xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2011, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_82575EB_COPPER:
293 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
294 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
295 		mac->type = e1000_82575;
296 		break;
297 	case E1000_DEV_ID_82576:
298 	case E1000_DEV_ID_82576_FIBER:
299 	case E1000_DEV_ID_82576_SERDES:
300 	case E1000_DEV_ID_82576_QUAD_COPPER:
301 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
302 	case E1000_DEV_ID_82576_NS:
303 	case E1000_DEV_ID_82576_NS_SERDES:
304 	case E1000_DEV_ID_82576_SERDES_QUAD:
305 		mac->type = e1000_82576;
306 		break;
307 	case E1000_DEV_ID_82580_COPPER:
308 	case E1000_DEV_ID_82580_FIBER:
309 	case E1000_DEV_ID_82580_SERDES:
310 	case E1000_DEV_ID_82580_SGMII:
311 	case E1000_DEV_ID_82580_COPPER_DUAL:
312 	case E1000_DEV_ID_82580_QUAD_FIBER:
313 	case E1000_DEV_ID_DH89XXCC_SGMII:
314 	case E1000_DEV_ID_DH89XXCC_SERDES:
315 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
316 	case E1000_DEV_ID_DH89XXCC_SFP:
317 		mac->type = e1000_82580;
318 		break;
319 	case E1000_DEV_ID_I350_COPPER:
320 	case E1000_DEV_ID_I350_FIBER:
321 	case E1000_DEV_ID_I350_SERDES:
322 	case E1000_DEV_ID_I350_SGMII:
323 	case E1000_DEV_ID_I350_DA4:
324 		mac->type = e1000_i350;
325 		break;
326 	case E1000_DEV_ID_82576_VF:
327 		mac->type = e1000_vfadapt;
328 		break;
329 	case E1000_DEV_ID_I350_VF:
330 		mac->type = e1000_vfadapt_i350;
331 		break;
332 	default:
333 		/* Should never have loaded on this device */
334 		ret_val = -E1000_ERR_MAC_INIT;
335 		break;
336 	}
337 
338 	return ret_val;
339 }
340 
341 /**
342  *  e1000_setup_init_funcs - Initializes function pointers
343  *  @hw: pointer to the HW structure
344  *  @init_device: TRUE will initialize the rest of the function pointers
345  *		  getting the device ready for use.  FALSE will only set
346  *		  MAC type and the function pointers for the other init
347  *		  functions.  Passing FALSE will not generate any hardware
348  *		  reads or writes.
349  *
350  *  This function must be called by a driver in order to use the rest
351  *  of the 'shared' code files. Called by drivers only.
352  **/
353 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
354 {
355 	s32 ret_val;
356 
357 	/* Can't do much good without knowing the MAC type. */
358 	ret_val = e1000_set_mac_type(hw);
359 	if (ret_val) {
360 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
361 		goto out;
362 	}
363 
364 	if (!hw->hw_addr) {
365 		DEBUGOUT("ERROR: Registers not mapped\n");
366 		ret_val = -E1000_ERR_CONFIG;
367 		goto out;
368 	}
369 
370 	/*
371 	 * Init function pointers to generic implementations. We do this first
372 	 * allowing a driver module to override it afterward.
373 	 */
374 	e1000_init_mac_ops_generic(hw);
375 	e1000_init_phy_ops_generic(hw);
376 	e1000_init_nvm_ops_generic(hw);
377 	e1000_init_mbx_ops_generic(hw);
378 
379 	/*
380 	 * Set up the init function pointers. These are functions within the
381 	 * adapter family file that sets up function pointers for the rest of
382 	 * the functions in that family.
