xref: /freebsd/sys/dev/e1000/e1000_api.c (revision a4a491e2238b12ccd64d3faf9e6401487f6f1f1b)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "e1000_api.h"
37 
38 /**
39  *  e1000_init_mac_params - Initialize MAC function pointers
40  *  @hw: pointer to the HW structure
41  *
42  *  This function initializes the function pointers for the MAC
43  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
44  **/
45 s32 e1000_init_mac_params(struct e1000_hw *hw)
46 {
47 	s32 ret_val = E1000_SUCCESS;
48 
49 	if (hw->mac.ops.init_params) {
50 		ret_val = hw->mac.ops.init_params(hw);
51 		if (ret_val) {
52 			DEBUGOUT("MAC Initialization Error\n");
53 			goto out;
54 		}
55 	} else {
56 		DEBUGOUT("mac.init_mac_params was NULL\n");
57 		ret_val = -E1000_ERR_CONFIG;
58 	}
59 
60 out:
61 	return ret_val;
62 }
63 
64 /**
65  *  e1000_init_nvm_params - Initialize NVM function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  This function initializes the function pointers for the NVM
69  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
70  **/
71 s32 e1000_init_nvm_params(struct e1000_hw *hw)
72 {
73 	s32 ret_val = E1000_SUCCESS;
74 
75 	if (hw->nvm.ops.init_params) {
76 		ret_val = hw->nvm.ops.init_params(hw);
77 		if (ret_val) {
78 			DEBUGOUT("NVM Initialization Error\n");
79 			goto out;
80 		}
81 	} else {
82 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
83 		ret_val = -E1000_ERR_CONFIG;
84 	}
85 
86 out:
87 	return ret_val;
88 }
89 
90 /**
91  *  e1000_init_phy_params - Initialize PHY function pointers
92  *  @hw: pointer to the HW structure
93  *
94  *  This function initializes the function pointers for the PHY
95  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
96  **/
97 s32 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val =  -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_mbx_params - Initialize mailbox function pointers
118  *  @hw: pointer to the HW structure
119  *
120  *  This function initializes the function pointers for the PHY
121  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
122  **/
123 s32 e1000_init_mbx_params(struct e1000_hw *hw)
124 {
125 	s32 ret_val = E1000_SUCCESS;
126 
127 	if (hw->mbx.ops.init_params) {
128 		ret_val = hw->mbx.ops.init_params(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Mailbox Initialization Error\n");
131 			goto out;
132 		}
133 	} else {
134 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
135 		ret_val =  -E1000_ERR_CONFIG;
136 	}
137 
138 out:
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_set_mac_type - Sets MAC type
144  *  @hw: pointer to the HW structure
145  *
146  *  This function sets the mac type of the adapter based on the
147  *  device ID stored in the hw structure.
148  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
149  *  e1000_setup_init_funcs()).
150  **/
151 s32 e1000_set_mac_type(struct e1000_hw *hw)
152 {
153 	struct e1000_mac_info *mac = &hw->mac;
154 	s32 ret_val = E1000_SUCCESS;
155 
156 	DEBUGFUNC("e1000_set_mac_type");
157 
158 	switch (hw->device_id) {
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 	case E1000_DEV_ID_82543GC_FIBER:
163 	case E1000_DEV_ID_82543GC_COPPER:
164 		mac->type = e1000_82543;
165 		break;
166 	case E1000_DEV_ID_82544EI_COPPER:
167 	case E1000_DEV_ID_82544EI_FIBER:
168 	case E1000_DEV_ID_82544GC_COPPER:
169 	case E1000_DEV_ID_82544GC_LOM:
170 		mac->type = e1000_82544;
171 		break;
172 	case E1000_DEV_ID_82540EM:
173 	case E1000_DEV_ID_82540EM_LOM:
174 	case E1000_DEV_ID_82540EP:
175 	case E1000_DEV_ID_82540EP_LOM:
176 	case E1000_DEV_ID_82540EP_LP:
177 		mac->type = e1000_82540;
178 		break;
179 	case E1000_DEV_ID_82545EM_COPPER:
180 	case E1000_DEV_ID_82545EM_FIBER:
181 		mac->type = e1000_82545;
182 		break;
183 	case E1000_DEV_ID_82545GM_COPPER:
184 	case E1000_DEV_ID_82545GM_FIBER:
185 	case E1000_DEV_ID_82545GM_SERDES:
186 		mac->type = e1000_82545_rev_3;
187 		break;
188 	case E1000_DEV_ID_82546EB_COPPER:
189 	case E1000_DEV_ID_82546EB_FIBER:
190 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
191 		mac->type = e1000_82546;
192 		break;
193 	case E1000_DEV_ID_82546GB_COPPER:
194 	case E1000_DEV_ID_82546GB_FIBER:
195 	case E1000_DEV_ID_82546GB_SERDES:
196 	case E1000_DEV_ID_82546GB_PCIE:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
199 		mac->type = e1000_82546_rev_3;
200 		break;
201 	case E1000_DEV_ID_82541EI:
202 	case E1000_DEV_ID_82541EI_MOBILE:
203 	case E1000_DEV_ID_82541ER_LOM:
204 		mac->type = e1000_82541;
205 		break;
206 	case E1000_DEV_ID_82541ER:
207 	case E1000_DEV_ID_82541GI:
208 	case E1000_DEV_ID_82541GI_LF:
209 	case E1000_DEV_ID_82541GI_MOBILE:
210 		mac->type = e1000_82541_rev_2;
211 		break;
212 	case E1000_DEV_ID_82547EI:
213 	case E1000_DEV_ID_82547EI_MOBILE:
214 		mac->type = e1000_82547;
215 		break;
216 	case E1000_DEV_ID_82547GI:
217 		mac->type = e1000_82547_rev_2;
218 		break;
219 	case E1000_DEV_ID_82571EB_COPPER:
