xref: /freebsd/sys/dev/e1000/e1000_api.c (revision a18eacbefdfa1085ca3db829e86ece78cd416493)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2013, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 		mac->type = e1000_pch_lpt;
297 		break;
298 	case E1000_DEV_ID_82575EB_COPPER:
299 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
300 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
301 		mac->type = e1000_82575;
302 		break;
303 	case E1000_DEV_ID_82576:
304 	case E1000_DEV_ID_82576_FIBER:
305 	case E1000_DEV_ID_82576_SERDES:
306 	case E1000_DEV_ID_82576_QUAD_COPPER:
307 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
308 	case E1000_DEV_ID_82576_NS:
309 	case E1000_DEV_ID_82576_NS_SERDES:
310 	case E1000_DEV_ID_82576_SERDES_QUAD:
311 		mac->type = e1000_82576;
312 		break;
313 	case E1000_DEV_ID_82580_COPPER:
314 	case E1000_DEV_ID_82580_FIBER:
315 	case E1000_DEV_ID_82580_SERDES:
316 	case E1000_DEV_ID_82580_SGMII:
317 	case E1000_DEV_ID_82580_COPPER_DUAL:
318 	case E1000_DEV_ID_82580_QUAD_FIBER:
319 	case E1000_DEV_ID_DH89XXCC_SGMII:
320 	case E1000_DEV_ID_DH89XXCC_SERDES:
321 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
322 	case E1000_DEV_ID_DH89XXCC_SFP:
323 		mac->type = e1000_82580;
324 		break;
325 	case E1000_DEV_ID_I350_COPPER:
326 	case E1000_DEV_ID_I350_FIBER:
327 	case E1000_DEV_ID_I350_SERDES:
328 	case E1000_DEV_ID_I350_SGMII:
329 	case E1000_DEV_ID_I350_DA4:
330 		mac->type = e1000_i350;
331 		break;
332 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
333 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
334 	case E1000_DEV_ID_I210_COPPER:
335 	case E1000_DEV_ID_I210_COPPER_OEM1:
336 	case E1000_DEV_ID_I210_COPPER_IT:
337 	case E1000_DEV_ID_I210_FIBER:
338 	case E1000_DEV_ID_I210_SERDES:
339 	case E1000_DEV_ID_I210_SGMII:
340 		mac->type = e1000_i210;
341 		break;
342 	case E1000_DEV_ID_I211_COPPER:
343 		mac->type = e1000_i211;
344 		break;
345 	case E1000_DEV_ID_82576_VF:
346 	case E1000_DEV_ID_82576_VF_HV:
347 		mac->type = e1000_vfadapt;
348 		break;
349 	case E1000_DEV_ID_I350_VF:
350 	case E1000_DEV_ID_I350_VF_HV:
351 		mac->type = e1000_vfadapt_i350;
352 		break;
353 
354 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
355 	case E1000_DEV_ID_I354_SGMII:
356 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
357 		mac->type = e1000_i354;
358 		break;
359 	default:
360 		/* Should never have loaded on this device */
361 		ret_val = -E1000_ERR_MAC_INIT;
362 		break;
363 	}
364 
365 	return ret_val;
366 }
367 
368 /**
369  *  e1000_setup_init_funcs - Initializes function pointers
370  *  @hw: pointer to the HW structure
371  *  @init_device: TRUE will initialize the rest of the function pointers
372  *		  getting the device ready for use.  FALSE will only set
373  *		  MAC type and the function pointers for the other init
374  *		  functions.  Passing FALSE will not generate any hardware
375  *		  reads or writes.
376  *
377  *  This function must be called by a driver in order to use the rest
378  *  of the 'shared' code files. Called by drivers only.
379  **/
380 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
381 {
382 	s32 ret_val;
383 
384 	/* Can't do much good without knowing the MAC type. */
385 	ret_val = e1000_set_mac_type(hw);
386 	if (ret_val) {
387 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
388 		goto out;
389 	}
390 
391 	if (!hw->hw_addr) {
392 		DEBUGOUT("ERROR: Registers not mapped\n");
393 		ret_val = -E1000_ERR_CONFIG;
394 		goto out;
395 	}
396 
397 	/*
398 	 * Init function pointers to generic implementations. We do this first
399 	 * allowing a driver module to override it afterward.
