xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 8f861da99cb9865b2f1ef6098ad074150f368c23)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2010, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 	case E1000_DEV_ID_ICH10_HANKSVILLE:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_82575EB_COPPER:
294 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
295 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
296 	case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
297 		mac->type = e1000_82575;
298 		break;
299 	case E1000_DEV_ID_82576:
300 	case E1000_DEV_ID_82576_FIBER:
301 	case E1000_DEV_ID_82576_SERDES:
302 	case E1000_DEV_ID_82576_QUAD_COPPER:
303 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
304 	case E1000_DEV_ID_82576_NS:
305 	case E1000_DEV_ID_82576_NS_SERDES:
306 	case E1000_DEV_ID_82576_SERDES_QUAD:
307 		mac->type = e1000_82576;
308 		break;
309 	case E1000_DEV_ID_82580_COPPER:
310 	case E1000_DEV_ID_82580_FIBER:
311 	case E1000_DEV_ID_82580_SERDES:
312 	case E1000_DEV_ID_82580_SGMII:
313 	case E1000_DEV_ID_82580_COPPER_DUAL:
314 	case E1000_DEV_ID_82580_QUAD_FIBER:
315 	case E1000_DEV_ID_DH89XXCC_SGMII:
316 	case E1000_DEV_ID_DH89XXCC_SERDES:
317 		mac->type = e1000_82580;
318 		break;
319 	case E1000_DEV_ID_82576_VF:
320 		mac->type = e1000_vfadapt;
321 		break;
322 	default:
323 		/* Should never have loaded on this device */
324 		ret_val = -E1000_ERR_MAC_INIT;
325 		break;
326 	}
327 
328 	return ret_val;
329 }
330 
331 /**
332  *  e1000_setup_init_funcs - Initializes function pointers
333  *  @hw: pointer to the HW structure
334  *  @init_device: TRUE will initialize the rest of the function pointers
335  *                 getting the device ready for use.  FALSE will only set
336  *                 MAC type and the function pointers for the other init
337  *                 functions.  Passing FALSE will not generate any hardware
338  *                 reads or writes.
339  *
340  *  This function must be called by a driver in order to use the rest
341  *  of the 'shared' code files. Called by drivers only.
342  **/
343 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
344 {
345 	s32 ret_val;
346 
347 	/* Can't do much good without knowing the MAC type. */
348 	ret_val = e1000_set_mac_type(hw);
349 	if (ret_val) {
350 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
351 		goto out;
352 	}
353 
354 	if (!hw->hw_addr) {
355 		DEBUGOUT("ERROR: Registers not mapped\n");
356 		ret_val = -E1000_ERR_CONFIG;
357 		goto out;
358 	}
359 
360 	/*
361 	 * Init function pointers to generic implementations. We do this first
362 	 * allowing a driver module to override it afterward.
363 	 */
364 	e1000_init_mac_ops_generic(hw);
365 	e1000_init_phy_ops_generic(hw);
366 	e1000_init_nvm_ops_generic(hw);
367 	e1000_init_mbx_ops_generic(hw);
368 
369 	/*
370 	 * Set up the init function pointers. These are functions within the
371 	 * adapter family file that sets up function pointers for the rest of
372 	 * the functions in that family.
373 	 */
374 	switch (hw->mac.type) {
375 	case e1000_82542:
376 		e1000_init_function_pointers_82542(hw);
377 		break;
378 	case e1000_82543:
379 	case e1000_82544:
380 		e1000_init_function_pointers_82543(hw);
381 		break;
382 	case e1000_82540:
383 	case e1000_82545:
384 	case e1000_82545_rev_3:
385 	case e1000_82546:
386 	case e1000_82546_rev_3:
387 		e1000_init_function_pointers_82540(hw);
388 		break;
389 	case e1000_82541:
390 	case e1000_82541_rev_2:
391 	case e1000_82547:
392 	case e1000_82547_rev_2:
393 		e1000_init_function_pointers_82541(hw);
394 		break;
395 	case e1000_82571:
396 	case e1000_82572:
397 	case e1000_82573:
398 	case e1000_82574:
399 	case e1000_82583:
400 		e1000_init_function_pointers_82571(hw);
401 		break;
402 	case e1000_80003es2lan:
403 		e1000_init_function_pointers_80003es2lan(hw);
404 		break;
405 	case e1000_ich8lan:
406 	case e1000_ich9lan:
407 	case e1000_ich10lan:
408 	case e1000_pchlan:
409 	case e1000_pch2lan:
410 		e1000_init_function_pointers_ich8lan(hw);
411 		break;
412 	case e1000_82575:
413 	case e1000_82576:
414 	case e1000_82580:
415 		e1000_init_function_pointers_82575(hw);
416 		break;
417 	case e1000_vfadapt:
418 		e1000_init_function_pointers_vf(hw);
419 		break;
420 	default:
421 		DEBUGOUT("Hardware not supported\n");
422 		ret_val = -E1000_ERR_CONFIG;
423 		break;
424 	}
425 
426 	/*
427 	 * Initialize the rest of the function pointers. These require some
428 	 * register reads/writes in some cases.
