xref: /freebsd/sys/dev/e1000/e1000_api.c (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 	case E1000_DEV_ID_PCH_I218_LM2:
297 	case E1000_DEV_ID_PCH_I218_V2:
298 	case E1000_DEV_ID_PCH_I218_LM3:
299 	case E1000_DEV_ID_PCH_I218_V3:
300 		mac->type = e1000_pch_lpt;
301 		break;
302 	case E1000_DEV_ID_PCH_SPT_I219_LM:
303 	case E1000_DEV_ID_PCH_SPT_I219_V:
304 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 	case E1000_DEV_ID_PCH_SPT_I219_V2:
306 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
308 	case E1000_DEV_ID_PCH_SPT_I219_V4:
309 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
310 	case E1000_DEV_ID_PCH_SPT_I219_V5:
311 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
312 	case E1000_DEV_ID_PCH_CMP_I219_V12:
313 		mac->type = e1000_pch_spt;
314 		break;
315 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
316 	case E1000_DEV_ID_PCH_CNP_I219_V6:
317 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
318 	case E1000_DEV_ID_PCH_CNP_I219_V7:
319 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
320 	case E1000_DEV_ID_PCH_ICP_I219_V8:
321 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
322 	case E1000_DEV_ID_PCH_ICP_I219_V9:
323 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
324 	case E1000_DEV_ID_PCH_CMP_I219_V10:
325 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
326 	case E1000_DEV_ID_PCH_CMP_I219_V11:
327 		mac->type = e1000_pch_cnp;
328 		break;
329 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
330 	case E1000_DEV_ID_PCH_TGP_I219_V13:
331 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
332 	case E1000_DEV_ID_PCH_TGP_I219_V14:
333 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
334 	case E1000_DEV_ID_PCH_TGP_I219_V15:
335 		mac->type = e1000_pch_tgp;
336 		break;
337 	case E1000_DEV_ID_PCH_ADL_I219_LM16:
338 	case E1000_DEV_ID_PCH_ADL_I219_V16:
339 	case E1000_DEV_ID_PCH_ADL_I219_LM17:
340 	case E1000_DEV_ID_PCH_ADL_I219_V17:
341 	case E1000_DEV_ID_PCH_RPL_I219_LM22:
342 	case E1000_DEV_ID_PCH_RPL_I219_V22:
343 	case E1000_DEV_ID_PCH_RPL_I219_LM23:
344 	case E1000_DEV_ID_PCH_RPL_I219_V23:
345 		mac->type = e1000_pch_adp;
346 		break;
347 	case E1000_DEV_ID_PCH_MTP_I219_LM18:
348 	case E1000_DEV_ID_PCH_MTP_I219_V18:
349 	case E1000_DEV_ID_PCH_MTP_I219_LM19:
350 	case E1000_DEV_ID_PCH_MTP_I219_V19:
351 	case E1000_DEV_ID_PCH_LNL_I219_LM20:
352 	case E1000_DEV_ID_PCH_LNL_I219_V20:
353 	case E1000_DEV_ID_PCH_LNL_I219_LM21:
354 	case E1000_DEV_ID_PCH_LNL_I219_V21:
355 		mac->type = e1000_pch_mtp;
356 		break;
357 	case E1000_DEV_ID_PCH_ARL_I219_LM24:
358 	case E1000_DEV_ID_PCH_ARL_I219_V24:
359 	case E1000_DEV_ID_PCH_PTP_I219_LM25:
360 	case E1000_DEV_ID_PCH_PTP_I219_V25:
361 	case E1000_DEV_ID_PCH_PTP_I219_LM26:
362 	case E1000_DEV_ID_PCH_PTP_I219_V26:
363 	case E1000_DEV_ID_PCH_PTP_I219_LM27:
364 	case E1000_DEV_ID_PCH_PTP_I219_V27:
365 		mac->type = e1000_pch_ptp;
366 		break;
367 	case E1000_DEV_ID_82575EB_COPPER:
368 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
369 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
370 		mac->type = e1000_82575;
371 		break;
372 	case E1000_DEV_ID_82576:
373 	case E1000_DEV_ID_82576_FIBER:
374 	case E1000_DEV_ID_82576_SERDES:
375 	case E1000_DEV_ID_82576_QUAD_COPPER:
376 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
377 	case E1000_DEV_ID_82576_NS:
378 	case E1000_DEV_ID_82576_NS_SERDES:
379 	case E1000_DEV_ID_82576_SERDES_QUAD:
380 		mac->type = e1000_82576;
381 		break;
382 	case E1000_DEV_ID_82580_COPPER:
383 	case E1000_DEV_ID_82580_FIBER:
384 	case E1000_DEV_ID_82580_SERDES:
385 	case E1000_DEV_ID_82580_SGMII:
386 	case E1000_DEV_ID_82580_COPPER_DUAL:
387 	case E1000_DEV_ID_82580_QUAD_FIBER:
388 	case E1000_DEV_ID_DH89XXCC_SGMII:
389 	case E1000_DEV_ID_DH89XXCC_SERDES:
390 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
391 	case E1000_DEV_ID_DH89XXCC_SFP:
392 		mac->type = e1000_82580;
393 		break;
394 	case E1000_DEV_ID_I350_COPPER:
395 	case E1000_DEV_ID_I350_FIBER:
396 	case E1000_DEV_ID_I350_SERDES:
397 	case E1000_DEV_ID_I350_SGMII:
398 	case E1000_DEV_ID_I350_DA4:
399 		mac->type = e1000_i350;
400 		break;
401 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
402 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
403 	case E1000_DEV_ID_I210_SGMII_FLASHLESS:
