1 /****************************************************************************** 2 3 Copyright (c) 2001-2008, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 hw->nvm.semaphore_delay = 10; 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_set_mac_type - Sets MAC type 118 * @hw: pointer to the HW structure 119 * 120 * This function sets the mac type of the adapter based on the 121 * device ID stored in the hw structure. 122 * MUST BE FIRST FUNCTION CALLED (explicitly or through 123 * e1000_setup_init_funcs()). 124 **/ 125 s32 e1000_set_mac_type(struct e1000_hw *hw) 126 { 127 struct e1000_mac_info *mac = &hw->mac; 128 s32 ret_val = E1000_SUCCESS; 129 130 DEBUGFUNC("e1000_set_mac_type"); 131 132 switch (hw->device_id) { 133 case E1000_DEV_ID_82542: 134 mac->type = e1000_82542; 135 break; 136 case E1000_DEV_ID_82543GC_FIBER: 137 case E1000_DEV_ID_82543GC_COPPER: 138 mac->type = e1000_82543; 139 break; 140 case E1000_DEV_ID_82544EI_COPPER: 141 case E1000_DEV_ID_82544EI_FIBER: 142 case E1000_DEV_ID_82544GC_COPPER: 143 case E1000_DEV_ID_82544GC_LOM: 144 mac->type = e1000_82544; 145 break; 146 case E1000_DEV_ID_82540EM: 147 case E1000_DEV_ID_82540EM_LOM: 148 case E1000_DEV_ID_82540EP: 149 case E1000_DEV_ID_82540EP_LOM: 150 case E1000_DEV_ID_82540EP_LP: 151 mac->type = e1000_82540; 152 break; 153 case E1000_DEV_ID_82545EM_COPPER: 154 case E1000_DEV_ID_82545EM_FIBER: 155 mac->type = e1000_82545; 156 break; 157 case E1000_DEV_ID_82545GM_COPPER: 158 case E1000_DEV_ID_82545GM_FIBER: 159 case E1000_DEV_ID_82545GM_SERDES: 160 mac->type = e1000_82545_rev_3; 161 break; 162 case E1000_DEV_ID_82546EB_COPPER: 163 case E1000_DEV_ID_82546EB_FIBER: 164 case E1000_DEV_ID_82546EB_QUAD_COPPER: 165 mac->type = e1000_82546; 166 break; 167 case E1000_DEV_ID_82546GB_COPPER: 168 case E1000_DEV_ID_82546GB_FIBER: 169 case E1000_DEV_ID_82546GB_SERDES: 170 case E1000_DEV_ID_82546GB_PCIE: 171 case E1000_DEV_ID_82546GB_QUAD_COPPER: 172 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 173 mac->type = e1000_82546_rev_3; 174 break; 175 case E1000_DEV_ID_82541EI: 176 case E1000_DEV_ID_82541EI_MOBILE: 177 case E1000_DEV_ID_82541ER_LOM: 178 mac->type = e1000_82541; 179 break; 180 case E1000_DEV_ID_82541ER: 181 case E1000_DEV_ID_82541GI: 182 case E1000_DEV_ID_82541GI_LF: 183 case E1000_DEV_ID_82541GI_MOBILE: 184 mac->type = e1000_82541_rev_2; 185 break; 186 case E1000_DEV_ID_82547EI: 187 case E1000_DEV_ID_82547EI_MOBILE: 188 mac->type = e1000_82547; 189 break; 190 case E1000_DEV_ID_82547GI: 191 mac->type = e1000_82547_rev_2; 192 break; 193 case E1000_DEV_ID_82571EB_COPPER: 194 case E1000_DEV_ID_82571EB_FIBER: 195 case E1000_DEV_ID_82571EB_SERDES: 196 case E1000_DEV_ID_82571EB_SERDES_DUAL: 197 case E1000_DEV_ID_82571EB_SERDES_QUAD: 198 case E1000_DEV_ID_82571EB_QUAD_COPPER: 199 case E1000_DEV_ID_82571PT_QUAD_COPPER: 200 case E1000_DEV_ID_82571EB_QUAD_FIBER: 201 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 202 mac->type = e1000_82571; 203 break; 204 case E1000_DEV_ID_82572EI: 205 case E1000_DEV_ID_82572EI_COPPER: 206 case E1000_DEV_ID_82572EI_FIBER: 207 case E1000_DEV_ID_82572EI_SERDES: 208 mac->type = e1000_82572; 209 break; 210 case E1000_DEV_ID_82573E: 211 case E1000_DEV_ID_82573E_IAMT: 212 case E1000_DEV_ID_82573L: 213 mac->type = e1000_82573; 214 break; 215 case E1000_DEV_ID_82574L: 216 mac->type = e1000_82574; 217 break; 218 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 219 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 220 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 221 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 222 mac->type = e1000_80003es2lan; 223 break; 224 case E1000_DEV_ID_ICH8_IFE: 225 case E1000_DEV_ID_ICH8_IFE_GT: 226 case E1000_DEV_ID_ICH8_IFE_G: 227 case E1000_DEV_ID_ICH8_IGP_M: 228 case E1000_DEV_ID_ICH8_IGP_M_AMT: 229 case E1000_DEV_ID_ICH8_IGP_AMT: 230 case E1000_DEV_ID_ICH8_IGP_C: 231 mac->type = e1000_ich8lan; 232 break; 233 case E1000_DEV_ID_ICH9_IFE: 234 case E1000_DEV_ID_ICH9_IFE_GT: 235 case E1000_DEV_ID_ICH9_IFE_G: 236 case E1000_DEV_ID_ICH9_IGP_M: 237 case E1000_DEV_ID_ICH9_IGP_M_AMT: 238 case E1000_DEV_ID_ICH9_IGP_M_V: 239 case E1000_DEV_ID_ICH9_IGP_AMT: 240 case E1000_DEV_ID_ICH9_BM: 241 case E1000_DEV_ID_ICH9_IGP_C: 242 case E1000_DEV_ID_ICH10_R_BM_LM: 