383 	 */
384 	switch (hw->mac.type) {
385 	case e1000_82542:
386 		e1000_init_function_pointers_82542(hw);
387 		break;
388 	case e1000_82543:
389 	case e1000_82544:
390 		e1000_init_function_pointers_82543(hw);
391 		break;
392 	case e1000_82540:
393 	case e1000_82545:
394 	case e1000_82545_rev_3:
395 	case e1000_82546:
396 	case e1000_82546_rev_3:
397 		e1000_init_function_pointers_82540(hw);
398 		break;
399 	case e1000_82541:
400 	case e1000_82541_rev_2:
401 	case e1000_82547:
402 	case e1000_82547_rev_2:
403 		e1000_init_function_pointers_82541(hw);
404 		break;
405 	case e1000_82571:
406 	case e1000_82572:
407 	case e1000_82573:
408 	case e1000_82574:
409 	case e1000_82583:
410 		e1000_init_function_pointers_82571(hw);
411 		break;
412 	case e1000_80003es2lan:
413 		e1000_init_function_pointers_80003es2lan(hw);
414 		break;
415 	case e1000_ich8lan:
416 	case e1000_ich9lan:
417 	case e1000_ich10lan:
418 	case e1000_pchlan:
419 	case e1000_pch2lan:
420 		e1000_init_function_pointers_ich8lan(hw);
421 		break;
422 	case e1000_82575:
423 	case e1000_82576:
424 	case e1000_82580:
425 	case e1000_i350:
426 		e1000_init_function_pointers_82575(hw);
427 		break;
428 	case e1000_vfadapt:
429 		e1000_init_function_pointers_vf(hw);
430 		break;
431 	case e1000_vfadapt_i350:
432 		e1000_init_function_pointers_vf(hw);
433 		break;
434 	default:
435 		DEBUGOUT("Hardware not supported\n");
436 		ret_val = -E1000_ERR_CONFIG;
437 		break;
438 	}
439 
440 	/*
441 	 * Initialize the rest of the function pointers. These require some
442 	 * register reads/writes in some cases.
443 	 */
444 	if (!(ret_val) && init_device) {
445 		ret_val = e1000_init_mac_params(hw);
446 		if (ret_val)
447 			goto out;
448 
449 		ret_val = e1000_init_nvm_params(hw);
450 		if (ret_val)
451 			goto out;
452 
453 		ret_val = e1000_init_phy_params(hw);
454 		if (ret_val)
455 			goto out;
456 
457 		ret_val = e1000_init_mbx_params(hw);
458 		if (ret_val)
459 			goto out;
460 	}
461 
462 out:
463 	return ret_val;
464 }
465 
466 /**
467  *  e1000_get_bus_info - Obtain bus information for adapter
468  *  @hw: pointer to the HW structure
469  *
470  *  This will obtain information about the HW bus for which the
471  *  adapter is attached and stores it in the hw structure. This is a
472  *  function pointer entry point called by drivers.
473  **/
474 s32 e1000_get_bus_info(struct e1000_hw *hw)
475 {
476 	if (hw->mac.ops.get_bus_info)
477 		return hw->mac.ops.get_bus_info(hw);
478 
479 	return E1000_SUCCESS;
480 }
481 
482 /**
483  *  e1000_clear_vfta - Clear VLAN filter table
484  *  @hw: pointer to the HW structure
485  *
486  *  This clears the VLAN filter table on the adapter. This is a function
487  *  pointer entry point called by drivers.
488  **/
489 void e1000_clear_vfta(struct e1000_hw *hw)
490 {
491 	if (hw->mac.ops.clear_vfta)
492 		hw->mac.ops.clear_vfta(hw);
493 }
494 
495 /**
496  *  e1000_write_vfta - Write value to VLAN filter table
497  *  @hw: pointer to the HW structure
498  *  @offset: the 32-bit offset in which to write the value to.
499  *  @value: the 32-bit value to write at location offset.
500  *
501  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
502  *  table. This is a function pointer entry point called by drivers.
503  **/
504 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
505 {
506 	if (hw->mac.ops.write_vfta)
507 		hw->mac.ops.write_vfta(hw, offset, value);
508 }
509 
510 /**
511  *  e1000_update_mc_addr_list - Update Multicast addresses
512  *  @hw: pointer to the HW structure
513  *  @mc_addr_list: array of multicast addresses to program
514  *  @mc_addr_count: number of multicast addresses to program
515  *
516  *  Updates the Multicast Table Array.
517  *  The caller must have a packed mc_addr_list of multicast addresses.
518  **/
519 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
520 			       u32 mc_addr_count)
521 {
522 	if (hw->mac.ops.update_mc_addr_list)
523 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
524 						mc_addr_count);
525 }
526 
527 /**
528  *  e1000_force_mac_fc - Force MAC flow control
529  *  @hw: pointer to the HW structure
530  *
531  *  Force the MAC's flow control settings. Currently no func pointer exists
532  *  and all implementations are handled in the generic version of this
533  *  function.