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82571EB_SERDES:
222 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
223 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
224 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
225 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
226 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
313 	case E1000_DEV_ID_PCH_CMP_I219_V12:
314 		mac->type = e1000_pch_spt;
315 		break;
316 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
317 	case E1000_DEV_ID_PCH_CNP_I219_V6:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
319 	case E1000_DEV_ID_PCH_CNP_I219_V7:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
321 	case E1000_DEV_ID_PCH_ICP_I219_V8:
322 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
323 	case E1000_DEV_ID_PCH_ICP_I219_V9:
324 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
325 	case E1000_DEV_ID_PCH_CMP_I219_V10:
326 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
327 	case E1000_DEV_ID_PCH_CMP_I219_V11:
328 		mac->type = e1000_pch_cnp;
329 		break;
330 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
331 	case E1000_DEV_ID_PCH_TGP_I219_V13:
332 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
333 	case E1000_DEV_ID_PCH_TGP_I219_V14:
334 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
335 	case E1000_DEV_ID_PCH_TGP_I219_V15:
336 	case E1000_DEV_ID_PCH_ADL_I219_LM16:
337 	case E1000_DEV_ID_PCH_ADL_I219_V16:
338 	case E1000_DEV_ID_PCH_RPL_I219_LM23:
339 	case E1000_DEV_ID_PCH_RPL_I219_V23:
340 		mac->type = e1000_pch_tgp;
341 		break;
342 	case E1000_DEV_ID_PCH_ADL_I219_LM17:
343 	case E1000_DEV_ID_PCH_ADL_I219_V17:
344 	case E1000_DEV_ID_PCH_RPL_I219_LM22:
345 	case E1000_DEV_ID_PCH_RPL_I219_V22:
346 		mac->type = e1000_pch_adp;
347 		break;
348 	case E1000_DEV_ID_PCH_MTP_I219_LM18:
349 	case E1000_DEV_ID_PCH_MTP_I219_V18:
350 	case E1000_DEV_ID_PCH_MTP_I219_LM19:
351 	case E1000_DEV_ID_PCH_MTP_I219_V19:
352 	case E1000_DEV_ID_PCH_LNL_I219_LM20:
353 	case E1000_DEV_ID_PCH_LNL_I219_V20:
354 	case E1000_DEV_ID_PCH_LNL_I219_LM21:
355 	case E1000_DEV_ID_PCH_LNL_I219_V21:
356 		mac->type = e1000_pch_mtp;
357 		break;
358 	case E1000_DEV_ID_82575EB_COPPER:
359 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
360 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
361 		mac->type = e1000_82575;
362 		break;
363 	case E1000_DEV_ID_82576:
364 	case E1000_DEV_ID_82576_FIBER:
365 	case E1000_DEV_ID_82576_SERDES:
366 	case E1000_DEV_ID_82576_QUAD_COPPER:
367 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
368 	case E1000_DEV_ID_82576_NS:
369 	case E1000_DEV_ID_82576_NS_SERDES:
370 	case E1000_DEV_ID_82576_SERDES_QUAD:
371 		mac->type = e1000_82576;
372 		break;
373 	case E1000_DEV_ID_82580_COPPER:
374 	case E1000_DEV_ID_82580_FIBER:
375 	case E1000_DEV_ID_82580_SERDES:
376 	case E1000_DEV_ID_82580_SGMII:
377 	case E1000_DEV_ID_82580_COPPER_DUAL:
378 	case E1000_DEV_ID_82580_QUAD_FIBER:
379 	case E1000_DEV_ID_DH89XXCC_SGMII:
380 	case E1000_DEV_ID_DH89XXCC_SERDES:
381 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
382 	case E1000_DEV_ID_DH89XXCC_SFP:
383 		mac->type = e1000_82580;
384 		break;
385 	case E1000_DEV_ID_I350_COPPER:
386 	case E1000_DEV_ID_I350_FIBER:
387 	case E1000_DEV_ID_I350_SERDES:
388 	case E1000_DEV_ID_I350_SGMII:
389 	case E1000_DEV_ID_I350_DA4:
390 		mac->type = e1000_i350;
391 		break;
392 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
393 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
394 	case E1000_DEV_ID_I210_SGMII_FLASHLESS:
395 	case E1000_DEV_ID_I210_COPPER:
396 	case E1000_DEV_ID_I210_COPPER_OEM1:
397 	case E1000_DEV_ID_I210_COPPER_IT:
398 	case E1000_DEV_ID_I210_FIBER:
399 	case E1000_DEV_ID_I210_SERDES:
400 	case E1000_DEV_ID_I210_SGMII:
401 		mac->type = e1000_i210;
402 		break;
403 	case E1000_DEV_ID_I211_COPPER:
404 		mac->type = e1000_i211;
405 		break;
406 	case E1000_DEV_ID_82576_VF:
407 	case E1000_DEV_ID_82576_VF_HV:
408 		mac->type = e1000_vfadapt;
409 		break;
410 	case E1000_DEV_ID_I350_VF:
411 	case E1000_DEV_ID_I350_VF_HV:
412 		mac->type = e1000_vfadapt_i350;
413 		break;
414 
415 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
416 	case E1000_DEV_ID_I354_SGMII:
417 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
418 		mac->type = e1000_i354;
419 		break;
420 	default:
421 		/* Should never have loaded on this device */
422 		ret_val = -E1000_ERR_MAC_INIT;
423 		break;
424 	}
425 
426 	return ret_val;
427 }
428 
429 /**
430  *  e1000_setup_init_funcs - Initializes function pointers
431  *  @hw: pointer to the HW structure
432  *  @init_device: true will initialize the rest of the function pointers
433  *		  getting the device ready for use.  false will only set
434  *		  MAC type and the function pointers for the other init
435  *		  functions.  Passing false will not generate any hardware
436  *		  reads or writes.
