1 /****************************************************************************** 2 3 Copyright (c) 2001-2010, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 116 /** 117 * e1000_set_mac_type - Sets MAC type 118 * @hw: pointer to the HW structure 119 * 120 * This function sets the mac type of the adapter based on the 121 * device ID stored in the hw structure. 122 * MUST BE FIRST FUNCTION CALLED (explicitly or through 123 * e1000_setup_init_funcs()). 124 **/ 125 s32 e1000_set_mac_type(struct e1000_hw *hw) 126 { 127 struct e1000_mac_info *mac = &hw->mac; 128 s32 ret_val = E1000_SUCCESS; 129 130 DEBUGFUNC("e1000_set_mac_type"); 131 132 switch (hw->device_id) { 133 case E1000_DEV_ID_82542: 134 mac->type = e1000_82542; 135 break; 136 case E1000_DEV_ID_82543GC_FIBER: 137 case E1000_DEV_ID_82543GC_COPPER: 138 mac->type = e1000_82543; 139 break; 140 case E1000_DEV_ID_82544EI_COPPER: 141 case E1000_DEV_ID_82544EI_FIBER: 142 case E1000_DEV_ID_82544GC_COPPER: 143 case E1000_DEV_ID_82544GC_LOM: 144 mac->type = e1000_82544; 145 break; 146 case E1000_DEV_ID_82540EM: 147 case E1000_DEV_ID_82540EM_LOM: 148 case E1000_DEV_ID_82540EP: 149 case E1000_DEV_ID_82540EP_LOM: 150 case E1000_DEV_ID_82540EP_LP: 151 mac->type = e1000_82540; 152 break; 153 case E1000_DEV_ID_82545EM_COPPER: 154 case E1000_DEV_ID_82545EM_FIBER: 155 mac->type = e1000_82545; 156 break; 157 case E1000_DEV_ID_82545GM_COPPER: 158 case E1000_DEV_ID_82545GM_FIBER: 159 case E1000_DEV_ID_82545GM_SERDES: 160 mac->type = e1000_82545_rev_3; 161 break; 162 case E1000_DEV_ID_82546EB_COPPER: 163 case E1000_DEV_ID_82546EB_FIBER: 164 case E1000_DEV_ID_82546EB_QUAD_COPPER: 165 mac->type = e1000_82546; 166 break; 167 case E1000_DEV_ID_82546GB_COPPER: 168 case E1000_DEV_ID_82546GB_FIBER: 169 case E1000_DEV_ID_82546GB_SERDES: 170 case E1000_DEV_ID_82546GB_PCIE: 171 case E1000_DEV_ID_82546GB_QUAD_COPPER: 172 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 173 mac->type = e1000_82546_rev_3; 174 break; 175 case E1000_DEV_ID_82541EI: 176 case E1000_DEV_ID_82541EI_MOBILE: 177 case E1000_DEV_ID_82541ER_LOM: 178 mac->type = e1000_82541; 179 break; 180 case E1000_DEV_ID_82541ER: 181 case E1000_DEV_ID_82541GI: 182 case E1000_DEV_ID_82541GI_LF: 183 case E1000_DEV_ID_82541GI_MOBILE: 184 mac->type = e1000_82541_rev_2; 185 break; 186 case E1000_DEV_ID_82547EI: 187 case E1000_DEV_ID_82547EI_MOBILE: 188 mac->type = e1000_82547; 189 break; 190 case E1000_DEV_ID_82547GI: 191 mac->type = e1000_82547_rev_2; 192 break; 193 case E1000_DEV_ID_82571EB_COPPER: 194 case E1000_DEV_ID_82571EB_FIBER: 195 case E1000_DEV_ID_82571EB_SERDES: 196 case E1000_DEV_ID_82571EB_SERDES_DUAL: 197 case E1000_DEV_ID_82571EB_SERDES_QUAD: 198 case E1000_DEV_ID_82571EB_QUAD_COPPER: 199 case E1000_DEV_ID_82571PT_QUAD_COPPER: 200 case E1000_DEV_ID_82571EB_QUAD_FIBER: 201 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 202 mac->type = e1000_82571; 203 break; 204 case E1000_DEV_ID_82572EI: 205 case E1000_DEV_ID_82572EI_COPPER: 206 case E1000_DEV_ID_82572EI_FIBER: 207 case E1000_DEV_ID_82572EI_SERDES: 208 mac->type = e1000_82572; 209 break; 210 case E1000_DEV_ID_82573E: 211 case E1000_DEV_ID_82573E_IAMT: 212 case E1000_DEV_ID_82573L: 213 mac->type = e1000_82573; 214 break; 215 case E1000_DEV_ID_82574L: 216 case E1000_DEV_ID_82574LA: 217 mac->type = e1000_82574; 218 break; 219 case E1000_DEV_ID_82583V: 220 mac->type = e1000_82583; 221 break; 222 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 223 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 224 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 225 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 226 mac->type = e1000_80003es2lan; 227 break; 228 case E1000_DEV_ID_ICH8_IFE: 229 case E1000_DEV_ID_ICH8_IFE_GT: 230 case E1000_DEV_ID_ICH8_IFE_G: 231 case E1000_DEV_ID_ICH8_IGP_M: 232 case E1000_DEV_ID_ICH8_IGP_M_AMT: 233 case E1000_DEV_ID_ICH8_IGP_AMT: 234 case E1000_DEV_ID_ICH8_IGP_C: 235 case E1000_DEV_ID_ICH8_82567V_3: 236 mac->type = e1000_ich8lan; 237 break; 238 case E1000_DEV_ID_ICH9_IFE: 239 case E1000_DEV_ID_ICH9_IFE_GT: 240 case E1000_DEV_ID_ICH9_IFE_G: 241 case E1000_DEV_ID_ICH9_IGP_M: 242 case E1000_DEV_ID_ICH9_IGP_M_AMT: 243 case E1000_DEV_ID_ICH9_IGP_M_V: 244 case E1000_DEV_ID_ICH9_IGP_AMT: 245 case E1000_DEV_ID_ICH9_BM: 246 case E1000_DEV_ID_ICH9_IGP_C: 