1 /****************************************************************************** 2 3 Copyright (c) 2001-2010, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 case E1000_DEV_ID_ICH10_HANKSVILLE: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_82575EB_COPPER: 294 case E1000_DEV_ID_82575EB_FIBER_SERDES: 295 case E1000_DEV_ID_82575GB_QUAD_COPPER: 296 case E1000_DEV_ID_82575GB_QUAD_COPPER_PM: 297 mac->type = e1000_82575; 298 break; 299 case E1000_DEV_ID_82576: 300 case E1000_DEV_ID_82576_FIBER: 301 case E1000_DEV_ID_82576_SERDES: 302 case E1000_DEV_ID_82576_QUAD_COPPER: 303 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 304 case E1000_DEV_ID_82576_NS: 305 case E1000_DEV_ID_82576_NS_SERDES: 306 case E1000_DEV_ID_82576_SERDES_QUAD: 307 mac->type = e1000_82576; 308 break; 309 case E1000_DEV_ID_82580_COPPER: 310 case E1000_DEV_ID_82580_FIBER: 311 case E1000_DEV_ID_82580_SERDES: 312 case E1000_DEV_ID_82580_SGMII: 313 case E1000_DEV_ID_82580_COPPER_DUAL: 314 case E1000_DEV_ID_82580_QUAD_FIBER: 315 mac->type = e1000_82580; 316 break; 317 case E1000_DEV_ID_82576_VF: 318 mac->type = e1000_vfadapt; 319 break; 320 default: 321 /* Should never have loaded on this device */ 322 ret_val = -E1000_ERR_MAC_INIT; 323 break; 324 } 325 326 return ret_val; 327 } 328 329 /** 330 * e1000_setup_init_funcs - Initializes function pointers 331 * @hw: pointer to the HW structure 332 * @init_device: TRUE will initialize the rest of the function pointers 333 * getting the device ready for use. FALSE will only set 334 * MAC type and the function pointers for the other init 335 * functions. Passing FALSE will not generate any hardware 336 * reads or writes. 337 * 338 * This function must be called by a driver in order to use the rest 339 * of the 'shared' code files. Called by drivers only. 340 **/ 341 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 342 { 343 s32 ret_val; 344 345 /* Can't do much good without knowing the MAC type. */ 346 ret_val = e1000_set_mac_type(hw); 347 if (ret_val) { 348 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 349 goto out; 350 } 351 352 if (!hw->hw_addr) { 353 DEBUGOUT("ERROR: Registers not mapped\n"); 354 ret_val = -E1000_ERR_CONFIG; 355 goto out; 356 } 357 358 /* 359 * Init function pointers to generic implementations. We do this first 360 * allowing a driver module to override it afterward. 361 */ 362 e1000_init_mac_ops_generic(hw); 363 e1000_init_phy_ops_generic(hw); 364 e1000_init_nvm_ops_generic(hw); 365 e1000_init_mbx_ops_generic(hw); 366 367 /* 368 * Set up the init function pointers. These are functions within the 369 * adapter family file that sets up function pointers for the rest of 370 * the functions in that family. 371 */ 372 switch (hw->mac.type) { 373 case e1000_82542: 374 e1000_init_function_pointers_82542(hw); 375 break; 376 case e1000_82543: 377 case e1000_82544: 378 e1000_init_function_pointers_82543(hw); 379 break; 380 case e1000_82540: 381 case e1000_82545: 382 case e1000_82545_rev_3: 383 case e1000_82546: 384 case e1000_82546_rev_3: 385 e1000_init_function_pointers_82540(hw); 386 break; 387 case e1000_82541: 388 case e1000_82541_rev_2: 389 case e1000_82547: 390 case e1000_82547_rev_2: 391 e1000_init_function_pointers_82541(hw); 392 break; 393 case e1000_82571: 394 case e1000_82572: 395 case e1000_82573: 396 case e1000_82574: 397 case e1000_82583: 398 e1000_init_function_pointers_82571(hw); 399 break; 400 case e1000_80003es2lan: 401 e1000_init_function_pointers_80003es2lan(hw); 402 break; 403 case e1000_ich8lan: 404 case e1000_ich9lan: 405 case e1000_ich10lan: 406 case e1000_pchlan: 407 case e1000_pch2lan: 408 e1000_init_function_pointers_ich8lan(hw); 409 break; 410 case e1000_82575: 411 case e1000_82576: 412 case e1000_82580: 413 e1000_init_function_pointers_82575(hw); 414 break; 415 case e1000_vfadapt: 416 e1000_init_function_pointers_vf(hw); 417 break; 418 default: 419 DEBUGOUT("Hardware not supported\n"); 420 ret_val = -E1000_ERR_CONFIG; 421 break; 422 } 423 424 /* 425 * Initialize the rest of the function pointers. These require some 426 * register reads/writes in some cases. 