437  *
438  *  This function must be called by a driver in order to use the rest
439  *  of the 'shared' code files. Called by drivers only.
440  **/
441 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
442 {
443 	s32 ret_val;
444 
445 	/* Can't do much good without knowing the MAC type. */
446 	ret_val = e1000_set_mac_type(hw);
447 	if (ret_val) {
448 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
449 		goto out;
450 	}
451 
452 	if (!hw->hw_addr) {
453 		DEBUGOUT("ERROR: Registers not mapped\n");
454 		ret_val = -E1000_ERR_CONFIG;
455 		goto out;
456 	}
457 
458 	/*
459 	 * Init function pointers to generic implementations. We do this first
460 	 * allowing a driver module to override it afterward.
461 	 */
462 	e1000_init_mac_ops_generic(hw);
463 	e1000_init_phy_ops_generic(hw);
464 	e1000_init_nvm_ops_generic(hw);
465 	e1000_init_mbx_ops_generic(hw);
466 
467 	/*
468 	 * Set up the init function pointers. These are functions within the
469 	 * adapter family file that sets up function pointers for the rest of
470 	 * the functions in that family.
471 	 */
472 	switch (hw->mac.type) {
473 	case e1000_82542:
474 		e1000_init_function_pointers_82542(hw);
475 		break;
476 	case e1000_82543:
477 	case e1000_82544:
478 		e1000_init_function_pointers_82543(hw);
479 		break;
480 	case e1000_82540:
481 	case e1000_82545:
482 	case e1000_82545_rev_3:
483 	case e1000_82546:
484 	case e1000_82546_rev_3:
485 		e1000_init_function_pointers_82540(hw);
486 		break;
487 	case e1000_82541:
488 	case e1000_82541_rev_2:
489 	case e1000_82547:
490 	case e1000_82547_rev_2:
491 		e1000_init_function_pointers_82541(hw);
492 		break;
493 	case e1000_82571:
494 	case e1000_82572:
495 	case e1000_82573:
496 	case e1000_82574:
497 	case e1000_82583:
498 		e1000_init_function_pointers_82571(hw);
499 		break;
500 	case e1000_80003es2lan:
501 		e1000_init_function_pointers_80003es2lan(hw);
502 		break;
503 	case e1000_ich8lan:
504 	case e1000_ich9lan:
505 	case e1000_ich10lan:
506 	case e1000_pchlan:
507 	case e1000_pch2lan:
508 	case e1000_pch_lpt:
509 	case e1000_pch_spt:
510 	case e1000_pch_cnp:
511 	case e1000_pch_tgp:
512 	case e1000_pch_adp:
513 	case e1000_pch_mtp:
514 		e1000_init_function_pointers_ich8lan(hw);
515 		break;
516 	case e1000_82575:
517 	case e1000_82576:
518 	case e1000_82580:
519 	case e1000_i350:
520 	case e1000_i354:
521 		e1000_init_function_pointers_82575(hw);
522 		break;
523 	case e1000_i210:
524 	case e1000_i211:
525 		e1000_init_function_pointers_i210(hw);
526 		break;
527 	case e1000_vfadapt:
528 		e1000_init_function_pointers_vf(hw);
529 		break;
530 	case e1000_vfadapt_i350:
531 		e1000_init_function_pointers_vf(hw);
532 		break;
533 	default:
534 		DEBUGOUT("Hardware not supported\n");
535 		ret_val = -E1000_ERR_CONFIG;
536 		break;
537 	}
538 
539 	/*
540 	 * Initialize the rest of the function pointers. These require some
541 	 * register reads/writes in some cases.
542 	 */
543 	if (!(ret_val) && init_device) {
544 		ret_val = e1000_init_mac_params(hw);
545 		if (ret_val)
546 			goto out;
547 
548 		ret_val = e1000_init_nvm_params(hw);
549 		if (ret_val)
550 			goto out;
551 
552 		ret_val = e1000_init_phy_params(hw);
553 		if (ret_val)
554 			goto out;
555 
556 		ret_val = e1000_init_mbx_params(hw);
557 		if (ret_val)
558 			goto out;
559 	}
560 
561 out:
562 	return ret_val;
563 }
564 
565 /**
566  *  e1000_get_bus_info - Obtain bus information for adapter
567  *  @hw: pointer to the HW structure
568  *
569  *  This will obtain information about the HW bus for which the
570  *  adapter is attached and stores it in the hw structure. This is a
571  *  function pointer entry point called by drivers.
572  **/
573 s32 e1000_get_bus_info(struct e1000_hw *hw)
574 {
575 	if (hw->mac.ops.get_bus_info)
576 		return hw->mac.ops.get_bus_info(hw);
577 
578 	return E1000_SUCCESS;
579 }
580 
581 /**
582  *  e1000_clear_vfta - Clear VLAN filter table
583  *  @hw: pointer to the HW structure
584  *
585  *  This clears the VLAN filter table on the adapter. This is a function
586  *  pointer entry point called by drivers.