429 	 */
430 	if (!(ret_val) && init_device) {
431 		ret_val = e1000_init_mac_params(hw);
432 		if (ret_val)
433 			goto out;
434 
435 		ret_val = e1000_init_nvm_params(hw);
436 		if (ret_val)
437 			goto out;
438 
439 		ret_val = e1000_init_phy_params(hw);
440 		if (ret_val)
441 			goto out;
442 
443 		ret_val = e1000_init_mbx_params(hw);
444 		if (ret_val)
445 			goto out;
446 	}
447 
448 out:
449 	return ret_val;
450 }
451 
452 /**
453  *  e1000_get_bus_info - Obtain bus information for adapter
454  *  @hw: pointer to the HW structure
455  *
456  *  This will obtain information about the HW bus for which the
457  *  adapter is attached and stores it in the hw structure. This is a
458  *  function pointer entry point called by drivers.
459  **/
460 s32 e1000_get_bus_info(struct e1000_hw *hw)
461 {
462 	if (hw->mac.ops.get_bus_info)
463 		return hw->mac.ops.get_bus_info(hw);
464 
465 	return E1000_SUCCESS;
466 }
467 
468 /**
469  *  e1000_clear_vfta - Clear VLAN filter table
470  *  @hw: pointer to the HW structure
471  *
472  *  This clears the VLAN filter table on the adapter. This is a function
473  *  pointer entry point called by drivers.
474  **/
475 void e1000_clear_vfta(struct e1000_hw *hw)
476 {
477 	if (hw->mac.ops.clear_vfta)
478 		hw->mac.ops.clear_vfta(hw);
479 }
480 
481 /**
482  *  e1000_write_vfta - Write value to VLAN filter table
483  *  @hw: pointer to the HW structure
484  *  @offset: the 32-bit offset in which to write the value to.
485  *  @value: the 32-bit value to write at location offset.
486  *
487  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
488  *  table. This is a function pointer entry point called by drivers.
489  **/
490 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
491 {
492 	if (hw->mac.ops.write_vfta)
493 		hw->mac.ops.write_vfta(hw, offset, value);
494 }
495 
496 /**
497  *  e1000_update_mc_addr_list - Update Multicast addresses
498  *  @hw: pointer to the HW structure
499  *  @mc_addr_list: array of multicast addresses to program
500  *  @mc_addr_count: number of multicast addresses to program
501  *
502  *  Updates the Multicast Table Array.
503  *  The caller must have a packed mc_addr_list of multicast addresses.
504  **/
505 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
506                                u32 mc_addr_count)
507 {
508 	if (hw->mac.ops.update_mc_addr_list)
509 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
510 		                                mc_addr_count);
511 }
512 
513 /**
514  *  e1000_force_mac_fc - Force MAC flow control
515  *  @hw: pointer to the HW structure
516  *
517  *  Force the MAC's flow control settings. Currently no func pointer exists
518  *  and all implementations are handled in the generic version of this
519  *  function.
520  **/
521 s32 e1000_force_mac_fc(struct e1000_hw *hw)
522 {
523 	return e1000_force_mac_fc_generic(hw);
524 }
525 
526 /**
527  *  e1000_check_for_link - Check/Store link connection
528  *  @hw: pointer to the HW structure
529  *
530  *  This checks the link condition of the adapter and stores the
531  *  results in the hw->mac structure. This is a function pointer entry
532  *  point called by drivers.