247 case E1000_DEV_ID_ICH10_R_BM_LM: 248 case E1000_DEV_ID_ICH10_R_BM_LF: 249 case E1000_DEV_ID_ICH10_R_BM_V: 250 mac->type = e1000_ich9lan; 251 break; 252 case E1000_DEV_ID_ICH10_D_BM_LM: 253 case E1000_DEV_ID_ICH10_D_BM_LF: 254 mac->type = e1000_ich10lan; 255 break; 256 case E1000_DEV_ID_PCH_D_HV_DM: 257 case E1000_DEV_ID_PCH_D_HV_DC: 258 case E1000_DEV_ID_PCH_M_HV_LM: 259 case E1000_DEV_ID_PCH_M_HV_LC: 260 mac->type = e1000_pchlan; 261 break; 262 case E1000_DEV_ID_82575EB_COPPER: 263 case E1000_DEV_ID_82575EB_FIBER_SERDES: 264 case E1000_DEV_ID_82575GB_QUAD_COPPER: 265 case E1000_DEV_ID_82575GB_QUAD_COPPER_PM: 266 mac->type = e1000_82575; 267 break; 268 case E1000_DEV_ID_82576: 269 case E1000_DEV_ID_82576_FIBER: 270 case E1000_DEV_ID_82576_SERDES: 271 case E1000_DEV_ID_82576_QUAD_COPPER: 272 case E1000_DEV_ID_82576_NS: 273 case E1000_DEV_ID_82576_NS_SERDES: 274 case E1000_DEV_ID_82576_SERDES_QUAD: 275 mac->type = e1000_82576; 276 break; 277 case E1000_DEV_ID_82580_COPPER: 278 case E1000_DEV_ID_82580_FIBER: 279 case E1000_DEV_ID_82580_SERDES: 280 case E1000_DEV_ID_82580_SGMII: 281 case E1000_DEV_ID_82580_COPPER_DUAL: 282 mac->type = e1000_82580; 283 break; 284 default: 285 /* Should never have loaded on this device */ 286 ret_val = -E1000_ERR_MAC_INIT; 287 break; 288 } 289 290 return ret_val; 291 } 292 293 /** 294 * e1000_setup_init_funcs - Initializes function pointers 295 * @hw: pointer to the HW structure 296 * @init_device: TRUE will initialize the rest of the function pointers 297 * getting the device ready for use. FALSE will only set 298 * MAC type and the function pointers for the other init 299 * functions. Passing FALSE will not generate any hardware 300 * reads or writes. 301 * 302 * This function must be called by a driver in order to use the rest 303 * of the 'shared' code files. Called by drivers only. 304 **/ 305 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 306 { 307 s32 ret_val; 308 309 /* Can't do much good without knowing the MAC type. */ 310 ret_val = e1000_set_mac_type(hw); 311 if (ret_val) { 312 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 313 goto out; 314 } 315 316 if (!hw->hw_addr) { 317 DEBUGOUT("ERROR: Registers not mapped\n"); 318 ret_val = -E1000_ERR_CONFIG; 319 goto out; 320 } 321 322 /* 323 * Init function pointers to generic implementations. We do this first 324 * allowing a driver module to override it afterward. 325 */ 326 e1000_init_mac_ops_generic(hw); 327 e1000_init_phy_ops_generic(hw); 328 e1000_init_nvm_ops_generic(hw); 329 330 /* 331 * Set up the init function pointers. These are functions within the 332 * adapter family file that sets up function pointers for the rest of 333 * the functions in that family. 334 */ 335 switch (hw->mac.type) { 336 case e1000_82542: 337 e1000_init_function_pointers_82542(hw); 338 break; 339 case e1000_82543: 340 case e1000_82544: 341 e1000_init_function_pointers_82543(hw); 342 break; 343 case e1000_82540: 344 case e1000_82545: 345 case e1000_82545_rev_3: 346 case e1000_82546: 347 case e1000_82546_rev_3: 348 e1000_init_function_pointers_82540(hw); 349 break; 350 case e1000_82541: 351 case e1000_82541_rev_2: 352 case e1000_82547: 353 case e1000_82547_rev_2: 354 e1000_init_function_pointers_82541(hw); 355 break; 356 case e1000_82571: 357 case e1000_82572: 358 case e1000_82573: 359 case e1000_82574: 360 case e1000_82583: 361 e1000_init_function_pointers_82571(hw); 362 break; 363 case e1000_80003es2lan: 364 e1000_init_function_pointers_80003es2lan(hw); 365 break; 366 case e1000_ich8lan: 367 case e1000_ich9lan: 368 case e1000_ich10lan: 369 case e1000_pchlan: 370 e1000_init_function_pointers_ich8lan(hw); 371 break; 372 case e1000_82575: 373 case e1000_82576: 374 case e1000_82580: 375 e1000_init_function_pointers_82575(hw); 376 break; 377 default: 378 DEBUGOUT("Hardware not supported\n"); 379 ret_val = -E1000_ERR_CONFIG; 380 break; 381 } 382 383 /* 384 * Initialize the rest of the function pointers. These require some 385 * register reads/writes in some cases. 386 */ 387 if (!