587  **/
588 void e1000_clear_vfta(struct e1000_hw *hw)
589 {
590 	if (hw->mac.ops.clear_vfta)
591 		hw->mac.ops.clear_vfta(hw);
592 }
593 
594 /**
595  *  e1000_write_vfta - Write value to VLAN filter table
596  *  @hw: pointer to the HW structure
597  *  @offset: the 32-bit offset in which to write the value to.
598  *  @value: the 32-bit value to write at location offset.
599  *
600  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
601  *  table. This is a function pointer entry point called by drivers.
602  **/
603 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
604 {
605 	if (hw->mac.ops.write_vfta)
606 		hw->mac.ops.write_vfta(hw, offset, value);
607 }
608 
609 /**
610  *  e1000_update_mc_addr_list - Update Multicast addresses
611  *  @hw: pointer to the HW structure
612  *  @mc_addr_list: array of multicast addresses to program
613  *  @mc_addr_count: number of multicast addresses to program
614  *
615  *  Updates the Multicast Table Array.
616  *  The caller must have a packed mc_addr_list of multicast addresses.
617  **/
618 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
619 			       u32 mc_addr_count)
620 {
621 	if (hw->mac.ops.update_mc_addr_list)
622 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
623 						mc_addr_count);
624 }
625 
626 /**
627  *  e1000_force_mac_fc - Force MAC flow control
628  *  @hw: pointer to the HW structure
629  *
630  *  Force the MAC's flow control settings. Currently no func pointer exists
631  *  and all implementations are handled in the generic version of this
632  *  function.
633  **/
634 s32 e1000_force_mac_fc(struct e1000_hw *hw)
635 {
636 	return e1000_force_mac_fc_generic(hw);
637 }
638 
639 /**
640  *  e1000_check_for_link - Check/Store link connection
641  *  @hw: pointer to the HW structure
642  *
643  *  This checks the link condition of the adapter and stores the
644  *  results in the hw->mac structure. This is a function pointer entry
645  *  point called by drivers.
646  **/
647 s32 e1000_check_for_link(struct e1000_hw *hw)
648 {
649 	if (hw->mac.ops.check_for_link)
650 		return hw->mac.ops.check_for_link(hw);
651 
652 	return -E1000_ERR_CONFIG;
653 }
654 
655 /**
656  *  e1000_check_mng_mode - Check management mode
657  *  @hw: pointer to the HW structure
658  *
659  *  This checks if the adapter has manageability enabled.
660  *  This is a function pointer entry point called by drivers.
661  **/
662 bool e1000_check_mng_mode(struct e1000_hw *hw)
663 {
664 	if (hw->mac.ops.check_mng_mode)
665 		return hw->mac.ops.check_mng_mode(hw);
666 
667 	return false;
668 }
669 
670 /**
671  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
672  *  @hw: pointer to the HW structure
673  *  @buffer: pointer to the host interface
674  *  @length: size of the buffer
675  *
676  *  Writes the DHCP information to the host interface.
677  **/
678 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
679 {
680 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
681 }
682 
683 /**
684  *  e1000_reset_hw - Reset hardware
685  *  @hw: pointer to the HW structure
686  *
687  *  This resets the hardware into a known state. This is a function pointer
688  *  entry point called by drivers.
689  **/
690 s32 e1000_reset_hw(struct e1000_hw *hw)
691 {
692 	if (hw->mac.ops.reset_hw)
693 		return hw->mac.ops.reset_hw(hw);
694 
695 	return -E1000_ERR_CONFIG;
696 }
697 
698 /**
699  *  e1000_init_hw - Initialize hardware
700  *  @hw: pointer to the HW structure
701  *
702  *  This inits the hardware readying it for operation. This is a function
703  *  pointer entry point called by drivers.
704  **/
705 s32 e1000_init_hw(struct e1000_hw *hw)
706 {
707 	if (hw->mac.ops.init_hw)
708 		return hw->mac.ops.init_hw(hw);
709 
710 	return -E1000_ERR_CONFIG;
711 }
712 
713 /**
714  *  e1000_setup_link - Configures link and flow control
715  *  @hw: pointer to the HW structure
716  *
717  *  This configures link and flow control settings for the adapter. This
718  *  is a function pointer entry point called by drivers. While modules can
719  *  also call this, they probably call their own version of this function.
720  **/
721 s32 e1000_setup_link(struct e1000_hw *hw)
722 {
723 	if (hw->mac.ops.setup_link)
724 		return hw->mac.ops.setup_link(hw);
725 
726 	return -E1000_ERR_CONFIG;
727 }
728 
729 /**
730  *  e1000_get_speed_and_duplex - Returns current speed and duplex
731  *  @hw: pointer to the HW structure
732  *  @speed: pointer to a 16-bit value to store the speed
733  *  @duplex: pointer to a 16-bit value to store the duplex.
734  *
735  *  This returns the speed and duplex of the adapter in the two 'out'
736  *  variables passed in. This is a function pointer entry point called
737  *  by drivers.
738  **/
739 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
740 {
741 	if (hw->mac.ops.get_link_up_info)
742 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
743 
744 	return -E1000_ERR_CONFIG;
745 }
746 
747 /**
748  *  e1000_setup_led - Configures SW controllable LED
749  *  @hw: pointer to the HW structure
750  *
751  *  This prepares the SW controllable LED for use and saves the current state
752  *  of the LED so it can be later restored. This is a function pointer entry
753  *  point called by drivers.