400 	 */
401 	e1000_init_mac_ops_generic(hw);
402 	e1000_init_phy_ops_generic(hw);
403 	e1000_init_nvm_ops_generic(hw);
404 	e1000_init_mbx_ops_generic(hw);
405 
406 	/*
407 	 * Set up the init function pointers. These are functions within the
408 	 * adapter family file that sets up function pointers for the rest of
409 	 * the functions in that family.
410 	 */
411 	switch (hw->mac.type) {
412 	case e1000_82542:
413 		e1000_init_function_pointers_82542(hw);
414 		break;
415 	case e1000_82543:
416 	case e1000_82544:
417 		e1000_init_function_pointers_82543(hw);
418 		break;
419 	case e1000_82540:
420 	case e1000_82545:
421 	case e1000_82545_rev_3:
422 	case e1000_82546:
423 	case e1000_82546_rev_3:
424 		e1000_init_function_pointers_82540(hw);
425 		break;
426 	case e1000_82541:
427 	case e1000_82541_rev_2:
428 	case e1000_82547:
429 	case e1000_82547_rev_2:
430 		e1000_init_function_pointers_82541(hw);
431 		break;
432 	case e1000_82571:
433 	case e1000_82572:
434 	case e1000_82573:
435 	case e1000_82574:
436 	case e1000_82583:
437 		e1000_init_function_pointers_82571(hw);
438 		break;
439 	case e1000_80003es2lan:
440 		e1000_init_function_pointers_80003es2lan(hw);
441 		break;
442 	case e1000_ich8lan:
443 	case e1000_ich9lan:
444 	case e1000_ich10lan:
445 	case e1000_pchlan:
446 	case e1000_pch2lan:
447 	case e1000_pch_lpt:
448 		e1000_init_function_pointers_ich8lan(hw);
449 		break;
450 	case e1000_82575:
451 	case e1000_82576:
452 	case e1000_82580:
453 	case e1000_i350:
454 	case e1000_i354:
455 		e1000_init_function_pointers_82575(hw);
456 		break;
457 	case e1000_i210:
458 	case e1000_i211:
459 		e1000_init_function_pointers_i210(hw);
460 		break;
461 	case e1000_vfadapt:
462 		e1000_init_function_pointers_vf(hw);
463 		break;
464 	case e1000_vfadapt_i350:
465 		e1000_init_function_pointers_vf(hw);
466 		break;
467 	default:
468 		DEBUGOUT("Hardware not supported\n");
469 		ret_val = -E1000_ERR_CONFIG;
470 		break;
471 	}
472 
473 	/*
474 	 * Initialize the rest of the function pointers. These require some
475 	 * register reads/writes in some cases.
476 	 */
477 	if (!(ret_val) && init_device) {
478 		ret_val = e1000_init_mac_params(hw);
479 		if (ret_val)
480 			goto out;
481 
482 		ret_val = e1000_init_nvm_params(hw);
483 		if (ret_val)
484 			goto out;
485 
486 		ret_val = e1000_init_phy_params(hw);
487 		if (ret_val)
488 			goto out;
489 
490 		ret_val = e1000_init_mbx_params(hw);
491 		if (ret_val)
492 			goto out;
493 	}
494 
495 out:
496 	return ret_val;
497 }
498 
499 /**
500  *  e1000_get_bus_info - Obtain bus information for adapter
501  *  @hw: pointer to the HW structure
502  *
503  *  This will obtain information about the HW bus for which the
504  *  adapter is attached and stores it in the hw structure. This is a
505  *  function pointer entry point called by drivers.
506  **/
507 s32 e1000_get_bus_info(struct e1000_hw *hw)
508 {
509 	if (hw->mac.ops.get_bus_info)
510 		return hw->mac.ops.get_bus_info(hw);
511 
512 	return E1000_SUCCESS;
513 }
514 
515 /**
516  *  e1000_clear_vfta - Clear VLAN filter table
517  *  @hw: pointer to the HW structure
518  *
519  *  This clears the VLAN filter table on the adapter. This is a function
520  *  pointer entry point called by drivers.
521  **/
522 void e1000_clear_vfta(struct e1000_hw *hw)
523 {
524 	if (hw->mac.ops.clear_vfta)
525 		hw->mac.ops.clear_vfta(hw);
526 }
527 
528 /**
529  *  e1000_write_vfta - Write value to VLAN filter table
530  *  @hw: pointer to the HW structure
531  *  @offset: the 32-bit offset in which to write the value to.
