1 /****************************************************************************** 2 3 Copyright (c) 2001-2013, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 mac->type = e1000_pch_lpt; 297 break; 298 case E1000_DEV_ID_82575EB_COPPER: 299 case E1000_DEV_ID_82575EB_FIBER_SERDES: 300 case E1000_DEV_ID_82575GB_QUAD_COPPER: 301 mac->type = e1000_82575; 302 break; 303 case E1000_DEV_ID_82576: 304 case E1000_DEV_ID_82576_FIBER: 305 case E1000_DEV_ID_82576_SERDES: 306 case E1000_DEV_ID_82576_QUAD_COPPER: 307 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 308 case E1000_DEV_ID_82576_NS: 309 case E1000_DEV_ID_82576_NS_SERDES: 310 case E1000_DEV_ID_82576_SERDES_QUAD: 311 mac->type = e1000_82576; 312 break; 313 case E1000_DEV_ID_82580_COPPER: 314 case E1000_DEV_ID_82580_FIBER: 315 case E1000_DEV_ID_82580_SERDES: 316 case E1000_DEV_ID_82580_SGMII: 317 case E1000_DEV_ID_82580_COPPER_DUAL: 318 case E1000_DEV_ID_82580_QUAD_FIBER: 319 case E1000_DEV_ID_DH89XXCC_SGMII: 320 case E1000_DEV_ID_DH89XXCC_SERDES: 321 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 322 case E1000_DEV_ID_DH89XXCC_SFP: 323 mac->type = e1000_82580; 324 break; 325 case E1000_DEV_ID_I350_COPPER: 326 case E1000_DEV_ID_I350_FIBER: 327 case E1000_DEV_ID_I350_SERDES: 328 case E1000_DEV_ID_I350_SGMII: 329 case E1000_DEV_ID_I350_DA4: 330 mac->type = e1000_i350; 331 break; 332 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 333 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 334 case E1000_DEV_ID_I210_COPPER: 335 case E1000_DEV_ID_I210_COPPER_OEM1: 336 case E1000_DEV_ID_I210_COPPER_IT: 337 case E1000_DEV_ID_I210_FIBER: 338 case E1000_DEV_ID_I210_SERDES: 339 case E1000_DEV_ID_I210_SGMII: 340 mac->type = e1000_i210; 341 break; 342 case E1000_DEV_ID_I211_COPPER: 343 mac->type = e1000_i211; 344 break; 345 case E1000_DEV_ID_82576_VF: 346 case E1000_DEV_ID_82576_VF_HV: 347 mac->type = e1000_vfadapt; 348 break; 349 case E1000_DEV_ID_I350_VF: 350 case E1000_DEV_ID_I350_VF_HV: 351 mac->type = e1000_vfadapt_i350; 352 break; 353 354 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 355 case E1000_DEV_ID_I354_SGMII: 356 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 357 mac->type = e1000_i354; 358 break; 359 default: 360 /* Should never have loaded on this device */ 361 ret_val = -E1000_ERR_MAC_INIT; 362 break; 363 } 364 365 return ret_val; 366 } 367 368 /** 369 * e1000_setup_init_funcs - Initializes function pointers 370 * @hw: pointer to the HW structure 371 * @init_device: TRUE will initialize the rest of the function pointers 372 * getting the device ready for use. FALSE will only set 373 * MAC type and the function pointers for the other init 374 * functions. Passing FALSE will not generate any hardware 375 * reads or writes. 376 * 377 * This function must be called by a driver in order to use the rest 378 * of the 'shared' code files. Called by drivers only. 379 **/ 380 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 381 { 382 s32 ret_val; 383 384 /* Can't do much good without knowing the MAC type. */ 385 ret_val = e1000_set_mac_type(hw); 386 if (ret_val) { 387 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 388 goto out; 389 } 390 391 if (!hw->hw_addr) { 392 DEBUGOUT("ERROR: Registers not mapped\n"); 393 ret_val = -E1000_ERR_CONFIG; 394 goto out; 395 } 396 397 /* 398 * Init function pointers to generic implementations. We do this first 399 * allowing a driver module to override it afterward. 400 */ 401 e1000_init_mac_ops_generic(hw); 402 e1000_init_phy_ops_generic(hw); 403 e1000_init_nvm_ops_generic(hw); 404 e1000_init_mbx_ops_generic(hw); 405 406 /* 407 * Set up the init function pointers. These are functions within the 408 * adapter family file that sets up function pointers for the rest of 409 * the functions in that family. 