754  **/
755 s32 e1000_setup_led(struct e1000_hw *hw)
756 {
757 	if (hw->mac.ops.setup_led)
758 		return hw->mac.ops.setup_led(hw);
759 
760 	return E1000_SUCCESS;
761 }
762 
763 /**
764  *  e1000_cleanup_led - Restores SW controllable LED
765  *  @hw: pointer to the HW structure
766  *
767  *  This restores the SW controllable LED to the value saved off by
768  *  e1000_setup_led. This is a function pointer entry point called by drivers.
769  **/
770 s32 e1000_cleanup_led(struct e1000_hw *hw)
771 {
772 	if (hw->mac.ops.cleanup_led)
773 		return hw->mac.ops.cleanup_led(hw);
774 
775 	return E1000_SUCCESS;
776 }
777 
778 /**
779  *  e1000_blink_led - Blink SW controllable LED
780  *  @hw: pointer to the HW structure
781  *
782  *  This starts the adapter LED blinking. Request the LED to be setup first
783  *  and cleaned up after. This is a function pointer entry point called by
784  *  drivers.
785  **/
786 s32 e1000_blink_led(struct e1000_hw *hw)
787 {
788 	if (hw->mac.ops.blink_led)
789 		return hw->mac.ops.blink_led(hw);
790 
791 	return E1000_SUCCESS;
792 }
793 
794 /**
795  *  e1000_id_led_init - store LED configurations in SW
796  *  @hw: pointer to the HW structure
797  *
798  *  Initializes the LED config in SW. This is a function pointer entry point
799  *  called by drivers.
800  **/
801 s32 e1000_id_led_init(struct e1000_hw *hw)
802 {
803 	if (hw->mac.ops.id_led_init)
804 		return hw->mac.ops.id_led_init(hw);
805 
806 	return E1000_SUCCESS;
807 }
808 
809 /**
810  *  e1000_led_on - Turn on SW controllable LED
811  *  @hw: pointer to the HW structure
812  *
813  *  Turns the SW defined LED on. This is a function pointer entry point
814  *  called by drivers.
815  **/
816 s32 e1000_led_on(struct e1000_hw *hw)
817 {
818 	if (hw->mac.ops.led_on)
819 		return hw->mac.ops.led_on(hw);
820 
821 	return E1000_SUCCESS;
822 }
823 
824 /**
825  *  e1000_led_off - Turn off SW controllable LED
826  *  @hw: pointer to the HW structure
827  *
828  *  Turns the SW defined LED off. This is a function pointer entry point
829  *  called by drivers.
830  **/
831 s32 e1000_led_off(struct e1000_hw *hw)
832 {
833 	if (hw->mac.ops.led_off)
834 		return hw->mac.ops.led_off(hw);
835 
836 	return E1000_SUCCESS;
837 }
838 
839 /**
840  *  e1000_reset_adaptive - Reset adaptive IFS
841  *  @hw: pointer to the HW structure
842  *
843  *  Resets the adaptive IFS. Currently no func pointer exists and all
844  *  implementations are handled in the generic version of this function.
845  **/
846 void e1000_reset_adaptive(struct e1000_hw *hw)
847 {
848 	e1000_reset_adaptive_generic(hw);
849 }
850 
851 /**
852  *  e1000_update_adaptive - Update adaptive IFS
853  *  @hw: pointer to the HW structure
854  *
855  *  Updates adapter IFS. Currently no func pointer exists and all
856  *  implementations are handled in the generic version of this function.
857  **/
858 void e1000_update_adaptive(struct e1000_hw *hw)
859 {
860 	e1000_update_adaptive_generic(hw);
861 }
862 
863 /**
864  *  e1000_disable_pcie_master - Disable PCI-Express master access
865  *  @hw: pointer to the HW structure
866  *
867  *  Disables PCI-Express master access and verifies there are no pending
868  *  requests. Currently no func pointer exists and all implementations are
869  *  handled in the generic version of this function.
870  **/
871 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
872 {
873 	return e1000_disable_pcie_master_generic(hw);
874 }
875 
876 /**
877  *  e1000_config_collision_dist - Configure collision distance
878  *  @hw: pointer to the HW structure
879  *
880  *  Configures the collision distance to the default value and is used
881  *  during link setup.
882  **/
883 void e1000_config_collision_dist(struct e1000_hw *hw)
884 {
885 	if (hw->mac.ops.config_collision_dist)
886 		hw->mac.ops.config_collision_dist(hw);
887 }
888 
889 /**
890  *  e1000_rar_set - Sets a receive address register
891  *  @hw: pointer to the HW structure
892  *  @addr: address to set the RAR to
893  *  @index: the RAR to set
894  *
895  *  Sets a Receive Address Register (RAR) to the specified address.
896  **/
897 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
898 {
899 	if (hw->mac.ops.rar_set)
900 		return hw->mac.ops.rar_set(hw, addr, index);
901 
902 	return E1000_SUCCESS;
903 }
904 
905 /**
906  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
907  *  @hw: pointer to the HW structure
908  *
909  *  Ensures that the MDI/MDIX SW state is valid.
910  **/
911 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
912 {
913 	if (hw->mac.ops.validate_mdi_setting)
914 		return hw->mac.ops.validate_mdi_setting(hw);
915 
916 	return E1000_SUCCESS;
917 }
918 
919 /**
920  *  e1000_hash_mc_addr - Determines address location in multicast table
921  *  @hw: pointer to the HW structure
922  *  @mc_addr: Multicast address to hash.