533  **/
534 s32 e1000_check_for_link(struct e1000_hw *hw)
535 {
536 	if (hw->mac.ops.check_for_link)
537 		return hw->mac.ops.check_for_link(hw);
538 
539 	return -E1000_ERR_CONFIG;
540 }
541 
542 /**
543  *  e1000_check_mng_mode - Check management mode
544  *  @hw: pointer to the HW structure
545  *
546  *  This checks if the adapter has manageability enabled.
547  *  This is a function pointer entry point called by drivers.
548  **/
549 bool e1000_check_mng_mode(struct e1000_hw *hw)
550 {
551 	if (hw->mac.ops.check_mng_mode)
552 		return hw->mac.ops.check_mng_mode(hw);
553 
554 	return FALSE;
555 }
556 
557 /**
558  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
559  *  @hw: pointer to the HW structure
560  *  @buffer: pointer to the host interface
561  *  @length: size of the buffer
562  *
563  *  Writes the DHCP information to the host interface.
564  **/
565 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
566 {
567 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
568 }
569 
570 /**
571  *  e1000_reset_hw - Reset hardware
572  *  @hw: pointer to the HW structure
573  *
574  *  This resets the hardware into a known state. This is a function pointer
575  *  entry point called by drivers.
576  **/
577 s32 e1000_reset_hw(struct e1000_hw *hw)
578 {
579 	if (hw->mac.ops.reset_hw)
580 		return hw->mac.ops.reset_hw(hw);
581 
582 	return -E1000_ERR_CONFIG;
583 }
584 
585 /**
586  *  e1000_init_hw - Initialize hardware
587  *  @hw: pointer to the HW structure
588  *
589  *  This inits the hardware readying it for operation. This is a function
590  *  pointer entry point called by drivers.
591  **/
592 s32 e1000_init_hw(struct e1000_hw *hw)
593 {
594 	if (hw->mac.ops.init_hw)
595 		return hw->mac.ops.init_hw(hw);
596 
597 	return -E1000_ERR_CONFIG;
598 }
599 
600 /**
601  *  e1000_setup_link - Configures link and flow control
602  *  @hw: pointer to the HW structure
603  *
604  *  This configures link and flow control settings for the adapter. This
605  *  is a function pointer entry point called by drivers. While modules can
606  *  also call this, they probably call their own version of this function.
607  **/
608 s32 e1000_setup_link(struct e1000_hw *hw)
609 {
610 	if (hw->mac.ops.setup_link)
611 		return hw->mac.ops.setup_link(hw);
612 
613 	return -E1000_ERR_CONFIG;
614 }
615 
616 /**
617  *  e1000_get_speed_and_duplex - Returns current speed and duplex
618  *  @hw: pointer to the HW structure
619  *  @speed: pointer to a 16-bit value to store the speed
620  *  @duplex: pointer to a 16-bit value to store the duplex.
621  *
622  *  This returns the speed and duplex of the adapter in the two 'out'
623  *  variables passed in. This is a function pointer entry point called
624  *  by drivers.
625  **/
626 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
627 {
628 	if (hw->mac.ops.get_link_up_info)
629 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
630 
631 	return -E1000_ERR_CONFIG;
632 }
633 
634 /**
635  *  e1000_setup_led - Configures SW controllable LED
636  *  @hw: pointer to the HW structure
637  *
638  *  This prepares the SW controllable LED for use and saves the current state
639  *  of the LED so it can be later restored. This is a function pointer entry
640  *  point called by drivers.
641  **/
642 s32 e1000_setup_led(struct e1000_hw *hw)
643 {
644 	if (hw->mac.ops.setup_led)
645 		return hw->mac.ops.setup_led(hw);
646 
647 	return E1000_SUCCESS;
648 }
649 
650 /**
651  *  e1000_cleanup_led - Restores SW controllable LED
652  *  @hw: pointer to the HW structure
653  *
654  *  This restores the SW controllable LED to the value saved off by
655  *  e1000_setup_led. This is a function pointer entry point called by drivers.
