xref: /freebsd/sys/dev/e1000/e1000_api.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2010, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 	case E1000_DEV_ID_ICH10_HANKSVILLE:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_82575EB_COPPER:
294 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
295 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
296 	case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
297 		mac->type = e1000_82575;
298 		break;
299 	case E1000_DEV_ID_82576:
300 	case E1000_DEV_ID_82576_FIBER:
301 	case E1000_DEV_ID_82576_SERDES:
302 	case E1000_DEV_ID_82576_QUAD_COPPER:
303 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
304 	case E1000_DEV_ID_82576_NS:
305 	case E1000_DEV_ID_82576_NS_SERDES:
306 	case E1000_DEV_ID_82576_SERDES_QUAD:
307 		mac->type = e1000_82576;
308 		break;
309 	case E1000_DEV_ID_82580_COPPER:
310 	case E1000_DEV_ID_82580_FIBER:
311 	case E1000_DEV_ID_82580_SERDES:
312 	case E1000_DEV_ID_82580_SGMII:
313 	case E1000_DEV_ID_82580_COPPER_DUAL:
314 	case E1000_DEV_ID_82580_QUAD_FIBER:
315 		mac->type = e1000_82580;
316 		break;
317 	case E1000_DEV_ID_82576_VF:
318 		mac->type = e1000_vfadapt;
319 		break;
320 	default:
321 		/* Should never have loaded on this device */
322 		ret_val = -E1000_ERR_MAC_INIT;
323 		break;
324 	}
325 
326 	return ret_val;
327 }
328 
329 /**
330  *  e1000_setup_init_funcs - Initializes function pointers
331  *  @hw: pointer to the HW structure
332  *  @init_device: TRUE will initialize the rest of the function pointers
333  *                 getting the device ready for use.  FALSE will only set
334  *                 MAC type and the function pointers for the other init
335  *                 functions.  Passing FALSE will not generate any hardware
336  *                 reads or writes.
337  *
338  *  This function must be called by a driver in order to use the rest
339  *  of the 'shared' code files. Called by drivers only.
340  **/
341 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
342 {
343 	s32 ret_val;
344 
345 	/* Can't do much good without knowing the MAC type. */
346 	ret_val = e1000_set_mac_type(hw);
347 	if (ret_val) {
348 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
349 		goto out;
350 	}
351 
352 	if (!hw->hw_addr) {
353 		DEBUGOUT("ERROR: Registers not mapped\n");
354 		ret_val = -E1000_ERR_CONFIG;
355 		goto out;
356 	}
357 
358 	/*
359 	 * Init function pointers to generic implementations. We do this first
360 	 * allowing a driver module to override it afterward.
361 	 */
362 	e1000_init_mac_ops_generic(hw);
363 	e1000_init_phy_ops_generic(hw);
364 	e1000_init_nvm_ops_generic(hw);
365 	e1000_init_mbx_ops_generic(hw);
366 
367 	/*
368 	 * Set up the init function pointers. These are functions within the
369 	 * adapter family file that sets up function pointers for the rest of
370 	 * the functions in that family.
371 	 */
372 	switch (hw->mac.type) {
373 	case e1000_82542:
374 		e1000_init_function_pointers_82542(hw);
375 		break;
376 	case e1000_82543:
377 	case e1000_82544:
378 		e1000_init_function_pointers_82543(hw);
379 		break;
380 	case e1000_82540:
381 	case e1000_82545:
382 	case e1000_82545_rev_3:
383 	case e1000_82546:
384 	case e1000_82546_rev_3:
385 		e1000_init_function_pointers_82540(hw);
386 		break;
387 	case e1000_82541:
388 	case e1000_82541_rev_2:
389 	case e1000_82547:
390 	case e1000_82547_rev_2:
391 		e1000_init_function_pointers_82541(hw);
392 		break;
393 	case e1000_82571:
394 	case e1000_82572:
395 	case e1000_82573:
396 	case e1000_82574:
397 	case e1000_82583:
398 		e1000_init_function_pointers_82571(hw);
399 		break;
400 	case e1000_80003es2lan:
401 		e1000_init_function_pointers_80003es2lan(hw);
402 		break;
403 	case e1000_ich8lan:
404 	case e1000_ich9lan:
405 	case e1000_ich10lan:
406 	case e1000_pchlan:
407 	case e1000_pch2lan:
408 		e1000_init_function_pointers_ich8lan(hw);
409 		break;
410 	case e1000_82575:
411 	case e1000_82576:
412 	case e1000_82580:
413 		e1000_init_function_pointers_82575(hw);
414 		break;
415 	case e1000_vfadapt:
416 		e1000_init_function_pointers_vf(hw);
417 		break;
418 	default:
419 		DEBUGOUT("Hardware not supported\n");
420 		ret_val = -E1000_ERR_CONFIG;
421 		break;
422 	}
423 
424 	/*
425 	 * Initialize the rest of the function pointers. These require some
426 	 * register reads/writes in some cases.