404 	case E1000_DEV_ID_I210_COPPER:
405 	case E1000_DEV_ID_I210_COPPER_OEM1:
406 	case E1000_DEV_ID_I210_COPPER_IT:
407 	case E1000_DEV_ID_I210_FIBER:
408 	case E1000_DEV_ID_I210_SERDES:
409 	case E1000_DEV_ID_I210_SGMII:
410 		mac->type = e1000_i210;
411 		break;
412 	case E1000_DEV_ID_I211_COPPER:
413 		mac->type = e1000_i211;
414 		break;
415 	case E1000_DEV_ID_82576_VF:
416 	case E1000_DEV_ID_82576_VF_HV:
417 		mac->type = e1000_vfadapt;
418 		break;
419 	case E1000_DEV_ID_I350_VF:
420 	case E1000_DEV_ID_I350_VF_HV:
421 		mac->type = e1000_vfadapt_i350;
422 		break;
423 
424 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
425 	case E1000_DEV_ID_I354_SGMII:
426 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
427 		mac->type = e1000_i354;
428 		break;
429 	default:
430 		/* Should never have loaded on this device */
431 		ret_val = -E1000_ERR_MAC_INIT;
432 		break;
433 	}
434 
435 	return ret_val;
436 }
437 
438 /**
439  *  e1000_setup_init_funcs - Initializes function pointers
440  *  @hw: pointer to the HW structure
441  *  @init_device: true will initialize the rest of the function pointers
442  *		  getting the device ready for use.  false will only set
443  *		  MAC type and the function pointers for the other init
444  *		  functions.  Passing false will not generate any hardware
445  *		  reads or writes.
446  *
447  *  This function must be called by a driver in order to use the rest
448  *  of the 'shared' code files. Called by drivers only.
449  **/
450 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
451 {
452 	s32 ret_val;
453 
454 	/* Can't do much good without knowing the MAC type. */
455 	ret_val = e1000_set_mac_type(hw);
456 	if (ret_val) {
457 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
458 		goto out;
459 	}
460 
461 	if (!hw->hw_addr) {
462 		DEBUGOUT("ERROR: Registers not mapped\n");
463 		ret_val = -E1000_ERR_CONFIG;
464 		goto out;
465 	}
466 
467 	/*
468 	 * Init function pointers to generic implementations. We do this first
469 	 * allowing a driver module to override it afterward.
470 	 */
471 	e1000_init_mac_ops_generic(hw);
472 	e1000_init_phy_ops_generic(hw);
473 	e1000_init_nvm_ops_generic(hw);
474 	e1000_init_mbx_ops_generic(hw);
475 
476 	/*
477 	 * Set up the init function pointers. These are functions within the
478 	 * adapter family file that sets up function pointers for the rest of
479 	 * the functions in that family.
480 	 */
481 	switch (hw->mac.type) {
482 	case e1000_82542:
483 		e1000_init_function_pointers_82542(hw);
484 		break;
485 	case e1000_82543:
486 	case e1000_82544:
487 		e1000_init_function_pointers_82543(hw);
488 		break;
489 	case e1000_82540:
490 	case e1000_82545:
491 	case e1000_82545_rev_3:
492 	case e1000_82546:
493 	case e1000_82546_rev_3:
494 		e1000_init_function_pointers_82540(hw);
495 		break;
496 	case e1000_82541:
497 	case e1000_82541_rev_2:
498 	case e1000_82547:
499 	case e1000_82547_rev_2:
500 		e1000_init_function_pointers_82541(hw);
501 		break;
502 	case e1000_82571:
503 	case e1000_82572:
504 	case e1000_82573:
505 	case e1000_82574:
506 	case e1000_82583:
507 		e1000_init_function_pointers_82571(hw);
508 		break;
509 	case e1000_80003es2lan:
510 		e1000_init_function_pointers_80003es2lan(hw);
511 		break;
512 	case e1000_ich8lan:
513 	case e1000_ich9lan:
514 	case e1000_ich10lan:
515 	case e1000_pchlan:
516 	case e1000_pch2lan:
517 	case e1000_pch_lpt:
518 	case e1000_pch_spt:
519 	case e1000_pch_cnp:
520 	case e1000_pch_tgp:
521 	case e1000_pch_adp:
522 	case e1000_pch_mtp:
523 	case e1000_pch_ptp:
524 		e1000_init_function_pointers_ich8lan(hw);
525 		break;
526 	case e1000_82575:
527 	case e1000_82576:
528 	case e1000_82580:
529 	case e1000_i350:
530 	case e1000_i354:
531 		e1000_init_function_pointers_82575(hw);
532 		break;
533 	case e1000_i210:
534 	case e1000_i211:
535 		e1000_init_function_pointers_i210(hw);
536 		break;
537 	case e1000_vfadapt:
538 		e1000_init_function_pointers_vf(hw);
539 		break;
540 	case e1000_vfadapt_i350:
541 		e1000_init_function_pointers_vf(hw);
542 		break;
543 	default:
544 		DEBUGOUT("Hardware not supported\n");
545 		ret_val = -E1000_ERR_CONFIG;
546 		break;
547 	}
548 
549 	/*
550 	 * Initialize the rest of the function pointers. These require some
551 	 * register reads/writes in some cases.