410 */ 411 switch (hw->mac.type) { 412 case e1000_82542: 413 e1000_init_function_pointers_82542(hw); 414 break; 415 case e1000_82543: 416 case e1000_82544: 417 e1000_init_function_pointers_82543(hw); 418 break; 419 case e1000_82540: 420 case e1000_82545: 421 case e1000_82545_rev_3: 422 case e1000_82546: 423 case e1000_82546_rev_3: 424 e1000_init_function_pointers_82540(hw); 425 break; 426 case e1000_82541: 427 case e1000_82541_rev_2: 428 case e1000_82547: 429 case e1000_82547_rev_2: 430 e1000_init_function_pointers_82541(hw); 431 break; 432 case e1000_82571: 433 case e1000_82572: 434 case e1000_82573: 435 case e1000_82574: 436 case e1000_82583: 437 e1000_init_function_pointers_82571(hw); 438 break; 439 case e1000_80003es2lan: 440 e1000_init_function_pointers_80003es2lan(hw); 441 break; 442 case e1000_ich8lan: 443 case e1000_ich9lan: 444 case e1000_ich10lan: 445 case e1000_pchlan: 446 case e1000_pch2lan: 447 case e1000_pch_lpt: 448 e1000_init_function_pointers_ich8lan(hw); 449 break; 450 case e1000_82575: 451 case e1000_82576: 452 case e1000_82580: 453 case e1000_i350: 454 case e1000_i354: 455 e1000_init_function_pointers_82575(hw); 456 break; 457 case e1000_i210: 458 case e1000_i211: 459 e1000_init_function_pointers_i210(hw); 460 break; 461 case e1000_vfadapt: 462 e1000_init_function_pointers_vf(hw); 463 break; 464 case e1000_vfadapt_i350: 465 e1000_init_function_pointers_vf(hw); 466 break; 467 default: 468 DEBUGOUT("Hardware not supported\n"); 469 ret_val = -E1000_ERR_CONFIG; 470 break; 471 } 472 473 /* 474 * Initialize the rest of the function pointers. These require some 475 * register reads/writes in some cases. 476 */ 477 if (!(ret_val) && init_device) { 478 ret_val = e1000_init_mac_params(hw); 479 if (ret_val) 480 goto out; 481 482 ret_val = e1000_init_nvm_params(hw); 483 if (ret_val) 484 goto out; 485 486 ret_val = e1000_init_phy_params(hw); 487 if (ret_val) 488 goto out; 489 490 ret_val = e1000_init_mbx_params(hw); 491 if (ret_val) 492 goto out; 493 } 494 495 out: 496 return ret_val; 497 } 498 499 /** 500 * e1000_get_bus_info - Obtain bus information for adapter 501 * @hw: pointer to the HW structure 502 * 503 * This will obtain information about the HW bus for which the 504 * adapter is attached and stores it in the hw structure. This is a 505 * function pointer entry point called by drivers. 506 **/ 507 s32 e1000_get_bus_info(struct e1000_hw *hw) 508 { 509 if (hw->mac.ops.get_bus_info) 510 return hw->mac.ops.get_bus_info(hw); 511 512 return E1000_SUCCESS; 513 } 514 515 /** 516 * e1000_clear_vfta - Clear VLAN filter table 517 * @hw: pointer to the HW structure 518 * 519 * This clears the VLAN filter table on the adapter. This is a function 520 * pointer entry point called by drivers. 521 **/ 522 void e1000_clear_vfta(struct e1000_hw *hw) 523 { 524 if (hw->mac.ops.clear_vfta) 525 hw->mac.ops.clear_vfta(hw); 526 } 527 528 /** 529 * e1000_write_vfta - Write value to VLAN filter table 530 * @hw: pointer to the HW structure 531 * @offset: the 32-bit offset in which to write the value to. 532 * @value: the 32-bit value to write at location offset. 533 * 534 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 535 * table. This is a function pointer entry point called by drivers. 536 **/ 537 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 538 { 539 if (hw->mac.ops.write_vfta) 540 hw->mac.ops.write_vfta(hw, offset, value); 541 } 542 543 /** 544 * e1000_update_mc_addr_list - Update Multicast addresses 545 * @hw: pointer to the HW structure 546 * @mc_addr_list: array of multicast addresses to program 547 * @mc_addr_count: number of multicast addresses to program 548 * 549 * Updates the Multicast Table Array. 550 * The caller must have a packed mc_addr_list of multicast addresses. 551 **/ 552 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 553 u32 mc_addr_count) 554 { 555 if (hw->mac.ops.update_mc_addr_list) 556 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 557 mc_addr_count); 558 } 559 560 /** 561 * e1000_force_mac_fc - Force MAC flow control 562 * @hw: pointer to the HW structure 563 * 564 * Force the MAC's flow control settings. Currently no func pointer exists 565 * and all implementations are handled in the generic version of this 566 * function. 