xref: /freebsd/sys/dev/e1000/e1000_api.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2010, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 		mac->type = e1000_ich10lan;
280 		break;
281 	case E1000_DEV_ID_PCH_D_HV_DM:
282 	case E1000_DEV_ID_PCH_D_HV_DC:
283 	case E1000_DEV_ID_PCH_M_HV_LM:
284 	case E1000_DEV_ID_PCH_M_HV_LC:
285 		mac->type = e1000_pchlan;
286 		break;
287 	case E1000_DEV_ID_82575EB_COPPER:
288 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
289 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
290 	case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
291 		mac->type = e1000_82575;
292 		break;
293 	case E1000_DEV_ID_82576:
294 	case E1000_DEV_ID_82576_FIBER:
295 	case E1000_DEV_ID_82576_SERDES:
296 	case E1000_DEV_ID_82576_QUAD_COPPER:
297 	case E1000_DEV_ID_82576_NS:
298 	case E1000_DEV_ID_82576_NS_SERDES:
299 	case E1000_DEV_ID_82576_SERDES_QUAD:
300 		mac->type = e1000_82576;
301 		break;
302 	case E1000_DEV_ID_82580_COPPER:
303 	case E1000_DEV_ID_82580_FIBER:
304 	case E1000_DEV_ID_82580_SERDES:
305 	case E1000_DEV_ID_82580_SGMII:
306 	case E1000_DEV_ID_82580_COPPER_DUAL:
307 		mac->type = e1000_82580;
308 		break;
309 	case E1000_DEV_ID_82576_VF:
310 		mac->type = e1000_vfadapt;
311 		break;
312 	default:
313 		/* Should never have loaded on this device */
314 		ret_val = -E1000_ERR_MAC_INIT;
315 		break;
316 	}
317 
318 	return ret_val;
319 }
320 
321 /**
322  *  e1000_setup_init_funcs - Initializes function pointers
323  *  @hw: pointer to the HW structure
324  *  @init_device: TRUE will initialize the rest of the function pointers
325  *                 getting the device ready for use.  FALSE will only set
326  *                 MAC type and the function pointers for the other init
327  *                 functions.  Passing FALSE will not generate any hardware
328  *                 reads or writes.
329  *
330  *  This function must be called by a driver in order to use the rest
331  *  of the 'shared' code files. Called by drivers only.
332  **/
333 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
334 {
335 	s32 ret_val;
336 
337 	/* Can't do much good without knowing the MAC type. */
338 	ret_val = e1000_set_mac_type(hw);
339 	if (ret_val) {
340 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
341 		goto out;
342 	}
343 
344 	if (!hw->hw_addr) {
345 		DEBUGOUT("ERROR: Registers not mapped\n");
346 		ret_val = -E1000_ERR_CONFIG;
347 		goto out;
348 	}
349 
350 	/*
351 	 * Init function pointers to generic implementations. We do this first
352 	 * allowing a driver module to override it afterward.
353 	 */
354 	e1000_init_mac_ops_generic(hw);
355 	e1000_init_phy_ops_generic(hw);
356 	e1000_init_nvm_ops_generic(hw);
357 	e1000_init_mbx_ops_generic(hw);
358 
359 	/*
360 	 * Set up the init function pointers. These are functions within the
361 	 * adapter family file that sets up function pointers for the rest of
362 	 * the functions in that family.