427 	 */
428 	if (!(ret_val) && init_device) {
429 		ret_val = e1000_init_mac_params(hw);
430 		if (ret_val)
431 			goto out;
432 
433 		ret_val = e1000_init_nvm_params(hw);
434 		if (ret_val)
435 			goto out;
436 
437 		ret_val = e1000_init_phy_params(hw);
438 		if (ret_val)
439 			goto out;
440 
441 		ret_val = e1000_init_mbx_params(hw);
442 		if (ret_val)
443 			goto out;
444 	}
445 
446 out:
447 	return ret_val;
448 }
449 
450 /**
451  *  e1000_get_bus_info - Obtain bus information for adapter
452  *  @hw: pointer to the HW structure
453  *
454  *  This will obtain information about the HW bus for which the
455  *  adapter is attached and stores it in the hw structure. This is a
456  *  function pointer entry point called by drivers.
457  **/
458 s32 e1000_get_bus_info(struct e1000_hw *hw)
459 {
460 	if (hw->mac.ops.get_bus_info)
461 		return hw->mac.ops.get_bus_info(hw);
462 
463 	return E1000_SUCCESS;
464 }
465 
466 /**
467  *  e1000_clear_vfta - Clear VLAN filter table
468  *  @hw: pointer to the HW structure
469  *
470  *  This clears the VLAN filter table on the adapter. This is a function
471  *  pointer entry point called by drivers.
472  **/
473 void e1000_clear_vfta(struct e1000_hw *hw)
474 {
475 	if (hw->mac.ops.clear_vfta)
476 		hw->mac.ops.clear_vfta(hw);
477 }
478 
479 /**
480  *  e1000_write_vfta - Write value to VLAN filter table
481  *  @hw: pointer to the HW structure
482  *  @offset: the 32-bit offset in which to write the value to.
483  *  @value: the 32-bit value to write at location offset.
484  *
485  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
486  *  table. This is a function pointer entry point called by drivers.
487  **/
488 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
489 {
490 	if (hw->mac.ops.write_vfta)
491 		hw->mac.ops.write_vfta(hw, offset, value);
492 }
493 
494 /**
495  *  e1000_update_mc_addr_list - Update Multicast addresses
496  *  @hw: pointer to the HW structure
497  *  @mc_addr_list: array of multicast addresses to program
498  *  @mc_addr_count: number of multicast addresses to program
499  *
500  *  Updates the Multicast Table Array.
501  *  The caller must have a packed mc_addr_list of multicast addresses.
502  **/
503 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
504                                u32 mc_addr_count)
505 {
506 	if (hw->mac.ops.update_mc_addr_list)
507 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
508 		                                mc_addr_count);
509 }
510 
511 /**
512  *  e1000_force_mac_fc - Force MAC flow control
513  *  @hw: pointer to the HW structure
514  *
515  *  Force the MAC's flow control settings. Currently no func pointer exists
516  *  and all implementations are handled in the generic version of this
517  *  function.
518  **/
519 s32 e1000_force_mac_fc(struct e1000_hw *hw)
520 {
521 	return e1000_force_mac_fc_generic(hw);
522 }
523 
524 /**
525  *  e1000_check_for_link - Check/Store link connection
526  *  @hw: pointer to the HW structure
527  *
528  *  This checks the link condition of the adapter and stores the
529  *  results in the hw->mac structure. This is a function pointer entry
530  *  point called by drivers.