427 */ 428 if (!(ret_val) && init_device) { 429 ret_val = e1000_init_mac_params(hw); 430 if (ret_val) 431 goto out; 432 433 ret_val = e1000_init_nvm_params(hw); 434 if (ret_val) 435 goto out; 436 437 ret_val = e1000_init_phy_params(hw); 438 if (ret_val) 439 goto out; 440 441 ret_val = e1000_init_mbx_params(hw); 442 if (ret_val) 443 goto out; 444 } 445 446 out: 447 return ret_val; 448 } 449 450 /** 451 * e1000_get_bus_info - Obtain bus information for adapter 452 * @hw: pointer to the HW structure 453 * 454 * This will obtain information about the HW bus for which the 455 * adapter is attached and stores it in the hw structure. This is a 456 * function pointer entry point called by drivers. 457 **/ 458 s32 e1000_get_bus_info(struct e1000_hw *hw) 459 { 460 if (hw->mac.ops.get_bus_info) 461 return hw->mac.ops.get_bus_info(hw); 462 463 return E1000_SUCCESS; 464 } 465 466 /** 467 * e1000_clear_vfta - Clear VLAN filter table 468 * @hw: pointer to the HW structure 469 * 470 * This clears the VLAN filter table on the adapter. This is a function 471 * pointer entry point called by drivers. 472 **/ 473 void e1000_clear_vfta(struct e1000_hw *hw) 474 { 475 if (hw->mac.ops.clear_vfta) 476 hw->mac.ops.clear_vfta(hw); 477 } 478 479 /** 480 * e1000_write_vfta - Write value to VLAN filter table 481 * @hw: pointer to the HW structure 482 * @offset: the 32-bit offset in which to write the value to. 483 * @value: the 32-bit value to write at location offset. 484 * 485 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 486 * table. This is a function pointer entry point called by drivers. 487 **/ 488 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 489 { 490 if (hw->mac.ops.write_vfta) 491 hw->mac.ops.write_vfta(hw, offset, value); 492 } 493 494 /** 495 * e1000_update_mc_addr_list - Update Multicast addresses 496 * @hw: pointer to the HW structure 497 * @mc_addr_list: array of multicast addresses to program 498 * @mc_addr_count: number of multicast addresses to program 499 * 500 * Updates the Multicast Table Array. 501 * The caller must have a packed mc_addr_list of multicast addresses. 502 **/ 503 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 504 u32 mc_addr_count) 505 { 506 if (hw->mac.ops.update_mc_addr_list) 507 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 508 mc_addr_count); 509 } 510 511 /** 512 * e1000_force_mac_fc - Force MAC flow control 513 * @hw: pointer to the HW structure 514 * 515 * Force the MAC's flow control settings. Currently no func pointer exists 516 * and all implementations are handled in the generic version of this 517 * function. 518 **/ 519 s32 e1000_force_mac_fc(struct e1000_hw *hw) 520 { 521 return e1000_force_mac_fc_generic(hw); 522 } 523 524 /** 525 * e1000_check_for_link - Check/Store link connection 526 * @hw: pointer to the HW structure 527 * 528 * This checks the link condition of the adapter and stores the 529 * results in the hw->mac structure. This is a function pointer entry 530 * point called by drivers. 531 **/ 532 s32 e1000_check_for_link(struct e1000_hw *hw) 533 { 534 if (hw->mac.ops.check_for_link) 535 return hw->mac.ops.check_for_link(hw); 536 537 return -E1000_ERR_CONFIG; 538 } 539 540 /** 541 * e1000_check_mng_mode - Check management mode 542 * @hw: pointer to the HW structure 543 * 544 * This checks if the adapter has manageability enabled. 545 * This is a function pointer entry point called by drivers. 546 **/ 547 bool e1000_check_mng_mode(struct e1000_hw *hw) 548 { 549 if (hw->mac.ops.check_mng_mode) 550 return hw->mac.ops.check_mng_mode(hw); 551 552 return FALSE; 553 } 554 555 /** 556 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 557 * @hw: pointer to the HW structure 558 * @buffer: pointer to the host interface 559 * @length: size of the buffer 560 * 561 * Writes the DHCP information to the host interface. 