532  *  @value: the 32-bit value to write at location offset.
533  *
534  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
535  *  table. This is a function pointer entry point called by drivers.
536  **/
537 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
538 {
539 	if (hw->mac.ops.write_vfta)
540 		hw->mac.ops.write_vfta(hw, offset, value);
541 }
542 
543 /**
544  *  e1000_update_mc_addr_list - Update Multicast addresses
545  *  @hw: pointer to the HW structure
546  *  @mc_addr_list: array of multicast addresses to program
547  *  @mc_addr_count: number of multicast addresses to program
548  *
549  *  Updates the Multicast Table Array.
550  *  The caller must have a packed mc_addr_list of multicast addresses.
551  **/
552 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
553 			       u32 mc_addr_count)
554 {
555 	if (hw->mac.ops.update_mc_addr_list)
556 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
557 						mc_addr_count);
558 }
559 
560 /**
561  *  e1000_force_mac_fc - Force MAC flow control
562  *  @hw: pointer to the HW structure
563  *
564  *  Force the MAC's flow control settings. Currently no func pointer exists
565  *  and all implementations are handled in the generic version of this
566  *  function.
567  **/
568 s32 e1000_force_mac_fc(struct e1000_hw *hw)
569 {
570 	return e1000_force_mac_fc_generic(hw);
571 }
572 
573 /**
574  *  e1000_check_for_link - Check/Store link connection
575  *  @hw: pointer to the HW structure
576  *
577  *  This checks the link condition of the adapter and stores the
578  *  results in the hw->mac structure. This is a function pointer entry
579  *  point called by drivers.
580  **/
581 s32 e1000_check_for_link(struct e1000_hw *hw)
582 {
583 	if (hw->mac.ops.check_for_link)
584 		return hw->mac.ops.check_for_link(hw);
585 
586 	return -E1000_ERR_CONFIG;
587 }
588 
589 /**
590  *  e1000_check_mng_mode - Check management mode
591  *  @hw: pointer to the HW structure
592  *
593  *  This checks if the adapter has manageability enabled.
594  *  This is a function pointer entry point called by drivers.
595  **/
596 bool e1000_check_mng_mode(struct e1000_hw *hw)
597 {
598 	if (hw->mac.ops.check_mng_mode)
599 		return hw->mac.ops.check_mng_mode(hw);
600 
601 	return FALSE;
602 }
603 
604 /**
605  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
606  *  @hw: pointer to the HW structure
607  *  @buffer: pointer to the host interface
608  *  @length: size of the buffer
609  *
610  *  Writes the DHCP information to the host interface.
611  **/
612 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
613 {
614 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
615 }
616 
617 /**
618  *  e1000_reset_hw - Reset hardware
619  *  @hw: pointer to the HW structure
620  *
621  *  This resets the hardware into a known state. This is a function pointer
622  *  entry point called by drivers.
623  **/
624 s32 e1000_reset_hw(struct e1000_hw *hw)
625 {
626 	if (hw->mac.ops.reset_hw)
627 		return hw->mac.ops.reset_hw(hw);
628 
629 	return -E1000_ERR_CONFIG;
630 }
631 
632 /**
633  *  e1000_init_hw - Initialize hardware
634  *  @hw: pointer to the HW structure
635  *
636  *  This inits the hardware readying it for operation. This is a function
637  *  pointer entry point called by drivers.
638  **/
639 s32 e1000_init_hw(struct e1000_hw *hw)
640 {
641 	if (hw->mac.ops.init_hw)
642 		return hw->mac.ops.init_hw(hw);
643 
644 	return -E1000_ERR_CONFIG;
645 }
646 
647 /**
648  *  e1000_setup_link - Configures link and flow control
649  *  @hw: pointer to the HW structure
650  *
651  *  This configures link and flow control settings for the adapter. This
652  *  is a function pointer entry point called by drivers. While modules can
653  *  also call this, they probably call their own version of this function.
654  **/
655 s32 e1000_setup_link(struct e1000_hw *hw)
656 {
657 	if (hw->mac.ops.setup_link)
658 		return hw->mac.ops.setup_link(hw);
659 
660 	return -E1000_ERR_CONFIG;
661 }
662 
663 /**
664  *  e1000_get_speed_and_duplex - Returns current speed and duplex
665  *  @hw: pointer to the HW structure
666  *  @speed: pointer to a 16-bit value to store the speed
667  *  @duplex: pointer to a 16-bit value to store the duplex.