243 case E1000_DEV_ID_ICH10_R_BM_LF: 244 case E1000_DEV_ID_ICH10_R_BM_V: 245 mac->type = e1000_ich9lan; 246 break; 247 case E1000_DEV_ID_ICH10_D_BM_LM: 248 case E1000_DEV_ID_ICH10_D_BM_LF: 249 mac->type = e1000_ich10lan; 250 break; 251 case E1000_DEV_ID_82575EB_COPPER: 252 case E1000_DEV_ID_82575EB_FIBER_SERDES: 253 case E1000_DEV_ID_82575GB_QUAD_COPPER: 254 mac->type = e1000_82575; 255 break; 256 case E1000_DEV_ID_82576: 257 case E1000_DEV_ID_82576_FIBER: 258 case E1000_DEV_ID_82576_SERDES: 259 case E1000_DEV_ID_82576_QUAD_COPPER: 260 mac->type = e1000_82576; 261 break; 262 default: 263 /* Should never have loaded on this device */ 264 ret_val = -E1000_ERR_MAC_INIT; 265 break; 266 } 267 268 return ret_val; 269 } 270 271 /** 272 * e1000_setup_init_funcs - Initializes function pointers 273 * @hw: pointer to the HW structure 274 * @init_device: TRUE will initialize the rest of the function pointers 275 * getting the device ready for use. FALSE will only set 276 * MAC type and the function pointers for the other init 277 * functions. Passing FALSE will not generate any hardware 278 * reads or writes. 279 * 280 * This function must be called by a driver in order to use the rest 281 * of the 'shared' code files. Called by drivers only. 282 **/ 283 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 284 { 285 s32 ret_val; 286 287 /* Can't do much good without knowing the MAC type. */ 288 ret_val = e1000_set_mac_type(hw); 289 if (ret_val) { 290 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 291 goto out; 292 } 293 294 if (!hw->hw_addr) { 295 DEBUGOUT("ERROR: Registers not mapped\n"); 296 ret_val = -E1000_ERR_CONFIG; 297 goto out; 298 } 299 300 /* 301 * Init function pointers to generic implementations. We do this first 302 * allowing a driver module to override it afterward. 303 */ 304 e1000_init_mac_ops_generic(hw); 305 e1000_init_phy_ops_generic(hw); 306 e1000_init_nvm_ops_generic(hw); 307 308 /* 309 * Set up the init function pointers. These are functions within the 310 * adapter family file that sets up function pointers for the rest of 311 * the functions in that family. 312 */ 313 switch (hw->mac.type) { 314 case e1000_82542: 315 e1000_init_function_pointers_82542(hw); 316 break; 317 case e1000_82543: 318 case e1000_82544: 319 e1000_init_function_pointers_82543(hw); 320 break; 321 case e1000_82540: 322 case e1000_82545: 323 case e1000_82545_rev_3: 324 case e1000_82546: 325 case e1000_82546_rev_3: 326 e1000_init_function_pointers_82540(hw); 327 break; 328 case e1000_82541: 329 case e1000_82541_rev_2: 330 case e1000_82547: 331 case e1000_82547_rev_2: 332 e1000_init_function_pointers_82541(hw); 333 break; 334 case e1000_82571: 335 case e1000_82572: 336 case e1000_82573: 337 case e1000_82574: 338 e1000_init_function_pointers_82571(hw); 339 break; 340 case e1000_80003es2lan: 341 e1000_init_function_pointers_80003es2lan(hw); 342 break; 343 case e1000_ich8lan: 344 case e1000_ich9lan: 345 case e1000_ich10lan: 346 e1000_init_function_pointers_ich8lan(hw); 347 break; 348 case e1000_82575: 349 case e1000_82576: 350 e1000_init_function_pointers_82575(hw); 351 break; 352 default: 353 DEBUGOUT("Hardware not supported\n"); 354 ret_val = -E1000_ERR_CONFIG; 355 break; 356 } 357 358 /* 359 * Initialize the rest of the function pointers. These require some 360 * register reads/writes in some cases. 361 */ 362 if (!(ret_val) && init_device) { 363 ret_val = e1000_init_mac_params(hw); 364 if (ret_val) 365 goto out; 366 367 ret_val = e1000_init_nvm_params(hw); 368 if (ret_val) 369 goto out; 370 371 ret_val = e1000_init_phy_params(hw); 372 if (ret_val) 373 goto out; 374 375 } 376 377 out: 378 return ret_val; 379 } 380 381 /** 382 * e1000_remove_device - Free device specific structure 383 * @hw: pointer to the HW structure 384 * 385 * If a device specific structure was allocated, this function will 386 * free it. This is a function pointer entry point called by drivers. 387 **/ 388 void e1000_remove_device(struct e1000_hw *hw) 389 { 390 if (hw->mac.ops.remove_device) 391 hw->mac.ops.remove_device(hw); 392 } 393 394 /** 395 * e1000_get_bus_info - Obtain bus information for adapter 396 * @hw: pointer to the HW structure 397 * 398 * This will obtain information about the HW bus for which the 399 * adapter is attached and stores it in the hw structure. This is a 400 * function pointer entry point called by drivers. 