562 **/ 563 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 564 { 565 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 566 } 567 568 /** 569 * e1000_reset_hw - Reset hardware 570 * @hw: pointer to the HW structure 571 * 572 * This resets the hardware into a known state. This is a function pointer 573 * entry point called by drivers. 574 **/ 575 s32 e1000_reset_hw(struct e1000_hw *hw) 576 { 577 if (hw->mac.ops.reset_hw) 578 return hw->mac.ops.reset_hw(hw); 579 580 return -E1000_ERR_CONFIG; 581 } 582 583 /** 584 * e1000_init_hw - Initialize hardware 585 * @hw: pointer to the HW structure 586 * 587 * This inits the hardware readying it for operation. This is a function 588 * pointer entry point called by drivers. 589 **/ 590 s32 e1000_init_hw(struct e1000_hw *hw) 591 { 592 if (hw->mac.ops.init_hw) 593 return hw->mac.ops.init_hw(hw); 594 595 return -E1000_ERR_CONFIG; 596 } 597 598 /** 599 * e1000_setup_link - Configures link and flow control 600 * @hw: pointer to the HW structure 601 * 602 * This configures link and flow control settings for the adapter. This 603 * is a function pointer entry point called by drivers. While modules can 604 * also call this, they probably call their own version of this function. 605 **/ 606 s32 e1000_setup_link(struct e1000_hw *hw) 607 { 608 if (hw->mac.ops.setup_link) 609 return hw->mac.ops.setup_link(hw); 610 611 return -E1000_ERR_CONFIG; 612 } 613 614 /** 615 * e1000_get_speed_and_duplex - Returns current speed and duplex 616 * @hw: pointer to the HW structure 617 * @speed: pointer to a 16-bit value to store the speed 618 * @duplex: pointer to a 16-bit value to store the duplex. 619 * 620 * This returns the speed and duplex of the adapter in the two 'out' 621 * variables passed in. This is a function pointer entry point called 622 * by drivers. 623 **/ 624 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 625 { 626 if (hw->mac.ops.get_link_up_info) 627 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 628 629 return -E1000_ERR_CONFIG; 630 } 631 632 /** 633 * e1000_setup_led - Configures SW controllable LED 634 * @hw: pointer to the HW structure 635 * 636 * This prepares the SW controllable LED for use and saves the current state 637 * of the LED so it can be later restored. This is a function pointer entry 638 * point called by drivers. 639 **/ 640 s32 e1000_setup_led(struct e1000_hw *hw) 641 { 642 if (hw->mac.ops.setup_led) 643 return hw->mac.ops.setup_led(hw); 644 645 return E1000_SUCCESS; 646 } 647 648 /** 649 * e1000_cleanup_led - Restores SW controllable LED 650 * @hw: pointer to the HW structure 651 * 652 * This restores the SW controllable LED to the value saved off by 653 * e1000_setup_led. This is a function pointer entry point called by drivers. 654 **/ 655 s32 e1000_cleanup_led(struct e1000_hw *hw) 656 { 657 if (hw->mac.ops.cleanup_led) 658 return hw->mac.ops.cleanup_led(hw); 659 660 return E1000_SUCCESS; 661 } 662 663 /** 664 * e1000_blink_led - Blink SW controllable LED 665 * @hw: pointer to the HW structure 666 * 667 * This starts the adapter LED blinking. Request the LED to be setup first 668 * and cleaned up after. This is a function pointer entry point called by 669 * drivers. 670 **/ 671 s32 e1000_blink_led(struct e1000_hw *hw) 672 { 673 if (hw->mac.ops.blink_led) 674 return hw->mac.ops.blink_led(hw); 675 676 return E1000_SUCCESS; 677 } 678 679 /** 680 * e1000_id_led_init - store LED configurations in SW 681 * @hw: pointer to the HW structure 682 * 683 * Initializes the LED config in SW. This is a function pointer entry point 684 * called by drivers. 685 **/ 686 s32 e1000_id_led_init(struct e1000_hw *hw) 687 { 688 if (hw->mac.ops.id_led_init) 689 return hw->mac.ops.id_led_init(hw); 690 691 return E1000_SUCCESS; 692 } 693 694 /** 695 * e1000_led_on - Turn on SW controllable LED 696 * @hw: pointer to the HW structure 697 * 698 * Turns the SW defined LED on. This is a function pointer entry point 699 * called by drivers. 