656  **/
657 s32 e1000_cleanup_led(struct e1000_hw *hw)
658 {
659 	if (hw->mac.ops.cleanup_led)
660 		return hw->mac.ops.cleanup_led(hw);
661 
662 	return E1000_SUCCESS;
663 }
664 
665 /**
666  *  e1000_blink_led - Blink SW controllable LED
667  *  @hw: pointer to the HW structure
668  *
669  *  This starts the adapter LED blinking. Request the LED to be setup first
670  *  and cleaned up after. This is a function pointer entry point called by
671  *  drivers.
672  **/
673 s32 e1000_blink_led(struct e1000_hw *hw)
674 {
675 	if (hw->mac.ops.blink_led)
676 		return hw->mac.ops.blink_led(hw);
677 
678 	return E1000_SUCCESS;
679 }
680 
681 /**
682  *  e1000_id_led_init - store LED configurations in SW
683  *  @hw: pointer to the HW structure
684  *
685  *  Initializes the LED config in SW. This is a function pointer entry point
686  *  called by drivers.
687  **/
688 s32 e1000_id_led_init(struct e1000_hw *hw)
689 {
690 	if (hw->mac.ops.id_led_init)
691 		return hw->mac.ops.id_led_init(hw);
692 
693 	return E1000_SUCCESS;
694 }
695 
696 /**
697  *  e1000_led_on - Turn on SW controllable LED
698  *  @hw: pointer to the HW structure
699  *
700  *  Turns the SW defined LED on. This is a function pointer entry point
701  *  called by drivers.
702  **/
703 s32 e1000_led_on(struct e1000_hw *hw)
704 {
705 	if (hw->mac.ops.led_on)
706 		return hw->mac.ops.led_on(hw);
707 
708 	return E1000_SUCCESS;
709 }
710 
711 /**
712  *  e1000_led_off - Turn off SW controllable LED
713  *  @hw: pointer to the HW structure
714  *
715  *  Turns the SW defined LED off. This is a function pointer entry point
716  *  called by drivers.
717  **/
718 s32 e1000_led_off(struct e1000_hw *hw)
719 {
720 	if (hw->mac.ops.led_off)
721 		return hw->mac.ops.led_off(hw);
722 
723 	return E1000_SUCCESS;
724 }
725 
726 /**
727  *  e1000_reset_adaptive - Reset adaptive IFS
728  *  @hw: pointer to the HW structure
729  *
730  *  Resets the adaptive IFS. Currently no func pointer exists and all
731  *  implementations are handled in the generic version of this function.
732  **/
733 void e1000_reset_adaptive(struct e1000_hw *hw)
734 {
735 	e1000_reset_adaptive_generic(hw);
736 }
737 
738 /**
739  *  e1000_update_adaptive - Update adaptive IFS
740  *  @hw: pointer to the HW structure
741  *
742  *  Updates adapter IFS. Currently no func pointer exists and all
743  *  implementations are handled in the generic version of this function.
744  **/
745 void e1000_update_adaptive(struct e1000_hw *hw)
746 {
747 	e1000_update_adaptive_generic(hw);
748 }
749 
750 /**
751  *  e1000_disable_pcie_master - Disable PCI-Express master access
752  *  @hw: pointer to the HW structure
753  *
754  *  Disables PCI-Express master access and verifies there are no pending
755  *  requests. Currently no func pointer exists and all implementations are
756  *  handled in the generic version of this function.
757  **/
758 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
759 {
760 	return e1000_disable_pcie_master_generic(hw);
761 }
762 
763 /**
764  *  e1000_config_collision_dist - Configure collision distance
765  *  @hw: pointer to the HW structure
766  *
767  *  Configures the collision distance to the default value and is used
768  *  during link setup.
769  **/
770 void e1000_config_collision_dist(struct e1000_hw *hw)
771 {
772 	if (hw->mac.ops.config_collision_dist)
773 		hw->mac.ops.config_collision_dist(hw);
774 }
775 
776 /**
777  *  e1000_rar_set - Sets a receive address register
778  *  @hw: pointer to the HW structure
779  *  @addr: address to set the RAR to
780  *  @index: the RAR to set
781  *
782  *  Sets a Receive Address Register (RAR) to the specified address.
783  **/
784 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
785 {
786 	if (hw->mac.ops.rar_set)
787 		hw->mac.ops.rar_set(hw, addr, index);
788 }
789 
790 /**
791  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
792  *  @hw: pointer to the HW structure
793  *
794  *  Ensures that the MDI/MDIX SW state is valid.