(ret_val) && init_device) { 388 ret_val = e1000_init_mac_params(hw); 389 if (ret_val) 390 goto out; 391 392 ret_val = e1000_init_nvm_params(hw); 393 if (ret_val) 394 goto out; 395 396 ret_val = e1000_init_phy_params(hw); 397 if (ret_val) 398 goto out; 399 } 400 401 out: 402 return ret_val; 403 } 404 405 /** 406 * e1000_get_bus_info - Obtain bus information for adapter 407 * @hw: pointer to the HW structure 408 * 409 * This will obtain information about the HW bus for which the 410 * adapter is attached and stores it in the hw structure. This is a 411 * function pointer entry point called by drivers. 412 **/ 413 s32 e1000_get_bus_info(struct e1000_hw *hw) 414 { 415 if (hw->mac.ops.get_bus_info) 416 return hw->mac.ops.get_bus_info(hw); 417 418 return E1000_SUCCESS; 419 } 420 421 /** 422 * e1000_clear_vfta - Clear VLAN filter table 423 * @hw: pointer to the HW structure 424 * 425 * This clears the VLAN filter table on the adapter. This is a function 426 * pointer entry point called by drivers. 427 **/ 428 void e1000_clear_vfta(struct e1000_hw *hw) 429 { 430 if (hw->mac.ops.clear_vfta) 431 hw->mac.ops.clear_vfta(hw); 432 } 433 434 /** 435 * e1000_write_vfta - Write value to VLAN filter table 436 * @hw: pointer to the HW structure 437 * @offset: the 32-bit offset in which to write the value to. 438 * @value: the 32-bit value to write at location offset. 439 * 440 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 441 * table. This is a function pointer entry point called by drivers. 442 **/ 443 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 444 { 445 if (hw->mac.ops.write_vfta) 446 hw->mac.ops.write_vfta(hw, offset, value); 447 } 448 449 /** 450 * e1000_update_mc_addr_list - Update Multicast addresses 451 * @hw: pointer to the HW structure 452 * @mc_addr_list: array of multicast addresses to program 453 * @mc_addr_count: number of multicast addresses to program 454 * 455 * Updates the Multicast Table Array. 456 * The caller must have a packed mc_addr_list of multicast addresses. 457 **/ 458 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 459 u32 mc_addr_count) 460 { 461 if (hw->mac.ops.update_mc_addr_list) 462 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 463 mc_addr_count); 464 } 465 466 /** 467 * e1000_force_mac_fc - Force MAC flow control 468 * @hw: pointer to the HW structure 469 * 470 * Force the MAC's flow control settings. Currently no func pointer exists 471 * and all implementations are handled in the generic version of this 472 * function. 473 **/ 474 s32 e1000_force_mac_fc(struct e1000_hw *hw) 475 { 476 return e1000_force_mac_fc_generic(hw); 477 } 478 479 /** 480 * e1000_check_for_link - Check/Store link connection 481 * @hw: pointer to the HW structure 482 * 483 * This checks the link condition of the adapter and stores the 484 * results in the hw->mac structure. This is a function pointer entry 485 * point called by drivers. 486 **/ 487 s32 e1000_check_for_link(struct e1000_hw *hw) 488 { 489 if (hw->mac.ops.check_for_link) 490 return hw->mac.ops.check_for_link(hw); 491 492 return -E1000_ERR_CONFIG; 493 } 494 495 /** 496 * e1000_check_mng_mode - Check management mode 497 * @hw: pointer to the HW structure 498 * 499 * This checks if the adapter has manageability enabled. 500 * This is a function pointer entry point called by drivers. 501 **/ 502 bool e1000_check_mng_mode(struct e1000_hw *hw) 503 { 504 if (hw->mac.ops.check_mng_mode) 505 return hw->mac.ops.check_mng_mode(hw); 506 507 return FALSE; 508 } 509 510 /** 511 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 512 * @hw: pointer to the HW structure 513 * @buffer: pointer to the host interface 514 * @length: size of the buffer 515 * 516 * Writes the DHCP information to the host interface. 517 **/ 518 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 519 { 520 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 521 } 522 523 /** 524 * e1000_reset_hw - Reset hardware 525 * @hw: pointer to the HW structure 526 * 527 * This resets the hardware into a known state. This is a function pointer 528 * entry point called by drivers. 529 **/ 530 s32 e1000_reset_hw(struct e1000_hw *hw) 531 { 532 if (hw->mac.ops.reset_hw) 533 return hw->mac.ops.reset_hw(hw); 534 535 return -E1000_ERR_CONFIG; 536 } 537 538 /** 539 * e1000_init_hw - Initialize hardware 540 * @hw: pointer to the HW structure 541 * 542 * This inits the hardware readying it for operation. This is a function 543 * pointer entry point called by drivers. 