552 	 */
553 	if (!(ret_val) && init_device) {
554 		ret_val = e1000_init_mac_params(hw);
555 		if (ret_val)
556 			goto out;
557 
558 		ret_val = e1000_init_nvm_params(hw);
559 		if (ret_val)
560 			goto out;
561 
562 		ret_val = e1000_init_phy_params(hw);
563 		if (ret_val)
564 			goto out;
565 
566 		ret_val = e1000_init_mbx_params(hw);
567 		if (ret_val)
568 			goto out;
569 	}
570 
571 out:
572 	return ret_val;
573 }
574 
575 /**
576  *  e1000_get_bus_info - Obtain bus information for adapter
577  *  @hw: pointer to the HW structure
578  *
579  *  This will obtain information about the HW bus for which the
580  *  adapter is attached and stores it in the hw structure. This is a
581  *  function pointer entry point called by drivers.
582  **/
583 s32 e1000_get_bus_info(struct e1000_hw *hw)
584 {
585 	if (hw->mac.ops.get_bus_info)
586 		return hw->mac.ops.get_bus_info(hw);
587 
588 	return E1000_SUCCESS;
589 }
590 
591 /**
592  *  e1000_clear_vfta - Clear VLAN filter table
593  *  @hw: pointer to the HW structure
594  *
595  *  This clears the VLAN filter table on the adapter. This is a function
596  *  pointer entry point called by drivers.
597  **/
598 void e1000_clear_vfta(struct e1000_hw *hw)
599 {
600 	if (hw->mac.ops.clear_vfta)
601 		hw->mac.ops.clear_vfta(hw);
602 }
603 
604 /**
605  *  e1000_write_vfta - Write value to VLAN filter table
606  *  @hw: pointer to the HW structure
607  *  @offset: the 32-bit offset in which to write the value to.
608  *  @value: the 32-bit value to write at location offset.
609  *
610  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
611  *  table. This is a function pointer entry point called by drivers.
612  **/
613 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
614 {
615 	if (hw->mac.ops.write_vfta)
616 		hw->mac.ops.write_vfta(hw, offset, value);
617 }
618 
619 /**
620  *  e1000_update_mc_addr_list - Update Multicast addresses
621  *  @hw: pointer to the HW structure
622  *  @mc_addr_list: array of multicast addresses to program
623  *  @mc_addr_count: number of multicast addresses to program
624  *
625  *  Updates the Multicast Table Array.
626  *  The caller must have a packed mc_addr_list of multicast addresses.
627  **/
628 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
629 			       u32 mc_addr_count)
630 {
631 	if (hw->mac.ops.update_mc_addr_list)
632 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
633 						mc_addr_count);
634 }
635 
636 /**
637  *  e1000_force_mac_fc - Force MAC flow control
638  *  @hw: pointer to the HW structure
639  *
640  *  Force the MAC's flow control settings. Currently no func pointer exists
641  *  and all implementations are handled in the generic version of this
642  *  function.
643  **/
644 s32 e1000_force_mac_fc(struct e1000_hw *hw)
645 {
646 	return e1000_force_mac_fc_generic(hw);
647 }
648 
649 /**
650  *  e1000_check_for_link - Check/Store link connection
651  *  @hw: pointer to the HW structure
652  *
653  *  This checks the link condition of the adapter and stores the
654  *  results in the hw->mac structure. This is a function pointer entry
655  *  point called by drivers.
656  **/
657 s32 e1000_check_for_link(struct e1000_hw *hw)
658 {
659 	if (hw->mac.ops.check_for_link)
660 		return hw->mac.ops.check_for_link(hw);
661 
662 	return -E1000_ERR_CONFIG;
663 }
664 
665 /**
666  *  e1000_check_mng_mode - Check management mode
667  *  @hw: pointer to the HW structure
668  *
669  *  This checks if the adapter has manageability enabled.
670  *  This is a function pointer entry point called by drivers.