567 **/ 568 s32 e1000_force_mac_fc(struct e1000_hw *hw) 569 { 570 return e1000_force_mac_fc_generic(hw); 571 } 572 573 /** 574 * e1000_check_for_link - Check/Store link connection 575 * @hw: pointer to the HW structure 576 * 577 * This checks the link condition of the adapter and stores the 578 * results in the hw->mac structure. This is a function pointer entry 579 * point called by drivers. 580 **/ 581 s32 e1000_check_for_link(struct e1000_hw *hw) 582 { 583 if (hw->mac.ops.check_for_link) 584 return hw->mac.ops.check_for_link(hw); 585 586 return -E1000_ERR_CONFIG; 587 } 588 589 /** 590 * e1000_check_mng_mode - Check management mode 591 * @hw: pointer to the HW structure 592 * 593 * This checks if the adapter has manageability enabled. 594 * This is a function pointer entry point called by drivers. 595 **/ 596 bool e1000_check_mng_mode(struct e1000_hw *hw) 597 { 598 if (hw->mac.ops.check_mng_mode) 599 return hw->mac.ops.check_mng_mode(hw); 600 601 return FALSE; 602 } 603 604 /** 605 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 606 * @hw: pointer to the HW structure 607 * @buffer: pointer to the host interface 608 * @length: size of the buffer 609 * 610 * Writes the DHCP information to the host interface. 611 **/ 612 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 613 { 614 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 615 } 616 617 /** 618 * e1000_reset_hw - Reset hardware 619 * @hw: pointer to the HW structure 620 * 621 * This resets the hardware into a known state. This is a function pointer 622 * entry point called by drivers. 623 **/ 624 s32 e1000_reset_hw(struct e1000_hw *hw) 625 { 626 if (hw->mac.ops.reset_hw) 627 return hw->mac.ops.reset_hw(hw); 628 629 return -E1000_ERR_CONFIG; 630 } 631 632 /** 633 * e1000_init_hw - Initialize hardware 634 * @hw: pointer to the HW structure 635 * 636 * This inits the hardware readying it for operation. This is a function 637 * pointer entry point called by drivers. 638 **/ 639 s32 e1000_init_hw(struct e1000_hw *hw) 640 { 641 if (hw->mac.ops.init_hw) 642 return hw->mac.ops.init_hw(hw); 643 644 return -E1000_ERR_CONFIG; 645 } 646 647 /** 648 * e1000_setup_link - Configures link and flow control 649 * @hw: pointer to the HW structure 650 * 651 * This configures link and flow control settings for the adapter. This 652 * is a function pointer entry point called by drivers. While modules can 653 * also call this, they probably call their own version of this function. 654 **/ 655 s32 e1000_setup_link(struct e1000_hw *hw) 656 { 657 if (hw->mac.ops.setup_link) 658 return hw->mac.ops.setup_link(hw); 659 660 return -E1000_ERR_CONFIG; 661 } 662 663 /** 664 * e1000_get_speed_and_duplex - Returns current speed and duplex 665 * @hw: pointer to the HW structure 666 * @speed: pointer to a 16-bit value to store the speed 667 * @duplex: pointer to a 16-bit value to store the duplex. 668 * 669 * This returns the speed and duplex of the adapter in the two 'out' 670 * variables passed in. This is a function pointer entry point called 671 * by drivers. 672 **/ 673 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 674 { 675 if (hw->mac.ops.get_link_up_info) 676 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 677 678 return -E1000_ERR_CONFIG; 679 } 680 681 /** 682 * e1000_setup_led - Configures SW controllable LED 683 * @hw: pointer to the HW structure 684 * 685 * This prepares the SW controllable LED for use and saves the current state 686 * of the LED so it can be later restored. This is a function pointer entry 687 * point called by drivers. 688 **/ 689 s32 e1000_setup_led(struct e1000_hw *hw) 690 { 691 if (hw->mac.ops.setup_led) 692 return hw->mac.ops.setup_led(hw); 693 694 return E1000_SUCCESS; 695 } 696 697 /** 698 * e1000_cleanup_led - Restores SW controllable LED 699 * @hw: pointer to the HW structure 700 * 701 * This restores the SW controllable LED to the value saved off by 702 * e1000_setup_led. This is a function pointer entry point called by drivers. 