544 **/ 545 s32 e1000_init_hw(struct e1000_hw *hw) 546 { 547 if (hw->mac.ops.init_hw) 548 return hw->mac.ops.init_hw(hw); 549 550 return -E1000_ERR_CONFIG; 551 } 552 553 /** 554 * e1000_setup_link - Configures link and flow control 555 * @hw: pointer to the HW structure 556 * 557 * This configures link and flow control settings for the adapter. This 558 * is a function pointer entry point called by drivers. While modules can 559 * also call this, they probably call their own version of this function. 560 **/ 561 s32 e1000_setup_link(struct e1000_hw *hw) 562 { 563 if (hw->mac.ops.setup_link) 564 return hw->mac.ops.setup_link(hw); 565 566 return -E1000_ERR_CONFIG; 567 } 568 569 /** 570 * e1000_get_speed_and_duplex - Returns current speed and duplex 571 * @hw: pointer to the HW structure 572 * @speed: pointer to a 16-bit value to store the speed 573 * @duplex: pointer to a 16-bit value to store the duplex. 574 * 575 * This returns the speed and duplex of the adapter in the two 'out' 576 * variables passed in. This is a function pointer entry point called 577 * by drivers. 578 **/ 579 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 580 { 581 if (hw->mac.ops.get_link_up_info) 582 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 583 584 return -E1000_ERR_CONFIG; 585 } 586 587 /** 588 * e1000_setup_led - Configures SW controllable LED 589 * @hw: pointer to the HW structure 590 * 591 * This prepares the SW controllable LED for use and saves the current state 592 * of the LED so it can be later restored. This is a function pointer entry 593 * point called by drivers. 594 **/ 595 s32 e1000_setup_led(struct e1000_hw *hw) 596 { 597 if (hw->mac.ops.setup_led) 598 return hw->mac.ops.setup_led(hw); 599 600 return E1000_SUCCESS; 601 } 602 603 /** 604 * e1000_cleanup_led - Restores SW controllable LED 605 * @hw: pointer to the HW structure 606 * 607 * This restores the SW controllable LED to the value saved off by 608 * e1000_setup_led. This is a function pointer entry point called by drivers. 609 **/ 610 s32 e1000_cleanup_led(struct e1000_hw *hw) 611 { 612 if (hw->mac.ops.cleanup_led) 613 return hw->mac.ops.cleanup_led(hw); 614 615 return E1000_SUCCESS; 616 } 617 618 /** 619 * e1000_blink_led - Blink SW controllable LED 620 * @hw: pointer to the HW structure 621 * 622 * This starts the adapter LED blinking. Request the LED to be setup first 623 * and cleaned up after. This is a function pointer entry point called by 624 * drivers. 625 **/ 626 s32 e1000_blink_led(struct e1000_hw *hw) 627 { 628 if (hw->mac.ops.blink_led) 629 return hw->mac.ops.blink_led(hw); 630 631 return E1000_SUCCESS; 632 } 633 634 /** 635 * e1000_id_led_init - store LED configurations in SW 636 * @hw: pointer to the HW structure 637 * 638 * Initializes the LED config in SW. This is a function pointer entry point 639 * called by drivers. 640 **/ 641 s32 e1000_id_led_init(struct e1000_hw *hw) 642 { 643 if (hw->mac.ops.id_led_init) 644 return hw->mac.ops.id_led_init(hw); 645 646 return E1000_SUCCESS; 647 } 648 649 /** 650 * e1000_led_on - Turn on SW controllable LED 651 * @hw: pointer to the HW structure 652 * 653 * Turns the SW defined LED on. This is a function pointer entry point 654 * called by drivers. 655 **/ 656 s32 e1000_led_on(struct e1000_hw *hw) 657 { 658 if (hw->mac.ops.led_on) 659 return hw->mac.ops.led_on(hw); 660 661 return E1000_SUCCESS; 662 } 663 664 /** 665 * e1000_led_off - Turn off SW controllable LED 666 * @hw: pointer to the HW structure 667 * 668 * Turns the SW defined LED off. This is a function pointer entry point 669 * called by drivers. 670 **/ 671 s32 e1000_led_off(struct e1000_hw *hw) 672 { 673 if (hw->mac.ops.led_off) 674 return hw->mac.ops.led_off(hw); 675 676 return E1000_SUCCESS; 677 } 678 679 /** 680 * e1000_reset_adaptive - Reset adaptive IFS 681 * @hw: pointer to the HW structure 682 * 683 * Resets the adaptive IFS. Currently no func pointer exists and all 684 * implementations are handled in the generic version of this function. 685 **/ 686 void e1000_reset_adaptive(struct e1000_hw *hw) 687 { 688 e1000_reset_adaptive_generic(hw); 689 } 690 691 /** 692 * e1000_update_adaptive - Update adaptive IFS 693 * @hw: pointer to the HW structure 694 * 695 * Updates adapter IFS. Currently no func pointer exists and all 696 * implementations are handled in the generic version of this function. 