671  **/
672 bool e1000_check_mng_mode(struct e1000_hw *hw)
673 {
674 	if (hw->mac.ops.check_mng_mode)
675 		return hw->mac.ops.check_mng_mode(hw);
676 
677 	return false;
678 }
679 
680 /**
681  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
682  *  @hw: pointer to the HW structure
683  *  @buffer: pointer to the host interface
684  *  @length: size of the buffer
685  *
686  *  Writes the DHCP information to the host interface.
687  **/
688 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
689 {
690 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
691 }
692 
693 /**
694  *  e1000_reset_hw - Reset hardware
695  *  @hw: pointer to the HW structure
696  *
697  *  This resets the hardware into a known state. This is a function pointer
698  *  entry point called by drivers.
699  **/
700 s32 e1000_reset_hw(struct e1000_hw *hw)
701 {
702 	if (hw->mac.ops.reset_hw)
703 		return hw->mac.ops.reset_hw(hw);
704 
705 	return -E1000_ERR_CONFIG;
706 }
707 
708 /**
709  *  e1000_init_hw - Initialize hardware
710  *  @hw: pointer to the HW structure
711  *
712  *  This inits the hardware readying it for operation. This is a function
713  *  pointer entry point called by drivers.
714  **/
715 s32 e1000_init_hw(struct e1000_hw *hw)
716 {
717 	if (hw->mac.ops.init_hw)
718 		return hw->mac.ops.init_hw(hw);
719 
720 	return -E1000_ERR_CONFIG;
721 }
722 
723 /**
724  *  e1000_setup_link - Configures link and flow control
725  *  @hw: pointer to the HW structure
726  *
727  *  This configures link and flow control settings for the adapter. This
728  *  is a function pointer entry point called by drivers. While modules can
729  *  also call this, they probably call their own version of this function.
730  **/
731 s32 e1000_setup_link(struct e1000_hw *hw)
732 {
733 	if (hw->mac.ops.setup_link)
734 		return hw->mac.ops.setup_link(hw);
735 
736 	return -E1000_ERR_CONFIG;
737 }
738 
739 /**
740  *  e1000_get_speed_and_duplex - Returns current speed and duplex
741  *  @hw: pointer to the HW structure
742  *  @speed: pointer to a 16-bit value to store the speed
743  *  @duplex: pointer to a 16-bit value to store the duplex.
744  *
745  *  This returns the speed and duplex of the adapter in the two 'out'
746  *  variables passed in. This is a function pointer entry point called
747  *  by drivers.
748  **/
749 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
750 {
751 	if (hw->mac.ops.get_link_up_info)
752 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
753 
754 	return -E1000_ERR_CONFIG;
755 }
756 
757 /**
758  *  e1000_setup_led - Configures SW controllable LED
759  *  @hw: pointer to the HW structure
760  *
761  *  This prepares the SW controllable LED for use and saves the current state
762  *  of the LED so it can be later restored. This is a function pointer entry
763  *  point called by drivers.
764  **/
765 s32 e1000_setup_led(struct e1000_hw *hw)
766 {
767 	if (hw->mac.ops.setup_led)
768 		return hw->mac.ops.setup_led(hw);
769 
770 	return E1000_SUCCESS;
771 }
772 
773 /**
774  *  e1000_cleanup_led - Restores SW controllable LED
775  *  @hw: pointer to the HW structure
776  *
777  *  This restores the SW controllable LED to the value saved off by
778  *  e1000_setup_led. This is a function pointer entry point called by drivers.
779  **/
780 s32 e1000_cleanup_led(struct e1000_hw *hw)
781 {
782 	if (hw->mac.ops.cleanup_led)
783 		return hw->mac.ops.cleanup_led(hw);
784 
785 	return E1000_SUCCESS;
786 }
787 
788 /**
789  *  e1000_blink_led - Blink SW controllable LED
790  *  @hw: pointer to the HW structure
791  *
792  *  This starts the adapter LED blinking. Request the LED to be setup first
793  *  and cleaned up after. This is a function pointer entry point called by
794  *  drivers.
795  **/
796 s32 e1000_blink_led(struct e1000_hw *hw)
797 {
798 	if (hw->mac.ops.blink_led)
799 		return hw->mac.ops.blink_led(hw);
800 
801 	return E1000_SUCCESS;
802 }
803 
804 /**
805  *  e1000_id_led_init - store LED configurations in SW
806  *  @hw: pointer to the HW structure
807  *
808  *  Initializes the LED config in SW. This is a function pointer entry point
809  *  called by drivers.
810  **/
811 s32 e1000_id_led_init(struct e1000_hw *hw)
812 {
813 	if (hw->mac.ops.id_led_init)
814 		return hw->mac.ops.id_led_init(hw);
815 
816 	return E1000_SUCCESS;
817 }
818 
819 /**
820  *  e1000_led_on - Turn on SW controllable LED
821  *  @hw: pointer to the HW structure
822  *
823  *  Turns the SW defined LED on. This is a function pointer entry point
824  *  called by drivers.
