1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 /** 39 * e1000_init_mac_params - Initialize MAC function pointers 40 * @hw: pointer to the HW structure 41 * 42 * This function initializes the function pointers for the MAC 43 * set of functions. Called by drivers or by e1000_setup_init_funcs. 44 **/ 45 s32 e1000_init_mac_params(struct e1000_hw *hw) 46 { 47 s32 ret_val = E1000_SUCCESS; 48 49 if (hw->mac.ops.init_params) { 50 ret_val = hw->mac.ops.init_params(hw); 51 if (ret_val) { 52 DEBUGOUT("MAC Initialization Error\n"); 53 goto out; 54 } 55 } else { 56 DEBUGOUT("mac.init_mac_params was NULL\n"); 57 ret_val = -E1000_ERR_CONFIG; 58 } 59 60 out: 61 return ret_val; 62 } 63 64 /** 65 * e1000_init_nvm_params - Initialize NVM function pointers 66 * @hw: pointer to the HW structure 67 * 68 * This function initializes the function pointers for the NVM 69 * set of functions. Called by drivers or by e1000_setup_init_funcs. 70 **/ 71 s32 e1000_init_nvm_params(struct e1000_hw *hw) 72 { 73 s32 ret_val = E1000_SUCCESS; 74 75 if (hw->nvm.ops.init_params) { 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_mbx_params - Initialize mailbox function pointers 118 * @hw: pointer to the HW structure 119 * 120 * This function initializes the function pointers for the PHY 121 * set of functions. Called by drivers or by e1000_setup_init_funcs. 122 **/ 123 s32 e1000_init_mbx_params(struct e1000_hw *hw) 124 { 125 s32 ret_val = E1000_SUCCESS; 126 127 if (hw->mbx.ops.init_params) { 128 ret_val = hw->mbx.ops.init_params(hw); 129 if (ret_val) { 130 DEBUGOUT("Mailbox Initialization Error\n"); 131 goto out; 132 } 133 } else { 134 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 135 ret_val = -E1000_ERR_CONFIG; 136 } 137 138 out: 139 return ret_val; 140 } 141 142 /** 143 * e1000_set_mac_type - Sets MAC type 144 * @hw: pointer to the HW structure 145 * 146 * This function sets the mac type of the adapter based on the 147 * device ID stored in the hw structure. 148 * MUST BE FIRST FUNCTION CALLED (explicitly or through 149 * e1000_setup_init_funcs()). 150 **/ 151 s32 e1000_set_mac_type(struct e1000_hw *hw) 152 { 153 struct e1000_mac_info *mac = &hw->mac; 154 s32 ret_val = E1000_SUCCESS; 155 156 DEBUGFUNC("e1000_set_mac_type"); 157 158 switch (hw->device_id) { 159 case E1000_DEV_ID_82542: 160 mac->type = e1000_82542; 161 break; 162 case E1000_DEV_ID_82543GC_FIBER: 163 case E1000_DEV_ID_82543GC_COPPER: 164 mac->type = e1000_82543; 165 break; 166 case E1000_DEV_ID_82544EI_COPPER: 167 case E1000_DEV_ID_82544EI_FIBER: 168 case E1000_DEV_ID_82544GC_COPPER: 169 case E1000_DEV_ID_82544GC_LOM: 170 mac->type = e1000_82544; 171 break; 172 case E1000_DEV_ID_82540EM: 173 case E1000_DEV_ID_82540EM_LOM: 174 case E1000_DEV_ID_82540EP: 175 case E1000_DEV_ID_82540EP_LOM: 176 case E1000_DEV_ID_82540EP_LP: 177 mac->type = e1000_82540; 178 break; 179 case E1000_DEV_ID_82545EM_COPPER: 180 case E1000_DEV_ID_82545EM_FIBER: 181 mac->type = e1000_82545; 182 break; 183 case E1000_DEV_ID_82545GM_COPPER: 184 case E1000_DEV_ID_82545GM_FIBER: 185 case E1000_DEV_ID_82545GM_SERDES: 186 mac->type = e1000_82545_rev_3; 187 break; 188 case E1000_DEV_ID_82546EB_COPPER: 189 case E1000_DEV_ID_82546EB_FIBER: 190 case E1000_DEV_ID_82546EB_QUAD_COPPER: 191 mac->type = e1000_82546; 192 break; 193 case E1000_DEV_ID_82546GB_COPPER: 194 case E1000_DEV_ID_82546GB_FIBER: 195 case