363 	 */
364 	switch (hw->mac.type) {
365 	case e1000_82542:
366 		e1000_init_function_pointers_82542(hw);
367 		break;
368 	case e1000_82543:
369 	case e1000_82544:
370 		e1000_init_function_pointers_82543(hw);
371 		break;
372 	case e1000_82540:
373 	case e1000_82545:
374 	case e1000_82545_rev_3:
375 	case e1000_82546:
376 	case e1000_82546_rev_3:
377 		e1000_init_function_pointers_82540(hw);
378 		break;
379 	case e1000_82541:
380 	case e1000_82541_rev_2:
381 	case e1000_82547:
382 	case e1000_82547_rev_2:
383 		e1000_init_function_pointers_82541(hw);
384 		break;
385 	case e1000_82571:
386 	case e1000_82572:
387 	case e1000_82573:
388 	case e1000_82574:
389 	case e1000_82583:
390 		e1000_init_function_pointers_82571(hw);
391 		break;
392 	case e1000_80003es2lan:
393 		e1000_init_function_pointers_80003es2lan(hw);
394 		break;
395 	case e1000_ich8lan:
396 	case e1000_ich9lan:
397 	case e1000_ich10lan:
398 	case e1000_pchlan:
399 		e1000_init_function_pointers_ich8lan(hw);
400 		break;
401 	case e1000_82575:
402 	case e1000_82576:
403 	case e1000_82580:
404 		e1000_init_function_pointers_82575(hw);
405 		break;
406 	case e1000_vfadapt:
407 		e1000_init_function_pointers_vf(hw);
408 		break;
409 	default:
410 		DEBUGOUT("Hardware not supported\n");
411 		ret_val = -E1000_ERR_CONFIG;
412 		break;
413 	}
414 
415 	/*
416 	 * Initialize the rest of the function pointers. These require some
417 	 * register reads/writes in some cases.
418 	 */
419 	if (!(ret_val) && init_device) {
420 		ret_val = e1000_init_mac_params(hw);
421 		if (ret_val)
422 			goto out;
423 
424 		ret_val = e1000_init_nvm_params(hw);
425 		if (ret_val)
426 			goto out;
427 
428 		ret_val = e1000_init_phy_params(hw);
429 		if (ret_val)
430 			goto out;
431 
432 		ret_val = e1000_init_mbx_params(hw);
433 		if (ret_val)
434 			goto out;
435 	}
436 
437 out:
438 	return ret_val;
439 }
440 
441 /**
442  *  e1000_get_bus_info - Obtain bus information for adapter
443  *  @hw: pointer to the HW structure
444  *
445  *  This will obtain information about the HW bus for which the
446  *  adapter is attached and stores it in the hw structure. This is a
447  *  function pointer entry point called by drivers.
448  **/
449 s32 e1000_get_bus_info(struct e1000_hw *hw)
450 {
451 	if (hw->mac.ops.get_bus_info)
452 		return hw->mac.ops.get_bus_info(hw);
453 
454 	return E1000_SUCCESS;
455 }
456 
457 /**
458  *  e1000_clear_vfta - Clear VLAN filter table
459  *  @hw: pointer to the HW structure
460  *
461  *  This clears the VLAN filter table on the adapter. This is a function
462  *  pointer entry point called by drivers.
463  **/
464 void e1000_clear_vfta(struct e1000_hw *hw)
465 {
466 	if (hw->mac.ops.clear_vfta)
467 		hw->mac.ops.clear_vfta(hw);
468 }
469 
470 /**
471  *  e1000_write_vfta - Write value to VLAN filter table
472  *  @hw: pointer to the HW structure
473  *  @offset: the 32-bit offset in which to write the value to.
474  *  @value: the 32-bit value to write at location offset.
475  *
476  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
477  *  table. This is a function pointer entry point called by drivers.
478  **/
479 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
480 {
481 	if (hw->mac.ops.write_vfta)
482 		hw->mac.ops.write_vfta(hw, offset, value);
483 }
484 
485 /**
486  *  e1000_update_mc_addr_list - Update Multicast addresses
487  *  @hw: pointer to the HW structure
488  *  @mc_addr_list: array of multicast addresses to program
489  *  @mc_addr_count: number of multicast addresses to program
490  *
491  *  Updates the Multicast Table Array.
492  *  The caller must have a packed mc_addr_list of multicast addresses.
493  **/
494 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
495                                u32 mc_addr_count)
496 {
497 	if (hw->mac.ops.update_mc_addr_list)
498 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
499 		                                mc_addr_count);
500 }
501 
502 /**
503  *  e1000_force_mac_fc - Force MAC flow control
504  *  @hw: pointer to the HW structure
505  *
506  *  Force the MAC's flow control settings. Currently no func pointer exists
507  *  and all implementations are handled in the generic version of this
508  *  function.