700 **/ 701 s32 e1000_led_on(struct e1000_hw *hw) 702 { 703 if (hw->mac.ops.led_on) 704 return hw->mac.ops.led_on(hw); 705 706 return E1000_SUCCESS; 707 } 708 709 /** 710 * e1000_led_off - Turn off SW controllable LED 711 * @hw: pointer to the HW structure 712 * 713 * Turns the SW defined LED off. This is a function pointer entry point 714 * called by drivers. 715 **/ 716 s32 e1000_led_off(struct e1000_hw *hw) 717 { 718 if (hw->mac.ops.led_off) 719 return hw->mac.ops.led_off(hw); 720 721 return E1000_SUCCESS; 722 } 723 724 /** 725 * e1000_reset_adaptive - Reset adaptive IFS 726 * @hw: pointer to the HW structure 727 * 728 * Resets the adaptive IFS. Currently no func pointer exists and all 729 * implementations are handled in the generic version of this function. 730 **/ 731 void e1000_reset_adaptive(struct e1000_hw *hw) 732 { 733 e1000_reset_adaptive_generic(hw); 734 } 735 736 /** 737 * e1000_update_adaptive - Update adaptive IFS 738 * @hw: pointer to the HW structure 739 * 740 * Updates adapter IFS. Currently no func pointer exists and all 741 * implementations are handled in the generic version of this function. 742 **/ 743 void e1000_update_adaptive(struct e1000_hw *hw) 744 { 745 e1000_update_adaptive_generic(hw); 746 } 747 748 /** 749 * e1000_disable_pcie_master - Disable PCI-Express master access 750 * @hw: pointer to the HW structure 751 * 752 * Disables PCI-Express master access and verifies there are no pending 753 * requests. Currently no func pointer exists and all implementations are 754 * handled in the generic version of this function. 755 **/ 756 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 757 { 758 return e1000_disable_pcie_master_generic(hw); 759 } 760 761 /** 762 * e1000_config_collision_dist - Configure collision distance 763 * @hw: pointer to the HW structure 764 * 765 * Configures the collision distance to the default value and is used 766 * during link setup. 767 **/ 768 void e1000_config_collision_dist(struct e1000_hw *hw) 769 { 770 if (hw->mac.ops.config_collision_dist) 771 hw->mac.ops.config_collision_dist(hw); 772 } 773 774 /** 775 * e1000_rar_set - Sets a receive address register 776 * @hw: pointer to the HW structure 777 * @addr: address to set the RAR to 778 * @index: the RAR to set 779 * 780 * Sets a Receive Address Register (RAR) to the specified address. 781 **/ 782 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 783 { 784 if (hw->mac.ops.rar_set) 785 hw->mac.ops.rar_set(hw, addr, index); 786 } 787 788 /** 789 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 790 * @hw: pointer to the HW structure 791 * 792 * Ensures that the MDI/MDIX SW state is valid. 793 **/ 794 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 795 { 796 if (hw->mac.ops.validate_mdi_setting) 797 return hw->mac.ops.validate_mdi_setting(hw); 798 799 return E1000_SUCCESS; 800 } 801 802 /** 803 * e1000_hash_mc_addr - Determines address location in multicast table 804 * @hw: pointer to the HW structure 805 * @mc_addr: Multicast address to hash. 806 * 807 * This hashes an address to determine its location in the multicast 808 * table. Currently no func pointer exists and all implementations 809 * are handled in the generic version of this function. 810 **/ 811 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 812 { 813 return e1000_hash_mc_addr_generic(hw, mc_addr); 814 } 815 816 /** 817 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 818 * @hw: pointer to the HW structure 819 * 820 * Enables packet filtering on transmit packets if manageability is enabled 821 * and host interface is enabled. 822 * Currently no func pointer exists and all implementations are handled in the 823 * generic version of this function. 