E1000_DEV_ID_82546GB_SERDES: 196 case E1000_DEV_ID_82546GB_PCIE: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER: 198 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 199 mac->type = e1000_82546_rev_3; 200 break; 201 case E1000_DEV_ID_82541EI: 202 case E1000_DEV_ID_82541EI_MOBILE: 203 case E1000_DEV_ID_82541ER_LOM: 204 mac->type = e1000_82541; 205 break; 206 case E1000_DEV_ID_82541ER: 207 case E1000_DEV_ID_82541GI: 208 case E1000_DEV_ID_82541GI_LF: 209 case E1000_DEV_ID_82541GI_MOBILE: 210 mac->type = e1000_82541_rev_2; 211 break; 212 case E1000_DEV_ID_82547EI: 213 case E1000_DEV_ID_82547EI_MOBILE: 214 mac->type = e1000_82547; 215 break; 216 case E1000_DEV_ID_82547GI: 217 mac->type = e1000_82547_rev_2; 218 break; 219 case E1000_DEV_ID_82571EB_COPPER: 220 case E1000_DEV_ID_82571EB_FIBER: 221 case E1000_DEV_ID_82571EB_SERDES: 222 case E1000_DEV_ID_82571EB_SERDES_DUAL: 223 case E1000_DEV_ID_82571EB_SERDES_QUAD: 224 case E1000_DEV_ID_82571EB_QUAD_COPPER: 225 case E1000_DEV_ID_82571PT_QUAD_COPPER: 226 case E1000_DEV_ID_82571EB_QUAD_FIBER: 227 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 228 mac->type = e1000_82571; 229 break; 230 case E1000_DEV_ID_82572EI: 231 case E1000_DEV_ID_82572EI_COPPER: 232 case E1000_DEV_ID_82572EI_FIBER: 233 case E1000_DEV_ID_82572EI_SERDES: 234 mac->type = e1000_82572; 235 break; 236 case E1000_DEV_ID_82573E: 237 case E1000_DEV_ID_82573E_IAMT: 238 case E1000_DEV_ID_82573L: 239 mac->type = e1000_82573; 240 break; 241 case E1000_DEV_ID_82574L: 242 case E1000_DEV_ID_82574LA: 243 mac->type = e1000_82574; 244 break; 245 case E1000_DEV_ID_82583V: 246 mac->type = e1000_82583; 247 break; 248 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 249 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 250 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 251 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 252 mac->type = e1000_80003es2lan; 253 break; 254 case E1000_DEV_ID_ICH8_IFE: 255 case E1000_DEV_ID_ICH8_IFE_GT: 256 case E1000_DEV_ID_ICH8_IFE_G: 257 case E1000_DEV_ID_ICH8_IGP_M: 258 case E1000_DEV_ID_ICH8_IGP_M_AMT: 259 case E1000_DEV_ID_ICH8_IGP_AMT: 260 case E1000_DEV_ID_ICH8_IGP_C: 261 case E1000_DEV_ID_ICH8_82567V_3: 262 mac->type = e1000_ich8lan; 263 break; 264 case E1000_DEV_ID_ICH9_IFE: 265 case E1000_DEV_ID_ICH9_IFE_GT: 266 case E1000_DEV_ID_ICH9_IFE_G: 267 case E1000_DEV_ID_ICH9_IGP_M: 268 case E1000_DEV_ID_ICH9_IGP_M_AMT: 269 case E1000_DEV_ID_ICH9_IGP_M_V: 270 case E1000_DEV_ID_ICH9_IGP_AMT: 271 case E1000_DEV_ID_ICH9_BM: 272 case E1000_DEV_ID_ICH9_IGP_C: 273 case E1000_DEV_ID_ICH10_R_BM_LM: 274 case E1000_DEV_ID_ICH10_R_BM_LF: 275 case E1000_DEV_ID_ICH10_R_BM_V: 276 mac->type = e1000_ich9lan; 277 break; 278 case E1000_DEV_ID_ICH10_D_BM_LM: 279 case E1000_DEV_ID_ICH10_D_BM_LF: 280 case E1000_DEV_ID_ICH10_D_BM_V: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_PCH_LPT_I217_LM: 294 case E1000_DEV_ID_PCH_LPT_I217_V: 295 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 296 case E1000_DEV_ID_PCH_LPTLP_I218_V: 297 case E1000_DEV_ID_PCH_I218_LM2: 298 case E1000_DEV_ID_PCH_I218_V2: 299 case E1000_DEV_ID_PCH_I218_LM3: 300 case E1000_DEV_ID_PCH_I218_V3: 301 mac->type = e1000_pch_lpt; 302 break; 303 case E1000_DEV_ID_PCH_SPT_I219_LM: 304 case E1000_DEV_ID_PCH_SPT_I219_V: 305 case E1000_DEV_ID_PCH_SPT_I219_LM2: 306 case E1000_DEV_ID_PCH_SPT_I219_V2: 307 case E1000_DEV_ID_PCH_LBG_I219_LM3: 