534  **/
535 s32 e1000_force_mac_fc(struct e1000_hw *hw)
536 {
537 	return e1000_force_mac_fc_generic(hw);
538 }
539 
540 /**
541  *  e1000_check_for_link - Check/Store link connection
542  *  @hw: pointer to the HW structure
543  *
544  *  This checks the link condition of the adapter and stores the
545  *  results in the hw->mac structure. This is a function pointer entry
546  *  point called by drivers.
547  **/
548 s32 e1000_check_for_link(struct e1000_hw *hw)
549 {
550 	if (hw->mac.ops.check_for_link)
551 		return hw->mac.ops.check_for_link(hw);
552 
553 	return -E1000_ERR_CONFIG;
554 }
555 
556 /**
557  *  e1000_check_mng_mode - Check management mode
558  *  @hw: pointer to the HW structure
559  *
560  *  This checks if the adapter has manageability enabled.
561  *  This is a function pointer entry point called by drivers.
562  **/
563 bool e1000_check_mng_mode(struct e1000_hw *hw)
564 {
565 	if (hw->mac.ops.check_mng_mode)
566 		return hw->mac.ops.check_mng_mode(hw);
567 
568 	return FALSE;
569 }
570 
571 /**
572  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
573  *  @hw: pointer to the HW structure
574  *  @buffer: pointer to the host interface
575  *  @length: size of the buffer
576  *
577  *  Writes the DHCP information to the host interface.
578  **/
579 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
580 {
581 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
582 }
583 
584 /**
585  *  e1000_reset_hw - Reset hardware
586  *  @hw: pointer to the HW structure
587  *
588  *  This resets the hardware into a known state. This is a function pointer
589  *  entry point called by drivers.
590  **/
591 s32 e1000_reset_hw(struct e1000_hw *hw)
592 {
593 	if (hw->mac.ops.reset_hw)
594 		return hw->mac.ops.reset_hw(hw);
595 
596 	return -E1000_ERR_CONFIG;
597 }
598 
599 /**
600  *  e1000_init_hw - Initialize hardware
601  *  @hw: pointer to the HW structure
602  *
603  *  This inits the hardware readying it for operation. This is a function
604  *  pointer entry point called by drivers.
605  **/
606 s32 e1000_init_hw(struct e1000_hw *hw)
607 {
608 	if (hw->mac.ops.init_hw)
609 		return hw->mac.ops.init_hw(hw);
610 
611 	return -E1000_ERR_CONFIG;
612 }
613 
614 /**
615  *  e1000_setup_link - Configures link and flow control
616  *  @hw: pointer to the HW structure
617  *
618  *  This configures link and flow control settings for the adapter. This
619  *  is a function pointer entry point called by drivers. While modules can
620  *  also call this, they probably call their own version of this function.
621  **/
622 s32 e1000_setup_link(struct e1000_hw *hw)
623 {
624 	if (hw->mac.ops.setup_link)
625 		return hw->mac.ops.setup_link(hw);
626 
627 	return -E1000_ERR_CONFIG;
628 }
629 
630 /**
631  *  e1000_get_speed_and_duplex - Returns current speed and duplex
632  *  @hw: pointer to the HW structure
633  *  @speed: pointer to a 16-bit value to store the speed
634  *  @duplex: pointer to a 16-bit value to store the duplex.
635  *
636  *  This returns the speed and duplex of the adapter in the two 'out'
637  *  variables passed in. This is a function pointer entry point called
638  *  by drivers.
639  **/
640 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
641 {
642 	if (hw->mac.ops.get_link_up_info)
643 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
644 
645 	return -E1000_ERR_CONFIG;
646 }
647 
648 /**
649  *  e1000_setup_led - Configures SW controllable LED
650  *  @hw: pointer to the HW structure
651  *
652  *  This prepares the SW controllable LED for use and saves the current state
653  *  of the LED so it can be later restored. This is a function pointer entry
654  *  point called by drivers.