509  **/
510 s32 e1000_force_mac_fc(struct e1000_hw *hw)
511 {
512 	return e1000_force_mac_fc_generic(hw);
513 }
514 
515 /**
516  *  e1000_check_for_link - Check/Store link connection
517  *  @hw: pointer to the HW structure
518  *
519  *  This checks the link condition of the adapter and stores the
520  *  results in the hw->mac structure. This is a function pointer entry
521  *  point called by drivers.
522  **/
523 s32 e1000_check_for_link(struct e1000_hw *hw)
524 {
525 	if (hw->mac.ops.check_for_link)
526 		return hw->mac.ops.check_for_link(hw);
527 
528 	return -E1000_ERR_CONFIG;
529 }
530 
531 /**
532  *  e1000_check_mng_mode - Check management mode
533  *  @hw: pointer to the HW structure
534  *
535  *  This checks if the adapter has manageability enabled.
536  *  This is a function pointer entry point called by drivers.
537  **/
538 bool e1000_check_mng_mode(struct e1000_hw *hw)
539 {
540 	if (hw->mac.ops.check_mng_mode)
541 		return hw->mac.ops.check_mng_mode(hw);
542 
543 	return FALSE;
544 }
545 
546 /**
547  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
548  *  @hw: pointer to the HW structure
549  *  @buffer: pointer to the host interface
550  *  @length: size of the buffer
551  *
552  *  Writes the DHCP information to the host interface.
553  **/
554 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
555 {
556 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
557 }
558 
559 /**
560  *  e1000_reset_hw - Reset hardware
561  *  @hw: pointer to the HW structure
562  *
563  *  This resets the hardware into a known state. This is a function pointer
564  *  entry point called by drivers.
565  **/
566 s32 e1000_reset_hw(struct e1000_hw *hw)
567 {
568 	if (hw->mac.ops.reset_hw)
569 		return hw->mac.ops.reset_hw(hw);
570 
571 	return -E1000_ERR_CONFIG;
572 }
573 
574 /**
575  *  e1000_init_hw - Initialize hardware
576  *  @hw: pointer to the HW structure
577  *
578  *  This inits the hardware readying it for operation. This is a function
579  *  pointer entry point called by drivers.
580  **/
581 s32 e1000_init_hw(struct e1000_hw *hw)
582 {
583 	if (hw->mac.ops.init_hw)
584 		return hw->mac.ops.init_hw(hw);
585 
586 	return -E1000_ERR_CONFIG;
587 }
588 
589 /**
590  *  e1000_setup_link - Configures link and flow control
591  *  @hw: pointer to the HW structure
592  *
593  *  This configures link and flow control settings for the adapter. This
594  *  is a function pointer entry point called by drivers. While modules can
595  *  also call this, they probably call their own version of this function.
596  **/
597 s32 e1000_setup_link(struct e1000_hw *hw)
598 {
599 	if (hw->mac.ops.setup_link)
600 		return hw->mac.ops.setup_link(hw);
601 
602 	return -E1000_ERR_CONFIG;
603 }
604 
605 /**
606  *  e1000_get_speed_and_duplex - Returns current speed and duplex
607  *  @hw: pointer to the HW structure
608  *  @speed: pointer to a 16-bit value to store the speed
609  *  @duplex: pointer to a 16-bit value to store the duplex.
610  *
611  *  This returns the speed and duplex of the adapter in the two 'out'
612  *  variables passed in. This is a function pointer entry point called
613  *  by drivers.
614  **/
615 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
616 {
617 	if (hw->mac.ops.get_link_up_info)
618 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
619 
620 	return -E1000_ERR_CONFIG;
621 }
622 
623 /**
624  *  e1000_setup_led - Configures SW controllable LED
625  *  @hw: pointer to the HW structure
626  *
627  *  This prepares the SW controllable LED for use and saves the current state
628  *  of the LED so it can be later restored. This is a function pointer entry
629  *  point called by drivers.
630  **/
631 s32 e1000_setup_led(struct e1000_hw *hw)
632 {
633 	if (hw->mac.ops.setup_led)
634 		return hw->mac.ops.setup_led(hw);
635 
636 	return E1000_SUCCESS;
637 }
638 
639 /**
640  *  e1000_cleanup_led - Restores SW controllable LED
641  *  @hw: pointer to the HW structure
642  *
643  *  This restores the SW controllable LED to the value saved off by
644  *  e1000_setup_led. This is a function pointer entry point called by drivers.