668  *
669  *  This returns the speed and duplex of the adapter in the two 'out'
670  *  variables passed in. This is a function pointer entry point called
671  *  by drivers.
672  **/
673 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
674 {
675 	if (hw->mac.ops.get_link_up_info)
676 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
677 
678 	return -E1000_ERR_CONFIG;
679 }
680 
681 /**
682  *  e1000_setup_led - Configures SW controllable LED
683  *  @hw: pointer to the HW structure
684  *
685  *  This prepares the SW controllable LED for use and saves the current state
686  *  of the LED so it can be later restored. This is a function pointer entry
687  *  point called by drivers.
688  **/
689 s32 e1000_setup_led(struct e1000_hw *hw)
690 {
691 	if (hw->mac.ops.setup_led)
692 		return hw->mac.ops.setup_led(hw);
693 
694 	return E1000_SUCCESS;
695 }
696 
697 /**
698  *  e1000_cleanup_led - Restores SW controllable LED
699  *  @hw: pointer to the HW structure
700  *
701  *  This restores the SW controllable LED to the value saved off by
702  *  e1000_setup_led. This is a function pointer entry point called by drivers.
703  **/
704 s32 e1000_cleanup_led(struct e1000_hw *hw)
705 {
706 	if (hw->mac.ops.cleanup_led)
707 		return hw->mac.ops.cleanup_led(hw);
708 
709 	return E1000_SUCCESS;
710 }
711 
712 /**
713  *  e1000_blink_led - Blink SW controllable LED
714  *  @hw: pointer to the HW structure
715  *
716  *  This starts the adapter LED blinking. Request the LED to be setup first
717  *  and cleaned up after. This is a function pointer entry point called by
718  *  drivers.
719  **/
720 s32 e1000_blink_led(struct e1000_hw *hw)
721 {
722 	if (hw->mac.ops.blink_led)
723 		return hw->mac.ops.blink_led(hw);
724 
725 	return E1000_SUCCESS;
726 }
727 
728 /**
729  *  e1000_id_led_init - store LED configurations in SW
730  *  @hw: pointer to the HW structure
731  *
732  *  Initializes the LED config in SW. This is a function pointer entry point
733  *  called by drivers.
734  **/
735 s32 e1000_id_led_init(struct e1000_hw *hw)
736 {
737 	if (hw->mac.ops.id_led_init)
738 		return hw->mac.ops.id_led_init(hw);
739 
740 	return E1000_SUCCESS;
741 }
742 
743 /**
744  *  e1000_led_on - Turn on SW controllable LED
745  *  @hw: pointer to the HW structure
746  *
747  *  Turns the SW defined LED on. This is a function pointer entry point
748  *  called by drivers.
749  **/
750 s32 e1000_led_on(struct e1000_hw *hw)
751 {
752 	if (hw->mac.ops.led_on)
753 		return hw->mac.ops.led_on(hw);
754 
755 	return E1000_SUCCESS;
756 }
757 
758 /**
759  *  e1000_led_off - Turn off SW controllable LED
760  *  @hw: pointer to the HW structure
761  *
762  *  Turns the SW defined LED off. This is a function pointer entry point
763  *  called by drivers.
764  **/
765 s32 e1000_led_off(struct e1000_hw *hw)
766 {
767 	if (hw->mac.ops.led_off)
768 		return hw->mac.ops.led_off(hw);
769 
770 	return E1000_SUCCESS;
771 }
772 
773 /**
774  *  e1000_reset_adaptive - Reset adaptive IFS
775  *  @hw: pointer to the HW structure
776  *
777  *  Resets the adaptive IFS. Currently no func pointer exists and all
778  *  implementations are handled in the generic version of this function.
779  **/
780 void e1000_reset_adaptive(struct e1000_hw *hw)
781 {
782 	e1000_reset_adaptive_generic(hw);
783 }
784 
785 /**
786  *  e1000_update_adaptive - Update adaptive IFS
787  *  @hw: pointer to the HW structure
788  *
789  *  Updates adapter IFS. Currently no func pointer exists and all
790  *  implementations are handled in the generic version of this function.