697 **/ 698 void e1000_update_adaptive(struct e1000_hw *hw) 699 { 700 e1000_update_adaptive_generic(hw); 701 } 702 703 /** 704 * e1000_disable_pcie_master - Disable PCI-Express master access 705 * @hw: pointer to the HW structure 706 * 707 * Disables PCI-Express master access and verifies there are no pending 708 * requests. Currently no func pointer exists and all implementations are 709 * handled in the generic version of this function. 710 **/ 711 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 712 { 713 return e1000_disable_pcie_master_generic(hw); 714 } 715 716 /** 717 * e1000_config_collision_dist - Configure collision distance 718 * @hw: pointer to the HW structure 719 * 720 * Configures the collision distance to the default value and is used 721 * during link setup. 722 **/ 723 void e1000_config_collision_dist(struct e1000_hw *hw) 724 { 725 if (hw->mac.ops.config_collision_dist) 726 hw->mac.ops.config_collision_dist(hw); 727 } 728 729 /** 730 * e1000_rar_set - Sets a receive address register 731 * @hw: pointer to the HW structure 732 * @addr: address to set the RAR to 733 * @index: the RAR to set 734 * 735 * Sets a Receive Address Register (RAR) to the specified address. 736 **/ 737 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 738 { 739 if (hw->mac.ops.rar_set) 740 hw->mac.ops.rar_set(hw, addr, index); 741 } 742 743 /** 744 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 745 * @hw: pointer to the HW structure 746 * 747 * Ensures that the MDI/MDIX SW state is valid. 748 **/ 749 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 750 { 751 if (hw->mac.ops.validate_mdi_setting) 752 return hw->mac.ops.validate_mdi_setting(hw); 753 754 return E1000_SUCCESS; 755 } 756 757 /** 758 * e1000_hash_mc_addr - Determines address location in multicast table 759 * @hw: pointer to the HW structure 760 * @mc_addr: Multicast address to hash. 761 * 762 * This hashes an address to determine its location in the multicast 763 * table. Currently no func pointer exists and all implementations 764 * are handled in the generic version of this function. 765 **/ 766 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 767 { 768 return e1000_hash_mc_addr_generic(hw, mc_addr); 769 } 770 771 /** 772 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 773 * @hw: pointer to the HW structure 774 * 775 * Enables packet filtering on transmit packets if manageability is enabled 776 * and host interface is enabled. 777 * Currently no func pointer exists and all implementations are handled in the 778 * generic version of this function. 779 **/ 780 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 781 { 782 return e1000_enable_tx_pkt_filtering_generic(hw); 783 } 784 785 /** 786 * e1000_mng_host_if_write - Writes to the manageability host interface 787 * @hw: pointer to the HW structure 788 * @buffer: pointer to the host interface buffer 789 * @length: size of the buffer 790 * @offset: location in the buffer to write to 791 * @sum: sum of the data (not checksum) 792 * 793 * This function writes the buffer content at the offset given on the host if. 794 * It also does alignment considerations to do the writes in most efficient 795 * way. Also fills up the sum of the buffer in *buffer parameter. 796 **/ 797 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 798 u16 offset, u8 *sum) 799 { 800 if (hw->mac.ops.mng_host_if_write) 801 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 802 offset, sum); 803 804 return E1000_NOT_IMPLEMENTED; 805 } 806 807 /** 808 * e1000_mng_write_cmd_header - Writes manageability command header 809 * @hw: pointer to the HW structure 810 * @hdr: pointer to the host interface command header 811 * 812 * Writes the command header after does the checksum calculation. 813 **/ 814 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 815 struct e1000_host_mng_command_header *hdr) 816 { 817 if (hw->mac.ops.mng_write_cmd_header) 818 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 819 820 return E1000_NOT_IMPLEMENTED; 821 } 822 823 /** 824 * e1000_mng_enable_host_if - Checks host interface is enabled 825 * @hw: pointer to the HW structure 826 * 827 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 828 * 829 * This function checks whether the HOST IF is enabled for command operation 830 * and also checks whether the previous command is completed. It busy waits 831 * in case of previous command is not completed. 