531  **/
532 s32 e1000_check_for_link(struct e1000_hw *hw)
533 {
534 	if (hw->mac.ops.check_for_link)
535 		return hw->mac.ops.check_for_link(hw);
536 
537 	return -E1000_ERR_CONFIG;
538 }
539 
540 /**
541  *  e1000_check_mng_mode - Check management mode
542  *  @hw: pointer to the HW structure
543  *
544  *  This checks if the adapter has manageability enabled.
545  *  This is a function pointer entry point called by drivers.
546  **/
547 bool e1000_check_mng_mode(struct e1000_hw *hw)
548 {
549 	if (hw->mac.ops.check_mng_mode)
550 		return hw->mac.ops.check_mng_mode(hw);
551 
552 	return FALSE;
553 }
554 
555 /**
556  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
557  *  @hw: pointer to the HW structure
558  *  @buffer: pointer to the host interface
559  *  @length: size of the buffer
560  *
561  *  Writes the DHCP information to the host interface.
562  **/
563 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
564 {
565 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
566 }
567 
568 /**
569  *  e1000_reset_hw - Reset hardware
570  *  @hw: pointer to the HW structure
571  *
572  *  This resets the hardware into a known state. This is a function pointer
573  *  entry point called by drivers.
574  **/
575 s32 e1000_reset_hw(struct e1000_hw *hw)
576 {
577 	if (hw->mac.ops.reset_hw)
578 		return hw->mac.ops.reset_hw(hw);
579 
580 	return -E1000_ERR_CONFIG;
581 }
582 
583 /**
584  *  e1000_init_hw - Initialize hardware
585  *  @hw: pointer to the HW structure
586  *
587  *  This inits the hardware readying it for operation. This is a function
588  *  pointer entry point called by drivers.
589  **/
590 s32 e1000_init_hw(struct e1000_hw *hw)
591 {
592 	if (hw->mac.ops.init_hw)
593 		return hw->mac.ops.init_hw(hw);
594 
595 	return -E1000_ERR_CONFIG;
596 }
597 
598 /**
599  *  e1000_setup_link - Configures link and flow control
600  *  @hw: pointer to the HW structure
601  *
602  *  This configures link and flow control settings for the adapter. This
603  *  is a function pointer entry point called by drivers. While modules can
604  *  also call this, they probably call their own version of this function.
605  **/
606 s32 e1000_setup_link(struct e1000_hw *hw)
607 {
608 	if (hw->mac.ops.setup_link)
609 		return hw->mac.ops.setup_link(hw);
610 
611 	return -E1000_ERR_CONFIG;
612 }
613 
614 /**
615  *  e1000_get_speed_and_duplex - Returns current speed and duplex
616  *  @hw: pointer to the HW structure
617  *  @speed: pointer to a 16-bit value to store the speed
618  *  @duplex: pointer to a 16-bit value to store the duplex.
619  *
620  *  This returns the speed and duplex of the adapter in the two 'out'
621  *  variables passed in. This is a function pointer entry point called
622  *  by drivers.
623  **/
624 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
625 {
626 	if (hw->mac.ops.get_link_up_info)
627 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
628 
629 	return -E1000_ERR_CONFIG;
630 }
631 
632 /**
633  *  e1000_setup_led - Configures SW controllable LED
634  *  @hw: pointer to the HW structure
635  *
636  *  This prepares the SW controllable LED for use and saves the current state
637  *  of the LED so it can be later restored. This is a function pointer entry
638  *  point called by drivers.
639  **/
640 s32 e1000_setup_led(struct e1000_hw *hw)
641 {
642 	if (hw->mac.ops.setup_led)
643 		return hw->mac.ops.setup_led(hw);
644 
645 	return E1000_SUCCESS;
646 }
647 
648 /**
649  *  e1000_cleanup_led - Restores SW controllable LED
650  *  @hw: pointer to the HW structure
651  *
652  *  This restores the SW controllable LED to the value saved off by
653  *  e1000_setup_led. This is a function pointer entry point called by drivers.
654  **/
655 s32 e1000_cleanup_led(struct e1000_hw *hw)
656 {
657 	if (hw->mac.ops.cleanup_led)
658 		return hw->mac.ops.cleanup_led(hw);
659 
660 	return E1000_SUCCESS;
661 }
662 
663 /**
664  *  e1000_blink_led - Blink SW controllable LED
665  *  @hw: pointer to the HW structure
666  *
667  *  This starts the adapter LED blinking. Request the LED to be setup first
668  *  and cleaned up after. This is a function pointer entry point called by
669  *  drivers.