791  **/
792 void e1000_update_adaptive(struct e1000_hw *hw)
793 {
794 	e1000_update_adaptive_generic(hw);
795 }
796 
797 /**
798  *  e1000_disable_pcie_master - Disable PCI-Express master access
799  *  @hw: pointer to the HW structure
800  *
801  *  Disables PCI-Express master access and verifies there are no pending
802  *  requests. Currently no func pointer exists and all implementations are
803  *  handled in the generic version of this function.
804  **/
805 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
806 {
807 	return e1000_disable_pcie_master_generic(hw);
808 }
809 
810 /**
811  *  e1000_config_collision_dist - Configure collision distance
812  *  @hw: pointer to the HW structure
813  *
814  *  Configures the collision distance to the default value and is used
815  *  during link setup.
816  **/
817 void e1000_config_collision_dist(struct e1000_hw *hw)
818 {
819 	if (hw->mac.ops.config_collision_dist)
820 		hw->mac.ops.config_collision_dist(hw);
821 }
822 
823 /**
824  *  e1000_rar_set - Sets a receive address register
825  *  @hw: pointer to the HW structure
826  *  @addr: address to set the RAR to
827  *  @index: the RAR to set
828  *
829  *  Sets a Receive Address Register (RAR) to the specified address.
830  **/
831 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
832 {
833 	if (hw->mac.ops.rar_set)
834 		hw->mac.ops.rar_set(hw, addr, index);
835 }
836 
837 /**
838  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
839  *  @hw: pointer to the HW structure
840  *
841  *  Ensures that the MDI/MDIX SW state is valid.
842  **/
843 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
844 {
845 	if (hw->mac.ops.validate_mdi_setting)
846 		return hw->mac.ops.validate_mdi_setting(hw);
847 
848 	return E1000_SUCCESS;
849 }
850 
851 /**
852  *  e1000_hash_mc_addr - Determines address location in multicast table
853  *  @hw: pointer to the HW structure
854  *  @mc_addr: Multicast address to hash.
855  *
856  *  This hashes an address to determine its location in the multicast
857  *  table. Currently no func pointer exists and all implementations
858  *  are handled in the generic version of this function.
859  **/
860 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
861 {
862 	return e1000_hash_mc_addr_generic(hw, mc_addr);
863 }
864 
865 /**
866  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
867  *  @hw: pointer to the HW structure
868  *
869  *  Enables packet filtering on transmit packets if manageability is enabled
870  *  and host interface is enabled.
871  *  Currently no func pointer exists and all implementations are handled in the
872  *  generic version of this function.
873  **/
874 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
875 {
876 	return e1000_enable_tx_pkt_filtering_generic(hw);
877 }
878 
879 /**
880  *  e1000_mng_host_if_write - Writes to the manageability host interface
881  *  @hw: pointer to the HW structure
882  *  @buffer: pointer to the host interface buffer
883  *  @length: size of the buffer
884  *  @offset: location in the buffer to write to
885  *  @sum: sum of the data (not checksum)
886  *
887  *  This function writes the buffer content at the offset given on the host if.
888  *  It also does alignment considerations to do the writes in most efficient
889  *  way.  Also fills up the sum of the buffer in *buffer parameter.
890  **/
891 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
892 			    u16 offset, u8 *sum)
893 {
894 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
895 }
896 
897 /**
898  *  e1000_mng_write_cmd_header - Writes manageability command header
899  *  @hw: pointer to the HW structure
900  *  @hdr: pointer to the host interface command header
901  *
902  *  Writes the command header after does the checksum calculation.
903  **/
904 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
905 			       struct e1000_host_mng_command_header *hdr)
906 {
907 	return e1000_mng_write_cmd_header_generic(hw, hdr);
908 }
909 
910 /**
911  *  e1000_mng_enable_host_if - Checks host interface is enabled
912  *  @hw: pointer to the HW structure
913  *
914  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
915  *
916  *  This function checks whether the HOST IF is enabled for command operation
917  *  and also checks whether the previous command is completed.  It busy waits
918  *  in case of previous command is not completed.
919  **/
920 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
921 {
922 	return e1000_mng_enable_host_if_generic(hw);
923 }
924 
925 /**
926  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
927  *  @hw: pointer to the HW structure
928  *  @itr: u32 indicating itr value
929  *
930  *  Set the OBFF timer based on the given interrupt rate.