825  **/
826 s32 e1000_led_on(struct e1000_hw *hw)
827 {
828 	if (hw->mac.ops.led_on)
829 		return hw->mac.ops.led_on(hw);
830 
831 	return E1000_SUCCESS;
832 }
833 
834 /**
835  *  e1000_led_off - Turn off SW controllable LED
836  *  @hw: pointer to the HW structure
837  *
838  *  Turns the SW defined LED off. This is a function pointer entry point
839  *  called by drivers.
840  **/
841 s32 e1000_led_off(struct e1000_hw *hw)
842 {
843 	if (hw->mac.ops.led_off)
844 		return hw->mac.ops.led_off(hw);
845 
846 	return E1000_SUCCESS;
847 }
848 
849 /**
850  *  e1000_reset_adaptive - Reset adaptive IFS
851  *  @hw: pointer to the HW structure
852  *
853  *  Resets the adaptive IFS. Currently no func pointer exists and all
854  *  implementations are handled in the generic version of this function.
855  **/
856 void e1000_reset_adaptive(struct e1000_hw *hw)
857 {
858 	e1000_reset_adaptive_generic(hw);
859 }
860 
861 /**
862  *  e1000_update_adaptive - Update adaptive IFS
863  *  @hw: pointer to the HW structure
864  *
865  *  Updates adapter IFS. Currently no func pointer exists and all
866  *  implementations are handled in the generic version of this function.
867  **/
868 void e1000_update_adaptive(struct e1000_hw *hw)
869 {
870 	e1000_update_adaptive_generic(hw);
871 }
872 
873 /**
874  *  e1000_disable_pcie_master - Disable PCI-Express master access
875  *  @hw: pointer to the HW structure
876  *
877  *  Disables PCI-Express master access and verifies there are no pending
878  *  requests. Currently no func pointer exists and all implementations are
879  *  handled in the generic version of this function.
880  **/
881 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
882 {
883 	return e1000_disable_pcie_master_generic(hw);
884 }
885 
886 /**
887  *  e1000_config_collision_dist - Configure collision distance
888  *  @hw: pointer to the HW structure
889  *
890  *  Configures the collision distance to the default value and is used
891  *  during link setup.
892  **/
893 void e1000_config_collision_dist(struct e1000_hw *hw)
894 {
895 	if (hw->mac.ops.config_collision_dist)
896 		hw->mac.ops.config_collision_dist(hw);
897 }
898 
899 /**
900  *  e1000_rar_set - Sets a receive address register
901  *  @hw: pointer to the HW structure
902  *  @addr: address to set the RAR to
903  *  @index: the RAR to set
904  *
905  *  Sets a Receive Address Register (RAR) to the specified address.
906  **/
907 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
908 {
909 	if (hw->mac.ops.rar_set)
910 		return hw->mac.ops.rar_set(hw, addr, index);
911 
912 	return E1000_SUCCESS;
913 }
914 
915 /**
916  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
917  *  @hw: pointer to the HW structure
918  *
919  *  Ensures that the MDI/MDIX SW state is valid.
920  **/
921 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
922 {
923 	if (hw->mac.ops.validate_mdi_setting)
924 		return hw->mac.ops.validate_mdi_setting(hw);
925 
926 	return E1000_SUCCESS;
927 }
928 
929 /**
930  *  e1000_hash_mc_addr - Determines address location in multicast table
931  *  @hw: pointer to the HW structure
932  *  @mc_addr: Multicast address to hash.
933  *
934  *  This hashes an address to determine its location in the multicast
935  *  table. Currently no func pointer exists and all implementations
936  *  are handled in the generic version of this function.
937  **/
938 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
939 {
940 	return e1000_hash_mc_addr_generic(hw, mc_addr);
941 }
942 
943 /**
944  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
945  *  @hw: pointer to the HW structure
946  *
947  *  Enables packet filtering on transmit packets if manageability is enabled
948  *  and host interface is enabled.
949  *  Currently no func pointer exists and all implementations are handled in the
950  *  generic version of this function.
951  **/
952 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
953 {
954 	return e1000_enable_tx_pkt_filtering_generic(hw);
955 }
956 
957 /**
958  *  e1000_mng_host_if_write - Writes to the manageability host interface
959  *  @hw: pointer to the HW structure
960  *  @buffer: pointer to the host interface buffer
961  *  @length: size of the buffer
962  *  @offset: location in the buffer to write to
963  *  @sum: sum of the data (not checksum)
964  *
965  *  This function writes the buffer content at the offset given on the host if.
966  *  It also does alignment considerations to do the writes in most efficient
967  *  way.  Also fills up the sum of the buffer in *buffer parameter.
968  **/
969 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
970 			    u16 offset, u8 *sum)
971 {
972 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
973 }
974 
975 /**
976  *  e1000_mng_write_cmd_header - Writes manageability command header
977  *  @hw: pointer to the HW structure
978  *  @hdr: pointer to the host interface command header
979  *
980  *  Writes the command header after does the checksum calculation.