703 **/ 704 s32 e1000_cleanup_led(struct e1000_hw *hw) 705 { 706 if (hw->mac.ops.cleanup_led) 707 return hw->mac.ops.cleanup_led(hw); 708 709 return E1000_SUCCESS; 710 } 711 712 /** 713 * e1000_blink_led - Blink SW controllable LED 714 * @hw: pointer to the HW structure 715 * 716 * This starts the adapter LED blinking. Request the LED to be setup first 717 * and cleaned up after. This is a function pointer entry point called by 718 * drivers. 719 **/ 720 s32 e1000_blink_led(struct e1000_hw *hw) 721 { 722 if (hw->mac.ops.blink_led) 723 return hw->mac.ops.blink_led(hw); 724 725 return E1000_SUCCESS; 726 } 727 728 /** 729 * e1000_id_led_init - store LED configurations in SW 730 * @hw: pointer to the HW structure 731 * 732 * Initializes the LED config in SW. This is a function pointer entry point 733 * called by drivers. 734 **/ 735 s32 e1000_id_led_init(struct e1000_hw *hw) 736 { 737 if (hw->mac.ops.id_led_init) 738 return hw->mac.ops.id_led_init(hw); 739 740 return E1000_SUCCESS; 741 } 742 743 /** 744 * e1000_led_on - Turn on SW controllable LED 745 * @hw: pointer to the HW structure 746 * 747 * Turns the SW defined LED on. This is a function pointer entry point 748 * called by drivers. 749 **/ 750 s32 e1000_led_on(struct e1000_hw *hw) 751 { 752 if (hw->mac.ops.led_on) 753 return hw->mac.ops.led_on(hw); 754 755 return E1000_SUCCESS; 756 } 757 758 /** 759 * e1000_led_off - Turn off SW controllable LED 760 * @hw: pointer to the HW structure 761 * 762 * Turns the SW defined LED off. This is a function pointer entry point 763 * called by drivers. 764 **/ 765 s32 e1000_led_off(struct e1000_hw *hw) 766 { 767 if (hw->mac.ops.led_off) 768 return hw->mac.ops.led_off(hw); 769 770 return E1000_SUCCESS; 771 } 772 773 /** 774 * e1000_reset_adaptive - Reset adaptive IFS 775 * @hw: pointer to the HW structure 776 * 777 * Resets the adaptive IFS. Currently no func pointer exists and all 778 * implementations are handled in the generic version of this function. 779 **/ 780 void e1000_reset_adaptive(struct e1000_hw *hw) 781 { 782 e1000_reset_adaptive_generic(hw); 783 } 784 785 /** 786 * e1000_update_adaptive - Update adaptive IFS 787 * @hw: pointer to the HW structure 788 * 789 * Updates adapter IFS. Currently no func pointer exists and all 790 * implementations are handled in the generic version of this function. 791 **/ 792 void e1000_update_adaptive(struct e1000_hw *hw) 793 { 794 e1000_update_adaptive_generic(hw); 795 } 796 797 /** 798 * e1000_disable_pcie_master - Disable PCI-Express master access 799 * @hw: pointer to the HW structure 800 * 801 * Disables PCI-Express master access and verifies there are no pending 802 * requests. Currently no func pointer exists and all implementations are 803 * handled in the generic version of this function. 804 **/ 805 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 806 { 807 return e1000_disable_pcie_master_generic(hw); 808 } 809 810 /** 811 * e1000_config_collision_dist - Configure collision distance 812 * @hw: pointer to the HW structure 813 * 814 * Configures the collision distance to the default value and is used 815 * during link setup. 816 **/ 817 void e1000_config_collision_dist(struct e1000_hw *hw) 818 { 819 if (hw->mac.ops.config_collision_dist) 820 hw->mac.ops.config_collision_dist(hw); 821 } 822 823 /** 824 * e1000_rar_set - Sets a receive address register 825 * @hw: pointer to the HW structure 826 * @addr: address to set the RAR to 827 * @index: the RAR to set 828 * 829 * Sets a Receive Address Register (RAR) to the specified address. 830 **/ 831 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 832 { 833 if (hw->mac.ops.rar_set) 834 hw->mac.ops.rar_set(hw, addr, index); 835 } 836 837 /** 838 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 839 * @hw: pointer to the HW structure 840 * 841 * Ensures that the MDI/MDIX SW state is valid. 