931  **/
932 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
933 {
934 	if (hw->mac.ops.set_obff_timer)
935 		return hw->mac.ops.set_obff_timer(hw, itr);
936 
937 	return E1000_SUCCESS;
938 }
939 
940 /**
941  *  e1000_check_reset_block - Verifies PHY can be reset
942  *  @hw: pointer to the HW structure
943  *
944  *  Checks if the PHY is in a state that can be reset or if manageability
945  *  has it tied up. This is a function pointer entry point called by drivers.
946  **/
947 s32 e1000_check_reset_block(struct e1000_hw *hw)
948 {
949 	if (hw->phy.ops.check_reset_block)
950 		return hw->phy.ops.check_reset_block(hw);
951 
952 	return E1000_SUCCESS;
953 }
954 
955 /**
956  *  e1000_read_phy_reg - Reads PHY register
957  *  @hw: pointer to the HW structure
958  *  @offset: the register to read
959  *  @data: the buffer to store the 16-bit read.
960  *
961  *  Reads the PHY register and returns the value in data.
962  *  This is a function pointer entry point called by drivers.
963  **/
964 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
965 {
966 	if (hw->phy.ops.read_reg)
967 		return hw->phy.ops.read_reg(hw, offset, data);
968 
969 	return E1000_SUCCESS;
970 }
971 
972 /**
973  *  e1000_write_phy_reg - Writes PHY register
974  *  @hw: pointer to the HW structure
975  *  @offset: the register to write
976  *  @data: the value to write.
977  *
978  *  Writes the PHY register at offset with the value in data.
979  *  This is a function pointer entry point called by drivers.
980  **/
981 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
982 {
983 	if (hw->phy.ops.write_reg)
984 		return hw->phy.ops.write_reg(hw, offset, data);
985 
986 	return E1000_SUCCESS;
987 }
988 
989 /**
990  *  e1000_release_phy - Generic release PHY
991  *  @hw: pointer to the HW structure
992  *
993  *  Return if silicon family does not require a semaphore when accessing the
994  *  PHY.
995  **/
996 void e1000_release_phy(struct e1000_hw *hw)
997 {
998 	if (hw->phy.ops.release)
999 		hw->phy.ops.release(hw);
1000 }
1001 
1002 /**
1003  *  e1000_acquire_phy - Generic acquire PHY
1004  *  @hw: pointer to the HW structure
1005  *
1006  *  Return success if silicon family does not require a semaphore when
1007  *  accessing the PHY.
1008  **/
1009 s32 e1000_acquire_phy(struct e1000_hw *hw)
1010 {
1011 	if (hw->phy.ops.acquire)
1012 		return hw->phy.ops.acquire(hw);
1013 
1014 	return E1000_SUCCESS;
1015 }
1016 
1017 /**
1018  *  e1000_cfg_on_link_up - Configure PHY upon link up
1019  *  @hw: pointer to the HW structure
1020  **/
1021 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1022 {
1023 	if (hw->phy.ops.cfg_on_link_up)
1024 		return hw->phy.ops.cfg_on_link_up(hw);
1025 
1026 	return E1000_SUCCESS;
1027 }
1028 
1029 /**
1030  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1031  *  @hw: pointer to the HW structure
1032  *  @offset: the register to read
1033  *  @data: the location to store the 16-bit value read.
1034  *
1035  *  Reads a register out of the Kumeran interface. Currently no func pointer
1036  *  exists and all implementations are handled in the generic version of
1037  *  this function.
1038  **/
1039 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1040 {
1041 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1042 }
1043 
1044 /**
1045  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1046  *  @hw: pointer to the HW structure
1047  *  @offset: the register to write
1048  *  @data: the value to write.
1049  *
1050  *  Writes a register to the Kumeran interface. Currently no func pointer
1051  *  exists and all implementations are handled in the generic version of
1052  *  this function.
1053  **/
1054 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1055 {
1056 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1057 }
1058 
1059 /**
1060  *  e1000_get_cable_length - Retrieves cable length estimation
1061  *  @hw: pointer to the HW structure
1062  *
1063  *  This function estimates the cable length and stores them in
1064  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1065  *  entry point called by drivers.
1066  **/
1067 s32 e1000_get_cable_length(struct e1000_hw *hw)
1068 {
1069 	if (hw->phy.ops.get_cable_length)
1070 		return hw->phy.ops.get_cable_length(hw);
1071 
1072 	return E1000_SUCCESS;
1073 }
1074 
1075 /**
1076  *  e1000_get_phy_info - Retrieves PHY information from registers
1077  *  @hw: pointer to the HW structure
1078  *
1079  *  This function gets some information from various PHY registers and
1080  *  populates hw->phy values with it. This is a function pointer entry
1081  *  point called by drivers.