923  *
924  *  This hashes an address to determine its location in the multicast
925  *  table. Currently no func pointer exists and all implementations
926  *  are handled in the generic version of this function.
927  **/
928 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
929 {
930 	return e1000_hash_mc_addr_generic(hw, mc_addr);
931 }
932 
933 /**
934  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
935  *  @hw: pointer to the HW structure
936  *
937  *  Enables packet filtering on transmit packets if manageability is enabled
938  *  and host interface is enabled.
939  *  Currently no func pointer exists and all implementations are handled in the
940  *  generic version of this function.
941  **/
942 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
943 {
944 	return e1000_enable_tx_pkt_filtering_generic(hw);
945 }
946 
947 /**
948  *  e1000_mng_host_if_write - Writes to the manageability host interface
949  *  @hw: pointer to the HW structure
950  *  @buffer: pointer to the host interface buffer
951  *  @length: size of the buffer
952  *  @offset: location in the buffer to write to
953  *  @sum: sum of the data (not checksum)
954  *
955  *  This function writes the buffer content at the offset given on the host if.
956  *  It also does alignment considerations to do the writes in most efficient
957  *  way.  Also fills up the sum of the buffer in *buffer parameter.
958  **/
959 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
960 			    u16 offset, u8 *sum)
961 {
962 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
963 }
964 
965 /**
966  *  e1000_mng_write_cmd_header - Writes manageability command header
967  *  @hw: pointer to the HW structure
968  *  @hdr: pointer to the host interface command header
969  *
970  *  Writes the command header after does the checksum calculation.
971  **/
972 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
973 			       struct e1000_host_mng_command_header *hdr)
974 {
975 	return e1000_mng_write_cmd_header_generic(hw, hdr);
976 }
977 
978 /**
979  *  e1000_mng_enable_host_if - Checks host interface is enabled
980  *  @hw: pointer to the HW structure
981  *
982  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
983  *
984  *  This function checks whether the HOST IF is enabled for command operation
985  *  and also checks whether the previous command is completed.  It busy waits
986  *  in case of previous command is not completed.
987  **/
988 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
989 {
990 	return e1000_mng_enable_host_if_generic(hw);
991 }
992 
993 /**
994  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
995  *  @hw: pointer to the HW structure
996  *  @itr: u32 indicating itr value
997  *
998  *  Set the OBFF timer based on the given interrupt rate.
999  **/
1000 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
1001 {
1002 	if (hw->mac.ops.set_obff_timer)
1003 		return hw->mac.ops.set_obff_timer(hw, itr);
1004 
1005 	return E1000_SUCCESS;
1006 }
1007 
1008 /**
1009  *  e1000_check_reset_block - Verifies PHY can be reset
1010  *  @hw: pointer to the HW structure
1011  *
1012  *  Checks if the PHY is in a state that can be reset or if manageability
1013  *  has it tied up. This is a function pointer entry point called by drivers.
1014  **/
1015 s32 e1000_check_reset_block(struct e1000_hw *hw)
1016 {
1017 	if (hw->phy.ops.check_reset_block)
1018 		return hw->phy.ops.check_reset_block(hw);
1019 
1020 	return E1000_SUCCESS;
1021 }
1022 
1023 /**
1024  *  e1000_read_phy_reg - Reads PHY register
1025  *  @hw: pointer to the HW structure
1026  *  @offset: the register to read
1027  *  @data: the buffer to store the 16-bit read.
1028  *
1029  *  Reads the PHY register and returns the value in data.
1030  *  This is a function pointer entry point called by drivers.
1031  **/
1032 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1033 {
1034 	if (hw->phy.ops.read_reg)
1035 		return hw->phy.ops.read_reg(hw, offset, data);
1036 
1037 	return E1000_SUCCESS;
1038 }
1039 
1040 /**
1041  *  e1000_write_phy_reg - Writes PHY register
1042  *  @hw: pointer to the HW structure
1043  *  @offset: the register to write
1044  *  @data: the value to write.
1045  *
1046  *  Writes the PHY register at offset with the value in data.
1047  *  This is a function pointer entry point called by drivers.
1048  **/
1049 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1050 {
1051 	if (hw->phy.ops.write_reg)
1052 		return hw->phy.ops.write_reg(hw, offset, data);
1053 
1054 	return E1000_SUCCESS;
1055 }
1056 
1057 /**
1058  *  e1000_release_phy - Generic release PHY
1059  *  @hw: pointer to the HW structure
1060  *
1061  *  Return if silicon family does not require a semaphore when accessing the
1062  *  PHY.
1063  **/
1064 void e1000_release_phy(struct e1000_hw *hw)
1065 {
1066 	if (hw->phy.ops.release)
1067 		hw->phy.ops.release(hw);
1068 }
1069 
1070 /**
1071  *  e1000_acquire_phy - Generic acquire PHY
1072  *  @hw: pointer to the HW structure
1073  *
1074  *  Return success if silicon family does not require a semaphore when
1075  *  accessing the PHY.