670  **/
671 s32 e1000_blink_led(struct e1000_hw *hw)
672 {
673 	if (hw->mac.ops.blink_led)
674 		return hw->mac.ops.blink_led(hw);
675 
676 	return E1000_SUCCESS;
677 }
678 
679 /**
680  *  e1000_id_led_init - store LED configurations in SW
681  *  @hw: pointer to the HW structure
682  *
683  *  Initializes the LED config in SW. This is a function pointer entry point
684  *  called by drivers.
685  **/
686 s32 e1000_id_led_init(struct e1000_hw *hw)
687 {
688 	if (hw->mac.ops.id_led_init)
689 		return hw->mac.ops.id_led_init(hw);
690 
691 	return E1000_SUCCESS;
692 }
693 
694 /**
695  *  e1000_led_on - Turn on SW controllable LED
696  *  @hw: pointer to the HW structure
697  *
698  *  Turns the SW defined LED on. This is a function pointer entry point
699  *  called by drivers.
700  **/
701 s32 e1000_led_on(struct e1000_hw *hw)
702 {
703 	if (hw->mac.ops.led_on)
704 		return hw->mac.ops.led_on(hw);
705 
706 	return E1000_SUCCESS;
707 }
708 
709 /**
710  *  e1000_led_off - Turn off SW controllable LED
711  *  @hw: pointer to the HW structure
712  *
713  *  Turns the SW defined LED off. This is a function pointer entry point
714  *  called by drivers.
715  **/
716 s32 e1000_led_off(struct e1000_hw *hw)
717 {
718 	if (hw->mac.ops.led_off)
719 		return hw->mac.ops.led_off(hw);
720 
721 	return E1000_SUCCESS;
722 }
723 
724 /**
725  *  e1000_reset_adaptive - Reset adaptive IFS
726  *  @hw: pointer to the HW structure
727  *
728  *  Resets the adaptive IFS. Currently no func pointer exists and all
729  *  implementations are handled in the generic version of this function.
730  **/
731 void e1000_reset_adaptive(struct e1000_hw *hw)
732 {
733 	e1000_reset_adaptive_generic(hw);
734 }
735 
736 /**
737  *  e1000_update_adaptive - Update adaptive IFS
738  *  @hw: pointer to the HW structure
739  *
740  *  Updates adapter IFS. Currently no func pointer exists and all
741  *  implementations are handled in the generic version of this function.
742  **/
743 void e1000_update_adaptive(struct e1000_hw *hw)
744 {
745 	e1000_update_adaptive_generic(hw);
746 }
747 
748 /**
749  *  e1000_disable_pcie_master - Disable PCI-Express master access
750  *  @hw: pointer to the HW structure
751  *
752  *  Disables PCI-Express master access and verifies there are no pending
753  *  requests. Currently no func pointer exists and all implementations are
754  *  handled in the generic version of this function.
755  **/
756 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
757 {
758 	return e1000_disable_pcie_master_generic(hw);
759 }
760 
761 /**
762  *  e1000_config_collision_dist - Configure collision distance
763  *  @hw: pointer to the HW structure
764  *
765  *  Configures the collision distance to the default value and is used
766  *  during link setup.
767  **/
768 void e1000_config_collision_dist(struct e1000_hw *hw)
769 {
770 	if (hw->mac.ops.config_collision_dist)
771 		hw->mac.ops.config_collision_dist(hw);
772 }
773 
774 /**
775  *  e1000_rar_set - Sets a receive address register
776  *  @hw: pointer to the HW structure
777  *  @addr: address to set the RAR to
778  *  @index: the RAR to set
779  *
780  *  Sets a Receive Address Register (RAR) to the specified address.
781  **/
782 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
783 {
784 	if (hw->mac.ops.rar_set)
785 		hw->mac.ops.rar_set(hw, addr, index);
786 }
787 
788 /**
789  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
790  *  @hw: pointer to the HW structure
791  *
792  *  Ensures that the MDI/MDIX SW state is valid.
