1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2020, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 /** 39 * e1000_init_mac_params - Initialize MAC function pointers 40 * @hw: pointer to the HW structure 41 * 42 * This function initializes the function pointers for the MAC 43 * set of functions. Called by drivers or by e1000_setup_init_funcs. 44 **/ 45 s32 e1000_init_mac_params(struct e1000_hw *hw) 46 { 47 s32 ret_val = E1000_SUCCESS; 48 49 if (hw->mac.ops.init_params) { 50 ret_val = hw->mac.ops.init_params(hw); 51 if (ret_val) { 52 DEBUGOUT("MAC Initialization Error\n"); 53 goto out; 54 } 55 } else { 56 DEBUGOUT("mac.init_mac_params was NULL\n"); 57 ret_val = -E1000_ERR_CONFIG; 58 } 59 60 out: 61 return ret_val; 62 } 63 64 /** 65 * e1000_init_nvm_params - Initialize NVM function pointers 66 * @hw: pointer to the HW structure 67 * 68 * This function initializes the function pointers for the NVM 69 * set of functions. Called by drivers or by e1000_setup_init_funcs. 70 **/ 71 s32 e1000_init_nvm_params(struct e1000_hw *hw) 72 { 73 s32 ret_val = E1000_SUCCESS; 74 75 if (hw->nvm.ops.init_params) { 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_mbx_params - Initialize mailbox function pointers 118 * @hw: pointer to the HW structure 119 * 120 * This function initializes the function pointers for the PHY 121 * set of functions. Called by drivers or by e1000_setup_init_funcs. 122 **/ 123 s32 e1000_init_mbx_params(struct e1000_hw *hw) 124 { 125 s32 ret_val = E1000_SUCCESS; 126 127 if (hw->mbx.ops.init_params) { 128 ret_val = hw->mbx.ops.init_params(hw); 129 if (ret_val) { 130 DEBUGOUT("Mailbox Initialization Error\n"); 131 goto out; 132 } 133 } else { 134 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 135 ret_val = -E1000_ERR_CONFIG; 136 } 137 138 out: 139 return ret_val; 140 } 141 142 /** 143 * e1000_set_mac_type - Sets MAC type 144 * @hw: pointer to the HW structure 145 * 146 * This function sets the mac type of the adapter based on the 147 * device ID stored in the hw structure. 148 * MUST BE FIRST FUNCTION CALLED (explicitly or through 149 * e1000_setup_init_funcs()). 150 **/ 151 s32 e1000_set_mac_type(struct e1000_hw *hw) 152 { 153 struct e1000_mac_info *mac = &hw->mac; 154 s32 ret_val = E1000_SUCCESS; 155 156 DEBUGFUNC("e1000_set_mac_type"); 157 158 switch (hw->device_id) { 159 case E1000_DEV_ID_82542: 160 mac->type = e1000_82542; 161 break; 162 case E1000_DEV_ID_82543GC_FIBER: 163 case E1000_DEV_ID_82543GC_COPPER: 164 mac->type = e1000_82543; 165 break; 166 case E1000_DEV_ID_82544EI_COPPER: 167 case E1000_DEV_ID_82544EI_FIBER: 168 case E1000_DEV_ID_82544GC_COPPER: 169 case E1000_DEV_ID_82544GC_LOM: 170 mac->type = e1000_82544; 171 break; 172 case E1000_DEV_ID_82540EM: 173 case E1000_DEV_ID_82540EM_LOM: 174 case E1000_DEV_ID_82540EP: 175 case E1000_DEV_ID_82540EP_LOM: 176 case E1000_DEV_ID_82540EP_LP: 177 mac->type = e1000_82540; 178 break; 179 case E1000_DEV_ID_82545EM_COPPER: 180 case E1000_DEV_ID_82545EM_FIBER: 181 mac->type = e1000_82545; 182 break; 183 case E1000_DEV_ID_82545GM_COPPER: 184 case E1000_DEV_ID_82545GM_FIBER: 185 case E1000_DEV_ID_82545GM_SERDES: 186 mac->type = e1000_82545_rev_3; 187 break; 188 case E1000_DEV_ID_82546EB_COPPER: 189 case E1000_DEV_ID_82546EB_FIBER: 190 case E1000_DEV_ID_82546EB_QUAD_COPPER: 191 mac->type = e1000_82546; 192 break; 193 case E1000_DEV_ID_82546GB_COPPER: 194 case E1000_DEV_ID_82546GB_FIBER: 195 case E1000_DEV_ID_82546GB_SERDES: 196 case E1000_DEV_ID_82546GB_PCIE: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER: 198 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 199 mac->type = e1000_82546_rev_3; 200 break; 201 case E1000_DEV_ID_82541EI: 202 case E1000_DEV_ID_82541EI_MOBILE: 203 case E1000_DEV_ID_82541ER_LOM: 204 mac->type = e1000_82541; 205 break; 206 case E1000_DEV_ID_82541ER: 207 case E1000_DEV_ID_82541GI: 208 case E1000_DEV_ID_82541GI_LF: 209 case E1000_DEV_ID_82541GI_MOBILE: 210 mac->type = e1000_82541_rev_2; 211 break; 212 case E1000_DEV_ID_82547EI: 213 case E1000_DEV_ID_82547EI_MOBILE: 214 mac->type = e1000_82547; 215 break; 216 case E1000_DEV_ID_82547GI: 217 mac->type = e1000_82547_rev_2; 218 break; 219 case E1000_DEV_ID_82571EB_COPPER: 220 case E1000_DEV_ID_82571EB_FIBER: 221 case E1000_DEV_ID_82571EB_SERDES: 222 case E1000_DEV_ID_82571EB_SERDES_DUAL: 223 case E1000_DEV_ID_82571EB_SERDES_QUAD: 224 case E1000_DEV_ID_82571EB_QUAD_COPPER: 225 case E1000_DEV_ID_82571PT_QUAD_COPPER: 226 case E1000_DEV_ID_82571EB_QUAD_FIBER: 227 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 228 mac->type = e1000_82571; 229 break; 230 case E1000_DEV_ID_82572EI: 231 case E1000_DEV_ID_82572EI_COPPER: 232 case E1000_DEV_ID_82572EI_FIBER: 233 case E1000_DEV_ID_82572EI_SERDES: 234 mac->type = e1000_82572; 235 break; 236 case E1000_DEV_ID_82573E: 237 case E1000_DEV_ID_82573E_IAMT: 238 case E1000_DEV_ID_82573L: 239 mac->type = e1000_82573; 240 break; 241 case E1000_DEV_ID_82574L: 242 case E1000_DEV_ID_82574LA: 243 mac->type = e1000_82574; 244 break; 245 case E1000_DEV_ID_82583V: 246 mac->type = e1000_82583; 247 break; 248 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 249 