1076  **/
1077 s32 e1000_acquire_phy(struct e1000_hw *hw)
1078 {
1079 	if (hw->phy.ops.acquire)
1080 		return hw->phy.ops.acquire(hw);
1081 
1082 	return E1000_SUCCESS;
1083 }
1084 
1085 /**
1086  *  e1000_cfg_on_link_up - Configure PHY upon link up
1087  *  @hw: pointer to the HW structure
1088  **/
1089 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1090 {
1091 	if (hw->phy.ops.cfg_on_link_up)
1092 		return hw->phy.ops.cfg_on_link_up(hw);
1093 
1094 	return E1000_SUCCESS;
1095 }
1096 
1097 /**
1098  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1099  *  @hw: pointer to the HW structure
1100  *  @offset: the register to read
1101  *  @data: the location to store the 16-bit value read.
1102  *
1103  *  Reads a register out of the Kumeran interface. Currently no func pointer
1104  *  exists and all implementations are handled in the generic version of
1105  *  this function.
1106  **/
1107 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1108 {
1109 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1110 }
1111 
1112 /**
1113  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1114  *  @hw: pointer to the HW structure
1115  *  @offset: the register to write
1116  *  @data: the value to write.
1117  *
1118  *  Writes a register to the Kumeran interface. Currently no func pointer
1119  *  exists and all implementations are handled in the generic version of
1120  *  this function.
1121  **/
1122 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1123 {
1124 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1125 }
1126 
1127 /**
1128  *  e1000_get_cable_length - Retrieves cable length estimation
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  This function estimates the cable length and stores them in
1132  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1133  *  entry point called by drivers.
1134  **/
1135 s32 e1000_get_cable_length(struct e1000_hw *hw)
1136 {
1137 	if (hw->phy.ops.get_cable_length)
1138 		return hw->phy.ops.get_cable_length(hw);
1139 
1140 	return E1000_SUCCESS;
1141 }
1142 
1143 /**
1144  *  e1000_get_phy_info - Retrieves PHY information from registers
1145  *  @hw: pointer to the HW structure
1146  *
1147  *  This function gets some information from various PHY registers and
1148  *  populates hw->phy values with it. This is a function pointer entry
1149  *  point called by drivers.
1150  **/
1151 s32 e1000_get_phy_info(struct e1000_hw *hw)
1152 {
1153 	if (hw->phy.ops.get_info)
1154 		return hw->phy.ops.get_info(hw);
1155 
1156 	return E1000_SUCCESS;
1157 }
1158 
1159 /**
1160  *  e1000_phy_hw_reset - Hard PHY reset
1161  *  @hw: pointer to the HW structure
1162  *
1163  *  Performs a hard PHY reset. This is a function pointer entry point called
1164  *  by drivers.
1165  **/
1166 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1167 {
1168 	if (hw->phy.ops.reset)
1169 		return hw->phy.ops.reset(hw);
1170 
1171 	return E1000_SUCCESS;
1172 }
1173 
1174 /**
1175  *  e1000_phy_commit - Soft PHY reset
1176  *  @hw: pointer to the HW structure
1177  *
1178  *  Performs a soft PHY reset on those that apply. This is a function pointer
1179  *  entry point called by drivers.
1180  **/
1181 s32 e1000_phy_commit(struct e1000_hw *hw)
1182 {
1183 	if (hw->phy.ops.commit)
1184 		return hw->phy.ops.commit(hw);
1185 
1186 	return E1000_SUCCESS;
1187 }
1188 
1189 /**
1190  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1191  *  @hw: pointer to the HW structure
1192  *  @active: boolean used to enable/disable lplu
1193  *
1194  *  Success returns 0, Failure returns 1
1195  *
1196  *  The low power link up (lplu) state is set to the power management level D0
1197  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1198  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1199  *  is used during Dx states where the power conservation is most important.
1200  *  During driver activity, SmartSpeed should be enabled so performance is
1201  *  maintained.  This is a function pointer entry point called by drivers.
1202  **/
1203 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1204 {
1205 	if (hw->phy.ops.set_d0_lplu_state)
1206 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1207 
1208 	return E1000_SUCCESS;
1209 }
1210 
1211 /**
1212  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1213  *  @hw: pointer to the HW structure
1214  *  @active: boolean used to enable/disable lplu
1215  *
1216  *  Success returns 0, Failure returns 1
1217  *
1218  *  The low power link up (lplu) state is set to the power management level D3
1219  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1220  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1221  *  is used during Dx states where the power conservation is most important.
1222  *  During driver activity, SmartSpeed should be enabled so performance is
1223  *  maintained.  This is a function pointer entry point called by drivers.
1224  **/
1225 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1226 {
1227 	if (hw->phy.ops.set_d3_lplu_state)
1228 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1229 
1230 	return E1000_SUCCESS;
1231 }
1232 
1233 /**
1234  *  e1000_read_mac_addr - Reads MAC address
1235  *  @hw: pointer to the HW structure
1236  *
1237  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1238  *  Currently no func pointer exists and all implementations are handled in the
1239  *  generic version of this function.
1240  **/
1241 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1242 {
1243 	if (hw->mac.ops.read_mac_addr)
1244 		return hw->mac.ops.read_mac_addr(hw);
1245 
1246 	return e1000_read_mac_addr_generic(hw);
1247 }
1248 
1249 /**
1250  *  e1000_read_pba_string - Read device part number string
1251  *  @hw: pointer to the HW structure
1252  *  @pba_num: pointer to device part number
1253  *  @pba_num_size: size of part number buffer
1254  *
1255  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1256  *  the value in pba_num.
1257  *  Currently no func pointer exists and all implementations are handled in the
1258  *  generic version of this function.