981  **/
982 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
983 			       struct e1000_host_mng_command_header *hdr)
984 {
985 	return e1000_mng_write_cmd_header_generic(hw, hdr);
986 }
987 
988 /**
989  *  e1000_mng_enable_host_if - Checks host interface is enabled
990  *  @hw: pointer to the HW structure
991  *
992  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
993  *
994  *  This function checks whether the HOST IF is enabled for command operation
995  *  and also checks whether the previous command is completed.  It busy waits
996  *  in case of previous command is not completed.
997  **/
998 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
999 {
1000 	return e1000_mng_enable_host_if_generic(hw);
1001 }
1002 
1003 /**
1004  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
1005  *  @hw: pointer to the HW structure
1006  *  @itr: u32 indicating itr value
1007  *
1008  *  Set the OBFF timer based on the given interrupt rate.
1009  **/
1010 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
1011 {
1012 	if (hw->mac.ops.set_obff_timer)
1013 		return hw->mac.ops.set_obff_timer(hw, itr);
1014 
1015 	return E1000_SUCCESS;
1016 }
1017 
1018 /**
1019  *  e1000_check_reset_block - Verifies PHY can be reset
1020  *  @hw: pointer to the HW structure
1021  *
1022  *  Checks if the PHY is in a state that can be reset or if manageability
1023  *  has it tied up. This is a function pointer entry point called by drivers.
1024  **/
1025 s32 e1000_check_reset_block(struct e1000_hw *hw)
1026 {
1027 	if (hw->phy.ops.check_reset_block)
1028 		return hw->phy.ops.check_reset_block(hw);
1029 
1030 	return E1000_SUCCESS;
1031 }
1032 
1033 /**
1034  *  e1000_read_phy_reg - Reads PHY register
1035  *  @hw: pointer to the HW structure
1036  *  @offset: the register to read
1037  *  @data: the buffer to store the 16-bit read.
1038  *
1039  *  Reads the PHY register and returns the value in data.
1040  *  This is a function pointer entry point called by drivers.
1041  **/
1042 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1043 {
1044 	if (hw->phy.ops.read_reg)
1045 		return hw->phy.ops.read_reg(hw, offset, data);
1046 
1047 	return E1000_SUCCESS;
1048 }
1049 
1050 /**
1051  *  e1000_write_phy_reg - Writes PHY register
1052  *  @hw: pointer to the HW structure
1053  *  @offset: the register to write
1054  *  @data: the value to write.
1055  *
1056  *  Writes the PHY register at offset with the value in data.
1057  *  This is a function pointer entry point called by drivers.
1058  **/
1059 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1060 {
1061 	if (hw->phy.ops.write_reg)
1062 		return hw->phy.ops.write_reg(hw, offset, data);
1063 
1064 	return E1000_SUCCESS;
1065 }
1066 
1067 /**
1068  *  e1000_release_phy - Generic release PHY
1069  *  @hw: pointer to the HW structure
1070  *
1071  *  Return if silicon family does not require a semaphore when accessing the
1072  *  PHY.
1073  **/
1074 void e1000_release_phy(struct e1000_hw *hw)
1075 {
1076 	if (hw->phy.ops.release)
1077 		hw->phy.ops.release(hw);
1078 }
1079 
1080 /**
1081  *  e1000_acquire_phy - Generic acquire PHY
1082  *  @hw: pointer to the HW structure
1083  *
1084  *  Return success if silicon family does not require a semaphore when
1085  *  accessing the PHY.
1086  **/
1087 s32 e1000_acquire_phy(struct e1000_hw *hw)
1088 {
1089 	if (hw->phy.ops.acquire)
1090 		return hw->phy.ops.acquire(hw);
1091 
1092 	return E1000_SUCCESS;
1093 }
1094 
1095 /**
1096  *  e1000_cfg_on_link_up - Configure PHY upon link up
1097  *  @hw: pointer to the HW structure
1098  **/
1099 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1100 {
1101 	if (hw->phy.ops.cfg_on_link_up)
1102 		return hw->phy.ops.cfg_on_link_up(hw);
1103 
1104 	return E1000_SUCCESS;
1105 }
1106 
1107 /**
1108  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1109  *  @hw: pointer to the HW structure
1110  *  @offset: the register to read
1111  *  @data: the location to store the 16-bit value read.
1112  *
1113  *  Reads a register out of the Kumeran interface. Currently no func pointer
1114  *  exists and all implementations are handled in the generic version of
1115  *  this function.
1116  **/
1117 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1118 {
1119 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1120 }
1121 
1122 /**
1123  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1124  *  @hw: pointer to the HW structure
1125  *  @offset: the register to write
1126  *  @data: the value to write.
1127  *
1128  *  Writes a register to the Kumeran interface. Currently no func pointer
1129  *  exists and all implementations are handled in the generic version of
1130  *  this function.