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 250 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 251 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 252 mac->type = e1000_80003es2lan; 253 break; 254 case E1000_DEV_ID_ICH8_IFE: 255 case E1000_DEV_ID_ICH8_IFE_GT: 256 case E1000_DEV_ID_ICH8_IFE_G: 257 case E1000_DEV_ID_ICH8_IGP_M: 258 case E1000_DEV_ID_ICH8_IGP_M_AMT: 259 case E1000_DEV_ID_ICH8_IGP_AMT: 260 case E1000_DEV_ID_ICH8_IGP_C: 261 case E1000_DEV_ID_ICH8_82567V_3: 262 mac->type = e1000_ich8lan; 263 break; 264 case E1000_DEV_ID_ICH9_IFE: 265 case E1000_DEV_ID_ICH9_IFE_GT: 266 case E1000_DEV_ID_ICH9_IFE_G: 267 case E1000_DEV_ID_ICH9_IGP_M: 268 case E1000_DEV_ID_ICH9_IGP_M_AMT: 269 case E1000_DEV_ID_ICH9_IGP_M_V: 270 case E1000_DEV_ID_ICH9_IGP_AMT: 271 case E1000_DEV_ID_ICH9_BM: 272 case E1000_DEV_ID_ICH9_IGP_C: 273 case E1000_DEV_ID_ICH10_R_BM_LM: 274 case E1000_DEV_ID_ICH10_R_BM_LF: 275 case E1000_DEV_ID_ICH10_R_BM_V: 276 mac->type = e1000_ich9lan; 277 break; 278 case E1000_DEV_ID_ICH10_D_BM_LM: 279 case E1000_DEV_ID_ICH10_D_BM_LF: 280 case E1000_DEV_ID_ICH10_D_BM_V: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_PCH_LPT_I217_LM: 294 case E1000_DEV_ID_PCH_LPT_I217_V: 295 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 296 case E1000_DEV_ID_PCH_LPTLP_I218_V: 297 case E1000_DEV_ID_PCH_I218_LM2: 298 case E1000_DEV_ID_PCH_I218_V2: 299 case E1000_DEV_ID_PCH_I218_LM3: 300 case E1000_DEV_ID_PCH_I218_V3: 301 mac->type = e1000_pch_lpt; 302 break; 303 case E1000_DEV_ID_PCH_SPT_I219_LM: 304 case E1000_DEV_ID_PCH_SPT_I219_V: 305 case E1000_DEV_ID_PCH_SPT_I219_LM2: 306 case E1000_DEV_ID_PCH_SPT_I219_V2: 307 case E1000_DEV_ID_PCH_LBG_I219_LM3: 308 case E1000_DEV_ID_PCH_SPT_I219_LM4: 309 case E1000_DEV_ID_PCH_SPT_I219_V4: 310 case E1000_DEV_ID_PCH_SPT_I219_LM5: 311 case E1000_DEV_ID_PCH_SPT_I219_V5: 312 case E1000_DEV_ID_PCH_CMP_I219_LM12: 313 case E1000_DEV_ID_PCH_CMP_I219_V12: 314 mac->type = e1000_pch_spt; 315 break; 316 case E1000_DEV_ID_PCH_CNP_I219_LM6: 317 case E1000_DEV_ID_PCH_CNP_I219_V6: 318 case E1000_DEV_ID_PCH_CNP_I219_LM7: 319 case E1000_DEV_ID_PCH_CNP_I219_V7: 320 case E1000_DEV_ID_PCH_ICP_I219_LM8: 321 case E1000_DEV_ID_PCH_ICP_I219_V8: 322 case E1000_DEV_ID_PCH_ICP_I219_LM9: 323 case E1000_DEV_ID_PCH_ICP_I219_V9: 324 case E1000_DEV_ID_PCH_CMP_I219_LM10: 325 case E1000_DEV_ID_PCH_CMP_I219_V10: 326 case E1000_DEV_ID_PCH_CMP_I219_LM11: 327 case E1000_DEV_ID_PCH_CMP_I219_V11: 328 mac->type = e1000_pch_cnp; 329 break; 330 case E1000_DEV_ID_PCH_TGP_I219_LM13: 331 case E1000_DEV_ID_PCH_TGP_I219_V13: 332 case E1000_DEV_ID_PCH_TGP_I219_LM14: 333 case E1000_DEV_ID_PCH_TGP_I219_V14: 334 case E1000_DEV_ID_PCH_TGP_I219_LM15: 335 case E1000_DEV_ID_PCH_TGP_I219_V15: 336 case E1000_DEV_ID_PCH_ADL_I219_LM16: 337 case E1000_DEV_ID_PCH_ADL_I219_V16: 338 case E1000_DEV_ID_PCH_RPL_I219_LM23: 339 case E1000_DEV_ID_PCH_RPL_I219_V23: 340 mac->type = e1000_pch_tgp; 341 break; 342 case E1000_DEV_ID_PCH_ADL_I219_LM17: 343 case E1000_DEV_ID_PCH_ADL_I219_V17: 344 case E1000_DEV_ID_PCH_RPL_I219_LM22: 345 case E1000_DEV_ID_PCH_RPL_I219_V22: 346 mac->type = e1000_pch_adp; 347 break; 348 case E1000_DEV_ID_PCH_MTP_I219_LM18: 349 case E1000_DEV_ID_PCH_MTP_I219_V18: 350 case E1000_DEV_ID_PCH_MTP_I219_LM19: 351 case E1000_DEV_ID_PCH_MTP_I219_V19: 352 case E1000_DEV_ID_PCH_LNL_I219_LM20: 353 case E1000_DEV_ID_PCH_LNL_I219_V20: 354 case E1000_DEV_ID_PCH_LNL_I219_LM21: 355 case E1000_DEV_ID_PCH_LNL_I219_V21: 356 mac->type = e1000_pch_mtp; 357 break; 358 case E1000_DEV_ID_82575EB_COPPER: 359 case E1000_DEV_ID_82575EB_FIBER_SERDES: 360 case E1000_DEV_ID_82575GB_QUAD_COPPER: 361 mac->type = e1000_82575; 362 break; 363 case E1000_DEV_ID_82576: 364 case E1000_DEV_ID_82576_FIBER: 365 case E1000_DEV_ID_82576_SERDES: 366 case E1000_DEV_ID_82576_QUAD_COPPER: 367 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 368 case E1000_DEV_ID_82576_NS: 369 case E1000_DEV_ID_82576_NS_SERDES: 370 case E1000_DEV_ID_82576_SERDES_QUAD: 371 mac->type = e1000_82576; 372 break; 373 case E1000_DEV_ID_82580_COPPER: 374 case E1000_DEV_ID_82580_FIBER: 375 case E1000_DEV_ID_82580_SERDES: 376 case E1000_DEV_ID_82580_SGMII: 377 case E1000_DEV_ID_82580_COPPER_DUAL: 378 case E1000_DEV_ID_82580_QUAD_FIBER: 379 case E1000_DEV_ID_DH89XXCC_SGMII: 380 case E1000_DEV_ID_DH89XXCC_SERDES: 381 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 382 case E1000_DEV_ID_DH89XXCC_SFP: 383 mac->type = e1000_82580; 384 break; 385 case E1000_DEV_ID_I350_COPPER: 386 case E1000_DEV_ID_I350_FIBER: 387 case E1000_DEV_ID_I350_SERDES: 388 case E1000_DEV_ID_I350_SGMII: 389 case E1000_DEV_ID_I350_DA4: 390 mac->type = e1000_i350; 391 break; 392 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 393 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 394 case E1000_DEV_ID_I210_SGMII_FLASHLESS: 395 case E1000_DEV_ID_I210_COPPER: 396 case E1000_DEV_ID_I210_COPPER_OEM1: 397 case E1000_DEV_ID_I210_COPPER_IT: 398 case E1000_DEV_ID_I210_FIBER: 399 case E1000_DEV_ID_I210_SERDES: 400 case E1000_DEV_ID_I210_SGMII: 401 mac->type = e1000_i210; 402 break; 403 case E1000_DEV_ID_I211_COPPER: 404 mac->type = e1000_i211; 405 break; 406 case E1000_DEV_ID_82576_VF: 