645  **/
646 s32 e1000_cleanup_led(struct e1000_hw *hw)
647 {
648 	if (hw->mac.ops.cleanup_led)
649 		return hw->mac.ops.cleanup_led(hw);
650 
651 	return E1000_SUCCESS;
652 }
653 
654 /**
655  *  e1000_blink_led - Blink SW controllable LED
656  *  @hw: pointer to the HW structure
657  *
658  *  This starts the adapter LED blinking. Request the LED to be setup first
659  *  and cleaned up after. This is a function pointer entry point called by
660  *  drivers.
661  **/
662 s32 e1000_blink_led(struct e1000_hw *hw)
663 {
664 	if (hw->mac.ops.blink_led)
665 		return hw->mac.ops.blink_led(hw);
666 
667 	return E1000_SUCCESS;
668 }
669 
670 /**
671  *  e1000_id_led_init - store LED configurations in SW
672  *  @hw: pointer to the HW structure
673  *
674  *  Initializes the LED config in SW. This is a function pointer entry point
675  *  called by drivers.
676  **/
677 s32 e1000_id_led_init(struct e1000_hw *hw)
678 {
679 	if (hw->mac.ops.id_led_init)
680 		return hw->mac.ops.id_led_init(hw);
681 
682 	return E1000_SUCCESS;
683 }
684 
685 /**
686  *  e1000_led_on - Turn on SW controllable LED
687  *  @hw: pointer to the HW structure
688  *
689  *  Turns the SW defined LED on. This is a function pointer entry point
690  *  called by drivers.
691  **/
692 s32 e1000_led_on(struct e1000_hw *hw)
693 {
694 	if (hw->mac.ops.led_on)
695 		return hw->mac.ops.led_on(hw);
696 
697 	return E1000_SUCCESS;
698 }
699 
700 /**
701  *  e1000_led_off - Turn off SW controllable LED
702  *  @hw: pointer to the HW structure
703  *
704  *  Turns the SW defined LED off. This is a function pointer entry point
705  *  called by drivers.
706  **/
707 s32 e1000_led_off(struct e1000_hw *hw)
708 {
709 	if (hw->mac.ops.led_off)
710 		return hw->mac.ops.led_off(hw);
711 
712 	return E1000_SUCCESS;
713 }
714 
715 /**
716  *  e1000_reset_adaptive - Reset adaptive IFS
717  *  @hw: pointer to the HW structure
718  *
719  *  Resets the adaptive IFS. Currently no func pointer exists and all
720  *  implementations are handled in the generic version of this function.
721  **/
722 void e1000_reset_adaptive(struct e1000_hw *hw)
723 {
724 	e1000_reset_adaptive_generic(hw);
725 }
726 
727 /**
728  *  e1000_update_adaptive - Update adaptive IFS
729  *  @hw: pointer to the HW structure
730  *
731  *  Updates adapter IFS. Currently no func pointer exists and all
732  *  implementations are handled in the generic version of this function.
733  **/
734 void e1000_update_adaptive(struct e1000_hw *hw)
735 {
736 	e1000_update_adaptive_generic(hw);
737 }
738 
739 /**
740  *  e1000_disable_pcie_master - Disable PCI-Express master access
741  *  @hw: pointer to the HW structure
742  *
743  *  Disables PCI-Express master access and verifies there are no pending
744  *  requests. Currently no func pointer exists and all implementations are
745  *  handled in the generic version of this function.
746  **/
747 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
748 {
749 	return e1000_disable_pcie_master_generic(hw);
750 }
751 
752 /**
753  *  e1000_config_collision_dist - Configure collision distance
754  *  @hw: pointer to the HW structure
755  *
756  *  Configures the collision distance to the default value and is used
757  *  during link setup.