795  **/
796 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
797 {
798 	if (hw->mac.ops.validate_mdi_setting)
799 		return hw->mac.ops.validate_mdi_setting(hw);
800 
801 	return E1000_SUCCESS;
802 }
803 
804 /**
805  *  e1000_hash_mc_addr - Determines address location in multicast table
806  *  @hw: pointer to the HW structure
807  *  @mc_addr: Multicast address to hash.
808  *
809  *  This hashes an address to determine its location in the multicast
810  *  table. Currently no func pointer exists and all implementations
811  *  are handled in the generic version of this function.
812  **/
813 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
814 {
815 	return e1000_hash_mc_addr_generic(hw, mc_addr);
816 }
817 
818 /**
819  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
820  *  @hw: pointer to the HW structure
821  *
822  *  Enables packet filtering on transmit packets if manageability is enabled
823  *  and host interface is enabled.
824  *  Currently no func pointer exists and all implementations are handled in the
825  *  generic version of this function.
826  **/
827 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
828 {
829 	return e1000_enable_tx_pkt_filtering_generic(hw);
830 }
831 
832 /**
833  *  e1000_mng_host_if_write - Writes to the manageability host interface
834  *  @hw: pointer to the HW structure
835  *  @buffer: pointer to the host interface buffer
836  *  @length: size of the buffer
837  *  @offset: location in the buffer to write to
838  *  @sum: sum of the data (not checksum)
839  *
840  *  This function writes the buffer content at the offset given on the host if.
841  *  It also does alignment considerations to do the writes in most efficient
842  *  way.  Also fills up the sum of the buffer in *buffer parameter.
843  **/
844 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
845                             u16 offset, u8 *sum)
846 {
847 	if (hw->mac.ops.mng_host_if_write)
848 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
849 		                                     offset, sum);
850 
851 	return E1000_NOT_IMPLEMENTED;
852 }
853 
854 /**
855  *  e1000_mng_write_cmd_header - Writes manageability command header
856  *  @hw: pointer to the HW structure
857  *  @hdr: pointer to the host interface command header
858  *
859  *  Writes the command header after does the checksum calculation.
860  **/
861 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
862                                struct e1000_host_mng_command_header *hdr)
863 {
864 	if (hw->mac.ops.mng_write_cmd_header)
865 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
866 
867 	return E1000_NOT_IMPLEMENTED;
868 }
869 
870 /**
871  *  e1000_mng_enable_host_if - Checks host interface is enabled
872  *  @hw: pointer to the HW structure
873  *
874  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
875  *
876  *  This function checks whether the HOST IF is enabled for command operation
877  *  and also checks whether the previous command is completed.  It busy waits
878  *  in case of previous command is not completed.
879  **/
880 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
881 {
882 	if (hw->mac.ops.mng_enable_host_if)
883 		return hw->mac.ops.mng_enable_host_if(hw);
884 
885 	return E1000_NOT_IMPLEMENTED;
886 }
887 
888 /**
889  *  e1000_wait_autoneg - Waits for autonegotiation completion
890  *  @hw: pointer to the HW structure
891  *
892  *  Waits for autoneg to complete. Currently no func pointer exists and all
893  *  implementations are handled in the generic version of this function.
894  **/
895 s32 e1000_wait_autoneg(struct e1000_hw *hw)
896 {
897 	if (hw->mac.ops.wait_autoneg)
898 		return hw->mac.ops.wait_autoneg(hw);
899 
900 	return E1000_SUCCESS;
901 }
902 
903 /**
904  *  e1000_check_reset_block - Verifies PHY can be reset
905  *  @hw: pointer to the HW structure
906  *
907  *  Checks if the PHY is in a state that can be reset or if manageability
908  *  has it tied up. This is a function pointer entry point called by drivers.
909  **/
910 s32 e1000_check_reset_block(struct e1000_hw *hw)
911 {
912 	if (hw->phy.ops.check_reset_block)
913 		return hw->phy.ops.check_reset_block(hw);
914 
915 	return E1000_SUCCESS;
916 }
917 
918 /**
919  *  e1000_read_phy_reg - Reads PHY register
920  *  @hw: pointer to the HW structure
921  *  @offset: the register to read
922  *  @data: the buffer to store the 16-bit read.