407 case E1000_DEV_ID_82576_VF_HV: 408 mac->type = e1000_vfadapt; 409 break; 410 case E1000_DEV_ID_I350_VF: 411 case E1000_DEV_ID_I350_VF_HV: 412 mac->type = e1000_vfadapt_i350; 413 break; 414 415 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 416 case E1000_DEV_ID_I354_SGMII: 417 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 418 mac->type = e1000_i354; 419 break; 420 default: 421 /* Should never have loaded on this device */ 422 ret_val = -E1000_ERR_MAC_INIT; 423 break; 424 } 425 426 return ret_val; 427 } 428 429 /** 430 * e1000_setup_init_funcs - Initializes function pointers 431 * @hw: pointer to the HW structure 432 * @init_device: true will initialize the rest of the function pointers 433 * getting the device ready for use. false will only set 434 * MAC type and the function pointers for the other init 435 * functions. Passing false will not generate any hardware 436 * reads or writes. 437 * 438 * This function must be called by a driver in order to use the rest 439 * of the 'shared' code files. Called by drivers only. 440 **/ 441 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 442 { 443 s32 ret_val; 444 445 /* Can't do much good without knowing the MAC type. */ 446 ret_val = e1000_set_mac_type(hw); 447 if (ret_val) { 448 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 449 goto out; 450 } 451 452 if (!hw->hw_addr) { 453 DEBUGOUT("ERROR: Registers not mapped\n"); 454 ret_val = -E1000_ERR_CONFIG; 455 goto out; 456 } 457 458 /* 459 * Init function pointers to generic implementations. We do this first 460 * allowing a driver module to override it afterward. 461 */ 462 e1000_init_mac_ops_generic(hw); 463 e1000_init_phy_ops_generic(hw); 464 e1000_init_nvm_ops_generic(hw); 465 e1000_init_mbx_ops_generic(hw); 466 467 /* 468 * Set up the init function pointers. These are functions within the 469 * adapter family file that sets up function pointers for the rest of 470 * the functions in that family. 471 */ 472 switch (hw->mac.type) { 473 case e1000_82542: 474 e1000_init_function_pointers_82542(hw); 475 break; 476 case e1000_82543: 477 case e1000_82544: 478 e1000_init_function_pointers_82543(hw); 479 break; 480 case e1000_82540: 481 case e1000_82545: 482 case e1000_82545_rev_3: 483 case e1000_82546: 484 case e1000_82546_rev_3: 485 e1000_init_function_pointers_82540(hw); 486 break; 487 case e1000_82541: 488 case e1000_82541_rev_2: 489 case e1000_82547: 490 case e1000_82547_rev_2: 491 e1000_init_function_pointers_82541(hw); 492 break; 493 case e1000_82571: 494 case e1000_82572: 495 case e1000_82573: 496 case e1000_82574: 497 case e1000_82583: 498 e1000_init_function_pointers_82571(hw); 499 break; 500 case e1000_80003es2lan: 501 e1000_init_function_pointers_80003es2lan(hw); 502 break; 503 case e1000_ich8lan: 504 case e1000_ich9lan: 505 case e1000_ich10lan: 506 case e1000_pchlan: 507 case e1000_pch2lan: 508 case e1000_pch_lpt: 509 case e1000_pch_spt: 510 case e1000_pch_cnp: 511 case e1000_pch_tgp: 512 case e1000_pch_adp: 513 case e1000_pch_mtp: 514 e1000_init_function_pointers_ich8lan(hw); 515 break; 516 case e1000_82575: 517 case e1000_82576: 518 case e1000_82580: 519 case e1000_i350: 520 case e1000_i354: 521 e1000_init_function_pointers_82575(hw); 522 break; 523 case e1000_i210: 524 case e1000_i211: 525 e1000_init_function_pointers_i210(hw); 526 break; 527 case e1000_vfadapt: 528 e1000_init_function_pointers_vf(hw); 529 break; 530 case e1000_vfadapt_i350: 531 e1000_init_function_pointers_vf(hw); 532 break; 533 default: 534 DEBUGOUT("Hardware not supported\n"); 535 ret_val = -E1000_ERR_CONFIG; 536 break; 537 } 538 539 /* 540 * Initialize the rest of the function pointers. These require some 541 * register reads/writes in some cases. 542 */ 543 if (!(ret_val) && init_device) { 544 ret_val = e1000_init_mac_params(hw); 545 if (ret_val) 546 goto out; 547 548 ret_val = e1000_init_nvm_params(hw); 549 if (ret_val) 550 goto out; 551 552 ret_val = e1000_init_phy_params(hw); 553 if (ret_val) 554 goto out; 555 556 ret_val = e1000_init_mbx_params(hw); 557 if (ret_val) 558 goto out; 559 } 560 561 out: 562 return ret_val; 563 } 564 565 /** 566 * e1000_get_bus_info - Obtain bus information for adapter 567 * @hw: pointer to the HW structure 568 * 569 * This will obtain information about the HW bus for which the 570 * adapter is attached and stores it in the hw structure. This is a 571 * function pointer entry point called by drivers. 572 **/ 573 s32 e1000_get_bus_info(struct e1000_hw *hw) 574 { 575 if (hw->mac.ops.get_bus_info) 576 return hw->mac.ops.get_bus_info(hw); 577 578 return E1000_SUCCESS; 579 } 580 581 /** 582 * e1000_clear_vfta - Clear VLAN filter table 583 * @hw: pointer to the HW structure 584 * 585 * This clears the VLAN filter table on the adapter. This is a function 586 * pointer entry point called by drivers. 587 **/ 588 void e1000_clear_vfta(struct e1000_hw *hw) 589 { 590 if (hw->mac.ops.clear_vfta) 591 hw->mac.ops.clear_vfta(hw); 592 } 593 594 /** 595 * e1000_write_vfta - Write value to VLAN filter table 596 * @hw: pointer to the HW structure 597 * @offset: the 32-bit offset in which to write the value to. 598 * @value: the 32-bit value to write at location offset. 