655  **/
656 s32 e1000_setup_led(struct e1000_hw *hw)
657 {
658 	if (hw->mac.ops.setup_led)
659 		return hw->mac.ops.setup_led(hw);
660 
661 	return E1000_SUCCESS;
662 }
663 
664 /**
665  *  e1000_cleanup_led - Restores SW controllable LED
666  *  @hw: pointer to the HW structure
667  *
668  *  This restores the SW controllable LED to the value saved off by
669  *  e1000_setup_led. This is a function pointer entry point called by drivers.
670  **/
671 s32 e1000_cleanup_led(struct e1000_hw *hw)
672 {
673 	if (hw->mac.ops.cleanup_led)
674 		return hw->mac.ops.cleanup_led(hw);
675 
676 	return E1000_SUCCESS;
677 }
678 
679 /**
680  *  e1000_blink_led - Blink SW controllable LED
681  *  @hw: pointer to the HW structure
682  *
683  *  This starts the adapter LED blinking. Request the LED to be setup first
684  *  and cleaned up after. This is a function pointer entry point called by
685  *  drivers.
686  **/
687 s32 e1000_blink_led(struct e1000_hw *hw)
688 {
689 	if (hw->mac.ops.blink_led)
690 		return hw->mac.ops.blink_led(hw);
691 
692 	return E1000_SUCCESS;
693 }
694 
695 /**
696  *  e1000_id_led_init - store LED configurations in SW
697  *  @hw: pointer to the HW structure
698  *
699  *  Initializes the LED config in SW. This is a function pointer entry point
700  *  called by drivers.
701  **/
702 s32 e1000_id_led_init(struct e1000_hw *hw)
703 {
704 	if (hw->mac.ops.id_led_init)
705 		return hw->mac.ops.id_led_init(hw);
706 
707 	return E1000_SUCCESS;
708 }
709 
710 /**
711  *  e1000_led_on - Turn on SW controllable LED
712  *  @hw: pointer to the HW structure
713  *
714  *  Turns the SW defined LED on. This is a function pointer entry point
715  *  called by drivers.
716  **/
717 s32 e1000_led_on(struct e1000_hw *hw)
718 {
719 	if (hw->mac.ops.led_on)
720 		return hw->mac.ops.led_on(hw);
721 
722 	return E1000_SUCCESS;
723 }
724 
725 /**
726  *  e1000_led_off - Turn off SW controllable LED
727  *  @hw: pointer to the HW structure
728  *
729  *  Turns the SW defined LED off. This is a function pointer entry point
730  *  called by drivers.
731  **/
732 s32 e1000_led_off(struct e1000_hw *hw)
733 {
734 	if (hw->mac.ops.led_off)
735 		return hw->mac.ops.led_off(hw);
736 
737 	return E1000_SUCCESS;
738 }
739 
740 /**
741  *  e1000_reset_adaptive - Reset adaptive IFS
742  *  @hw: pointer to the HW structure
743  *
744  *  Resets the adaptive IFS. Currently no func pointer exists and all
745  *  implementations are handled in the generic version of this function.
746  **/
747 void e1000_reset_adaptive(struct e1000_hw *hw)
748 {
749 	e1000_reset_adaptive_generic(hw);
750 }
751 
752 /**
753  *  e1000_update_adaptive - Update adaptive IFS
754  *  @hw: pointer to the HW structure
755  *
756  *  Updates adapter IFS. Currently no func pointer exists and all
757  *  implementations are handled in the generic version of this function.
758  **/
759 void e1000_update_adaptive(struct e1000_hw *hw)
760 {
761 	e1000_update_adaptive_generic(hw);
762 }
763 
764 /**
765  *  e1000_disable_pcie_master - Disable PCI-Express master access
766  *  @hw: pointer to the HW structure
767  *
768  *  Disables PCI-Express master access and verifies there are no pending
769  *  requests. Currently no func pointer exists and all implementations are
770  *  handled in the generic version of this function.
771  **/
772 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
773 {
774 	return e1000_disable_pcie_master_generic(hw);
775 }
776 
777 /**
778  *  e1000_config_collision_dist - Configure collision distance
779  *  @hw: pointer to the HW structure
780  *
781  *  Configures the collision distance to the default value and is used
782  *  during link setup.