793  **/
794 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
795 {
796 	if (hw->mac.ops.validate_mdi_setting)
797 		return hw->mac.ops.validate_mdi_setting(hw);
798 
799 	return E1000_SUCCESS;
800 }
801 
802 /**
803  *  e1000_hash_mc_addr - Determines address location in multicast table
804  *  @hw: pointer to the HW structure
805  *  @mc_addr: Multicast address to hash.
806  *
807  *  This hashes an address to determine its location in the multicast
808  *  table. Currently no func pointer exists and all implementations
809  *  are handled in the generic version of this function.
810  **/
811 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
812 {
813 	return e1000_hash_mc_addr_generic(hw, mc_addr);
814 }
815 
816 /**
817  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
818  *  @hw: pointer to the HW structure
819  *
820  *  Enables packet filtering on transmit packets if manageability is enabled
821  *  and host interface is enabled.
822  *  Currently no func pointer exists and all implementations are handled in the
823  *  generic version of this function.
824  **/
825 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
826 {
827 	return e1000_enable_tx_pkt_filtering_generic(hw);
828 }
829 
830 /**
831  *  e1000_mng_host_if_write - Writes to the manageability host interface
832  *  @hw: pointer to the HW structure
833  *  @buffer: pointer to the host interface buffer
834  *  @length: size of the buffer
835  *  @offset: location in the buffer to write to
836  *  @sum: sum of the data (not checksum)
837  *
838  *  This function writes the buffer content at the offset given on the host if.
839  *  It also does alignment considerations to do the writes in most efficient
840  *  way.  Also fills up the sum of the buffer in *buffer parameter.
841  **/
842 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
843                             u16 offset, u8 *sum)
844 {
845 	if (hw->mac.ops.mng_host_if_write)
846 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
847 		                                     offset, sum);
848 
849 	return E1000_NOT_IMPLEMENTED;
850 }
851 
852 /**
853  *  e1000_mng_write_cmd_header - Writes manageability command header
854  *  @hw: pointer to the HW structure
855  *  @hdr: pointer to the host interface command header
856  *
857  *  Writes the command header after does the checksum calculation.
858  **/
859 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
860                                struct e1000_host_mng_command_header *hdr)
861 {
862 	if (hw->mac.ops.mng_write_cmd_header)
863 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
864 
865 	return E1000_NOT_IMPLEMENTED;
866 }
867 
868 /**
869  *  e1000_mng_enable_host_if - Checks host interface is enabled
870  *  @hw: pointer to the HW structure
871  *
872  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
873  *
874  *  This function checks whether the HOST IF is enabled for command operation
875  *  and also checks whether the previous command is completed.  It busy waits
876  *  in case of previous command is not completed.
877  **/
878 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
879 {
880 	if (hw->mac.ops.mng_enable_host_if)
881 		return hw->mac.ops.mng_enable_host_if(hw);
882 
883 	return E1000_NOT_IMPLEMENTED;
884 }
885 
886 /**
887  *  e1000_wait_autoneg - Waits for autonegotiation completion
888  *  @hw: pointer to the HW structure
889  *
890  *  Waits for autoneg to complete. Currently no func pointer exists and all
891  *  implementations are handled in the generic version of this function.
892  **/
893 s32 e1000_wait_autoneg(struct e1000_hw *hw)
894 {
895 	if (hw->mac.ops.wait_autoneg)
896 		return hw->mac.ops.wait_autoneg(hw);
897 
898 	return E1000_SUCCESS;
899 }
900 
901 /**
902  *  e1000_check_reset_block - Verifies PHY can be reset
903  *  @hw: pointer to the HW structure
904  *
905  *  Checks if the PHY is in a state that can be reset or if manageability
906  *  has it tied up. This is a function pointer entry point called by drivers.
907  **/
908 s32 e1000_check_reset_block(struct e1000_hw *hw)
909 {
910 	if (hw->phy.ops.check_reset_block)
911 		return hw->phy.ops.check_reset_block(hw);
912 
913 	return E1000_SUCCESS;
914 }
915 
916 /**
917  *  e1000_read_phy_reg - Reads PHY register
918  *  @hw: pointer to the HW structure
919  *  @offset: the register to read
920  *  @data: the buffer to store the 16-bit read.
921  *
922  *  Reads the PHY register and returns the value in data.