832 **/ 833 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 834 { 835 if (hw->mac.ops.mng_enable_host_if) 836 return hw->mac.ops.mng_enable_host_if(hw); 837 838 return E1000_NOT_IMPLEMENTED; 839 } 840 841 /** 842 * e1000_wait_autoneg - Waits for autonegotiation completion 843 * @hw: pointer to the HW structure 844 * 845 * Waits for autoneg to complete. Currently no func pointer exists and all 846 * implementations are handled in the generic version of this function. 847 **/ 848 s32 e1000_wait_autoneg(struct e1000_hw *hw) 849 { 850 if (hw->mac.ops.wait_autoneg) 851 return hw->mac.ops.wait_autoneg(hw); 852 853 return E1000_SUCCESS; 854 } 855 856 /** 857 * e1000_check_reset_block - Verifies PHY can be reset 858 * @hw: pointer to the HW structure 859 * 860 * Checks if the PHY is in a state that can be reset or if manageability 861 * has it tied up. This is a function pointer entry point called by drivers. 862 **/ 863 s32 e1000_check_reset_block(struct e1000_hw *hw) 864 { 865 if (hw->phy.ops.check_reset_block) 866 return hw->phy.ops.check_reset_block(hw); 867 868 return E1000_SUCCESS; 869 } 870 871 /** 872 * e1000_read_phy_reg - Reads PHY register 873 * @hw: pointer to the HW structure 874 * @offset: the register to read 875 * @data: the buffer to store the 16-bit read. 876 * 877 * Reads the PHY register and returns the value in data. 878 * This is a function pointer entry point called by drivers. 879 **/ 880 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 881 { 882 if (hw->phy.ops.read_reg) 883 return hw->phy.ops.read_reg(hw, offset, data); 884 885 return E1000_SUCCESS; 886 } 887 888 /** 889 * e1000_write_phy_reg - Writes PHY register 890 * @hw: pointer to the HW structure 891 * @offset: the register to write 892 * @data: the value to write. 893 * 894 * Writes the PHY register at offset with the value in data. 895 * This is a function pointer entry point called by drivers. 896 **/ 897 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 898 { 899 if (hw->phy.ops.write_reg) 900 return hw->phy.ops.write_reg(hw, offset, data); 901 902 return E1000_SUCCESS; 903 } 904 905 /** 906 * e1000_release_phy - Generic release PHY 907 * @hw: pointer to the HW structure 908 * 909 * Return if silicon family does not require a semaphore when accessing the 910 * PHY. 911 **/ 912 void e1000_release_phy(struct e1000_hw *hw) 913 { 914 if (hw->phy.ops.release) 915 hw->phy.ops.release(hw); 916 } 917 918 /** 919 * e1000_acquire_phy - Generic acquire PHY 920 * @hw: pointer to the HW structure 921 * 922 * Return success if silicon family does not require a semaphore when 923 * accessing the PHY. 924 **/ 925 s32 e1000_acquire_phy(struct e1000_hw *hw) 926 { 927 if (hw->phy.ops.acquire) 928 return hw->phy.ops.acquire(hw); 929 930 return E1000_SUCCESS; 931 } 932 933 /** 934 * e1000_cfg_on_link_up - Configure PHY upon link up 935 * @hw: pointer to the HW structure 936 **/ 937 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 938 { 939 if (hw->phy.ops.cfg_on_link_up) 940 return hw->phy.ops.cfg_on_link_up(hw); 941 942 return E1000_SUCCESS; 943 } 944 945 /** 946 * e1000_read_kmrn_reg - Reads register using Kumeran interface 947 * @hw: pointer to the HW structure 948 * @offset: the register to read 949 * @data: the location to store the 16-bit value read. 950 * 951 * Reads a register out of the Kumeran interface. Currently no func pointer 952 * exists and all implementations are handled in the generic version of 953 * this function. 954 **/ 955 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 956 { 957 return e1000_read_kmrn_reg_generic(hw, offset, data); 958 } 959 960 /** 961 * e1000_write_kmrn_reg - Writes register using Kumeran interface 962 * @hw: pointer to the HW structure 963 * @offset: the register to write 964 * @data: the value to write. 965 * 966 * Writes a register to the Kumeran interface. Currently no func pointer 967 * exists and all implementations are handled in the generic version of 968 * this function. 969 **/ 970 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 971 { 972 return e1000_write_kmrn_reg_generic(hw, offset, data); 973 } 974 975 /** 976 * e1000_get_cable_length - Retrieves cable length estimation 977 * @hw: pointer to the HW structure 978 * 979 * This function estimates the cable length and stores them in 980 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 981 * entry point called by drivers. 