824 **/ 825 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 826 { 827 return e1000_enable_tx_pkt_filtering_generic(hw); 828 } 829 830 /** 831 * e1000_mng_host_if_write - Writes to the manageability host interface 832 * @hw: pointer to the HW structure 833 * @buffer: pointer to the host interface buffer 834 * @length: size of the buffer 835 * @offset: location in the buffer to write to 836 * @sum: sum of the data (not checksum) 837 * 838 * This function writes the buffer content at the offset given on the host if. 839 * It also does alignment considerations to do the writes in most efficient 840 * way. Also fills up the sum of the buffer in *buffer parameter. 841 **/ 842 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 843 u16 offset, u8 *sum) 844 { 845 if (hw->mac.ops.mng_host_if_write) 846 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 847 offset, sum); 848 849 return E1000_NOT_IMPLEMENTED; 850 } 851 852 /** 853 * e1000_mng_write_cmd_header - Writes manageability command header 854 * @hw: pointer to the HW structure 855 * @hdr: pointer to the host interface command header 856 * 857 * Writes the command header after does the checksum calculation. 858 **/ 859 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 860 struct e1000_host_mng_command_header *hdr) 861 { 862 if (hw->mac.ops.mng_write_cmd_header) 863 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 864 865 return E1000_NOT_IMPLEMENTED; 866 } 867 868 /** 869 * e1000_mng_enable_host_if - Checks host interface is enabled 870 * @hw: pointer to the HW structure 871 * 872 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 873 * 874 * This function checks whether the HOST IF is enabled for command operation 875 * and also checks whether the previous command is completed. It busy waits 876 * in case of previous command is not completed. 877 **/ 878 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 879 { 880 if (hw->mac.ops.mng_enable_host_if) 881 return hw->mac.ops.mng_enable_host_if(hw); 882 883 return E1000_NOT_IMPLEMENTED; 884 } 885 886 /** 887 * e1000_wait_autoneg - Waits for autonegotiation completion 888 * @hw: pointer to the HW structure 889 * 890 * Waits for autoneg to complete. Currently no func pointer exists and all 891 * implementations are handled in the generic version of this function. 892 **/ 893 s32 e1000_wait_autoneg(struct e1000_hw *hw) 894 { 895 if (hw->mac.ops.wait_autoneg) 896 return hw->mac.ops.wait_autoneg(hw); 897 898 return E1000_SUCCESS; 899 } 900 901 /** 902 * e1000_check_reset_block - Verifies PHY can be reset 903 * @hw: pointer to the HW structure 904 * 905 * Checks if the PHY is in a state that can be reset or if manageability 906 * has it tied up. This is a function pointer entry point called by drivers. 907 **/ 908 s32 e1000_check_reset_block(struct e1000_hw *hw) 909 { 910 if (hw->phy.ops.check_reset_block) 911 return hw->phy.ops.check_reset_block(hw); 912 913 return E1000_SUCCESS; 914 } 915 916 /** 917 * e1000_read_phy_reg - Reads PHY register 918 * @hw: pointer to the HW structure 919 * @offset: the register to read 920 * @data: the buffer to store the 16-bit read. 921 * 922 * Reads the PHY register and returns the value in data. 923 * This is a function pointer entry point called by drivers. 924 **/ 925 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 926 { 927 if (hw->phy.ops.read_reg) 928 return hw->phy.ops.read_reg(hw, offset, data); 929 930 return E1000_SUCCESS; 931 } 932 933 /** 934 * e1000_write_phy_reg - Writes PHY register 935 * @hw: pointer to the HW structure 936 * @offset: the register to write 937 * @data: the value to write. 938 * 939 * Writes the PHY register at offset with the value in data. 940 * This is a function pointer entry point called by drivers. 