1082  **/
1083 s32 e1000_get_phy_info(struct e1000_hw *hw)
1084 {
1085 	if (hw->phy.ops.get_info)
1086 		return hw->phy.ops.get_info(hw);
1087 
1088 	return E1000_SUCCESS;
1089 }
1090 
1091 /**
1092  *  e1000_phy_hw_reset - Hard PHY reset
1093  *  @hw: pointer to the HW structure
1094  *
1095  *  Performs a hard PHY reset. This is a function pointer entry point called
1096  *  by drivers.
1097  **/
1098 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1099 {
1100 	if (hw->phy.ops.reset)
1101 		return hw->phy.ops.reset(hw);
1102 
1103 	return E1000_SUCCESS;
1104 }
1105 
1106 /**
1107  *  e1000_phy_commit - Soft PHY reset
1108  *  @hw: pointer to the HW structure
1109  *
1110  *  Performs a soft PHY reset on those that apply. This is a function pointer
1111  *  entry point called by drivers.
1112  **/
1113 s32 e1000_phy_commit(struct e1000_hw *hw)
1114 {
1115 	if (hw->phy.ops.commit)
1116 		return hw->phy.ops.commit(hw);
1117 
1118 	return E1000_SUCCESS;
1119 }
1120 
1121 /**
1122  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1123  *  @hw: pointer to the HW structure
1124  *  @active: boolean used to enable/disable lplu
1125  *
1126  *  Success returns 0, Failure returns 1
1127  *
1128  *  The low power link up (lplu) state is set to the power management level D0
1129  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1130  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1131  *  is used during Dx states where the power conservation is most important.
1132  *  During driver activity, SmartSpeed should be enabled so performance is
1133  *  maintained.  This is a function pointer entry point called by drivers.
1134  **/
1135 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1136 {
1137 	if (hw->phy.ops.set_d0_lplu_state)
1138 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1139 
1140 	return E1000_SUCCESS;
1141 }
1142 
1143 /**
1144  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1145  *  @hw: pointer to the HW structure
1146  *  @active: boolean used to enable/disable lplu
1147  *
1148  *  Success returns 0, Failure returns 1
1149  *
1150  *  The low power link up (lplu) state is set to the power management level D3
1151  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1152  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1153  *  is used during Dx states where the power conservation is most important.
1154  *  During driver activity, SmartSpeed should be enabled so performance is
1155  *  maintained.  This is a function pointer entry point called by drivers.
1156  **/
1157 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1158 {
1159 	if (hw->phy.ops.set_d3_lplu_state)
1160 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1161 
1162 	return E1000_SUCCESS;
1163 }
1164 
1165 /**
1166  *  e1000_read_mac_addr - Reads MAC address
1167  *  @hw: pointer to the HW structure
1168  *
1169  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1170  *  Currently no func pointer exists and all implementations are handled in the
1171  *  generic version of this function.
1172  **/
1173 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1174 {
1175 	if (hw->mac.ops.read_mac_addr)
1176 		return hw->mac.ops.read_mac_addr(hw);
1177 
1178 	return e1000_read_mac_addr_generic(hw);
1179 }
1180 
1181 /**
1182  *  e1000_read_pba_string - Read device part number string
1183  *  @hw: pointer to the HW structure
1184  *  @pba_num: pointer to device part number
1185  *  @pba_num_size: size of part number buffer
1186  *
1187  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1188  *  the value in pba_num.
1189  *  Currently no func pointer exists and all implementations are handled in the
1190  *  generic version of this function.
1191  **/
1192 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1193 {
1194 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1195 }
1196 
1197 /**
1198  *  e1000_read_pba_length - Read device part number string length
1199  *  @hw: pointer to the HW structure
1200  *  @pba_num_size: size of part number buffer
1201  *
1202  *  Reads the product board assembly (PBA) number length from the EEPROM and
1203  *  stores the value in pba_num.
1204  *  Currently no func pointer exists and all implementations are handled in the
1205  *  generic version of this function.
1206  **/
1207 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1208 {
1209 	return e1000_read_pba_length_generic(hw, pba_num_size);
1210 }
1211 
1212 /**
1213  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1214  *  @hw: pointer to the HW structure
1215  *
1216  *  Validates the NVM checksum is correct. This is a function pointer entry
1217  *  point called by drivers.