842 **/ 843 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 844 { 845 if (hw->mac.ops.validate_mdi_setting) 846 return hw->mac.ops.validate_mdi_setting(hw); 847 848 return E1000_SUCCESS; 849 } 850 851 /** 852 * e1000_hash_mc_addr - Determines address location in multicast table 853 * @hw: pointer to the HW structure 854 * @mc_addr: Multicast address to hash. 855 * 856 * This hashes an address to determine its location in the multicast 857 * table. Currently no func pointer exists and all implementations 858 * are handled in the generic version of this function. 859 **/ 860 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 861 { 862 return e1000_hash_mc_addr_generic(hw, mc_addr); 863 } 864 865 /** 866 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 867 * @hw: pointer to the HW structure 868 * 869 * Enables packet filtering on transmit packets if manageability is enabled 870 * and host interface is enabled. 871 * Currently no func pointer exists and all implementations are handled in the 872 * generic version of this function. 873 **/ 874 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 875 { 876 return e1000_enable_tx_pkt_filtering_generic(hw); 877 } 878 879 /** 880 * e1000_mng_host_if_write - Writes to the manageability host interface 881 * @hw: pointer to the HW structure 882 * @buffer: pointer to the host interface buffer 883 * @length: size of the buffer 884 * @offset: location in the buffer to write to 885 * @sum: sum of the data (not checksum) 886 * 887 * This function writes the buffer content at the offset given on the host if. 888 * It also does alignment considerations to do the writes in most efficient 889 * way. Also fills up the sum of the buffer in *buffer parameter. 890 **/ 891 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 892 u16 offset, u8 *sum) 893 { 894 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 895 } 896 897 /** 898 * e1000_mng_write_cmd_header - Writes manageability command header 899 * @hw: pointer to the HW structure 900 * @hdr: pointer to the host interface command header 901 * 902 * Writes the command header after does the checksum calculation. 903 **/ 904 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 905 struct e1000_host_mng_command_header *hdr) 906 { 907 return e1000_mng_write_cmd_header_generic(hw, hdr); 908 } 909 910 /** 911 * e1000_mng_enable_host_if - Checks host interface is enabled 912 * @hw: pointer to the HW structure 913 * 914 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 915 * 916 * This function checks whether the HOST IF is enabled for command operation 917 * and also checks whether the previous command is completed. It busy waits 918 * in case of previous command is not completed. 919 **/ 920 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 921 { 922 return e1000_mng_enable_host_if_generic(hw); 923 } 924 925 /** 926 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 927 * @hw: pointer to the HW structure 928 * @itr: u32 indicating itr value 929 * 930 * Set the OBFF timer based on the given interrupt rate. 931 **/ 932 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 933 { 934 if (hw->mac.ops.set_obff_timer) 935 return hw->mac.ops.set_obff_timer(hw, itr); 936 937 return E1000_SUCCESS; 938 } 939 940 /** 941 * e1000_check_reset_block - Verifies PHY can be reset 942 * @hw: pointer to the HW structure 943 * 944 * Checks if the PHY is in a state that can be reset or if manageability 945 * has it tied up. This is a function pointer entry point called by drivers. 946 **/ 947 s32 e1000_check_reset_block(struct e1000_hw *hw) 948 { 949 if (hw->phy.ops.check_reset_block) 950 return hw->phy.ops.check_reset_block(hw); 951 952 return E1000_SUCCESS; 953 } 954 955 /** 956 * e1000_read_phy_reg - Reads PHY register 957 * @hw: pointer to the HW structure 958 * @offset: the register to read 959 * @data: the buffer to store the 16-bit read. 960 * 961 * Reads the PHY register and returns the value in data. 962 * This is a function pointer entry point called by drivers. 