599 * 600 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 601 * table. This is a function pointer entry point called by drivers. 602 **/ 603 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 604 { 605 if (hw->mac.ops.write_vfta) 606 hw->mac.ops.write_vfta(hw, offset, value); 607 } 608 609 /** 610 * e1000_update_mc_addr_list - Update Multicast addresses 611 * @hw: pointer to the HW structure 612 * @mc_addr_list: array of multicast addresses to program 613 * @mc_addr_count: number of multicast addresses to program 614 * 615 * Updates the Multicast Table Array. 616 * The caller must have a packed mc_addr_list of multicast addresses. 617 **/ 618 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 619 u32 mc_addr_count) 620 { 621 if (hw->mac.ops.update_mc_addr_list) 622 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 623 mc_addr_count); 624 } 625 626 /** 627 * e1000_force_mac_fc - Force MAC flow control 628 * @hw: pointer to the HW structure 629 * 630 * Force the MAC's flow control settings. Currently no func pointer exists 631 * and all implementations are handled in the generic version of this 632 * function. 633 **/ 634 s32 e1000_force_mac_fc(struct e1000_hw *hw) 635 { 636 return e1000_force_mac_fc_generic(hw); 637 } 638 639 /** 640 * e1000_check_for_link - Check/Store link connection 641 * @hw: pointer to the HW structure 642 * 643 * This checks the link condition of the adapter and stores the 644 * results in the hw->mac structure. This is a function pointer entry 645 * point called by drivers. 646 **/ 647 s32 e1000_check_for_link(struct e1000_hw *hw) 648 { 649 if (hw->mac.ops.check_for_link) 650 return hw->mac.ops.check_for_link(hw); 651 652 return -E1000_ERR_CONFIG; 653 } 654 655 /** 656 * e1000_check_mng_mode - Check management mode 657 * @hw: pointer to the HW structure 658 * 659 * This checks if the adapter has manageability enabled. 660 * This is a function pointer entry point called by drivers. 661 **/ 662 bool e1000_check_mng_mode(struct e1000_hw *hw) 663 { 664 if (hw->mac.ops.check_mng_mode) 665 return hw->mac.ops.check_mng_mode(hw); 666 667 return false; 668 } 669 670 /** 671 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 672 * @hw: pointer to the HW structure 673 * @buffer: pointer to the host interface 674 * @length: size of the buffer 675 * 676 * Writes the DHCP information to the host interface. 677 **/ 678 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 679 { 680 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 681 } 682 683 /** 684 * e1000_reset_hw - Reset hardware 685 * @hw: pointer to the HW structure 686 * 687 * This resets the hardware into a known state. This is a function pointer 688 * entry point called by drivers. 689 **/ 690 s32 e1000_reset_hw(struct e1000_hw *hw) 691 { 692 if (hw->mac.ops.reset_hw) 693 return hw->mac.ops.reset_hw(hw); 694 695 return -E1000_ERR_CONFIG; 696 } 697 698 /** 699 * e1000_init_hw - Initialize hardware 700 * @hw: pointer to the HW structure 701 * 702 * This inits the hardware readying it for operation. This is a function 703 * pointer entry point called by drivers. 704 **/ 705 s32 e1000_init_hw(struct e1000_hw *hw) 706 { 707 if (hw->mac.ops.init_hw) 708 return hw->mac.ops.init_hw(hw); 709 710 return -E1000_ERR_CONFIG; 711 } 712 713 /** 714 * e1000_setup_link - Configures link and flow control 715 * @hw: pointer to the HW structure 716 * 717 * This configures link and flow control settings for the adapter. This 718 * is a function pointer entry point called by drivers. While modules can 719 * also call this, they probably call their own version of this function. 720 **/ 721 s32 e1000_setup_link(struct e1000_hw *hw) 722 { 723 if (hw->mac.ops.setup_link) 724 return hw->mac.ops.setup_link(hw); 725 726 return -E1000_ERR_CONFIG; 727 } 728 729 /** 730 * e1000_get_speed_and_duplex - Returns current speed and duplex 731 * @hw: pointer to the HW structure 732 * @speed: pointer to a 16-bit value to store the speed 733 * @duplex: pointer to a 16-bit value to store the duplex. 734 * 735 * This returns the speed and duplex of the adapter in the two 'out' 736 * variables passed in. This is a function pointer entry point called 737 * by drivers. 738 **/ 739 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 740 { 741 if (hw->mac.ops.get_link_up_info) 742 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 743 744 return -E1000_ERR_CONFIG; 745 } 746 747 /** 748 * e1000_setup_led - Configures SW controllable LED 749 * @hw: pointer to the HW structure 750 * 751 * This prepares the SW controllable LED for use and saves the current state 752 * of the LED so it can be later restored. This is a function pointer entry 753 * point called by drivers. 754 **/ 755 s32 e1000_setup_led(struct e1000_hw *hw) 756 { 757 if (hw->mac.ops.setup_led) 758 return hw->mac.ops.setup_led(hw); 759 760 return E1000_SUCCESS; 761 } 762 763 /** 764 * e1000_cleanup_led - Restores SW controllable LED 765 * @hw: pointer to the HW structure 766 * 767 * This restores the SW controllable LED to the value saved off by 768 * e1000_setup_led. This is a function pointer entry point called by drivers. 