1131  **/
1132 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1133 {
1134 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1135 }
1136 
1137 /**
1138  *  e1000_get_cable_length - Retrieves cable length estimation
1139  *  @hw: pointer to the HW structure
1140  *
1141  *  This function estimates the cable length and stores them in
1142  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1143  *  entry point called by drivers.
1144  **/
1145 s32 e1000_get_cable_length(struct e1000_hw *hw)
1146 {
1147 	if (hw->phy.ops.get_cable_length)
1148 		return hw->phy.ops.get_cable_length(hw);
1149 
1150 	return E1000_SUCCESS;
1151 }
1152 
1153 /**
1154  *  e1000_get_phy_info - Retrieves PHY information from registers
1155  *  @hw: pointer to the HW structure
1156  *
1157  *  This function gets some information from various PHY registers and
1158  *  populates hw->phy values with it. This is a function pointer entry
1159  *  point called by drivers.
1160  **/
1161 s32 e1000_get_phy_info(struct e1000_hw *hw)
1162 {
1163 	if (hw->phy.ops.get_info)
1164 		return hw->phy.ops.get_info(hw);
1165 
1166 	return E1000_SUCCESS;
1167 }
1168 
1169 /**
1170  *  e1000_phy_hw_reset - Hard PHY reset
1171  *  @hw: pointer to the HW structure
1172  *
1173  *  Performs a hard PHY reset. This is a function pointer entry point called
1174  *  by drivers.
1175  **/
1176 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1177 {
1178 	if (hw->phy.ops.reset)
1179 		return hw->phy.ops.reset(hw);
1180 
1181 	return E1000_SUCCESS;
1182 }
1183 
1184 /**
1185  *  e1000_phy_commit - Soft PHY reset
1186  *  @hw: pointer to the HW structure
1187  *
1188  *  Performs a soft PHY reset on those that apply. This is a function pointer
1189  *  entry point called by drivers.
1190  **/
1191 s32 e1000_phy_commit(struct e1000_hw *hw)
1192 {
1193 	if (hw->phy.ops.commit)
1194 		return hw->phy.ops.commit(hw);
1195 
1196 	return E1000_SUCCESS;
1197 }
1198 
1199 /**
1200  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1201  *  @hw: pointer to the HW structure
1202  *  @active: boolean used to enable/disable lplu
1203  *
1204  *  Success returns 0, Failure returns 1
1205  *
1206  *  The low power link up (lplu) state is set to the power management level D0
1207  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1208  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1209  *  is used during Dx states where the power conservation is most important.
1210  *  During driver activity, SmartSpeed should be enabled so performance is
1211  *  maintained.  This is a function pointer entry point called by drivers.
1212  **/
1213 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1214 {
1215 	if (hw->phy.ops.set_d0_lplu_state)
1216 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1217 
1218 	return E1000_SUCCESS;
1219 }
1220 
1221 /**
1222  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1223  *  @hw: pointer to the HW structure
1224  *  @active: boolean used to enable/disable lplu
1225  *
1226  *  Success returns 0, Failure returns 1
1227  *
1228  *  The low power link up (lplu) state is set to the power management level D3
1229  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1230  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1231  *  is used during Dx states where the power conservation is most important.
1232  *  During driver activity, SmartSpeed should be enabled so performance is
1233  *  maintained.  This is a function pointer entry point called by drivers.
1234  **/
1235 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1236 {
1237 	if (hw->phy.ops.set_d3_lplu_state)
1238 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1239 
1240 	return E1000_SUCCESS;
1241 }
1242 
1243 /**
1244  *  e1000_read_mac_addr - Reads MAC address
1245  *  @hw: pointer to the HW structure
1246  *
1247  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1248  *  Currently no func pointer exists and all implementations are handled in the
1249  *  generic version of this function.
1250  **/
1251 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1252 {
1253 	if (hw->mac.ops.read_mac_addr)
1254 		return hw->mac.ops.read_mac_addr(hw);
1255 
1256 	return e1000_read_mac_addr_generic(hw);
1257 }
1258 
1259 /**
1260  *  e1000_read_pba_string - Read device part number string
1261  *  @hw: pointer to the HW structure
1262  *  @pba_num: pointer to device part number
1263  *  @pba_num_size: size of part number buffer
1264  *
1265  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1266  *  the value in pba_num.
1267  *  Currently no func pointer exists and all implementations are handled in the
1268  *  generic version of this function.
1269  **/
1270 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1271 {
1272 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1273 }
1274 
1275 /**
1276  *  e1000_read_pba_length - Read device part number string length
1277  *  @hw: pointer to the HW structure
1278  *  @pba_num_size: size of part number buffer
1279  *
1280  *  Reads the product board assembly (PBA) number length from the EEPROM and
1281  *  stores the value in pba_num.
1282  *  Currently no func pointer exists and all implementations are handled in the
1283  *  generic version of this function.