758  **/
759 void e1000_config_collision_dist(struct e1000_hw *hw)
760 {
761 	if (hw->mac.ops.config_collision_dist)
762 		hw->mac.ops.config_collision_dist(hw);
763 }
764 
765 /**
766  *  e1000_rar_set - Sets a receive address register
767  *  @hw: pointer to the HW structure
768  *  @addr: address to set the RAR to
769  *  @index: the RAR to set
770  *
771  *  Sets a Receive Address Register (RAR) to the specified address.
772  **/
773 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
774 {
775 	if (hw->mac.ops.rar_set)
776 		hw->mac.ops.rar_set(hw, addr, index);
777 }
778 
779 /**
780  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
781  *  @hw: pointer to the HW structure
782  *
783  *  Ensures that the MDI/MDIX SW state is valid.
784  **/
785 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
786 {
787 	if (hw->mac.ops.validate_mdi_setting)
788 		return hw->mac.ops.validate_mdi_setting(hw);
789 
790 	return E1000_SUCCESS;
791 }
792 
793 /**
794  *  e1000_hash_mc_addr - Determines address location in multicast table
795  *  @hw: pointer to the HW structure
796  *  @mc_addr: Multicast address to hash.
797  *
798  *  This hashes an address to determine its location in the multicast
799  *  table. Currently no func pointer exists and all implementations
800  *  are handled in the generic version of this function.
801  **/
802 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
803 {
804 	return e1000_hash_mc_addr_generic(hw, mc_addr);
805 }
806 
807 /**
808  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
809  *  @hw: pointer to the HW structure
810  *
811  *  Enables packet filtering on transmit packets if manageability is enabled
812  *  and host interface is enabled.
813  *  Currently no func pointer exists and all implementations are handled in the
814  *  generic version of this function.
815  **/
816 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
817 {
818 	return e1000_enable_tx_pkt_filtering_generic(hw);
819 }
820 
821 /**
822  *  e1000_mng_host_if_write - Writes to the manageability host interface
823  *  @hw: pointer to the HW structure
824  *  @buffer: pointer to the host interface buffer
825  *  @length: size of the buffer
826  *  @offset: location in the buffer to write to
827  *  @sum: sum of the data (not checksum)
828  *
829  *  This function writes the buffer content at the offset given on the host if.
830  *  It also does alignment considerations to do the writes in most efficient
831  *  way.  Also fills up the sum of the buffer in *buffer parameter.
832  **/
833 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
834                             u16 offset, u8 *sum)
835 {
836 	if (hw->mac.ops.mng_host_if_write)
837 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
838 		                                     offset, sum);
839 
840 	return E1000_NOT_IMPLEMENTED;
841 }
842 
843 /**
844  *  e1000_mng_write_cmd_header - Writes manageability command header
845  *  @hw: pointer to the HW structure
846  *  @hdr: pointer to the host interface command header
847  *
848  *  Writes the command header after does the checksum calculation.
849  **/
850 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
851                                struct e1000_host_mng_command_header *hdr)
852 {
853 	if (hw->mac.ops.mng_write_cmd_header)
854 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
855 
856 	return E1000_NOT_IMPLEMENTED;
857 }
858 
859 /**
860  *  e1000_mng_enable_host_if - Checks host interface is enabled
861  *  @hw: pointer to the HW structure
862  *
863  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
864  *
865  *  This function checks whether the HOST IF is enabled for command operation
866  *  and also checks whether the previous command is completed.  It busy waits
867  *  in case of previous command is not completed.
868  **/
869 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
870 {
871 	if (hw->mac.ops.mng_enable_host_if)
872 		return hw->mac.ops.mng_enable_host_if(hw);
873 
874 	return E1000_NOT_IMPLEMENTED;
875 }
876 
877 /**
878  *  e1000_wait_autoneg - Waits for autonegotiation completion
879  *  @hw: pointer to the HW structure
880  *
881  *  Waits for autoneg to complete. Currently no func pointer exists and all
882  *  implementations are handled in the generic version of this function.
883  **/
884 s32 e1000_wait_autoneg(struct e1000_hw *hw)
885 {
886 	if (hw->mac.ops.wait_autoneg)
887 		return hw->mac.ops.wait_autoneg(hw);
888 
889 	return E1000_SUCCESS;
890 }
891 
892 /**
893  *  e1000_check_reset_block - Verifies PHY can be reset
894  *  @hw: pointer to the HW structure
895  *
896  *  Checks if the PHY is in a state that can be reset or if manageability
897  *  has it tied up. This is a function pointer entry point called by drivers.