769 **/ 770 s32 e1000_cleanup_led(struct e1000_hw *hw) 771 { 772 if (hw->mac.ops.cleanup_led) 773 return hw->mac.ops.cleanup_led(hw); 774 775 return E1000_SUCCESS; 776 } 777 778 /** 779 * e1000_blink_led - Blink SW controllable LED 780 * @hw: pointer to the HW structure 781 * 782 * This starts the adapter LED blinking. Request the LED to be setup first 783 * and cleaned up after. This is a function pointer entry point called by 784 * drivers. 785 **/ 786 s32 e1000_blink_led(struct e1000_hw *hw) 787 { 788 if (hw->mac.ops.blink_led) 789 return hw->mac.ops.blink_led(hw); 790 791 return E1000_SUCCESS; 792 } 793 794 /** 795 * e1000_id_led_init - store LED configurations in SW 796 * @hw: pointer to the HW structure 797 * 798 * Initializes the LED config in SW. This is a function pointer entry point 799 * called by drivers. 800 **/ 801 s32 e1000_id_led_init(struct e1000_hw *hw) 802 { 803 if (hw->mac.ops.id_led_init) 804 return hw->mac.ops.id_led_init(hw); 805 806 return E1000_SUCCESS; 807 } 808 809 /** 810 * e1000_led_on - Turn on SW controllable LED 811 * @hw: pointer to the HW structure 812 * 813 * Turns the SW defined LED on. This is a function pointer entry point 814 * called by drivers. 815 **/ 816 s32 e1000_led_on(struct e1000_hw *hw) 817 { 818 if (hw->mac.ops.led_on) 819 return hw->mac.ops.led_on(hw); 820 821 return E1000_SUCCESS; 822 } 823 824 /** 825 * e1000_led_off - Turn off SW controllable LED 826 * @hw: pointer to the HW structure 827 * 828 * Turns the SW defined LED off. This is a function pointer entry point 829 * called by drivers. 830 **/ 831 s32 e1000_led_off(struct e1000_hw *hw) 832 { 833 if (hw->mac.ops.led_off) 834 return hw->mac.ops.led_off(hw); 835 836 return E1000_SUCCESS; 837 } 838 839 /** 840 * e1000_reset_adaptive - Reset adaptive IFS 841 * @hw: pointer to the HW structure 842 * 843 * Resets the adaptive IFS. Currently no func pointer exists and all 844 * implementations are handled in the generic version of this function. 845 **/ 846 void e1000_reset_adaptive(struct e1000_hw *hw) 847 { 848 e1000_reset_adaptive_generic(hw); 849 } 850 851 /** 852 * e1000_update_adaptive - Update adaptive IFS 853 * @hw: pointer to the HW structure 854 * 855 * Updates adapter IFS. Currently no func pointer exists and all 856 * implementations are handled in the generic version of this function. 857 **/ 858 void e1000_update_adaptive(struct e1000_hw *hw) 859 { 860 e1000_update_adaptive_generic(hw); 861 } 862 863 /** 864 * e1000_disable_pcie_master - Disable PCI-Express master access 865 * @hw: pointer to the HW structure 866 * 867 * Disables PCI-Express master access and verifies there are no pending 868 * requests. Currently no func pointer exists and all implementations are 869 * handled in the generic version of this function. 870 **/ 871 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 872 { 873 return e1000_disable_pcie_master_generic(hw); 874 } 875 876 /** 877 * e1000_config_collision_dist - Configure collision distance 878 * @hw: pointer to the HW structure 879 * 880 * Configures the collision distance to the default value and is used 881 * during link setup. 882 **/ 883 void e1000_config_collision_dist(struct e1000_hw *hw) 884 { 885 if (hw->mac.ops.config_collision_dist) 886 hw->mac.ops.config_collision_dist(hw); 887 } 888 889 /** 890 * e1000_rar_set - Sets a receive address register 891 * @hw: pointer to the HW structure 892 * @addr: address to set the RAR to 893 * @index: the RAR to set 894 * 895 * Sets a Receive Address Register (RAR) to the specified address. 896 **/ 897 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 898 { 899 if (hw->mac.ops.rar_set) 900 return hw->mac.ops.rar_set(hw, addr, index); 901 902 return E1000_SUCCESS; 903 } 904 905 /** 906 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 907 * @hw: pointer to the HW structure 908 * 909 * Ensures that the MDI/MDIX SW state is valid. 910 **/ 911 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 912 { 913 if (hw->mac.ops.validate_mdi_setting) 914 return hw->mac.ops.validate_mdi_setting(hw); 915 916 return E1000_SUCCESS; 917 } 918 919 /** 920 * e1000_hash_mc_addr - Determines address location in multicast table 921 * @hw: pointer to the HW structure 922 * @mc_addr: Multicast address to hash. 923 * 924 * This hashes an address to determine its location in the multicast 925 * table. Currently no func pointer exists and all implementations 926 * are handled in the generic version of this function. 927 **/ 928 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 929 { 930 return e1000_hash_mc_addr_generic(hw, mc_addr); 931 } 932 933 /** 934 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 935 * @hw: pointer to the HW structure 936 * 937 * Enables packet filtering on transmit packets if manageability is enabled 938 * and host interface is enabled. 939 * Currently no func pointer exists and all implementations are handled in the 940 * generic version of this function. 