401 **/ 402 s32 e1000_get_bus_info(struct e1000_hw *hw) 403 { 404 if (hw->mac.ops.get_bus_info) 405 return hw->mac.ops.get_bus_info(hw); 406 407 return E1000_SUCCESS; 408 } 409 410 /** 411 * e1000_clear_vfta - Clear VLAN filter table 412 * @hw: pointer to the HW structure 413 * 414 * This clears the VLAN filter table on the adapter. This is a function 415 * pointer entry point called by drivers. 416 **/ 417 void e1000_clear_vfta(struct e1000_hw *hw) 418 { 419 if (hw->mac.ops.clear_vfta) 420 hw->mac.ops.clear_vfta(hw); 421 } 422 423 /** 424 * e1000_write_vfta - Write value to VLAN filter table 425 * @hw: pointer to the HW structure 426 * @offset: the 32-bit offset in which to write the value to. 427 * @value: the 32-bit value to write at location offset. 428 * 429 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 430 * table. This is a function pointer entry point called by drivers. 431 **/ 432 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 433 { 434 if (hw->mac.ops.write_vfta) 435 hw->mac.ops.write_vfta(hw, offset, value); 436 } 437 438 /** 439 * e1000_update_mc_addr_list - Update Multicast addresses 440 * @hw: pointer to the HW structure 441 * @mc_addr_list: array of multicast addresses to program 442 * @mc_addr_count: number of multicast addresses to program 443 * @rar_used_count: the first RAR register free to program 444 * @rar_count: total number of supported Receive Address Registers 445 * 446 * Updates the Receive Address Registers and Multicast Table Array. 447 * The caller must have a packed mc_addr_list of multicast addresses. 448 * The parameter rar_count will usually be hw->mac.rar_entry_count 449 * unless there are workarounds that change this. Currently no func pointer 450 * exists and all implementations are handled in the generic version of this 451 * function. 452 **/ 453 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 454 u32 mc_addr_count, u32 rar_used_count, 455 u32 rar_count) 456 { 457 if (hw->mac.ops.update_mc_addr_list) 458 hw->mac.ops.update_mc_addr_list(hw, 459 mc_addr_list, 460 mc_addr_count, 461 rar_used_count, 462 rar_count); 463 } 464 465 /** 466 * e1000_force_mac_fc - Force MAC flow control 467 * @hw: pointer to the HW structure 468 * 469 * Force the MAC's flow control settings. Currently no func pointer exists 470 * and all implementations are handled in the generic version of this 471 * function. 472 **/ 473 s32 e1000_force_mac_fc(struct e1000_hw *hw) 474 { 475 return e1000_force_mac_fc_generic(hw); 476 } 477 478 /** 479 * e1000_check_for_link - Check/Store link connection 480 * @hw: pointer to the HW structure 481 * 482 * This checks the link condition of the adapter and stores the 483 * results in the hw->mac structure. This is a function pointer entry 484 * point called by drivers. 485 **/ 486 s32 e1000_check_for_link(struct e1000_hw *hw) 487 { 488 if (hw->mac.ops.check_for_link) 489 return hw->mac.ops.check_for_link(hw); 490 491 return -E1000_ERR_CONFIG; 492 } 493 494 /** 495 * e1000_check_mng_mode - Check management mode 496 * @hw: pointer to the HW structure 497 * 498 * This checks if the adapter has manageability enabled. 499 * This is a function pointer entry point called by drivers. 500 **/ 501 bool e1000_check_mng_mode(struct e1000_hw *hw) 502 { 503 if (hw->mac.ops.check_mng_mode) 504 return hw->mac.ops.check_mng_mode(hw); 505 506 return FALSE; 507 } 508 509 /** 510 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 511 * @hw: pointer to the HW structure 512 * @buffer: pointer to the host interface 513 * @length: size of the buffer 514 * 515 * Writes the DHCP information to the host interface. 516 **/ 517 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 518 { 519 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 520 } 521 522 /** 523 * e1000_reset_hw - Reset hardware 524 * @hw: pointer to the HW structure 525 * 526 * This resets the hardware into a known state. This is a function pointer 527 * entry point called by drivers. 