783  **/
784 void e1000_config_collision_dist(struct e1000_hw *hw)
785 {
786 	if (hw->mac.ops.config_collision_dist)
787 		hw->mac.ops.config_collision_dist(hw);
788 }
789 
790 /**
791  *  e1000_rar_set - Sets a receive address register
792  *  @hw: pointer to the HW structure
793  *  @addr: address to set the RAR to
794  *  @index: the RAR to set
795  *
796  *  Sets a Receive Address Register (RAR) to the specified address.
797  **/
798 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
799 {
800 	if (hw->mac.ops.rar_set)
801 		hw->mac.ops.rar_set(hw, addr, index);
802 }
803 
804 /**
805  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
806  *  @hw: pointer to the HW structure
807  *
808  *  Ensures that the MDI/MDIX SW state is valid.
809  **/
810 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
811 {
812 	if (hw->mac.ops.validate_mdi_setting)
813 		return hw->mac.ops.validate_mdi_setting(hw);
814 
815 	return E1000_SUCCESS;
816 }
817 
818 /**
819  *  e1000_hash_mc_addr - Determines address location in multicast table
820  *  @hw: pointer to the HW structure
821  *  @mc_addr: Multicast address to hash.
822  *
823  *  This hashes an address to determine its location in the multicast
824  *  table. Currently no func pointer exists and all implementations
825  *  are handled in the generic version of this function.
826  **/
827 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
828 {
829 	return e1000_hash_mc_addr_generic(hw, mc_addr);
830 }
831 
832 /**
833  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
834  *  @hw: pointer to the HW structure
835  *
836  *  Enables packet filtering on transmit packets if manageability is enabled
837  *  and host interface is enabled.
838  *  Currently no func pointer exists and all implementations are handled in the
839  *  generic version of this function.
840  **/
841 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
842 {
843 	return e1000_enable_tx_pkt_filtering_generic(hw);
844 }
845 
846 /**
847  *  e1000_mng_host_if_write - Writes to the manageability host interface
848  *  @hw: pointer to the HW structure
849  *  @buffer: pointer to the host interface buffer
850  *  @length: size of the buffer
851  *  @offset: location in the buffer to write to
852  *  @sum: sum of the data (not checksum)
853  *
854  *  This function writes the buffer content at the offset given on the host if.
855  *  It also does alignment considerations to do the writes in most efficient
856  *  way.  Also fills up the sum of the buffer in *buffer parameter.
857  **/
858 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
859 			    u16 offset, u8 *sum)
860 {
861 	if (hw->mac.ops.mng_host_if_write)
862 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
863 						     offset, sum);
864 
865 	return E1000_NOT_IMPLEMENTED;
866 }
867 
868 /**
869  *  e1000_mng_write_cmd_header - Writes manageability command header
870  *  @hw: pointer to the HW structure
871  *  @hdr: pointer to the host interface command header
872  *
873  *  Writes the command header after does the checksum calculation.
874  **/
875 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
876 			       struct e1000_host_mng_command_header *hdr)
877 {
878 	if (hw->mac.ops.mng_write_cmd_header)
879 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
880 
881 	return E1000_NOT_IMPLEMENTED;
882 }
883 
884 /**
885  *  e1000_mng_enable_host_if - Checks host interface is enabled
886  *  @hw: pointer to the HW structure
887  *
888  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
889  *
890  *  This function checks whether the HOST IF is enabled for command operation
891  *  and also checks whether the previous command is completed.  It busy waits
892  *  in case of previous command is not completed.
893  **/
894 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
895 {
896 	if (hw->mac.ops.mng_enable_host_if)
897 		return hw->mac.ops.mng_enable_host_if(hw);
898 
899 	return E1000_NOT_IMPLEMENTED;
900 }
901 
902 /**
903  *  e1000_wait_autoneg - Waits for autonegotiation completion
904  *  @hw: pointer to the HW structure
905  *
906  *  Waits for autoneg to complete. Currently no func pointer exists and all
907  *  implementations are handled in the generic version of this function.
908  **/
909 s32 e1000_wait_autoneg(struct e1000_hw *hw)
910 {
911 	if (hw->mac.ops.wait_autoneg)
912 		return hw->mac.ops.wait_autoneg(hw);
913 
914 	return E1000_SUCCESS;
915 }
916 
917 /**
918  *  e1000_check_reset_block - Verifies PHY can be reset
919  *  @hw: pointer to the HW structure
920  *
921  *  Checks if the PHY is in a state that can be reset or if manageability
922  *  has it tied up. This is a function pointer entry point called by drivers.