898  **/
899 s32 e1000_check_reset_block(struct e1000_hw *hw)
900 {
901 	if (hw->phy.ops.check_reset_block)
902 		return hw->phy.ops.check_reset_block(hw);
903 
904 	return E1000_SUCCESS;
905 }
906 
907 /**
908  *  e1000_read_phy_reg - Reads PHY register
909  *  @hw: pointer to the HW structure
910  *  @offset: the register to read
911  *  @data: the buffer to store the 16-bit read.
912  *
913  *  Reads the PHY register and returns the value in data.
914  *  This is a function pointer entry point called by drivers.
915  **/
916 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
917 {
918 	if (hw->phy.ops.read_reg)
919 		return hw->phy.ops.read_reg(hw, offset, data);
920 
921 	return E1000_SUCCESS;
922 }
923 
924 /**
925  *  e1000_write_phy_reg - Writes PHY register
926  *  @hw: pointer to the HW structure
927  *  @offset: the register to write
928  *  @data: the value to write.
929  *
930  *  Writes the PHY register at offset with the value in data.
931  *  This is a function pointer entry point called by drivers.
932  **/
933 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
934 {
935 	if (hw->phy.ops.write_reg)
936 		return hw->phy.ops.write_reg(hw, offset, data);
937 
938 	return E1000_SUCCESS;
939 }
940 
941 /**
942  *  e1000_release_phy - Generic release PHY
943  *  @hw: pointer to the HW structure
944  *
945  *  Return if silicon family does not require a semaphore when accessing the
946  *  PHY.
947  **/
948 void e1000_release_phy(struct e1000_hw *hw)
949 {
950 	if (hw->phy.ops.release)
951 		hw->phy.ops.release(hw);
952 }
953 
954 /**
955  *  e1000_acquire_phy - Generic acquire PHY
956  *  @hw: pointer to the HW structure
957  *
958  *  Return success if silicon family does not require a semaphore when
959  *  accessing the PHY.
960  **/
961 s32 e1000_acquire_phy(struct e1000_hw *hw)
962 {
963 	if (hw->phy.ops.acquire)
964 		return hw->phy.ops.acquire(hw);
965 
966 	return E1000_SUCCESS;
967 }
968 
969 /**
970  *  e1000_cfg_on_link_up - Configure PHY upon link up
971  *  @hw: pointer to the HW structure
972  **/
973 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
974 {
975 	if (hw->phy.ops.cfg_on_link_up)
976 		return hw->phy.ops.cfg_on_link_up(hw);
977 
978 	return E1000_SUCCESS;
979 }
980 
981 /**
982  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
983  *  @hw: pointer to the HW structure
984  *  @offset: the register to read
985  *  @data: the location to store the 16-bit value read.
986  *
987  *  Reads a register out of the Kumeran interface. Currently no func pointer
988  *  exists and all implementations are handled in the generic version of
989  *  this function.
990  **/
991 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
992 {
993 	return e1000_read_kmrn_reg_generic(hw, offset, data);
994 }
995 
996 /**
997  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
998  *  @hw: pointer to the HW structure
999  *  @offset: the register to write
1000  *  @data: the value to write.
1001  *
1002  *  Writes a register to the Kumeran interface. Currently no func pointer
1003  *  exists and all implementations are handled in the generic version of
1004  *  this function.
1005  **/
1006 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1007 {
1008 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1009 }
1010 
1011 /**
1012  *  e1000_get_cable_length - Retrieves cable length estimation
1013  *  @hw: pointer to the HW structure
1014  *
1015  *  This function estimates the cable length and stores them in
1016  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1017  *  entry point called by drivers.
1018  **/
1019 s32 e1000_get_cable_length(struct e1000_hw *hw)
1020 {
1021 	if (hw->phy.ops.get_cable_length)
1022 		return hw->phy.ops.get_cable_length(hw);
1023 
1024 	return E1000_SUCCESS;
1025 }
1026 
1027 /**
1028  *  e1000_get_phy_info - Retrieves PHY information from registers
1029  *  @hw: pointer to the HW structure
1030  *
1031  *  This function gets some information from various PHY registers and
1032  *  populates hw->phy values with it. This is a function pointer entry
1033  *  point called by drivers.