528 **/ 529 s32 e1000_reset_hw(struct e1000_hw *hw) 530 { 531 if (hw->mac.ops.reset_hw) 532 return hw->mac.ops.reset_hw(hw); 533 534 return -E1000_ERR_CONFIG; 535 } 536 537 /** 538 * e1000_init_hw - Initialize hardware 539 * @hw: pointer to the HW structure 540 * 541 * This inits the hardware readying it for operation. This is a function 542 * pointer entry point called by drivers. 543 **/ 544 s32 e1000_init_hw(struct e1000_hw *hw) 545 { 546 if (hw->mac.ops.init_hw) 547 return hw->mac.ops.init_hw(hw); 548 549 return -E1000_ERR_CONFIG; 550 } 551 552 /** 553 * e1000_setup_link - Configures link and flow control 554 * @hw: pointer to the HW structure 555 * 556 * This configures link and flow control settings for the adapter. This 557 * is a function pointer entry point called by drivers. While modules can 558 * also call this, they probably call their own version of this function. 559 **/ 560 s32 e1000_setup_link(struct e1000_hw *hw) 561 { 562 if (hw->mac.ops.setup_link) 563 return hw->mac.ops.setup_link(hw); 564 565 return -E1000_ERR_CONFIG; 566 } 567 568 /** 569 * e1000_get_speed_and_duplex - Returns current speed and duplex 570 * @hw: pointer to the HW structure 571 * @speed: pointer to a 16-bit value to store the speed 572 * @duplex: pointer to a 16-bit value to store the duplex. 573 * 574 * This returns the speed and duplex of the adapter in the two 'out' 575 * variables passed in. This is a function pointer entry point called 576 * by drivers. 577 **/ 578 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 579 { 580 if (hw->mac.ops.get_link_up_info) 581 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 582 583 return -E1000_ERR_CONFIG; 584 } 585 586 /** 587 * e1000_setup_led - Configures SW controllable LED 588 * @hw: pointer to the HW structure 589 * 590 * This prepares the SW controllable LED for use and saves the current state 591 * of the LED so it can be later restored. This is a function pointer entry 592 * point called by drivers. 593 **/ 594 s32 e1000_setup_led(struct e1000_hw *hw) 595 { 596 if (hw->mac.ops.setup_led) 597 return hw->mac.ops.setup_led(hw); 598 599 return E1000_SUCCESS; 600 } 601 602 /** 603 * e1000_cleanup_led - Restores SW controllable LED 604 * @hw: pointer to the HW structure 605 * 606 * This restores the SW controllable LED to the value saved off by 607 * e1000_setup_led. This is a function pointer entry point called by drivers. 608 **/ 609 s32 e1000_cleanup_led(struct e1000_hw *hw) 610 { 611 if (hw->mac.ops.cleanup_led) 612 return hw->mac.ops.cleanup_led(hw); 613 614 return E1000_SUCCESS; 615 } 616 617 /** 618 * e1000_blink_led - Blink SW controllable LED 619 * @hw: pointer to the HW structure 620 * 621 * This starts the adapter LED blinking. Request the LED to be setup first 622 * and cleaned up after. This is a function pointer entry point called by 623 * drivers. 624 **/ 625 s32 e1000_blink_led(struct e1000_hw *hw) 626 { 627 if (hw->mac.ops.blink_led) 628 return hw->mac.ops.blink_led(hw); 629 630 return E1000_SUCCESS; 631 } 632 633 /** 634 * e1000_led_on - Turn on SW controllable LED 635 * @hw: pointer to the HW structure 636 * 637 * Turns the SW defined LED on. This is a function pointer entry point 638 * called by drivers. 639 **/ 640 s32 e1000_led_on(struct e1000_hw *hw) 641 { 642 if (hw->mac.ops.led_on) 643 return hw->mac.ops.led_on(hw); 644 645 return E1000_SUCCESS; 646 } 647 648 /** 649 * e1000_led_off - Turn off SW controllable LED 650 * @hw: pointer to the HW structure 651 * 652 * Turns the SW defined LED off. This is a function pointer entry point 653 * called by drivers. 654 **/ 655 s32 e1000_led_off(struct e1000_hw *hw) 656 { 657 if (hw->mac.ops.led_off) 658 return hw->mac.ops.led_off(hw); 659 660 return E1000_SUCCESS; 661 } 662 663 /** 664 * e1000_reset_adaptive - Reset adaptive IFS 665 * @hw: pointer to the HW structure 666 * 667 * Resets the adaptive IFS. Currently no func pointer exists and all 668 * implementations are handled in the generic version of this function. 669 **/ 670 void e1000_reset_adaptive(struct e1000_hw *hw) 671 { 672 e1000_reset_adaptive_generic(hw); 673 } 674 675 /** 676 * e1000_update_adaptive - Update adaptive IFS 677 * @hw: pointer to the HW structure 678 * 679 * Updates adapter IFS. Currently no func pointer exists and all 680 * implementations are handled in the generic version of this function. 