982 **/ 983 s32 e1000_get_cable_length(struct e1000_hw *hw) 984 { 985 if (hw->phy.ops.get_cable_length) 986 return hw->phy.ops.get_cable_length(hw); 987 988 return E1000_SUCCESS; 989 } 990 991 /** 992 * e1000_get_phy_info - Retrieves PHY information from registers 993 * @hw: pointer to the HW structure 994 * 995 * This function gets some information from various PHY registers and 996 * populates hw->phy values with it. This is a function pointer entry 997 * point called by drivers. 998 **/ 999 s32 e1000_get_phy_info(struct e1000_hw *hw) 1000 { 1001 if (hw->phy.ops.get_info) 1002 return hw->phy.ops.get_info(hw); 1003 1004 return E1000_SUCCESS; 1005 } 1006 1007 /** 1008 * e1000_phy_hw_reset - Hard PHY reset 1009 * @hw: pointer to the HW structure 1010 * 1011 * Performs a hard PHY reset. This is a function pointer entry point called 1012 * by drivers. 1013 **/ 1014 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1015 { 1016 if (hw->phy.ops.reset) 1017 return hw->phy.ops.reset(hw); 1018 1019 return E1000_SUCCESS; 1020 } 1021 1022 /** 1023 * e1000_phy_commit - Soft PHY reset 1024 * @hw: pointer to the HW structure 1025 * 1026 * Performs a soft PHY reset on those that apply. This is a function pointer 1027 * entry point called by drivers. 1028 **/ 1029 s32 e1000_phy_commit(struct e1000_hw *hw) 1030 { 1031 if (hw->phy.ops.commit) 1032 return hw->phy.ops.commit(hw); 1033 1034 return E1000_SUCCESS; 1035 } 1036 1037 /** 1038 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1039 * @hw: pointer to the HW structure 1040 * @active: boolean used to enable/disable lplu 1041 * 1042 * Success returns 0, Failure returns 1 1043 * 1044 * The low power link up (lplu) state is set to the power management level D0 1045 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1046 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1047 * is used during Dx states where the power conservation is most important. 1048 * During driver activity, SmartSpeed should be enabled so performance is 1049 * maintained. This is a function pointer entry point called by drivers. 1050 **/ 1051 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1052 { 1053 if (hw->phy.ops.set_d0_lplu_state) 1054 return hw->phy.ops.set_d0_lplu_state(hw, active); 1055 1056 return E1000_SUCCESS; 1057 } 1058 1059 /** 1060 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1061 * @hw: pointer to the HW structure 1062 * @active: boolean used to enable/disable lplu 1063 * 1064 * Success returns 0, Failure returns 1 1065 * 1066 * The low power link up (lplu) state is set to the power management level D3 1067 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1068 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1069 * is used during Dx states where the power conservation is most important. 1070 * During driver activity, SmartSpeed should be enabled so performance is 1071 * maintained. This is a function pointer entry point called by drivers. 1072 **/ 1073 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1074 { 1075 if (hw->phy.ops.set_d3_lplu_state) 1076 return hw->phy.ops.set_d3_lplu_state(hw, active); 1077 1078 return E1000_SUCCESS; 1079 } 1080 1081 /** 1082 * e1000_read_mac_addr - Reads MAC address 1083 * @hw: pointer to the HW structure 1084 * 1085 * Reads the MAC address out of the adapter and stores it in the HW structure. 1086 * Currently no func pointer exists and all implementations are handled in the 1087 * generic version of this function. 1088 **/ 1089 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1090 { 1091 if (hw->mac.ops.read_mac_addr) 1092 return hw->mac.ops.read_mac_addr(hw); 1093 1094 return e1000_read_mac_addr_generic(hw); 1095 } 1096 1097 /** 1098 * e1000_read_pba_num - Read device part number 1099 * @hw: pointer to the HW structure 1100 * @pba_num: pointer to device part number 1101 * 1102 * Reads the product board assembly (PBA) number from the EEPROM and stores 1103 * the value in pba_num. 1104 * Currently no func pointer exists and all implementations are handled in the 1105 * generic version of this function. 