941 **/ 942 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 943 { 944 return e1000_enable_tx_pkt_filtering_generic(hw); 945 } 946 947 /** 948 * e1000_mng_host_if_write - Writes to the manageability host interface 949 * @hw: pointer to the HW structure 950 * @buffer: pointer to the host interface buffer 951 * @length: size of the buffer 952 * @offset: location in the buffer to write to 953 * @sum: sum of the data (not checksum) 954 * 955 * This function writes the buffer content at the offset given on the host if. 956 * It also does alignment considerations to do the writes in most efficient 957 * way. Also fills up the sum of the buffer in *buffer parameter. 958 **/ 959 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 960 u16 offset, u8 *sum) 961 { 962 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 963 } 964 965 /** 966 * e1000_mng_write_cmd_header - Writes manageability command header 967 * @hw: pointer to the HW structure 968 * @hdr: pointer to the host interface command header 969 * 970 * Writes the command header after does the checksum calculation. 971 **/ 972 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 973 struct e1000_host_mng_command_header *hdr) 974 { 975 return e1000_mng_write_cmd_header_generic(hw, hdr); 976 } 977 978 /** 979 * e1000_mng_enable_host_if - Checks host interface is enabled 980 * @hw: pointer to the HW structure 981 * 982 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 983 * 984 * This function checks whether the HOST IF is enabled for command operation 985 * and also checks whether the previous command is completed. It busy waits 986 * in case of previous command is not completed. 987 **/ 988 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 989 { 990 return e1000_mng_enable_host_if_generic(hw); 991 } 992 993 /** 994 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 995 * @hw: pointer to the HW structure 996 * @itr: u32 indicating itr value 997 * 998 * Set the OBFF timer based on the given interrupt rate. 999 **/ 1000 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 1001 { 1002 if (hw->mac.ops.set_obff_timer) 1003 return hw->mac.ops.set_obff_timer(hw, itr); 1004 1005 return E1000_SUCCESS; 1006 } 1007 1008 /** 1009 * e1000_check_reset_block - Verifies PHY can be reset 1010 * @hw: pointer to the HW structure 1011 * 1012 * Checks if the PHY is in a state that can be reset or if manageability 1013 * has it tied up. This is a function pointer entry point called by drivers. 1014 **/ 1015 s32 e1000_check_reset_block(struct e1000_hw *hw) 1016 { 1017 if (hw->phy.ops.check_reset_block) 1018 return hw->phy.ops.check_reset_block(hw); 1019 1020 return E1000_SUCCESS; 1021 } 1022 1023 /** 1024 * e1000_read_phy_reg - Reads PHY register 1025 * @hw: pointer to the HW structure 1026 * @offset: the register to read 1027 * @data: the buffer to store the 16-bit read. 1028 * 1029 * Reads the PHY register and returns the value in data. 1030 * This is a function pointer entry point called by drivers. 1031 **/ 1032 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1033 { 1034 if (hw->phy.ops.read_reg) 1035 return hw->phy.ops.read_reg(hw, offset, data); 1036 1037 return E1000_SUCCESS; 1038 } 1039 1040 /** 1041 * e1000_write_phy_reg - Writes PHY register 1042 * @hw: pointer to the HW structure 1043 * @offset: the register to write 1044 * @data: the value to write. 1045 * 1046 * Writes the PHY register at offset with the value in data. 1047 * This is a function pointer entry point called by drivers. 1048 **/ 1049 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1050 { 1051 if (hw->phy.ops.write_reg) 1052 return hw->phy.ops.write_reg(hw, offset, data); 1053 1054 return E1000_SUCCESS; 1055 } 1056 1057 /** 1058 * e1000_release_phy - Generic release PHY 1059 * @hw: pointer to the HW structure 1060 * 1061 * Return if silicon family does not require a semaphore when accessing the 1062 * PHY. 1063 **/ 1064 void e1000_release_phy(struct e1000_hw *hw) 1065 { 1066 if (hw->phy.ops.release) 1067 hw->phy.ops.release(hw); 1068 } 1069 1070 /** 1071 * e1000_acquire_phy - Generic acquire PHY 1072 * @hw: pointer to the HW structure 1073 * 1074 * Return success if silicon family does not require a semaphore when 1075 * accessing the PHY. 1076 **/ 1077 s32 e1000_acquire_phy(struct e1000_hw *hw) 1078 { 1079 if (hw->phy.ops.acquire) 1080 return hw->phy.ops.acquire(hw); 1081 1082 return E1000_SUCCESS; 1083 } 1084 1085 /** 1086 * e1000_cfg_on_link_up - Configure PHY upon link up 1087 * @hw: pointer to the HW structure 1088 **/ 1089 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1090 { 1091 if (hw->phy.ops.cfg_on_link_up) 1092 return hw->phy.ops.cfg_on_link_up(hw); 1093 1094 return E1000_SUCCESS; 1095 } 1096 1097 /** 1098 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1099 * @hw: pointer to the HW structure 1100 * @offset: the register to read 1101 * @data: the location to store the 16-bit value read. 1102 * 1103 * Reads a register out of the Kumeran interface. Currently no func pointer 1104 * exists and all implementations are handled in the generic version of 1105 * this function. 1106 **/ 1107 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1108 { 1109 return e1000_read_kmrn_reg_generic(hw, offset, data); 1110 } 1111 1112 /** 1113 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1114 * @hw: pointer to the HW structure 1115 * @offset: the register to write 1116 * @data: the value to write. 