681 **/ 682 void e1000_update_adaptive(struct e1000_hw *hw) 683 { 684 e1000_update_adaptive_generic(hw); 685 } 686 687 /** 688 * e1000_disable_pcie_master - Disable PCI-Express master access 689 * @hw: pointer to the HW structure 690 * 691 * Disables PCI-Express master access and verifies there are no pending 692 * requests. Currently no func pointer exists and all implementations are 693 * handled in the generic version of this function. 694 **/ 695 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 696 { 697 return e1000_disable_pcie_master_generic(hw); 698 } 699 700 /** 701 * e1000_config_collision_dist - Configure collision distance 702 * @hw: pointer to the HW structure 703 * 704 * Configures the collision distance to the default value and is used 705 * during link setup. 706 **/ 707 void e1000_config_collision_dist(struct e1000_hw *hw) 708 { 709 if (hw->mac.ops.config_collision_dist) 710 hw->mac.ops.config_collision_dist(hw); 711 } 712 713 /** 714 * e1000_rar_set - Sets a receive address register 715 * @hw: pointer to the HW structure 716 * @addr: address to set the RAR to 717 * @index: the RAR to set 718 * 719 * Sets a Receive Address Register (RAR) to the specified address. 720 **/ 721 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 722 { 723 if (hw->mac.ops.rar_set) 724 hw->mac.ops.rar_set(hw, addr, index); 725 } 726 727 /** 728 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 729 * @hw: pointer to the HW structure 730 * 731 * Ensures that the MDI/MDIX SW state is valid. 732 **/ 733 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 734 { 735 if (hw->mac.ops.validate_mdi_setting) 736 return hw->mac.ops.validate_mdi_setting(hw); 737 738 return E1000_SUCCESS; 739 } 740 741 /** 742 * e1000_mta_set - Sets multicast table bit 743 * @hw: pointer to the HW structure 744 * @hash_value: Multicast hash value. 745 * 746 * This sets the bit in the multicast table corresponding to the 747 * hash value. This is a function pointer entry point called by drivers. 748 **/ 749 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) 750 { 751 if (hw->mac.ops.mta_set) 752 hw->mac.ops.mta_set(hw, hash_value); 753 } 754 755 /** 756 * e1000_hash_mc_addr - Determines address location in multicast table 757 * @hw: pointer to the HW structure 758 * @mc_addr: Multicast address to hash. 759 * 760 * This hashes an address to determine its location in the multicast 761 * table. Currently no func pointer exists and all implementations 762 * are handled in the generic version of this function. 763 **/ 764 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 765 { 766 return e1000_hash_mc_addr_generic(hw, mc_addr); 767 } 768 769 /** 770 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 771 * @hw: pointer to the HW structure 772 * 773 * Enables packet filtering on transmit packets if manageability is enabled 774 * and host interface is enabled. 775 * Currently no func pointer exists and all implementations are handled in the 776 * generic version of this function. 777 **/ 778 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 779 { 780 return e1000_enable_tx_pkt_filtering_generic(hw); 781 } 782 783 /** 784 * e1000_mng_host_if_write - Writes to the manageability host interface 785 * @hw: pointer to the HW structure 786 * @buffer: pointer to the host interface buffer 787 * @length: size of the buffer 788 * @offset: location in the buffer to write to 789 * @sum: sum of the data (not checksum) 790 * 791 * This function writes the buffer content at the offset given on the host if. 792 * It also does alignment considerations to do the writes in most efficient 793 * way. Also fills up the sum of the buffer in *buffer parameter. 794 **/ 795 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 796 u16 offset, u8 *sum) 797 { 798 if (hw->mac.ops.mng_host_if_write) 799 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 800 offset, sum); 801 802 return E1000_NOT_IMPLEMENTED; 803 } 804 805 /** 806 * e1000_mng_write_cmd_header - Writes manageability command header 807 * @hw: pointer to the HW structure 808 * @hdr: pointer to the host interface command header 809 * 810 * Writes the command header after does the checksum calculation. 