1034  **/
1035 s32 e1000_get_phy_info(struct e1000_hw *hw)
1036 {
1037 	if (hw->phy.ops.get_info)
1038 		return hw->phy.ops.get_info(hw);
1039 
1040 	return E1000_SUCCESS;
1041 }
1042 
1043 /**
1044  *  e1000_phy_hw_reset - Hard PHY reset
1045  *  @hw: pointer to the HW structure
1046  *
1047  *  Performs a hard PHY reset. This is a function pointer entry point called
1048  *  by drivers.
1049  **/
1050 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1051 {
1052 	if (hw->phy.ops.reset)
1053 		return hw->phy.ops.reset(hw);
1054 
1055 	return E1000_SUCCESS;
1056 }
1057 
1058 /**
1059  *  e1000_phy_commit - Soft PHY reset
1060  *  @hw: pointer to the HW structure
1061  *
1062  *  Performs a soft PHY reset on those that apply. This is a function pointer
1063  *  entry point called by drivers.
1064  **/
1065 s32 e1000_phy_commit(struct e1000_hw *hw)
1066 {
1067 	if (hw->phy.ops.commit)
1068 		return hw->phy.ops.commit(hw);
1069 
1070 	return E1000_SUCCESS;
1071 }
1072 
1073 /**
1074  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1075  *  @hw: pointer to the HW structure
1076  *  @active: boolean used to enable/disable lplu
1077  *
1078  *  Success returns 0, Failure returns 1
1079  *
1080  *  The low power link up (lplu) state is set to the power management level D0
1081  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1082  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1083  *  is used during Dx states where the power conservation is most important.
1084  *  During driver activity, SmartSpeed should be enabled so performance is
1085  *  maintained.  This is a function pointer entry point called by drivers.
1086  **/
1087 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1088 {
1089 	if (hw->phy.ops.set_d0_lplu_state)
1090 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1091 
1092 	return E1000_SUCCESS;
1093 }
1094 
1095 /**
1096  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1097  *  @hw: pointer to the HW structure
1098  *  @active: boolean used to enable/disable lplu
1099  *
1100  *  Success returns 0, Failure returns 1
1101  *
1102  *  The low power link up (lplu) state is set to the power management level D3
1103  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1104  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1105  *  is used during Dx states where the power conservation is most important.
1106  *  During driver activity, SmartSpeed should be enabled so performance is
1107  *  maintained.  This is a function pointer entry point called by drivers.
1108  **/
1109 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1110 {
1111 	if (hw->phy.ops.set_d3_lplu_state)
1112 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1113 
1114 	return E1000_SUCCESS;
1115 }
1116 
1117 /**
1118  *  e1000_read_mac_addr - Reads MAC address
1119  *  @hw: pointer to the HW structure
1120  *
1121  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1122  *  Currently no func pointer exists and all implementations are handled in the
1123  *  generic version of this function.
1124  **/
1125 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1126 {
1127 	if (hw->mac.ops.read_mac_addr)
1128 		return hw->mac.ops.read_mac_addr(hw);
1129 
1130 	return e1000_read_mac_addr_generic(hw);
1131 }
1132 
1133 /**
1134  *  e1000_read_pba_num - Read device part number
1135  *  @hw: pointer to the HW structure
1136  *  @pba_num: pointer to device part number
1137  *
1138  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1139  *  the value in pba_num.
1140  *  Currently no func pointer exists and all implementations are handled in the
1141  *  generic version of this function.
1142  **/
1143 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1144 {
1145 	return e1000_read_pba_num_generic(hw, pba_num);
1146 }
1147 
1148 /**
1149  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1150  *  @hw: pointer to the HW structure
1151  *
1152  *  Validates the NVM checksum is correct. This is a function pointer entry
1153  *  point called by drivers.