923  *  This is a function pointer entry point called by drivers.
924  **/
925 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
926 {
927 	if (hw->phy.ops.read_reg)
928 		return hw->phy.ops.read_reg(hw, offset, data);
929 
930 	return E1000_SUCCESS;
931 }
932 
933 /**
934  *  e1000_write_phy_reg - Writes PHY register
935  *  @hw: pointer to the HW structure
936  *  @offset: the register to write
937  *  @data: the value to write.
938  *
939  *  Writes the PHY register at offset with the value in data.
940  *  This is a function pointer entry point called by drivers.
941  **/
942 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
943 {
944 	if (hw->phy.ops.write_reg)
945 		return hw->phy.ops.write_reg(hw, offset, data);
946 
947 	return E1000_SUCCESS;
948 }
949 
950 /**
951  *  e1000_release_phy - Generic release PHY
952  *  @hw: pointer to the HW structure
953  *
954  *  Return if silicon family does not require a semaphore when accessing the
955  *  PHY.
956  **/
957 void e1000_release_phy(struct e1000_hw *hw)
958 {
959 	if (hw->phy.ops.release)
960 		hw->phy.ops.release(hw);
961 }
962 
963 /**
964  *  e1000_acquire_phy - Generic acquire PHY
965  *  @hw: pointer to the HW structure
966  *
967  *  Return success if silicon family does not require a semaphore when
968  *  accessing the PHY.
969  **/
970 s32 e1000_acquire_phy(struct e1000_hw *hw)
971 {
972 	if (hw->phy.ops.acquire)
973 		return hw->phy.ops.acquire(hw);
974 
975 	return E1000_SUCCESS;
976 }
977 
978 /**
979  *  e1000_cfg_on_link_up - Configure PHY upon link up
980  *  @hw: pointer to the HW structure
981  **/
982 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
983 {
984 	if (hw->phy.ops.cfg_on_link_up)
985 		return hw->phy.ops.cfg_on_link_up(hw);
986 
987 	return E1000_SUCCESS;
988 }
989 
990 /**
991  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
992  *  @hw: pointer to the HW structure
993  *  @offset: the register to read
994  *  @data: the location to store the 16-bit value read.
995  *
996  *  Reads a register out of the Kumeran interface. Currently no func pointer
997  *  exists and all implementations are handled in the generic version of
998  *  this function.
999  **/
1000 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1001 {
1002 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1003 }
1004 
1005 /**
1006  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1007  *  @hw: pointer to the HW structure
1008  *  @offset: the register to write
1009  *  @data: the value to write.
1010  *
1011  *  Writes a register to the Kumeran interface. Currently no func pointer
1012  *  exists and all implementations are handled in the generic version of
1013  *  this function.
1014  **/
1015 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1016 {
1017 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1018 }
1019 
1020 /**
1021  *  e1000_get_cable_length - Retrieves cable length estimation
1022  *  @hw: pointer to the HW structure
1023  *
1024  *  This function estimates the cable length and stores them in
1025  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1026  *  entry point called by drivers.
1027  **/
1028 s32 e1000_get_cable_length(struct e1000_hw *hw)
1029 {
1030 	if (hw->phy.ops.get_cable_length)
1031 		return hw->phy.ops.get_cable_length(hw);
1032 
1033 	return E1000_SUCCESS;
1034 }
1035 
1036 /**
1037  *  e1000_get_phy_info - Retrieves PHY information from registers
1038  *  @hw: pointer to the HW structure
1039  *
1040  *  This function gets some information from various PHY registers and
1041  *  populates hw->phy values with it. This is a function pointer entry
1042  *  point called by drivers.
1043  **/
1044 s32 e1000_get_phy_info(struct e1000_hw *hw)
1045 {
1046 	if (hw->phy.ops.get_info)
1047 		return hw->phy.ops.get_info(hw);
1048 
1049 	return E1000_SUCCESS;
1050 }
1051 
1052 /**
1053  *  e1000_phy_hw_reset - Hard PHY reset
1054  *  @hw: pointer to the HW structure
1055  *
1056  *  Performs a hard PHY reset. This is a function pointer entry point called
1057  *  by drivers.