811 **/ 812 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 813 struct e1000_host_mng_command_header *hdr) 814 { 815 if (hw->mac.ops.mng_write_cmd_header) 816 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 817 818 return E1000_NOT_IMPLEMENTED; 819 } 820 821 /** 822 * e1000_mng_enable_host_if - Checks host interface is enabled 823 * @hw: pointer to the HW structure 824 * 825 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 826 * 827 * This function checks whether the HOST IF is enabled for command operation 828 * and also checks whether the previous command is completed. It busy waits 829 * in case of previous command is not completed. 830 **/ 831 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 832 { 833 if (hw->mac.ops.mng_enable_host_if) 834 return hw->mac.ops.mng_enable_host_if(hw); 835 836 return E1000_NOT_IMPLEMENTED; 837 } 838 839 /** 840 * e1000_wait_autoneg - Waits for autonegotiation completion 841 * @hw: pointer to the HW structure 842 * 843 * Waits for autoneg to complete. Currently no func pointer exists and all 844 * implementations are handled in the generic version of this function. 845 **/ 846 s32 e1000_wait_autoneg(struct e1000_hw *hw) 847 { 848 if (hw->mac.ops.wait_autoneg) 849 return hw->mac.ops.wait_autoneg(hw); 850 851 return E1000_SUCCESS; 852 } 853 854 /** 855 * e1000_check_reset_block - Verifies PHY can be reset 856 * @hw: pointer to the HW structure 857 * 858 * Checks if the PHY is in a state that can be reset or if manageability 859 * has it tied up. This is a function pointer entry point called by drivers. 860 **/ 861 s32 e1000_check_reset_block(struct e1000_hw *hw) 862 { 863 if (hw->phy.ops.check_reset_block) 864 return hw->phy.ops.check_reset_block(hw); 865 866 return E1000_SUCCESS; 867 } 868 869 /** 870 * e1000_read_phy_reg - Reads PHY register 871 * @hw: pointer to the HW structure 872 * @offset: the register to read 873 * @data: the buffer to store the 16-bit read. 874 * 875 * Reads the PHY register and returns the value in data. 876 * This is a function pointer entry point called by drivers. 877 **/ 878 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 879 { 880 if (hw->phy.ops.read_reg) 881 return hw->phy.ops.read_reg(hw, offset, data); 882 883 return E1000_SUCCESS; 884 } 885 886 /** 887 * e1000_write_phy_reg - Writes PHY register 888 * @hw: pointer to the HW structure 889 * @offset: the register to write 890 * @data: the value to write. 891 * 892 * Writes the PHY register at offset with the value in data. 893 * This is a function pointer entry point called by drivers. 894 **/ 895 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 896 { 897 if (hw->phy.ops.write_reg) 898 return hw->phy.ops.write_reg(hw, offset, data); 899 900 return E1000_SUCCESS; 901 } 902 903 /** 904 * e1000_release_phy - Generic release PHY 905 * @hw: pointer to the HW structure 906 * 907 * Return if silicon family does not require a semaphore when accessing the 908 * PHY. 909 **/ 910 void e1000_release_phy(struct e1000_hw *hw) 911 { 912 if (hw->phy.ops.release) 913 hw->phy.ops.release(hw); 914 } 915 916 /** 917 * e1000_acquire_phy - Generic acquire PHY 918 * @hw: pointer to the HW structure 919 * 920 * Return success if silicon family does not require a semaphore when 921 * accessing the PHY. 922 **/ 923 s32 e1000_acquire_phy(struct e1000_hw *hw) 924 { 925 if (hw->phy.ops.acquire) 926 return hw->phy.ops.acquire(hw); 927 928 return E1000_SUCCESS; 929 } 930 931 /** 932 * e1000_read_kmrn_reg - Reads register using Kumeran interface 933 * @hw: pointer to the HW structure 934 * @offset: the register to read 935 * @data: the location to store the 16-bit value read. 936 * 937 * Reads a register out of the Kumeran interface. Currently no func pointer 938 * exists and all implementations are handled in the generic version of 939 * this function. 940 **/ 941 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 942 { 943 return e1000_read_kmrn_reg_generic(hw, offset, data); 944 } 945 946 /** 947 * e1000_write_kmrn_reg - Writes register using Kumeran interface 948 * @hw: pointer to the HW structure 949 * @offset: the register to write 950 * @data: the value to write. 951 * 952 * Writes a register to the Kumeran interface. Currently no func pointer 953 * exists and all implementations are handled in the generic version of 954 * this function. 