923  **/
924 s32 e1000_check_reset_block(struct e1000_hw *hw)
925 {
926 	if (hw->phy.ops.check_reset_block)
927 		return hw->phy.ops.check_reset_block(hw);
928 
929 	return E1000_SUCCESS;
930 }
931 
932 /**
933  *  e1000_read_phy_reg - Reads PHY register
934  *  @hw: pointer to the HW structure
935  *  @offset: the register to read
936  *  @data: the buffer to store the 16-bit read.
937  *
938  *  Reads the PHY register and returns the value in data.
939  *  This is a function pointer entry point called by drivers.
940  **/
941 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
942 {
943 	if (hw->phy.ops.read_reg)
944 		return hw->phy.ops.read_reg(hw, offset, data);
945 
946 	return E1000_SUCCESS;
947 }
948 
949 /**
950  *  e1000_write_phy_reg - Writes PHY register
951  *  @hw: pointer to the HW structure
952  *  @offset: the register to write
953  *  @data: the value to write.
954  *
955  *  Writes the PHY register at offset with the value in data.
956  *  This is a function pointer entry point called by drivers.
957  **/
958 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
959 {
960 	if (hw->phy.ops.write_reg)
961 		return hw->phy.ops.write_reg(hw, offset, data);
962 
963 	return E1000_SUCCESS;
964 }
965 
966 /**
967  *  e1000_release_phy - Generic release PHY
968  *  @hw: pointer to the HW structure
969  *
970  *  Return if silicon family does not require a semaphore when accessing the
971  *  PHY.
972  **/
973 void e1000_release_phy(struct e1000_hw *hw)
974 {
975 	if (hw->phy.ops.release)
976 		hw->phy.ops.release(hw);
977 }
978 
979 /**
980  *  e1000_acquire_phy - Generic acquire PHY
981  *  @hw: pointer to the HW structure
982  *
983  *  Return success if silicon family does not require a semaphore when
984  *  accessing the PHY.
985  **/
986 s32 e1000_acquire_phy(struct e1000_hw *hw)
987 {
988 	if (hw->phy.ops.acquire)
989 		return hw->phy.ops.acquire(hw);
990 
991 	return E1000_SUCCESS;
992 }
993 
994 /**
995  *  e1000_cfg_on_link_up - Configure PHY upon link up
996  *  @hw: pointer to the HW structure
997  **/
998 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
999 {
1000 	if (hw->phy.ops.cfg_on_link_up)
1001 		return hw->phy.ops.cfg_on_link_up(hw);
1002 
1003 	return E1000_SUCCESS;
1004 }
1005 
1006 /**
1007  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1008  *  @hw: pointer to the HW structure
1009  *  @offset: the register to read
1010  *  @data: the location to store the 16-bit value read.
1011  *
1012  *  Reads a register out of the Kumeran interface. Currently no func pointer
1013  *  exists and all implementations are handled in the generic version of
1014  *  this function.
1015  **/
1016 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1017 {
1018 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1019 }
1020 
1021 /**
1022  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1023  *  @hw: pointer to the HW structure
1024  *  @offset: the register to write
1025  *  @data: the value to write.
1026  *
1027  *  Writes a register to the Kumeran interface. Currently no func pointer
1028  *  exists and all implementations are handled in the generic version of
1029  *  this function.
1030  **/
1031 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1032 {
1033 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1034 }
1035 
1036 /**
1037  *  e1000_get_cable_length - Retrieves cable length estimation
1038  *  @hw: pointer to the HW structure
1039  *
1040  *  This function estimates the cable length and stores them in
1041  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1042  *  entry point called by drivers.
1043  **/
1044 s32 e1000_get_cable_length(struct e1000_hw *hw)
1045 {
1046 	if (hw->phy.ops.get_cable_length)
1047 		return hw->phy.ops.get_cable_length(hw);
1048 
1049 	return E1000_SUCCESS;
1050 }
1051 
1052 /**
1053  *  e1000_get_phy_info - Retrieves PHY information from registers
1054  *  @hw: pointer to the HW structure
1055  *
1056  *  This function gets some information from various PHY registers and
1057  *  populates hw->phy values with it. This is a function pointer entry
1058  *  point called by drivers.