963 **/ 964 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 965 { 966 if (hw->phy.ops.read_reg) 967 return hw->phy.ops.read_reg(hw, offset, data); 968 969 return E1000_SUCCESS; 970 } 971 972 /** 973 * e1000_write_phy_reg - Writes PHY register 974 * @hw: pointer to the HW structure 975 * @offset: the register to write 976 * @data: the value to write. 977 * 978 * Writes the PHY register at offset with the value in data. 979 * This is a function pointer entry point called by drivers. 980 **/ 981 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 982 { 983 if (hw->phy.ops.write_reg) 984 return hw->phy.ops.write_reg(hw, offset, data); 985 986 return E1000_SUCCESS; 987 } 988 989 /** 990 * e1000_release_phy - Generic release PHY 991 * @hw: pointer to the HW structure 992 * 993 * Return if silicon family does not require a semaphore when accessing the 994 * PHY. 995 **/ 996 void e1000_release_phy(struct e1000_hw *hw) 997 { 998 if (hw->phy.ops.release) 999 hw->phy.ops.release(hw); 1000 } 1001 1002 /** 1003 * e1000_acquire_phy - Generic acquire PHY 1004 * @hw: pointer to the HW structure 1005 * 1006 * Return success if silicon family does not require a semaphore when 1007 * accessing the PHY. 1008 **/ 1009 s32 e1000_acquire_phy(struct e1000_hw *hw) 1010 { 1011 if (hw->phy.ops.acquire) 1012 return hw->phy.ops.acquire(hw); 1013 1014 return E1000_SUCCESS; 1015 } 1016 1017 /** 1018 * e1000_cfg_on_link_up - Configure PHY upon link up 1019 * @hw: pointer to the HW structure 1020 **/ 1021 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1022 { 1023 if (hw->phy.ops.cfg_on_link_up) 1024 return hw->phy.ops.cfg_on_link_up(hw); 1025 1026 return E1000_SUCCESS; 1027 } 1028 1029 /** 1030 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1031 * @hw: pointer to the HW structure 1032 * @offset: the register to read 1033 * @data: the location to store the 16-bit value read. 1034 * 1035 * Reads a register out of the Kumeran interface. Currently no func pointer 1036 * exists and all implementations are handled in the generic version of 1037 * this function. 1038 **/ 1039 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1040 { 1041 return e1000_read_kmrn_reg_generic(hw, offset, data); 1042 } 1043 1044 /** 1045 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1046 * @hw: pointer to the HW structure 1047 * @offset: the register to write 1048 * @data: the value to write. 1049 * 1050 * Writes a register to the Kumeran interface. Currently no func pointer 1051 * exists and all implementations are handled in the generic version of 1052 * this function. 1053 **/ 1054 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1055 { 1056 return e1000_write_kmrn_reg_generic(hw, offset, data); 1057 } 1058 1059 /** 1060 * e1000_get_cable_length - Retrieves cable length estimation 1061 * @hw: pointer to the HW structure 1062 * 1063 * This function estimates the cable length and stores them in 1064 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1065 * entry point called by drivers. 1066 **/ 1067 s32 e1000_get_cable_length(struct e1000_hw *hw) 1068 { 1069 if (hw->phy.ops.get_cable_length) 1070 return hw->phy.ops.get_cable_length(hw); 1071 1072 return E1000_SUCCESS; 1073 } 1074 1075 /** 1076 * e1000_get_phy_info - Retrieves PHY information from registers 1077 * @hw: pointer to the HW structure 1078 * 1079 * This function gets some information from various PHY registers and 1080 * populates hw->phy values with it. This is a function pointer entry 1081 * point called by drivers. 1082 **/ 1083 s32 e1000_get_phy_info(struct e1000_hw *hw) 1084 { 1085 if (hw->phy.ops.get_info) 1086 return hw->phy.ops.get_info(hw); 1087 1088 return E1000_SUCCESS; 1089 } 1090 1091 /** 1092 * e1000_phy_hw_reset - Hard PHY reset 1093 * @hw: pointer to the HW structure 1094 * 1095 * Performs a hard PHY reset. This is a function pointer entry point called 1096 * by drivers. 1097 **/ 1098 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1099 { 1100 if (hw->phy.ops.reset) 1101 return hw->phy.ops.reset(hw); 1102 1103 return E1000_SUCCESS; 1104 } 1105 1106 /** 1107 * e1000_phy_commit - Soft PHY reset 1108 * @hw: pointer to the HW structure 1109 * 1110 * Performs a soft PHY reset on those that apply. This is a function pointer 1111 * entry point called by drivers. 