1106 **/ 1107 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1108 { 1109 return e1000_read_pba_num_generic(hw, pba_num); 1110 } 1111 1112 /** 1113 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1114 * @hw: pointer to the HW structure 1115 * 1116 * Validates the NVM checksum is correct. This is a function pointer entry 1117 * point called by drivers. 1118 **/ 1119 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1120 { 1121 if (hw->nvm.ops.validate) 1122 return hw->nvm.ops.validate(hw); 1123 1124 return -E1000_ERR_CONFIG; 1125 } 1126 1127 /** 1128 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1129 * @hw: pointer to the HW structure 1130 * 1131 * Updates the NVM checksum. Currently no func pointer exists and all 1132 * implementations are handled in the generic version of this function. 1133 **/ 1134 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1135 { 1136 if (hw->nvm.ops.update) 1137 return hw->nvm.ops.update(hw); 1138 1139 return -E1000_ERR_CONFIG; 1140 } 1141 1142 /** 1143 * e1000_reload_nvm - Reloads EEPROM 1144 * @hw: pointer to the HW structure 1145 * 1146 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1147 * extended control register. 1148 **/ 1149 void e1000_reload_nvm(struct e1000_hw *hw) 1150 { 1151 if (hw->nvm.ops.reload) 1152 hw->nvm.ops.reload(hw); 1153 } 1154 1155 /** 1156 * e1000_read_nvm - Reads NVM (EEPROM) 1157 * @hw: pointer to the HW structure 1158 * @offset: the word offset to read 1159 * @words: number of 16-bit words to read 1160 * @data: pointer to the properly sized buffer for the data. 1161 * 1162 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1163 * pointer entry point called by drivers. 1164 **/ 1165 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1166 { 1167 if (hw->nvm.ops.read) 1168 return hw->nvm.ops.read(hw, offset, words, data); 1169 1170 return -E1000_ERR_CONFIG; 1171 } 1172 1173 /** 1174 * e1000_write_nvm - Writes to NVM (EEPROM) 1175 * @hw: pointer to the HW structure 1176 * @offset: the word offset to read 1177 * @words: number of 16-bit words to write 1178 * @data: pointer to the properly sized buffer for the data. 1179 * 1180 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1181 * pointer entry point called by drivers. 1182 **/ 1183 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1184 { 1185 if (hw->nvm.ops.write) 1186 return hw->nvm.ops.write(hw, offset, words, data); 1187 1188 return E1000_SUCCESS; 1189 } 1190 1191 /** 1192 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1193 * @hw: pointer to the HW structure 1194 * @reg: 32bit register offset 1195 * @offset: the register to write 1196 * @data: the value to write. 1197 * 1198 * Writes the PHY register at offset with the value in data. 1199 * This is a function pointer entry point called by drivers. 1200 **/ 1201 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1202 u8 data) 1203 { 1204 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1205 } 1206 1207 /** 1208 * e1000_power_up_phy - Restores link in case of PHY power down 1209 * @hw: pointer to the HW structure 1210 * 1211 * The phy may be powered down to save power, to turn off link when the 1212 * driver is unloaded, or wake on lan is not enabled (among others). 1213 **/ 1214 void e1000_power_up_phy(struct e1000_hw *hw) 1215 { 1216 if (hw->phy.ops.power_up) 1217 hw->phy.ops.power_up(hw); 1218 1219 e1000_setup_link(hw); 1220 } 1221 1222 /** 1223 * e1000_power_down_phy - Power down PHY 1224 * @hw: pointer to the HW structure 1225 * 1226 * The phy may be powered down to save power, to turn off link when the 1227 * driver is unloaded, or wake on lan is not enabled (among others). 1228 **/ 1229 void e1000_power_down_phy(struct e1000_hw *hw) 1230 { 1231 if (hw->phy.ops.power_down) 1232 hw->phy.ops.power_down(hw); 1233 } 1234 1235 /** 1236 * e1000_power_up_fiber_serdes_link - Power up serdes link 1237 * @hw: pointer to the HW structure 1238 * 1239 * Power on the optics and PCS. 1240 **/ 1241 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1242 { 1243 if (hw->mac.ops.power_up_serdes) 1244 hw->mac.ops.power_up_serdes(hw); 1245 } 1246 1247 /** 1248 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1249 * @hw: pointer to the HW structure 1250 * 1251 * Shutdown the optics and PCS on driver unload. 1252 **/ 1253 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1254 { 1255 if (hw->mac.ops.shutdown_serdes) 1256 hw->mac.ops.shutdown_serdes(hw); 1257 } 1258 1259