941 **/ 942 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 943 { 944 if (hw->phy.ops.write_reg) 945 return hw->phy.ops.write_reg(hw, offset, data); 946 947 return E1000_SUCCESS; 948 } 949 950 /** 951 * e1000_release_phy - Generic release PHY 952 * @hw: pointer to the HW structure 953 * 954 * Return if silicon family does not require a semaphore when accessing the 955 * PHY. 956 **/ 957 void e1000_release_phy(struct e1000_hw *hw) 958 { 959 if (hw->phy.ops.release) 960 hw->phy.ops.release(hw); 961 } 962 963 /** 964 * e1000_acquire_phy - Generic acquire PHY 965 * @hw: pointer to the HW structure 966 * 967 * Return success if silicon family does not require a semaphore when 968 * accessing the PHY. 969 **/ 970 s32 e1000_acquire_phy(struct e1000_hw *hw) 971 { 972 if (hw->phy.ops.acquire) 973 return hw->phy.ops.acquire(hw); 974 975 return E1000_SUCCESS; 976 } 977 978 /** 979 * e1000_cfg_on_link_up - Configure PHY upon link up 980 * @hw: pointer to the HW structure 981 **/ 982 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 983 { 984 if (hw->phy.ops.cfg_on_link_up) 985 return hw->phy.ops.cfg_on_link_up(hw); 986 987 return E1000_SUCCESS; 988 } 989 990 /** 991 * e1000_read_kmrn_reg - Reads register using Kumeran interface 992 * @hw: pointer to the HW structure 993 * @offset: the register to read 994 * @data: the location to store the 16-bit value read. 995 * 996 * Reads a register out of the Kumeran interface. Currently no func pointer 997 * exists and all implementations are handled in the generic version of 998 * this function. 999 **/ 1000 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1001 { 1002 return e1000_read_kmrn_reg_generic(hw, offset, data); 1003 } 1004 1005 /** 1006 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1007 * @hw: pointer to the HW structure 1008 * @offset: the register to write 1009 * @data: the value to write. 1010 * 1011 * Writes a register to the Kumeran interface. Currently no func pointer 1012 * exists and all implementations are handled in the generic version of 1013 * this function. 1014 **/ 1015 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1016 { 1017 return e1000_write_kmrn_reg_generic(hw, offset, data); 1018 } 1019 1020 /** 1021 * e1000_get_cable_length - Retrieves cable length estimation 1022 * @hw: pointer to the HW structure 1023 * 1024 * This function estimates the cable length and stores them in 1025 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1026 * entry point called by drivers. 1027 **/ 1028 s32 e1000_get_cable_length(struct e1000_hw *hw) 1029 { 1030 if (hw->phy.ops.get_cable_length) 1031 return hw->phy.ops.get_cable_length(hw); 1032 1033 return E1000_SUCCESS; 1034 } 1035 1036 /** 1037 * e1000_get_phy_info - Retrieves PHY information from registers 1038 * @hw: pointer to the HW structure 1039 * 1040 * This function gets some information from various PHY registers and 1041 * populates hw->phy values with it. This is a function pointer entry 1042 * point called by drivers. 1043 **/ 1044 s32 e1000_get_phy_info(struct e1000_hw *hw) 1045 { 1046 if (hw->phy.ops.get_info) 1047 return hw->phy.ops.get_info(hw); 1048 1049 return E1000_SUCCESS; 1050 } 1051 1052 /** 1053 * e1000_phy_hw_reset - Hard PHY reset 1054 * @hw: pointer to the HW structure 1055 * 1056 * Performs a hard PHY reset. This is a function pointer entry point called 1057 * by drivers. 1058 **/ 1059 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1060 { 1061 if (hw->phy.ops.reset) 1062 return hw->phy.ops.reset(hw); 1063 1064 return E1000_SUCCESS; 1065 } 1066 1067 /** 1068 * e1000_phy_commit - Soft PHY reset 1069 * @hw: pointer to the HW structure 1070 * 1071 * Performs a soft PHY reset on those that apply. This is a function pointer 1072 * entry point called by drivers. 1073 **/ 1074 s32 e1000_phy_commit(struct e1000_hw *hw) 1075 { 1076 if (hw->phy.ops.commit) 1077 return hw->phy.ops.commit(hw); 1078 1079 return E1000_SUCCESS; 1080 } 1081 1082 /** 1083 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1084 * @hw: pointer to the HW structure 1085 * @active: boolean used to enable/disable lplu 1086 * 1087 * Success returns 0, Failure returns 1 1088 * 1089 * The low power link up (lplu) state is set to the power management level D0 1090 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1091 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1092 * is used during Dx states where the power conservation is most important. 