_ERR_NVM;
616 	u32 i, reg;
617 
618 	DEBUGFUNC("e1000_pool_flash_update_done_i210");
619 
620 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
621 		reg = E1000_READ_REG(hw, E1000_EECD);
622 		if (reg & E1000_EECD_FLUDONE_I210) {
623 			ret_val = E1000_SUCCESS;
624 			break;
625 		}
626 		usec_delay(5);
627 	}
628 
629 	return ret_val;
630 }
631 
632 /**
633  *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
634  *  @hw: pointer to the HW structure
635  *
636  *  Initialize the i210 NVM parameters and function pointers.
637  **/
638 static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
639 {
640 	s32 ret_val = E1000_SUCCESS;
641 	struct e1000_nvm_info *nvm = &hw->nvm;
642 
643 	DEBUGFUNC("e1000_init_nvm_params_i210");
644 
645 	ret_val = e1000_init_nvm_params_82575(hw);
646 
647 	nvm->ops.acquire = e1000_acquire_nvm_i210;
648 	nvm->ops.release = e1000_release_nvm_i210;
649 	nvm->ops.read    = e1000_read_nvm_srrd_i210;
650 	nvm->ops.write   = e1000_write_nvm_srwr_i210;
651 	nvm->ops.valid_led_default = e1000_valid_led_default_i210;
652 	nvm->ops.validate = e1000_validate_nvm_checksum_i210;
653 	nvm->ops.update   = e1000_update_nvm_checksum_i210;
654 
655 	return ret_val;
656 }
657 
658 /**
659  *  e1000_init_nvm_params_i211 - Initialize i211 NVM function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize the NVM parameters and function pointers for i211.
663  **/
664 static s32 e1000_init_nvm_params_i211(struct e1000_hw *hw)
665 {
666 	struct e1000_nvm_info *nvm = &hw->nvm;
667 
668 	DEBUGFUNC("e1000_init_nvm_params_i211");
669 
670 	nvm->ops.acquire  = e1000_acquire_nvm_i210;
671 	nvm->ops.release  = e1000_release_nvm_i210;
672 	nvm->ops.read     = e1000_read_nvm_i211;
673 	nvm->ops.valid_led_default = e1000_valid_led_default_i210;
674 	nvm->ops.write    = e1000_null_write_nvm;
675 	nvm->ops.validate = e1000_null_ops_generic;
676 	nvm->ops.update   = e1000_null_ops_generic;
677 
678 	return E1000_SUCCESS;
679 }
680 
681 /**
682  *  e1000_init_function_pointers_i210 - Init func ptrs.
683  *  @hw: pointer to the HW structure
684  *
685  *  Called to initialize all function pointers and parameters.
686  **/
687 void e1000_init_function_pointers_i210(struct e1000_hw *hw)
688 {
689 	e1000_init_function_pointers_82575(hw);
690 
691 	switch (hw->mac.type) {
692 	case e1000_i210:
693 		if (e1000_get_flash_presence_i210(hw))
694 			hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
695 		else
696 			hw->nvm.ops.init_params = e1000_init_nvm_params_i211;
697 		break;
698 	case e1000_i211:
699 		hw->nvm.ops.init_params = e1000_init_nvm_params_i211;
700 		break;
701 	default:
702 		break;
703 	}
704 	return;
705 }
706 
707 /**
708  *  e1000_valid_led_default_i210 - Verify a valid default LED config
709  *  @hw: pointer to the HW structure
710  *  @data: pointer to the NVM (EEPROM)
711  *
712  *  Read the EEPROM for the current default LED configuration.  If the
713  *  LED configuration is not valid, set to a valid LED configuration.
714  **/
715 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
716 {
717 	s32 ret_val;
718 
719 	DEBUGFUNC("e1000_valid_led_default_i210");
720 
721 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
722 	if (ret_val) {
723 		DEBUGOUT("NVM Read Error\n");
724 		goto out;
725 	}
726 
727 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
728 		switch (hw->phy.media_type) {
729 		case e1000_media_type_internal_serdes:
730 			*data = ID_LED_DEFAULT_I210_SERDES;
731 			break;
732 		case e1000_media_type_copper:
733 		default:
734 			*data = ID_LED_DEFAULT_I210;
735 			break;
736 		}
737 	}
738 out:
739 	return ret_val;
740 }
741