955 **/ 956 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 957 { 958 return e1000_write_kmrn_reg_generic(hw, offset, data); 959 } 960 961 /** 962 * e1000_get_cable_length - Retrieves cable length estimation 963 * @hw: pointer to the HW structure 964 * 965 * This function estimates the cable length and stores them in 966 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 967 * entry point called by drivers. 968 **/ 969 s32 e1000_get_cable_length(struct e1000_hw *hw) 970 { 971 if (hw->phy.ops.get_cable_length) 972 return hw->phy.ops.get_cable_length(hw); 973 974 return E1000_SUCCESS; 975 } 976 977 /** 978 * e1000_get_phy_info - Retrieves PHY information from registers 979 * @hw: pointer to the HW structure 980 * 981 * This function gets some information from various PHY registers and 982 * populates hw->phy values with it. This is a function pointer entry 983 * point called by drivers. 984 **/ 985 s32 e1000_get_phy_info(struct e1000_hw *hw) 986 { 987 if (hw->phy.ops.get_info) 988 return hw->phy.ops.get_info(hw); 989 990 return E1000_SUCCESS; 991 } 992 993 /** 994 * e1000_phy_hw_reset - Hard PHY reset 995 * @hw: pointer to the HW structure 996 * 997 * Performs a hard PHY reset. This is a function pointer entry point called 998 * by drivers. 999 **/ 1000 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1001 { 1002 if (hw->phy.ops.reset) 1003 return hw->phy.ops.reset(hw); 1004 1005 return E1000_SUCCESS; 1006 } 1007 1008 /** 1009 * e1000_phy_commit - Soft PHY reset 1010 * @hw: pointer to the HW structure 1011 * 1012 * Performs a soft PHY reset on those that apply. This is a function pointer 1013 * entry point called by drivers. 1014 **/ 1015 s32 e1000_phy_commit(struct e1000_hw *hw) 1016 { 1017 if (hw->phy.ops.commit) 1018 return hw->phy.ops.commit(hw); 1019 1020 return E1000_SUCCESS; 1021 } 1022 1023 /** 1024 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1025 * @hw: pointer to the HW structure 1026 * @active: boolean used to enable/disable lplu 1027 * 1028 * Success returns 0, Failure returns 1 1029 * 1030 * The low power link up (lplu) state is set to the power management level D0 1031 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1032 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1033 * is used during Dx states where the power conservation is most important. 1034 * During driver activity, SmartSpeed should be enabled so performance is 1035 * maintained. This is a function pointer entry point called by drivers. 1036 **/ 1037 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1038 { 1039 if (hw->phy.ops.set_d0_lplu_state) 1040 return hw->phy.ops.set_d0_lplu_state(hw, active); 1041 1042 return E1000_SUCCESS; 1043 } 1044 1045 /** 1046 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1047 * @hw: pointer to the HW structure 1048 * @active: boolean used to enable/disable lplu 1049 * 1050 * Success returns 0, Failure returns 1 1051 * 1052 * The low power link up (lplu) state is set to the power management level D3 1053 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1054 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1055 * is used during Dx states where the power conservation is most important. 1056 * During driver activity, SmartSpeed should be enabled so performance is 1057 * maintained. This is a function pointer entry point called by drivers. 1058 **/ 1059 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1060 { 1061 if (hw->phy.ops.set_d3_lplu_state) 1062 return hw->phy.ops.set_d3_lplu_state(hw, active); 1063 1064 return E1000_SUCCESS; 1065 } 1066 1067 /** 1068 * e1000_read_mac_addr - Reads MAC address 1069 * @hw: pointer to the HW structure 1070 * 1071 * Reads the MAC address out of the adapter and stores it in the HW structure. 1072 * Currently no func pointer exists and all implementations are handled in the 1073 * generic version of this function. 1074 **/ 1075 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1076 { 1077 if (hw->mac.ops.read_mac_addr) 1078 return hw->mac.ops.read_mac_addr(hw); 1079 1080 return e1000_read_mac_addr_generic(hw); 1081 } 1082 1083 /** 1084 * e1000_read_pba_num - Read device part number 1085 * @hw: pointer to the HW structure 1086 * @pba_num: pointer to device part number 1087 * 1088 * Reads the product board assembly (PBA) number from the EEPROM and stores 1089 * the value in pba_num. 1090 * Currently no func pointer exists and all implementations are handled in the 1091 * generic version of this function. 