1058  **/
1059 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1060 {
1061 	if (hw->phy.ops.reset)
1062 		return hw->phy.ops.reset(hw);
1063 
1064 	return E1000_SUCCESS;
1065 }
1066 
1067 /**
1068  *  e1000_phy_commit - Soft PHY reset
1069  *  @hw: pointer to the HW structure
1070  *
1071  *  Performs a soft PHY reset on those that apply. This is a function pointer
1072  *  entry point called by drivers.
1073  **/
1074 s32 e1000_phy_commit(struct e1000_hw *hw)
1075 {
1076 	if (hw->phy.ops.commit)
1077 		return hw->phy.ops.commit(hw);
1078 
1079 	return E1000_SUCCESS;
1080 }
1081 
1082 /**
1083  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1084  *  @hw: pointer to the HW structure
1085  *  @active: boolean used to enable/disable lplu
1086  *
1087  *  Success returns 0, Failure returns 1
1088  *
1089  *  The low power link up (lplu) state is set to the power management level D0
1090  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1091  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1092  *  is used during Dx states where the power conservation is most important.
1093  *  During driver activity, SmartSpeed should be enabled so performance is
1094  *  maintained.  This is a function pointer entry point called by drivers.
1095  **/
1096 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1097 {
1098 	if (hw->phy.ops.set_d0_lplu_state)
1099 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1100 
1101 	return E1000_SUCCESS;
1102 }
1103 
1104 /**
1105  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1106  *  @hw: pointer to the HW structure
1107  *  @active: boolean used to enable/disable lplu
1108  *
1109  *  Success returns 0, Failure returns 1
1110  *
1111  *  The low power link up (lplu) state is set to the power management level D3
1112  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1113  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1114  *  is used during Dx states where the power conservation is most important.
1115  *  During driver activity, SmartSpeed should be enabled so performance is
1116  *  maintained.  This is a function pointer entry point called by drivers.
1117  **/
1118 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1119 {
1120 	if (hw->phy.ops.set_d3_lplu_state)
1121 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1122 
1123 	return E1000_SUCCESS;
1124 }
1125 
1126 /**
1127  *  e1000_read_mac_addr - Reads MAC address
1128  *  @hw: pointer to the HW structure
1129  *
1130  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1131  *  Currently no func pointer exists and all implementations are handled in the
1132  *  generic version of this function.
1133  **/
1134 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1135 {
1136 	if (hw->mac.ops.read_mac_addr)
1137 		return hw->mac.ops.read_mac_addr(hw);
1138 
1139 	return e1000_read_mac_addr_generic(hw);
1140 }
1141 
1142 /**
1143  *  e1000_read_pba_string - Read device part number string
1144  *  @hw: pointer to the HW structure
1145  *  @pba_num: pointer to device part number
1146  *  @pba_num_size: size of part number buffer
1147  *
1148  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1149  *  the value in pba_num.
1150  *  Currently no func pointer exists and all implementations are handled in the
1151  *  generic version of this function.
1152  **/
1153 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1154 {
1155 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1156 }
1157 
1158 /**
1159  *  e1000_read_pba_length - Read device part number string length
1160  *  @hw: pointer to the HW structure
1161  *  @pba_num_size: size of part number buffer
1162  *
1163  *  Reads the product board assembly (PBA) number length from the EEPROM and
1164  *  stores the value in pba_num.
1165  *  Currently no func pointer exists and all implementations are handled in the
1166  *  generic version of this function.
1167  **/
1168 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1169 {
1170 	return e1000_read_pba_length_generic(hw, pba_num_size);
1171 }
1172 
1173 /**
1174  *  e1000_read_pba_num - Read device part number
1175  *  @hw: pointer to the HW structure
1176  *  @pba_num: pointer to device part number
1177  *
1178  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1179  *  the value in pba_num.
1180  *  Currently no func pointer exists and all implementations are handled in the
1181  *  generic version of this function.
1182  **/
1183 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1184 {
1185 	return e1000_read_pba_num_generic(hw, pba_num);
1186 }
1187 
1188 /**
1189  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1190  *  @hw: pointer to the HW structure
1191  *
1192  *  Validates the NVM checksum is correct. This is a function pointer entry
1193  *  point called by drivers.