1117 * 1118 * Writes a register to the Kumeran interface. Currently no func pointer 1119 * exists and all implementations are handled in the generic version of 1120 * this function. 1121 **/ 1122 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1123 { 1124 return e1000_write_kmrn_reg_generic(hw, offset, data); 1125 } 1126 1127 /** 1128 * e1000_get_cable_length - Retrieves cable length estimation 1129 * @hw: pointer to the HW structure 1130 * 1131 * This function estimates the cable length and stores them in 1132 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1133 * entry point called by drivers. 1134 **/ 1135 s32 e1000_get_cable_length(struct e1000_hw *hw) 1136 { 1137 if (hw->phy.ops.get_cable_length) 1138 return hw->phy.ops.get_cable_length(hw); 1139 1140 return E1000_SUCCESS; 1141 } 1142 1143 /** 1144 * e1000_get_phy_info - Retrieves PHY information from registers 1145 * @hw: pointer to the HW structure 1146 * 1147 * This function gets some information from various PHY registers and 1148 * populates hw->phy values with it. This is a function pointer entry 1149 * point called by drivers. 1150 **/ 1151 s32 e1000_get_phy_info(struct e1000_hw *hw) 1152 { 1153 if (hw->phy.ops.get_info) 1154 return hw->phy.ops.get_info(hw); 1155 1156 return E1000_SUCCESS; 1157 } 1158 1159 /** 1160 * e1000_phy_hw_reset - Hard PHY reset 1161 * @hw: pointer to the HW structure 1162 * 1163 * Performs a hard PHY reset. This is a function pointer entry point called 1164 * by drivers. 1165 **/ 1166 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1167 { 1168 if (hw->phy.ops.reset) 1169 return hw->phy.ops.reset(hw); 1170 1171 return E1000_SUCCESS; 1172 } 1173 1174 /** 1175 * e1000_phy_commit - Soft PHY reset 1176 * @hw: pointer to the HW structure 1177 * 1178 * Performs a soft PHY reset on those that apply. This is a function pointer 1179 * entry point called by drivers. 1180 **/ 1181 s32 e1000_phy_commit(struct e1000_hw *hw) 1182 { 1183 if (hw->phy.ops.commit) 1184 return hw->phy.ops.commit(hw); 1185 1186 return E1000_SUCCESS; 1187 } 1188 1189 /** 1190 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1191 * @hw: pointer to the HW structure 1192 * @active: boolean used to enable/disable lplu 1193 * 1194 * Success returns 0, Failure returns 1 1195 * 1196 * The low power link up (lplu) state is set to the power management level D0 1197 * and SmartSpeed is disabled when active is true, else clear lplu for D0 1198 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1199 * is used during Dx states where the power conservation is most important. 1200 * During driver activity, SmartSpeed should be enabled so performance is 1201 * maintained. This is a function pointer entry point called by drivers. 1202 **/ 1203 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1204 { 1205 if (hw->phy.ops.set_d0_lplu_state) 1206 return hw->phy.ops.set_d0_lplu_state(hw, active); 1207 1208 return E1000_SUCCESS; 1209 } 1210 1211 /** 1212 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1213 * @hw: pointer to the HW structure 1214 * @active: boolean used to enable/disable lplu 1215 * 1216 * Success returns 0, Failure returns 1 1217 * 1218 * The low power link up (lplu) state is set to the power management level D3 1219 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1220 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1221 * is used during Dx states where the power conservation is most important. 1222 * During driver activity, SmartSpeed should be enabled so performance is 1223 * maintained. This is a function pointer entry point called by drivers. 1224 **/ 1225 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1226 { 1227 if (hw->phy.ops.set_d3_lplu_state) 1228 return hw->phy.ops.set_d3_lplu_state(hw, active); 1229 1230 return E1000_SUCCESS; 1231 } 1232 1233 /** 1234 * e1000_read_mac_addr - Reads MAC address 1235 * @hw: pointer to the HW structure 1236 * 1237 * Reads the MAC address out of the adapter and stores it in the HW structure. 1238 * Currently no func pointer exists and all implementations are handled in the 1239 * generic version of this function. 1240 **/ 1241 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1242 { 1243 if (hw->mac.ops.read_mac_addr) 1244 return hw->mac.ops.read_mac_addr(hw); 1245 1246 return e1000_read_mac_addr_generic(hw); 1247 } 1248 1249 /** 1250 * e1000_read_pba_string - Read device part number string 1251 * @hw: pointer to the HW structure 1252 * @pba_num: pointer to device part number 1253 * @pba_num_size: size of part number buffer 1254 * 1255 * Reads the product board assembly (PBA) number from the EEPROM and stores 1256 * the value in pba_num. 1257 * Currently no func pointer exists and all implementations are handled in the 1258 * generic version of this function. 1259 **/ 1260 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1261 { 1262 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1263 } 1264 1265 /** 1266 * e1000_read_pba_length - Read device part number string length 1267 * @hw: pointer to the HW structure 1268 * @pba_num_size: size of part number buffer 1269 * 1270 * Reads the product board assembly (PBA) number length from the EEPROM and 1271 * stores the value in pba_num. 1272 * Currently no func pointer exists and all implementations are handled in the 1273 * generic version of this function. 