923  *
924  *  Reads the PHY register and returns the value in data.
925  *  This is a function pointer entry point called by drivers.
926  **/
927 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
928 {
929 	if (hw->phy.ops.read_reg)
930 		return hw->phy.ops.read_reg(hw, offset, data);
931 
932 	return E1000_SUCCESS;
933 }
934 
935 /**
936  *  e1000_write_phy_reg - Writes PHY register
937  *  @hw: pointer to the HW structure
938  *  @offset: the register to write
939  *  @data: the value to write.
940  *
941  *  Writes the PHY register at offset with the value in data.
942  *  This is a function pointer entry point called by drivers.
943  **/
944 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
945 {
946 	if (hw->phy.ops.write_reg)
947 		return hw->phy.ops.write_reg(hw, offset, data);
948 
949 	return E1000_SUCCESS;
950 }
951 
952 /**
953  *  e1000_release_phy - Generic release PHY
954  *  @hw: pointer to the HW structure
955  *
956  *  Return if silicon family does not require a semaphore when accessing the
957  *  PHY.
958  **/
959 void e1000_release_phy(struct e1000_hw *hw)
960 {
961 	if (hw->phy.ops.release)
962 		hw->phy.ops.release(hw);
963 }
964 
965 /**
966  *  e1000_acquire_phy - Generic acquire PHY
967  *  @hw: pointer to the HW structure
968  *
969  *  Return success if silicon family does not require a semaphore when
970  *  accessing the PHY.
971  **/
972 s32 e1000_acquire_phy(struct e1000_hw *hw)
973 {
974 	if (hw->phy.ops.acquire)
975 		return hw->phy.ops.acquire(hw);
976 
977 	return E1000_SUCCESS;
978 }
979 
980 /**
981  *  e1000_cfg_on_link_up - Configure PHY upon link up
982  *  @hw: pointer to the HW structure
983  **/
984 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
985 {
986 	if (hw->phy.ops.cfg_on_link_up)
987 		return hw->phy.ops.cfg_on_link_up(hw);
988 
989 	return E1000_SUCCESS;
990 }
991 
992 /**
993  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
994  *  @hw: pointer to the HW structure
995  *  @offset: the register to read
996  *  @data: the location to store the 16-bit value read.
997  *
998  *  Reads a register out of the Kumeran interface. Currently no func pointer
999  *  exists and all implementations are handled in the generic version of
1000  *  this function.
1001  **/
1002 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1003 {
1004 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1005 }
1006 
1007 /**
1008  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1009  *  @hw: pointer to the HW structure
1010  *  @offset: the register to write
1011  *  @data: the value to write.
1012  *
1013  *  Writes a register to the Kumeran interface. Currently no func pointer
1014  *  exists and all implementations are handled in the generic version of
1015  *  this function.
1016  **/
1017 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1018 {
1019 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1020 }
1021 
1022 /**
1023  *  e1000_get_cable_length - Retrieves cable length estimation
1024  *  @hw: pointer to the HW structure
1025  *
1026  *  This function estimates the cable length and stores them in
1027  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1028  *  entry point called by drivers.
1029  **/
1030 s32 e1000_get_cable_length(struct e1000_hw *hw)
1031 {
1032 	if (hw->phy.ops.get_cable_length)
1033 		return hw->phy.ops.get_cable_length(hw);
1034 
1035 	return E1000_SUCCESS;
1036 }
1037 
1038 /**
1039  *  e1000_get_phy_info - Retrieves PHY information from registers
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  This function gets some information from various PHY registers and
1043  *  populates hw->phy values with it. This is a function pointer entry
1044  *  point called by drivers.
1045  **/
1046 s32 e1000_get_phy_info(struct e1000_hw *hw)
1047 {
1048 	if (hw->phy.ops.get_info)
1049 		return hw->phy.ops.get_info(hw);
1050 
1051 	return E1000_SUCCESS;
1052 }
1053 
1054 /**
1055  *  e1000_phy_hw_reset - Hard PHY reset
1056  *  @hw: pointer to the HW structure
1057  *
1058  *  Performs a hard PHY reset. This is a function pointer entry point called
1059  *  by drivers.