1194  **/
1195 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1196 {
1197 	if (hw->nvm.ops.validate)
1198 		return hw->nvm.ops.validate(hw);
1199 
1200 	return -E1000_ERR_CONFIG;
1201 }
1202 
1203 /**
1204  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1205  *  @hw: pointer to the HW structure
1206  *
1207  *  Updates the NVM checksum. Currently no func pointer exists and all
1208  *  implementations are handled in the generic version of this function.
1209  **/
1210 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1211 {
1212 	if (hw->nvm.ops.update)
1213 		return hw->nvm.ops.update(hw);
1214 
1215 	return -E1000_ERR_CONFIG;
1216 }
1217 
1218 /**
1219  *  e1000_reload_nvm - Reloads EEPROM
1220  *  @hw: pointer to the HW structure
1221  *
1222  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1223  *  extended control register.
1224  **/
1225 void e1000_reload_nvm(struct e1000_hw *hw)
1226 {
1227 	if (hw->nvm.ops.reload)
1228 		hw->nvm.ops.reload(hw);
1229 }
1230 
1231 /**
1232  *  e1000_read_nvm - Reads NVM (EEPROM)
1233  *  @hw: pointer to the HW structure
1234  *  @offset: the word offset to read
1235  *  @words: number of 16-bit words to read
1236  *  @data: pointer to the properly sized buffer for the data.
1237  *
1238  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1239  *  pointer entry point called by drivers.
1240  **/
1241 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1242 {
1243 	if (hw->nvm.ops.read)
1244 		return hw->nvm.ops.read(hw, offset, words, data);
1245 
1246 	return -E1000_ERR_CONFIG;
1247 }
1248 
1249 /**
1250  *  e1000_write_nvm - Writes to NVM (EEPROM)
1251  *  @hw: pointer to the HW structure
1252  *  @offset: the word offset to read
1253  *  @words: number of 16-bit words to write
1254  *  @data: pointer to the properly sized buffer for the data.
1255  *
1256  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1257  *  pointer entry point called by drivers.
1258  **/
1259 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1260 {
1261 	if (hw->nvm.ops.write)
1262 		return hw->nvm.ops.write(hw, offset, words, data);
1263 
1264 	return E1000_SUCCESS;
1265 }
1266 
1267 /**
1268  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1269  *  @hw: pointer to the HW structure
1270  *  @reg: 32bit register offset
1271  *  @offset: the register to write
1272  *  @data: the value to write.
1273  *
1274  *  Writes the PHY register at offset with the value in data.
1275  *  This is a function pointer entry point called by drivers.
1276  **/
1277 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1278                               u8 data)
1279 {
1280 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1281 }
1282 
1283 /**
1284  * e1000_power_up_phy - Restores link in case of PHY power down
1285  * @hw: pointer to the HW structure
1286  *
1287  * The phy may be powered down to save power, to turn off link when the
1288  * driver is unloaded, or wake on lan is not enabled (among others).
1289  **/
1290 void e1000_power_up_phy(struct e1000_hw *hw)
1291 {
1292 	if (hw->phy.ops.power_up)
1293 		hw->phy.ops.power_up(hw);
1294 
1295 	e1000_setup_link(hw);
1296 }
1297 
1298 /**
1299  * e1000_power_down_phy - Power down PHY
1300  * @hw: pointer to the HW structure
1301  *
1302  * The phy may be powered down to save power, to turn off link when the
1303  * driver is unloaded, or wake on lan is not enabled (among others).
1304  **/
1305 void e1000_power_down_phy(struct e1000_hw *hw)
1306 {
1307 	if (hw->phy.ops.power_down)
1308 		hw->phy.ops.power_down(hw);
1309 }
1310 
1311 /**
1312  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1313  *  @hw: pointer to the HW structure
1314  *
1315  *  Power on the optics and PCS.
1316  **/
1317 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1318 {
1319 	if (hw->mac.ops.power_up_serdes)
1320 		hw->mac.ops.power_up_serdes(hw);
1321 }
1322 
1323 /**
1324  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1325  *  @hw: pointer to the HW structure
1326  *
1327  *  Shutdown the optics and PCS on driver unload.
1328  **/
1329 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1330 {
1331 	if (hw->mac.ops.shutdown_serdes)
1332 		hw->mac.ops.shutdown_serdes(hw);
1333 }
1334 
1335