1059  **/
1060 s32 e1000_get_phy_info(struct e1000_hw *hw)
1061 {
1062 	if (hw->phy.ops.get_info)
1063 		return hw->phy.ops.get_info(hw);
1064 
1065 	return E1000_SUCCESS;
1066 }
1067 
1068 /**
1069  *  e1000_phy_hw_reset - Hard PHY reset
1070  *  @hw: pointer to the HW structure
1071  *
1072  *  Performs a hard PHY reset. This is a function pointer entry point called
1073  *  by drivers.
1074  **/
1075 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1076 {
1077 	if (hw->phy.ops.reset)
1078 		return hw->phy.ops.reset(hw);
1079 
1080 	return E1000_SUCCESS;
1081 }
1082 
1083 /**
1084  *  e1000_phy_commit - Soft PHY reset
1085  *  @hw: pointer to the HW structure
1086  *
1087  *  Performs a soft PHY reset on those that apply. This is a function pointer
1088  *  entry point called by drivers.
1089  **/
1090 s32 e1000_phy_commit(struct e1000_hw *hw)
1091 {
1092 	if (hw->phy.ops.commit)
1093 		return hw->phy.ops.commit(hw);
1094 
1095 	return E1000_SUCCESS;
1096 }
1097 
1098 /**
1099  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1100  *  @hw: pointer to the HW structure
1101  *  @active: boolean used to enable/disable lplu
1102  *
1103  *  Success returns 0, Failure returns 1
1104  *
1105  *  The low power link up (lplu) state is set to the power management level D0
1106  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1107  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1108  *  is used during Dx states where the power conservation is most important.
1109  *  During driver activity, SmartSpeed should be enabled so performance is
1110  *  maintained.  This is a function pointer entry point called by drivers.
1111  **/
1112 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1113 {
1114 	if (hw->phy.ops.set_d0_lplu_state)
1115 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1116 
1117 	return E1000_SUCCESS;
1118 }
1119 
1120 /**
1121  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1122  *  @hw: pointer to the HW structure
1123  *  @active: boolean used to enable/disable lplu
1124  *
1125  *  Success returns 0, Failure returns 1
1126  *
1127  *  The low power link up (lplu) state is set to the power management level D3
1128  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1129  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1130  *  is used during Dx states where the power conservation is most important.
1131  *  During driver activity, SmartSpeed should be enabled so performance is
1132  *  maintained.  This is a function pointer entry point called by drivers.
1133  **/
1134 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1135 {
1136 	if (hw->phy.ops.set_d3_lplu_state)
1137 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1138 
1139 	return E1000_SUCCESS;
1140 }
1141 
1142 /**
1143  *  e1000_read_mac_addr - Reads MAC address
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1147  *  Currently no func pointer exists and all implementations are handled in the
1148  *  generic version of this function.
1149  **/
1150 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1151 {
1152 	if (hw->mac.ops.read_mac_addr)
1153 		return hw->mac.ops.read_mac_addr(hw);
1154 
1155 	return e1000_read_mac_addr_generic(hw);
1156 }
1157 
1158 /**
1159  *  e1000_read_pba_string - Read device part number string
1160  *  @hw: pointer to the HW structure
1161  *  @pba_num: pointer to device part number
1162  *  @pba_num_size: size of part number buffer
1163  *
1164  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1165  *  the value in pba_num.
1166  *  Currently no func pointer exists and all implementations are handled in the
1167  *  generic version of this function.
1168  **/
1169 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1170 {
1171 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1172 }
1173 
1174 /**
1175  *  e1000_read_pba_length - Read device part number string length
1176  *  @hw: pointer to the HW structure
1177  *  @pba_num_size: size of part number buffer
1178  *
1179  *  Reads the product board assembly (PBA) number length from the EEPROM and
1180  *  stores the value in pba_num.
1181  *  Currently no func pointer exists and all implementations are handled in the
1182  *  generic version of this function.
1183  **/
1184 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1185 {
1186 	return e1000_read_pba_length_generic(hw, pba_num_size);
1187 }
1188 
1189 /**
1190  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1191  *  @hw: pointer to the HW structure
1192  *
1193  *  Validates the NVM checksum is correct. This is a function pointer entry
1194  *  point called by drivers.