1218  **/
1219 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1220 {
1221 	if (hw->nvm.ops.validate)
1222 		return hw->nvm.ops.validate(hw);
1223 
1224 	return -E1000_ERR_CONFIG;
1225 }
1226 
1227 /**
1228  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1229  *  @hw: pointer to the HW structure
1230  *
1231  *  Updates the NVM checksum. Currently no func pointer exists and all
1232  *  implementations are handled in the generic version of this function.
1233  **/
1234 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1235 {
1236 	if (hw->nvm.ops.update)
1237 		return hw->nvm.ops.update(hw);
1238 
1239 	return -E1000_ERR_CONFIG;
1240 }
1241 
1242 /**
1243  *  e1000_reload_nvm - Reloads EEPROM
1244  *  @hw: pointer to the HW structure
1245  *
1246  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1247  *  extended control register.
1248  **/
1249 void e1000_reload_nvm(struct e1000_hw *hw)
1250 {
1251 	if (hw->nvm.ops.reload)
1252 		hw->nvm.ops.reload(hw);
1253 }
1254 
1255 /**
1256  *  e1000_read_nvm - Reads NVM (EEPROM)
1257  *  @hw: pointer to the HW structure
1258  *  @offset: the word offset to read
1259  *  @words: number of 16-bit words to read
1260  *  @data: pointer to the properly sized buffer for the data.
1261  *
1262  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1263  *  pointer entry point called by drivers.
1264  **/
1265 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1266 {
1267 	if (hw->nvm.ops.read)
1268 		return hw->nvm.ops.read(hw, offset, words, data);
1269 
1270 	return -E1000_ERR_CONFIG;
1271 }
1272 
1273 /**
1274  *  e1000_write_nvm - Writes to NVM (EEPROM)
1275  *  @hw: pointer to the HW structure
1276  *  @offset: the word offset to read
1277  *  @words: number of 16-bit words to write
1278  *  @data: pointer to the properly sized buffer for the data.
1279  *
1280  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1281  *  pointer entry point called by drivers.
1282  **/
1283 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1284 {
1285 	if (hw->nvm.ops.write)
1286 		return hw->nvm.ops.write(hw, offset, words, data);
1287 
1288 	return E1000_SUCCESS;
1289 }
1290 
1291 /**
1292  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1293  *  @hw: pointer to the HW structure
1294  *  @reg: 32bit register offset
1295  *  @offset: the register to write
1296  *  @data: the value to write.
1297  *
1298  *  Writes the PHY register at offset with the value in data.
1299  *  This is a function pointer entry point called by drivers.
1300  **/
1301 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1302 			      u8 data)
1303 {
1304 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1305 }
1306 
1307 /**
1308  * e1000_power_up_phy - Restores link in case of PHY power down
1309  * @hw: pointer to the HW structure
1310  *
1311  * The phy may be powered down to save power, to turn off link when the
1312  * driver is unloaded, or wake on lan is not enabled (among others).
1313  **/
1314 void e1000_power_up_phy(struct e1000_hw *hw)
1315 {
1316 	if (hw->phy.ops.power_up)
1317 		hw->phy.ops.power_up(hw);
1318 
1319 	e1000_setup_link(hw);
1320 }
1321 
1322 /**
1323  * e1000_power_down_phy - Power down PHY
1324  * @hw: pointer to the HW structure
1325  *
1326  * The phy may be powered down to save power, to turn off link when the
1327  * driver is unloaded, or wake on lan is not enabled (among others).
1328  **/
1329 void e1000_power_down_phy(struct e1000_hw *hw)
1330 {
1331 	if (hw->phy.ops.power_down)
1332 		hw->phy.ops.power_down(hw);
1333 }
1334 
1335 /**
1336  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Power on the optics and PCS.
1340  **/
1341 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1342 {
1343 	if (hw->mac.ops.power_up_serdes)
1344 		hw->mac.ops.power_up_serdes(hw);
1345 }
1346 
1347 /**
1348  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1349  *  @hw: pointer to the HW structure
1350  *
1351  *  Shutdown the optics and PCS on driver unload.
1352  **/
1353 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1354 {
1355 	if (hw->mac.ops.shutdown_serdes)
1356 		hw->mac.ops.shutdown_serdes(hw);
1357 }
1358 
1359