1154  **/
1155 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1156 {
1157 	if (hw->nvm.ops.validate)
1158 		return hw->nvm.ops.validate(hw);
1159 
1160 	return -E1000_ERR_CONFIG;
1161 }
1162 
1163 /**
1164  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1165  *  @hw: pointer to the HW structure
1166  *
1167  *  Updates the NVM checksum. Currently no func pointer exists and all
1168  *  implementations are handled in the generic version of this function.
1169  **/
1170 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1171 {
1172 	if (hw->nvm.ops.update)
1173 		return hw->nvm.ops.update(hw);
1174 
1175 	return -E1000_ERR_CONFIG;
1176 }
1177 
1178 /**
1179  *  e1000_reload_nvm - Reloads EEPROM
1180  *  @hw: pointer to the HW structure
1181  *
1182  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1183  *  extended control register.
1184  **/
1185 void e1000_reload_nvm(struct e1000_hw *hw)
1186 {
1187 	if (hw->nvm.ops.reload)
1188 		hw->nvm.ops.reload(hw);
1189 }
1190 
1191 /**
1192  *  e1000_read_nvm - Reads NVM (EEPROM)
1193  *  @hw: pointer to the HW structure
1194  *  @offset: the word offset to read
1195  *  @words: number of 16-bit words to read
1196  *  @data: pointer to the properly sized buffer for the data.
1197  *
1198  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1199  *  pointer entry point called by drivers.
1200  **/
1201 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1202 {
1203 	if (hw->nvm.ops.read)
1204 		return hw->nvm.ops.read(hw, offset, words, data);
1205 
1206 	return -E1000_ERR_CONFIG;
1207 }
1208 
1209 /**
1210  *  e1000_write_nvm - Writes to NVM (EEPROM)
1211  *  @hw: pointer to the HW structure
1212  *  @offset: the word offset to read
1213  *  @words: number of 16-bit words to write
1214  *  @data: pointer to the properly sized buffer for the data.
1215  *
1216  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1217  *  pointer entry point called by drivers.
1218  **/
1219 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1220 {
1221 	if (hw->nvm.ops.write)
1222 		return hw->nvm.ops.write(hw, offset, words, data);
1223 
1224 	return E1000_SUCCESS;
1225 }
1226 
1227 /**
1228  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1229  *  @hw: pointer to the HW structure
1230  *  @reg: 32bit register offset
1231  *  @offset: the register to write
1232  *  @data: the value to write.
1233  *
1234  *  Writes the PHY register at offset with the value in data.
1235  *  This is a function pointer entry point called by drivers.
1236  **/
1237 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1238                               u8 data)
1239 {
1240 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1241 }
1242 
1243 /**
1244  * e1000_power_up_phy - Restores link in case of PHY power down
1245  * @hw: pointer to the HW structure
1246  *
1247  * The phy may be powered down to save power, to turn off link when the
1248  * driver is unloaded, or wake on lan is not enabled (among others).
1249  **/
1250 void e1000_power_up_phy(struct e1000_hw *hw)
1251 {
1252 	if (hw->phy.ops.power_up)
1253 		hw->phy.ops.power_up(hw);
1254 
1255 	e1000_setup_link(hw);
1256 }
1257 
1258 /**
1259  * e1000_power_down_phy - Power down PHY
1260  * @hw: pointer to the HW structure
1261  *
1262  * The phy may be powered down to save power, to turn off link when the
1263  * driver is unloaded, or wake on lan is not enabled (among others).
1264  **/
1265 void e1000_power_down_phy(struct e1000_hw *hw)
1266 {
1267 	if (hw->phy.ops.power_down)
1268 		hw->phy.ops.power_down(hw);
1269 }
1270 
1271 /**
1272  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  Power on the optics and PCS.
1276  **/
1277 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1278 {
1279 	if (hw->mac.ops.power_up_serdes)
1280 		hw->mac.ops.power_up_serdes(hw);
1281 }
1282 
1283 /**
1284  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1285  *  @hw: pointer to the HW structure
1286  *
1287  *  Shutdown the optics and PCS on driver unload.
1288  **/
1289 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1290 {
1291 	if (hw->mac.ops.shutdown_serdes)
1292 		hw->mac.ops.shutdown_serdes(hw);
1293 }
1294 
1295