1195  **/
1196 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1197 {
1198 	if (hw->nvm.ops.validate)
1199 		return hw->nvm.ops.validate(hw);
1200 
1201 	return -E1000_ERR_CONFIG;
1202 }
1203 
1204 /**
1205  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1206  *  @hw: pointer to the HW structure
1207  *
1208  *  Updates the NVM checksum. Currently no func pointer exists and all
1209  *  implementations are handled in the generic version of this function.
1210  **/
1211 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1212 {
1213 	if (hw->nvm.ops.update)
1214 		return hw->nvm.ops.update(hw);
1215 
1216 	return -E1000_ERR_CONFIG;
1217 }
1218 
1219 /**
1220  *  e1000_reload_nvm - Reloads EEPROM
1221  *  @hw: pointer to the HW structure
1222  *
1223  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1224  *  extended control register.
1225  **/
1226 void e1000_reload_nvm(struct e1000_hw *hw)
1227 {
1228 	if (hw->nvm.ops.reload)
1229 		hw->nvm.ops.reload(hw);
1230 }
1231 
1232 /**
1233  *  e1000_read_nvm - Reads NVM (EEPROM)
1234  *  @hw: pointer to the HW structure
1235  *  @offset: the word offset to read
1236  *  @words: number of 16-bit words to read
1237  *  @data: pointer to the properly sized buffer for the data.
1238  *
1239  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1240  *  pointer entry point called by drivers.
1241  **/
1242 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1243 {
1244 	if (hw->nvm.ops.read)
1245 		return hw->nvm.ops.read(hw, offset, words, data);
1246 
1247 	return -E1000_ERR_CONFIG;
1248 }
1249 
1250 /**
1251  *  e1000_write_nvm - Writes to NVM (EEPROM)
1252  *  @hw: pointer to the HW structure
1253  *  @offset: the word offset to read
1254  *  @words: number of 16-bit words to write
1255  *  @data: pointer to the properly sized buffer for the data.
1256  *
1257  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1258  *  pointer entry point called by drivers.
1259  **/
1260 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1261 {
1262 	if (hw->nvm.ops.write)
1263 		return hw->nvm.ops.write(hw, offset, words, data);
1264 
1265 	return E1000_SUCCESS;
1266 }
1267 
1268 /**
1269  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1270  *  @hw: pointer to the HW structure
1271  *  @reg: 32bit register offset
1272  *  @offset: the register to write
1273  *  @data: the value to write.
1274  *
1275  *  Writes the PHY register at offset with the value in data.
1276  *  This is a function pointer entry point called by drivers.
1277  **/
1278 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1279 			      u8 data)
1280 {
1281 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1282 }
1283 
1284 /**
1285  * e1000_power_up_phy - Restores link in case of PHY power down
1286  * @hw: pointer to the HW structure
1287  *
1288  * The phy may be powered down to save power, to turn off link when the
1289  * driver is unloaded, or wake on lan is not enabled (among others).
1290  **/
1291 void e1000_power_up_phy(struct e1000_hw *hw)
1292 {
1293 	if (hw->phy.ops.power_up)
1294 		hw->phy.ops.power_up(hw);
1295 
1296 	e1000_setup_link(hw);
1297 }
1298 
1299 /**
1300  * e1000_power_down_phy - Power down PHY
1301  * @hw: pointer to the HW structure
1302  *
1303  * The phy may be powered down to save power, to turn off link when the
1304  * driver is unloaded, or wake on lan is not enabled (among others).
1305  **/
1306 void e1000_power_down_phy(struct e1000_hw *hw)
1307 {
1308 	if (hw->phy.ops.power_down)
1309 		hw->phy.ops.power_down(hw);
1310 }
1311 
1312 /**
1313  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Power on the optics and PCS.
1317  **/
1318 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1319 {
1320 	if (hw->mac.ops.power_up_serdes)
1321 		hw->mac.ops.power_up_serdes(hw);
1322 }
1323 
1324 /**
1325  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1326  *  @hw: pointer to the HW structure
1327  *
1328  *  Shutdown the optics and PCS on driver unload.
1329  **/
1330 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1331 {
1332 	if (hw->mac.ops.shutdown_serdes)
1333 		hw->mac.ops.shutdown_serdes(hw);
1334 }
1335 
1336