1112 **/ 1113 s32 e1000_phy_commit(struct e1000_hw *hw) 1114 { 1115 if (hw->phy.ops.commit) 1116 return hw->phy.ops.commit(hw); 1117 1118 return E1000_SUCCESS; 1119 } 1120 1121 /** 1122 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1123 * @hw: pointer to the HW structure 1124 * @active: boolean used to enable/disable lplu 1125 * 1126 * Success returns 0, Failure returns 1 1127 * 1128 * The low power link up (lplu) state is set to the power management level D0 1129 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1130 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1131 * is used during Dx states where the power conservation is most important. 1132 * During driver activity, SmartSpeed should be enabled so performance is 1133 * maintained. This is a function pointer entry point called by drivers. 1134 **/ 1135 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1136 { 1137 if (hw->phy.ops.set_d0_lplu_state) 1138 return hw->phy.ops.set_d0_lplu_state(hw, active); 1139 1140 return E1000_SUCCESS; 1141 } 1142 1143 /** 1144 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1145 * @hw: pointer to the HW structure 1146 * @active: boolean used to enable/disable lplu 1147 * 1148 * Success returns 0, Failure returns 1 1149 * 1150 * The low power link up (lplu) state is set to the power management level D3 1151 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1152 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1153 * is used during Dx states where the power conservation is most important. 1154 * During driver activity, SmartSpeed should be enabled so performance is 1155 * maintained. This is a function pointer entry point called by drivers. 1156 **/ 1157 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1158 { 1159 if (hw->phy.ops.set_d3_lplu_state) 1160 return hw->phy.ops.set_d3_lplu_state(hw, active); 1161 1162 return E1000_SUCCESS; 1163 } 1164 1165 /** 1166 * e1000_read_mac_addr - Reads MAC address 1167 * @hw: pointer to the HW structure 1168 * 1169 * Reads the MAC address out of the adapter and stores it in the HW structure. 1170 * Currently no func pointer exists and all implementations are handled in the 1171 * generic version of this function. 1172 **/ 1173 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1174 { 1175 if (hw->mac.ops.read_mac_addr) 1176 return hw->mac.ops.read_mac_addr(hw); 1177 1178 return e1000_read_mac_addr_generic(hw); 1179 } 1180 1181 /** 1182 * e1000_read_pba_string - Read device part number string 1183 * @hw: pointer to the HW structure 1184 * @pba_num: pointer to device part number 1185 * @pba_num_size: size of part number buffer 1186 * 1187 * Reads the product board assembly (PBA) number from the EEPROM and stores 1188 * the value in pba_num. 1189 * Currently no func pointer exists and all implementations are handled in the 1190 * generic version of this function. 1191 **/ 1192 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1193 { 1194 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1195 } 1196 1197 /** 1198 * e1000_read_pba_length - Read device part number string length 1199 * @hw: pointer to the HW structure 1200 * @pba_num_size: size of part number buffer 1201 * 1202 * Reads the product board assembly (PBA) number length from the EEPROM and 1203 * stores the value in pba_num. 1204 * Currently no func pointer exists and all implementations are handled in the 1205 * generic version of this function. 1206 **/ 1207 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1208 { 1209 return e1000_read_pba_length_generic(hw, pba_num_size); 1210 } 1211 1212 /** 1213 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1214 * @hw: pointer to the HW structure 1215 * 1216 * Validates the NVM checksum is correct. This is a function pointer entry 1217 * point called by drivers. 