1092 **/ 1093 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1094 { 1095 return e1000_read_pba_num_generic(hw, pba_num); 1096 } 1097 1098 /** 1099 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1100 * @hw: pointer to the HW structure 1101 * 1102 * Validates the NVM checksum is correct. This is a function pointer entry 1103 * point called by drivers. 1104 **/ 1105 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1106 { 1107 if (hw->nvm.ops.validate) 1108 return hw->nvm.ops.validate(hw); 1109 1110 return -E1000_ERR_CONFIG; 1111 } 1112 1113 /** 1114 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1115 * @hw: pointer to the HW structure 1116 * 1117 * Updates the NVM checksum. Currently no func pointer exists and all 1118 * implementations are handled in the generic version of this function. 1119 **/ 1120 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1121 { 1122 if (hw->nvm.ops.update) 1123 return hw->nvm.ops.update(hw); 1124 1125 return -E1000_ERR_CONFIG; 1126 } 1127 1128 /** 1129 * e1000_reload_nvm - Reloads EEPROM 1130 * @hw: pointer to the HW structure 1131 * 1132 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1133 * extended control register. 1134 **/ 1135 void e1000_reload_nvm(struct e1000_hw *hw) 1136 { 1137 if (hw->nvm.ops.reload) 1138 hw->nvm.ops.reload(hw); 1139 } 1140 1141 /** 1142 * e1000_read_nvm - Reads NVM (EEPROM) 1143 * @hw: pointer to the HW structure 1144 * @offset: the word offset to read 1145 * @words: number of 16-bit words to read 1146 * @data: pointer to the properly sized buffer for the data. 1147 * 1148 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1149 * pointer entry point called by drivers. 1150 **/ 1151 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1152 { 1153 if (hw->nvm.ops.read) 1154 return hw->nvm.ops.read(hw, offset, words, data); 1155 1156 return -E1000_ERR_CONFIG; 1157 } 1158 1159 /** 1160 * e1000_write_nvm - Writes to NVM (EEPROM) 1161 * @hw: pointer to the HW structure 1162 * @offset: the word offset to read 1163 * @words: number of 16-bit words to write 1164 * @data: pointer to the properly sized buffer for the data. 1165 * 1166 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1167 * pointer entry point called by drivers. 1168 **/ 1169 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1170 { 1171 if (hw->nvm.ops.write) 1172 return hw->nvm.ops.write(hw, offset, words, data); 1173 1174 return E1000_SUCCESS; 1175 } 1176 1177 /** 1178 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1179 * @hw: pointer to the HW structure 1180 * @reg: 32bit register offset 1181 * @offset: the register to write 1182 * @data: the value to write. 1183 * 1184 * Writes the PHY register at offset with the value in data. 1185 * This is a function pointer entry point called by drivers. 1186 **/ 1187 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1188 u8 data) 1189 { 1190 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1191 } 1192 1193 /** 1194 * e1000_power_up_phy - Restores link in case of PHY power down 1195 * @hw: pointer to the HW structure 1196 * 1197 * The phy may be powered down to save power, to turn off link when the 1198 * driver is unloaded, or wake on lan is not enabled (among others). 1199 **/ 1200 void e1000_power_up_phy(struct e1000_hw *hw) 1201 { 1202 if (hw->phy.ops.power_up) 1203 hw->phy.ops.power_up(hw); 1204 1205 e1000_setup_link(hw); 1206 } 1207 1208 /** 1209 * e1000_power_down_phy - Power down PHY 1210 * @hw: pointer to the HW structure 1211 * 1212 * The phy may be powered down to save power, to turn off link when the 1213 * driver is unloaded, or wake on lan is not enabled (among others). 1214 **/ 1215 void e1000_power_down_phy(struct e1000_hw *hw) 1216 { 1217 if (hw->phy.ops.power_down) 1218 hw->phy.ops.power_down(hw); 1219 } 1220 1221 /** 1222 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1223 * @hw: pointer to the HW structure 1224 * 1225 * Shutdown the optics and PCS on driver unload. 1226 **/ 1227 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1228 { 1229 if (hw->mac.ops.shutdown_serdes) 1230 hw->mac.ops.shutdown_serdes(hw); 1231 } 1232 1233