1274 **/ 1275 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1276 { 1277 return e1000_read_pba_length_generic(hw, pba_num_size); 1278 } 1279 1280 /** 1281 * e1000_read_pba_num - Read device part number 1282 * @hw: pointer to the HW structure 1283 * @pba_num: pointer to device part number 1284 * 1285 * Reads the product board assembly (PBA) number from the EEPROM and stores 1286 * the value in pba_num. 1287 * Currently no func pointer exists and all implementations are handled in the 1288 * generic version of this function. 1289 **/ 1290 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1291 { 1292 return e1000_read_pba_num_generic(hw, pba_num); 1293 } 1294 1295 /** 1296 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1297 * @hw: pointer to the HW structure 1298 * 1299 * Validates the NVM checksum is correct. This is a function pointer entry 1300 * point called by drivers. 1301 **/ 1302 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1303 { 1304 if (hw->nvm.ops.validate) 1305 return hw->nvm.ops.validate(hw); 1306 1307 return -E1000_ERR_CONFIG; 1308 } 1309 1310 /** 1311 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1312 * @hw: pointer to the HW structure 1313 * 1314 * Updates the NVM checksum. Currently no func pointer exists and all 1315 * implementations are handled in the generic version of this function. 1316 **/ 1317 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1318 { 1319 if (hw->nvm.ops.update) 1320 return hw->nvm.ops.update(hw); 1321 1322 return -E1000_ERR_CONFIG; 1323 } 1324 1325 /** 1326 * e1000_reload_nvm - Reloads EEPROM 1327 * @hw: pointer to the HW structure 1328 * 1329 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1330 * extended control register. 1331 **/ 1332 void e1000_reload_nvm(struct e1000_hw *hw) 1333 { 1334 if (hw->nvm.ops.reload) 1335 hw->nvm.ops.reload(hw); 1336 } 1337 1338 /** 1339 * e1000_read_nvm - Reads NVM (EEPROM) 1340 * @hw: pointer to the HW structure 1341 * @offset: the word offset to read 1342 * @words: number of 16-bit words to read 1343 * @data: pointer to the properly sized buffer for the data. 1344 * 1345 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1346 * pointer entry point called by drivers. 1347 **/ 1348 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1349 { 1350 if (hw->nvm.ops.read) 1351 return hw->nvm.ops.read(hw, offset, words, data); 1352 1353 return -E1000_ERR_CONFIG; 1354 } 1355 1356 /** 1357 * e1000_write_nvm - Writes to NVM (EEPROM) 1358 * @hw: pointer to the HW structure 1359 * @offset: the word offset to read 1360 * @words: number of 16-bit words to write 1361 * @data: pointer to the properly sized buffer for the data. 1362 * 1363 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1364 * pointer entry point called by drivers. 1365 **/ 1366 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1367 { 1368 if (hw->nvm.ops.write) 1369 return hw->nvm.ops.write(hw, offset, words, data); 1370 1371 return E1000_SUCCESS; 1372 } 1373 1374 /** 1375 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1376 * @hw: pointer to the HW structure 1377 * @reg: 32bit register offset 1378 * @offset: the register to write 1379 * @data: the value to write. 1380 * 1381 * Writes the PHY register at offset with the value in data. 1382 * This is a function pointer entry point called by drivers. 1383 **/ 1384 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1385 u8 data) 1386 { 1387 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1388 } 1389 1390 /** 1391 * e1000_power_up_phy - Restores link in case of PHY power down 1392 * @hw: pointer to the HW structure 1393 * 1394 * The phy may be powered down to save power, to turn off link when the 1395 * driver is unloaded, or wake on lan is not enabled (among others). 1396 **/ 1397 void e1000_power_up_phy(struct e1000_hw *hw) 1398 { 1399 if (hw->phy.ops.power_up) 1400 hw->phy.ops.power_up(hw); 1401 1402 e1000_setup_link(hw); 1403 } 1404 1405 /** 1406 * e1000_power_down_phy - Power down PHY 1407 * @hw: pointer to the HW structure 1408 * 1409 * The phy may be powered down to save power, to turn off link when the 1410 * driver is unloaded, or wake on lan is not enabled (among others). 1411 **/ 1412 void e1000_power_down_phy(struct e1000_hw *hw) 1413 { 1414 if (hw->phy.ops.power_down) 1415 hw->phy.ops.power_down(hw); 1416 } 1417 1418 /** 1419 * e1000_power_up_fiber_serdes_link - Power up serdes link 1420 * @hw: pointer to the HW structure 1421 * 1422 * Power on the optics and PCS. 1423 **/ 1424 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1425 { 1426 if (hw->mac.ops.power_up_serdes) 1427 hw->mac.ops.power_up_serdes(hw); 1428 } 1429 1430 /** 1431 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1432 * @hw: pointer to the HW structure 1433 * 1434 * Shutdown the optics and PCS on driver unload. 1435 **/ 1436 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1437 { 1438 if (hw->mac.ops.shutdown_serdes) 1439 hw->mac.ops.shutdown_serdes(hw); 1440 } 1441 1442