1284  **/
1285 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1286 {
1287 	return e1000_read_pba_length_generic(hw, pba_num_size);
1288 }
1289 
1290 /**
1291  *  e1000_read_pba_num - Read device part number
1292  *  @hw: pointer to the HW structure
1293  *  @pba_num: pointer to device part number
1294  *
1295  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1296  *  the value in pba_num.
1297  *  Currently no func pointer exists and all implementations are handled in the
1298  *  generic version of this function.
1299  **/
1300 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1301 {
1302 	return e1000_read_pba_num_generic(hw, pba_num);
1303 }
1304 
1305 /**
1306  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1307  *  @hw: pointer to the HW structure
1308  *
1309  *  Validates the NVM checksum is correct. This is a function pointer entry
1310  *  point called by drivers.
1311  **/
1312 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1313 {
1314 	if (hw->nvm.ops.validate)
1315 		return hw->nvm.ops.validate(hw);
1316 
1317 	return -E1000_ERR_CONFIG;
1318 }
1319 
1320 /**
1321  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1322  *  @hw: pointer to the HW structure
1323  *
1324  *  Updates the NVM checksum. Currently no func pointer exists and all
1325  *  implementations are handled in the generic version of this function.
1326  **/
1327 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1328 {
1329 	if (hw->nvm.ops.update)
1330 		return hw->nvm.ops.update(hw);
1331 
1332 	return -E1000_ERR_CONFIG;
1333 }
1334 
1335 /**
1336  *  e1000_reload_nvm - Reloads EEPROM
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1340  *  extended control register.
1341  **/
1342 void e1000_reload_nvm(struct e1000_hw *hw)
1343 {
1344 	if (hw->nvm.ops.reload)
1345 		hw->nvm.ops.reload(hw);
1346 }
1347 
1348 /**
1349  *  e1000_read_nvm - Reads NVM (EEPROM)
1350  *  @hw: pointer to the HW structure
1351  *  @offset: the word offset to read
1352  *  @words: number of 16-bit words to read
1353  *  @data: pointer to the properly sized buffer for the data.
1354  *
1355  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1356  *  pointer entry point called by drivers.
1357  **/
1358 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1359 {
1360 	if (hw->nvm.ops.read)
1361 		return hw->nvm.ops.read(hw, offset, words, data);
1362 
1363 	return -E1000_ERR_CONFIG;
1364 }
1365 
1366 /**
1367  *  e1000_write_nvm - Writes to NVM (EEPROM)
1368  *  @hw: pointer to the HW structure
1369  *  @offset: the word offset to read
1370  *  @words: number of 16-bit words to write
1371  *  @data: pointer to the properly sized buffer for the data.
1372  *
1373  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1374  *  pointer entry point called by drivers.
1375  **/
1376 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1377 {
1378 	if (hw->nvm.ops.write)
1379 		return hw->nvm.ops.write(hw, offset, words, data);
1380 
1381 	return E1000_SUCCESS;
1382 }
1383 
1384 /**
1385  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1386  *  @hw: pointer to the HW structure
1387  *  @reg: 32bit register offset
1388  *  @offset: the register to write
1389  *  @data: the value to write.
1390  *
1391  *  Writes the PHY register at offset with the value in data.
1392  *  This is a function pointer entry point called by drivers.
1393  **/
1394 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1395 			      u8 data)
1396 {
1397 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1398 }
1399 
1400 /**
1401  * e1000_power_up_phy - Restores link in case of PHY power down
1402  * @hw: pointer to the HW structure
1403  *
1404  * The phy may be powered down to save power, to turn off link when the
1405  * driver is unloaded, or wake on lan is not enabled (among others).
1406  **/
1407 void e1000_power_up_phy(struct e1000_hw *hw)
1408 {
1409 	if (hw->phy.ops.power_up)
1410 		hw->phy.ops.power_up(hw);
1411 
1412 	e1000_setup_link(hw);
1413 }
1414 
1415 /**
1416  * e1000_power_down_phy - Power down PHY
1417  * @hw: pointer to the HW structure
1418  *
1419  * The phy may be powered down to save power, to turn off link when the
1420  * driver is unloaded, or wake on lan is not enabled (among others).
1421  **/
1422 void e1000_power_down_phy(struct e1000_hw *hw)
1423 {
1424 	if (hw->phy.ops.power_down)
1425 		hw->phy.ops.power_down(hw);
1426 }
1427 
1428 /**
1429  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1430  *  @hw: pointer to the HW structure
1431  *
1432  *  Power on the optics and PCS.
1433  **/
1434 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1435 {
1436 	if (hw->mac.ops.power_up_serdes)
1437 		hw->mac.ops.power_up_serdes(hw);
1438 }
1439 
1440 /**
1441  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1442  *  @hw: pointer to the HW structure
1443  *
1444  *  Shutdown the optics and PCS on driver unload.
1445  **/
1446 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1447 {
1448 	if (hw->mac.ops.shutdown_serdes)
1449 		hw->mac.ops.shutdown_serdes(hw);
1450 }
1451 
1452