1060  **/
1061 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1062 {
1063 	if (hw->phy.ops.reset)
1064 		return hw->phy.ops.reset(hw);
1065 
1066 	return E1000_SUCCESS;
1067 }
1068 
1069 /**
1070  *  e1000_phy_commit - Soft PHY reset
1071  *  @hw: pointer to the HW structure
1072  *
1073  *  Performs a soft PHY reset on those that apply. This is a function pointer
1074  *  entry point called by drivers.
1075  **/
1076 s32 e1000_phy_commit(struct e1000_hw *hw)
1077 {
1078 	if (hw->phy.ops.commit)
1079 		return hw->phy.ops.commit(hw);
1080 
1081 	return E1000_SUCCESS;
1082 }
1083 
1084 /**
1085  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1086  *  @hw: pointer to the HW structure
1087  *  @active: boolean used to enable/disable lplu
1088  *
1089  *  Success returns 0, Failure returns 1
1090  *
1091  *  The low power link up (lplu) state is set to the power management level D0
1092  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1093  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1094  *  is used during Dx states where the power conservation is most important.
1095  *  During driver activity, SmartSpeed should be enabled so performance is
1096  *  maintained.  This is a function pointer entry point called by drivers.
1097  **/
1098 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1099 {
1100 	if (hw->phy.ops.set_d0_lplu_state)
1101 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1102 
1103 	return E1000_SUCCESS;
1104 }
1105 
1106 /**
1107  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1108  *  @hw: pointer to the HW structure
1109  *  @active: boolean used to enable/disable lplu
1110  *
1111  *  Success returns 0, Failure returns 1
1112  *
1113  *  The low power link up (lplu) state is set to the power management level D3
1114  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1115  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1116  *  is used during Dx states where the power conservation is most important.
1117  *  During driver activity, SmartSpeed should be enabled so performance is
1118  *  maintained.  This is a function pointer entry point called by drivers.
1119  **/
1120 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1121 {
1122 	if (hw->phy.ops.set_d3_lplu_state)
1123 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1124 
1125 	return E1000_SUCCESS;
1126 }
1127 
1128 /**
1129  *  e1000_read_mac_addr - Reads MAC address
1130  *  @hw: pointer to the HW structure
1131  *
1132  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1133  *  Currently no func pointer exists and all implementations are handled in the
1134  *  generic version of this function.
1135  **/
1136 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1137 {
1138 	if (hw->mac.ops.read_mac_addr)
1139 		return hw->mac.ops.read_mac_addr(hw);
1140 
1141 	return e1000_read_mac_addr_generic(hw);
1142 }
1143 
1144 /**
1145  *  e1000_read_pba_string - Read device part number string
1146  *  @hw: pointer to the HW structure
1147  *  @pba_num: pointer to device part number
1148  *  @pba_num_size: size of part number buffer
1149  *
1150  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1151  *  the value in pba_num.
1152  *  Currently no func pointer exists and all implementations are handled in the
1153  *  generic version of this function.
1154  **/
1155 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1156 {
1157 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1158 }
1159 
1160 /**
1161  *  e1000_read_pba_length - Read device part number string length
1162  *  @hw: pointer to the HW structure
1163  *  @pba_num_size: size of part number buffer
1164  *
1165  *  Reads the product board assembly (PBA) number length from the EEPROM and
1166  *  stores the value in pba_num.
1167  *  Currently no func pointer exists and all implementations are handled in the
1168  *  generic version of this function.
1169  **/
1170 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1171 {
1172 	return e1000_read_pba_length_generic(hw, pba_num_size);
1173 }
1174 
1175 /**
1176  *  e1000_read_pba_num - Read device part number
1177  *  @hw: pointer to the HW structure
1178  *  @pba_num: pointer to device part number
1179  *
1180  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1181  *  the value in pba_num.
1182  *  Currently no func pointer exists and all implementations are handled in the
1183  *  generic version of this function.
1184  **/
1185 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1186 {
1187 	return e1000_read_pba_num_generic(hw, pba_num);
1188 }
1189 
1190 /**
1191  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1192  *  @hw: pointer to the HW structure
1193  *
1194  *  Validates the NVM checksum is correct. This is a function pointer entry
1195  *  point called by drivers.