1259  **/
1260 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1261 {
1262 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1263 }
1264 
1265 /**
1266  *  e1000_read_pba_length - Read device part number string length
1267  *  @hw: pointer to the HW structure
1268  *  @pba_num_size: size of part number buffer
1269  *
1270  *  Reads the product board assembly (PBA) number length from the EEPROM and
1271  *  stores the value in pba_num.
1272  *  Currently no func pointer exists and all implementations are handled in the
1273  *  generic version of this function.
1274  **/
1275 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1276 {
1277 	return e1000_read_pba_length_generic(hw, pba_num_size);
1278 }
1279 
1280 /**
1281  *  e1000_read_pba_num - Read device part number
1282  *  @hw: pointer to the HW structure
1283  *  @pba_num: pointer to device part number
1284  *
1285  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1286  *  the value in pba_num.
1287  *  Currently no func pointer exists and all implementations are handled in the
1288  *  generic version of this function.
1289  **/
1290 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1291 {
1292 	return e1000_read_pba_num_generic(hw, pba_num);
1293 }
1294 
1295 /**
1296  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1297  *  @hw: pointer to the HW structure
1298  *
1299  *  Validates the NVM checksum is correct. This is a function pointer entry
1300  *  point called by drivers.
1301  **/
1302 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1303 {
1304 	if (hw->nvm.ops.validate)
1305 		return hw->nvm.ops.validate(hw);
1306 
1307 	return -E1000_ERR_CONFIG;
1308 }
1309 
1310 /**
1311  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1312  *  @hw: pointer to the HW structure
1313  *
1314  *  Updates the NVM checksum. Currently no func pointer exists and all
1315  *  implementations are handled in the generic version of this function.
1316  **/
1317 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1318 {
1319 	if (hw->nvm.ops.update)
1320 		return hw->nvm.ops.update(hw);
1321 
1322 	return -E1000_ERR_CONFIG;
1323 }
1324 
1325 /**
1326  *  e1000_reload_nvm - Reloads EEPROM
1327  *  @hw: pointer to the HW structure
1328  *
1329  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1330  *  extended control register.
1331  **/
1332 void e1000_reload_nvm(struct e1000_hw *hw)
1333 {
1334 	if (hw->nvm.ops.reload)
1335 		hw->nvm.ops.reload(hw);
1336 }
1337 
1338 /**
1339  *  e1000_read_nvm - Reads NVM (EEPROM)
1340  *  @hw: pointer to the HW structure
1341  *  @offset: the word offset to read
1342  *  @words: number of 16-bit words to read
1343  *  @data: pointer to the properly sized buffer for the data.
1344  *
1345  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1346  *  pointer entry point called by drivers.
1347  **/
1348 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1349 {
1350 	if (hw->nvm.ops.read)
1351 		return hw->nvm.ops.read(hw, offset, words, data);
1352 
1353 	return -E1000_ERR_CONFIG;
1354 }
1355 
1356 /**
1357  *  e1000_write_nvm - Writes to NVM (EEPROM)
1358  *  @hw: pointer to the HW structure
1359  *  @offset: the word offset to read
1360  *  @words: number of 16-bit words to write
1361  *  @data: pointer to the properly sized buffer for the data.
1362  *
1363  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1364  *  pointer entry point called by drivers.
1365  **/
1366 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1367 {
1368 	if (hw->nvm.ops.write)
1369 		return hw->nvm.ops.write(hw, offset, words, data);
1370 
1371 	return E1000_SUCCESS;
1372 }
1373 
1374 /**
1375  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1376  *  @hw: pointer to the HW structure
1377  *  @reg: 32bit register offset
1378  *  @offset: the register to write
1379  *  @data: the value to write.
1380  *
1381  *  Writes the PHY register at offset with the value in data.
1382  *  This is a function pointer entry point called by drivers.
1383  **/
1384 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1385 			      u8 data)
1386 {
1387 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1388 }
1389 
1390 /**
1391  * e1000_power_up_phy - Restores link in case of PHY power down
1392  * @hw: pointer to the HW structure
1393  *
1394  * The phy may be powered down to save power, to turn off link when the
1395  * driver is unloaded, or wake on lan is not enabled (among others).
1396  **/
1397 void e1000_power_up_phy(struct e1000_hw *hw)
1398 {
1399 	if (hw->phy.ops.power_up)
1400 		hw->phy.ops.power_up(hw);
1401 
1402 	e1000_setup_link(hw);
1403 }
1404 
1405 /**
1406  * e1000_power_down_phy - Power down PHY
1407  * @hw: pointer to the HW structure
1408  *
1409  * The phy may be powered down to save power, to turn off link when the
1410  * driver is unloaded, or wake on lan is not enabled (among others).
1411  **/
1412 void e1000_power_down_phy(struct e1000_hw *hw)
1413 {
1414 	if (hw->phy.ops.power_down)
1415 		hw->phy.ops.power_down(hw);
1416 }
1417 
1418 /**
1419  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1420  *  @hw: pointer to the HW structure
1421  *
1422  *  Power on the optics and PCS.
1423  **/
1424 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1425 {
1426 	if (hw->mac.ops.power_up_serdes)
1427 		hw->mac.ops.power_up_serdes(hw);
1428 }
1429 
1430 /**
1431  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1432  *  @hw: pointer to the HW structure
1433  *
1434  *  Shutdown the optics and PCS on driver unload.
1435  **/
1436 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1437 {
1438 	if (hw->mac.ops.shutdown_serdes)
1439 		hw->mac.ops.shutdown_serdes(hw);
1440 }
1441 
1442