1093 * During driver activity, SmartSpeed should be enabled so performance is 1094 * maintained. This is a function pointer entry point called by drivers. 1095 **/ 1096 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1097 { 1098 if (hw->phy.ops.set_d0_lplu_state) 1099 return hw->phy.ops.set_d0_lplu_state(hw, active); 1100 1101 return E1000_SUCCESS; 1102 } 1103 1104 /** 1105 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1106 * @hw: pointer to the HW structure 1107 * @active: boolean used to enable/disable lplu 1108 * 1109 * Success returns 0, Failure returns 1 1110 * 1111 * The low power link up (lplu) state is set to the power management level D3 1112 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1113 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1114 * is used during Dx states where the power conservation is most important. 1115 * During driver activity, SmartSpeed should be enabled so performance is 1116 * maintained. This is a function pointer entry point called by drivers. 1117 **/ 1118 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1119 { 1120 if (hw->phy.ops.set_d3_lplu_state) 1121 return hw->phy.ops.set_d3_lplu_state(hw, active); 1122 1123 return E1000_SUCCESS; 1124 } 1125 1126 /** 1127 * e1000_read_mac_addr - Reads MAC address 1128 * @hw: pointer to the HW structure 1129 * 1130 * Reads the MAC address out of the adapter and stores it in the HW structure. 1131 * Currently no func pointer exists and all implementations are handled in the 1132 * generic version of this function. 1133 **/ 1134 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1135 { 1136 if (hw->mac.ops.read_mac_addr) 1137 return hw->mac.ops.read_mac_addr(hw); 1138 1139 return e1000_read_mac_addr_generic(hw); 1140 } 1141 1142 /** 1143 * e1000_read_pba_string - Read device part number string 1144 * @hw: pointer to the HW structure 1145 * @pba_num: pointer to device part number 1146 * @pba_num_size: size of part number buffer 1147 * 1148 * Reads the product board assembly (PBA) number from the EEPROM and stores 1149 * the value in pba_num. 1150 * Currently no func pointer exists and all implementations are handled in the 1151 * generic version of this function. 1152 **/ 1153 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1154 { 1155 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1156 } 1157 1158 /** 1159 * e1000_read_pba_length - Read device part number string length 1160 * @hw: pointer to the HW structure 1161 * @pba_num_size: size of part number buffer 1162 * 1163 * Reads the product board assembly (PBA) number length from the EEPROM and 1164 * stores the value in pba_num. 1165 * Currently no func pointer exists and all implementations are handled in the 1166 * generic version of this function. 1167 **/ 1168 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1169 { 1170 return e1000_read_pba_length_generic(hw, pba_num_size); 1171 } 1172 1173 /** 1174 * e1000_read_pba_num - Read device part number 1175 * @hw: pointer to the HW structure 1176 * @pba_num: pointer to device part number 1177 * 1178 * Reads the product board assembly (PBA) number from the EEPROM and stores 1179 * the value in pba_num. 1180 * Currently no func pointer exists and all implementations are handled in the 1181 * generic version of this function. 1182 **/ 1183 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1184 { 1185 return e1000_read_pba_num_generic(hw, pba_num); 1186 } 1187 1188 /** 1189 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1190 * @hw: pointer to the HW structure 1191 * 1192 * Validates the NVM checksum is correct. This is a function pointer entry 1193 * point called by drivers. 