1196  **/
1197 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1198 {
1199 	if (hw->nvm.ops.validate)
1200 		return hw->nvm.ops.validate(hw);
1201 
1202 	return -E1000_ERR_CONFIG;
1203 }
1204 
1205 /**
1206  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Updates the NVM checksum. Currently no func pointer exists and all
1210  *  implementations are handled in the generic version of this function.
1211  **/
1212 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1213 {
1214 	if (hw->nvm.ops.update)
1215 		return hw->nvm.ops.update(hw);
1216 
1217 	return -E1000_ERR_CONFIG;
1218 }
1219 
1220 /**
1221  *  e1000_reload_nvm - Reloads EEPROM
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1225  *  extended control register.
1226  **/
1227 void e1000_reload_nvm(struct e1000_hw *hw)
1228 {
1229 	if (hw->nvm.ops.reload)
1230 		hw->nvm.ops.reload(hw);
1231 }
1232 
1233 /**
1234  *  e1000_read_nvm - Reads NVM (EEPROM)
1235  *  @hw: pointer to the HW structure
1236  *  @offset: the word offset to read
1237  *  @words: number of 16-bit words to read
1238  *  @data: pointer to the properly sized buffer for the data.
1239  *
1240  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1241  *  pointer entry point called by drivers.
1242  **/
1243 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1244 {
1245 	if (hw->nvm.ops.read)
1246 		return hw->nvm.ops.read(hw, offset, words, data);
1247 
1248 	return -E1000_ERR_CONFIG;
1249 }
1250 
1251 /**
1252  *  e1000_write_nvm - Writes to NVM (EEPROM)
1253  *  @hw: pointer to the HW structure
1254  *  @offset: the word offset to read
1255  *  @words: number of 16-bit words to write
1256  *  @data: pointer to the properly sized buffer for the data.
1257  *
1258  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1259  *  pointer entry point called by drivers.
1260  **/
1261 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1262 {
1263 	if (hw->nvm.ops.write)
1264 		return hw->nvm.ops.write(hw, offset, words, data);
1265 
1266 	return E1000_SUCCESS;
1267 }
1268 
1269 /**
1270  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1271  *  @hw: pointer to the HW structure
1272  *  @reg: 32bit register offset
1273  *  @offset: the register to write
1274  *  @data: the value to write.
1275  *
1276  *  Writes the PHY register at offset with the value in data.
1277  *  This is a function pointer entry point called by drivers.
1278  **/
1279 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1280                               u8 data)
1281 {
1282 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1283 }
1284 
1285 /**
1286  * e1000_power_up_phy - Restores link in case of PHY power down
1287  * @hw: pointer to the HW structure
1288  *
1289  * The phy may be powered down to save power, to turn off link when the
1290  * driver is unloaded, or wake on lan is not enabled (among others).
1291  **/
1292 void e1000_power_up_phy(struct e1000_hw *hw)
1293 {
1294 	if (hw->phy.ops.power_up)
1295 		hw->phy.ops.power_up(hw);
1296 
1297 	e1000_setup_link(hw);
1298 }
1299 
1300 /**
1301  * e1000_power_down_phy - Power down PHY
1302  * @hw: pointer to the HW structure
1303  *
1304  * The phy may be powered down to save power, to turn off link when the
1305  * driver is unloaded, or wake on lan is not enabled (among others).
1306  **/
1307 void e1000_power_down_phy(struct e1000_hw *hw)
1308 {
1309 	if (hw->phy.ops.power_down)
1310 		hw->phy.ops.power_down(hw);
1311 }
1312 
1313 /**
1314  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1315  *  @hw: pointer to the HW structure
1316  *
1317  *  Power on the optics and PCS.
1318  **/
1319 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1320 {
1321 	if (hw->mac.ops.power_up_serdes)
1322 		hw->mac.ops.power_up_serdes(hw);
1323 }
1324 
1325 /**
1326  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1327  *  @hw: pointer to the HW structure
1328  *
1329  *  Shutdown the optics and PCS on driver unload.
1330  **/
1331 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1332 {
1333 	if (hw->mac.ops.shutdown_serdes)
1334 		hw->mac.ops.shutdown_serdes(hw);
1335 }
1336 
1337