1218 **/ 1219 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1220 { 1221 if (hw->nvm.ops.validate) 1222 return hw->nvm.ops.validate(hw); 1223 1224 return -E1000_ERR_CONFIG; 1225 } 1226 1227 /** 1228 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1229 * @hw: pointer to the HW structure 1230 * 1231 * Updates the NVM checksum. Currently no func pointer exists and all 1232 * implementations are handled in the generic version of this function. 1233 **/ 1234 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1235 { 1236 if (hw->nvm.ops.update) 1237 return hw->nvm.ops.update(hw); 1238 1239 return -E1000_ERR_CONFIG; 1240 } 1241 1242 /** 1243 * e1000_reload_nvm - Reloads EEPROM 1244 * @hw: pointer to the HW structure 1245 * 1246 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1247 * extended control register. 1248 **/ 1249 void e1000_reload_nvm(struct e1000_hw *hw) 1250 { 1251 if (hw->nvm.ops.reload) 1252 hw->nvm.ops.reload(hw); 1253 } 1254 1255 /** 1256 * e1000_read_nvm - Reads NVM (EEPROM) 1257 * @hw: pointer to the HW structure 1258 * @offset: the word offset to read 1259 * @words: number of 16-bit words to read 1260 * @data: pointer to the properly sized buffer for the data. 1261 * 1262 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1263 * pointer entry point called by drivers. 1264 **/ 1265 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1266 { 1267 if (hw->nvm.ops.read) 1268 return hw->nvm.ops.read(hw, offset, words, data); 1269 1270 return -E1000_ERR_CONFIG; 1271 } 1272 1273 /** 1274 * e1000_write_nvm - Writes to NVM (EEPROM) 1275 * @hw: pointer to the HW structure 1276 * @offset: the word offset to read 1277 * @words: number of 16-bit words to write 1278 * @data: pointer to the properly sized buffer for the data. 1279 * 1280 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1281 * pointer entry point called by drivers. 1282 **/ 1283 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1284 { 1285 if (hw->nvm.ops.write) 1286 return hw->nvm.ops.write(hw, offset, words, data); 1287 1288 return E1000_SUCCESS; 1289 } 1290 1291 /** 1292 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1293 * @hw: pointer to the HW structure 1294 * @reg: 32bit register offset 1295 * @offset: the register to write 1296 * @data: the value to write. 1297 * 1298 * Writes the PHY register at offset with the value in data. 1299 * This is a function pointer entry point called by drivers. 1300 **/ 1301 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1302 u8 data) 1303 { 1304 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1305 } 1306 1307 /** 1308 * e1000_power_up_phy - Restores link in case of PHY power down 1309 * @hw: pointer to the HW structure 1310 * 1311 * The phy may be powered down to save power, to turn off link when the 1312 * driver is unloaded, or wake on lan is not enabled (among others). 1313 **/ 1314 void e1000_power_up_phy(struct e1000_hw *hw) 1315 { 1316 if (hw->phy.ops.power_up) 1317 hw->phy.ops.power_up(hw); 1318 1319 e1000_setup_link(hw); 1320 } 1321 1322 /** 1323 * e1000_power_down_phy - Power down PHY 1324 * @hw: pointer to the HW structure 1325 * 1326 * The phy may be powered down to save power, to turn off link when the 1327 * driver is unloaded, or wake on lan is not enabled (among others). 1328 **/ 1329 void e1000_power_down_phy(struct e1000_hw *hw) 1330 { 1331 if (hw->phy.ops.power_down) 1332 hw->phy.ops.power_down(hw); 1333 } 1334 1335 /** 1336 * e1000_power_up_fiber_serdes_link - Power up serdes link 1337 * @hw: pointer to the HW structure 1338 * 1339 * Power on the optics and PCS. 1340 **/ 1341 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1342 { 1343 if (hw->mac.ops.power_up_serdes) 1344 hw->mac.ops.power_up_serdes(hw); 1345 } 1346 1347 /** 1348 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1349 * @hw: pointer to the HW structure 1350 * 1351 * Shutdown the optics and PCS on driver unload. 1352 **/ 1353 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1354 { 1355 if (hw->mac.ops.shutdown_serdes) 1356 hw->mac.ops.shutdown_serdes(hw); 1357 } 1358 1359