1194 **/ 1195 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1196 { 1197 if (hw->nvm.ops.validate) 1198 return hw->nvm.ops.validate(hw); 1199 1200 return -E1000_ERR_CONFIG; 1201 } 1202 1203 /** 1204 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1205 * @hw: pointer to the HW structure 1206 * 1207 * Updates the NVM checksum. Currently no func pointer exists and all 1208 * implementations are handled in the generic version of this function. 1209 **/ 1210 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1211 { 1212 if (hw->nvm.ops.update) 1213 return hw->nvm.ops.update(hw); 1214 1215 return -E1000_ERR_CONFIG; 1216 } 1217 1218 /** 1219 * e1000_reload_nvm - Reloads EEPROM 1220 * @hw: pointer to the HW structure 1221 * 1222 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1223 * extended control register. 1224 **/ 1225 void e1000_reload_nvm(struct e1000_hw *hw) 1226 { 1227 if (hw->nvm.ops.reload) 1228 hw->nvm.ops.reload(hw); 1229 } 1230 1231 /** 1232 * e1000_read_nvm - Reads NVM (EEPROM) 1233 * @hw: pointer to the HW structure 1234 * @offset: the word offset to read 1235 * @words: number of 16-bit words to read 1236 * @data: pointer to the properly sized buffer for the data. 1237 * 1238 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1239 * pointer entry point called by drivers. 1240 **/ 1241 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1242 { 1243 if (hw->nvm.ops.read) 1244 return hw->nvm.ops.read(hw, offset, words, data); 1245 1246 return -E1000_ERR_CONFIG; 1247 } 1248 1249 /** 1250 * e1000_write_nvm - Writes to NVM (EEPROM) 1251 * @hw: pointer to the HW structure 1252 * @offset: the word offset to read 1253 * @words: number of 16-bit words to write 1254 * @data: pointer to the properly sized buffer for the data. 1255 * 1256 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1257 * pointer entry point called by drivers. 1258 **/ 1259 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1260 { 1261 if (hw->nvm.ops.write) 1262 return hw->nvm.ops.write(hw, offset, words, data); 1263 1264 return E1000_SUCCESS; 1265 } 1266 1267 /** 1268 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1269 * @hw: pointer to the HW structure 1270 * @reg: 32bit register offset 1271 * @offset: the register to write 1272 * @data: the value to write. 1273 * 1274 * Writes the PHY register at offset with the value in data. 1275 * This is a function pointer entry point called by drivers. 1276 **/ 1277 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1278 u8 data) 1279 { 1280 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1281 } 1282 1283 /** 1284 * e1000_power_up_phy - Restores link in case of PHY power down 1285 * @hw: pointer to the HW structure 1286 * 1287 * The phy may be powered down to save power, to turn off link when the 1288 * driver is unloaded, or wake on lan is not enabled (among others). 1289 **/ 1290 void e1000_power_up_phy(struct e1000_hw *hw) 1291 { 1292 if (hw->phy.ops.power_up) 1293 hw->phy.ops.power_up(hw); 1294 1295 e1000_setup_link(hw); 1296 } 1297 1298 /** 1299 * e1000_power_down_phy - Power down PHY 1300 * @hw: pointer to the HW structure 1301 * 1302 * The phy may be powered down to save power, to turn off link when the 1303 * driver is unloaded, or wake on lan is not enabled (among others). 1304 **/ 1305 void e1000_power_down_phy(struct e1000_hw *hw) 1306 { 1307 if (hw->phy.ops.power_down) 1308 hw->phy.ops.power_down(hw); 1309 } 1310 1311 /** 1312 * e1000_power_up_fiber_serdes_link - Power up serdes link 1313 * @hw: pointer to the HW structure 1314 * 1315 * Power on the optics and PCS. 1316 **/ 1317 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1318 { 1319 if (hw->mac.ops.power_up_serdes) 1320 hw->mac.ops.power_up_serdes(hw); 1321 } 1322 1323 /** 1324 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1325 * @hw: pointer to the HW structure 1326 * 1327 * Shutdown the optics and PCS on driver unload. 1328 **/ 1329 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1330 { 1331 if (hw->mac.ops.shutdown_serdes) 1332 hw->mac.ops.shutdown_serdes(hw); 1333 } 1334 1335