308 case E1000_DEV_ID_PCH_SPT_I219_LM4: 309 case E1000_DEV_ID_PCH_SPT_I219_V4: 310 case E1000_DEV_ID_PCH_SPT_I219_LM5: 311 case E1000_DEV_ID_PCH_SPT_I219_V5: 312 mac->type = e1000_pch_spt; 313 break; 314 case E1000_DEV_ID_PCH_CNP_I219_LM6: 315 case E1000_DEV_ID_PCH_CNP_I219_V6: 316 case E1000_DEV_ID_PCH_CNP_I219_LM7: 317 case E1000_DEV_ID_PCH_CNP_I219_V7: 318 case E1000_DEV_ID_PCH_ICP_I219_LM8: 319 case E1000_DEV_ID_PCH_ICP_I219_V8: 320 case E1000_DEV_ID_PCH_ICP_I219_LM9: 321 case E1000_DEV_ID_PCH_ICP_I219_V9: 322 case E1000_DEV_ID_PCH_ICP_I219_V10: 323 mac->type = e1000_pch_cnp; 324 break; 325 case E1000_DEV_ID_82575EB_COPPER: 326 case E1000_DEV_ID_82575EB_FIBER_SERDES: 327 case E1000_DEV_ID_82575GB_QUAD_COPPER: 328 mac->type = e1000_82575; 329 break; 330 case E1000_DEV_ID_82576: 331 case E1000_DEV_ID_82576_FIBER: 332 case E1000_DEV_ID_82576_SERDES: 333 case E1000_DEV_ID_82576_QUAD_COPPER: 334 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 335 case E1000_DEV_ID_82576_NS: 336 case E1000_DEV_ID_82576_NS_SERDES: 337 case E1000_DEV_ID_82576_SERDES_QUAD: 338 mac->type = e1000_82576; 339 break; 340 case E1000_DEV_ID_82580_COPPER: 341 case E1000_DEV_ID_82580_FIBER: 342 case E1000_DEV_ID_82580_SERDES: 343 case E1000_DEV_ID_82580_SGMII: 344 case E1000_DEV_ID_82580_COPPER_DUAL: 345 case E1000_DEV_ID_82580_QUAD_FIBER: 346 case E1000_DEV_ID_DH89XXCC_SGMII: 347 case E1000_DEV_ID_DH89XXCC_SERDES: 348 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 349 case E1000_DEV_ID_DH89XXCC_SFP: 350 mac->type = e1000_82580; 351 break; 352 case E1000_DEV_ID_I350_COPPER: 353 case E1000_DEV_ID_I350_FIBER: 354 case E1000_DEV_ID_I350_SERDES: 355 case E1000_DEV_ID_I350_SGMII: 356 case E1000_DEV_ID_I350_DA4: 357 mac->type = e1000_i350; 358 break; 359 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 360 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 361 case E1000_DEV_ID_I210_COPPER: 362 case E1000_DEV_ID_I210_COPPER_OEM1: 363 case E1000_DEV_ID_I210_COPPER_IT: 364 case E1000_DEV_ID_I210_FIBER: 365 case E1000_DEV_ID_I210_SERDES: 366 case E1000_DEV_ID_I210_SGMII: 367 mac->type = e1000_i210; 368 break; 369 case E1000_DEV_ID_I211_COPPER: 370 mac->type = e1000_i211; 371 break; 372 case E1000_DEV_ID_82576_VF: 373 case E1000_DEV_ID_82576_VF_HV: 374 mac->type = e1000_vfadapt; 375 break; 376 case E1000_DEV_ID_I350_VF: 377 case E1000_DEV_ID_I350_VF_HV: 378 mac->type = e1000_vfadapt_i350; 379 break; 380 381 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 382 case E1000_DEV_ID_I354_SGMII: 383 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 384 mac->type = e1000_i354; 385 break; 386 default: 387 /* Should never have loaded on this device */ 388 ret_val = -E1000_ERR_MAC_INIT; 389 break; 390 } 391 392 return ret_val; 393 } 394 395 /** 396 * e1000_setup_init_funcs - Initializes function pointers 397 * @hw: pointer to the HW structure 398 * @init_device: TRUE will initialize the rest of the function pointers 399 * getting the device ready for use. FALSE will only set 400 * MAC type and the function pointers for the other init 401 * functions. Passing FALSE will not generate any hardware 402 * reads or writes. 403 * 404 * This function must be called by a driver in order to use the rest 405 * of the 'shared' code files. Called by drivers only. 406 **/ 407 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 408 { 409 s32 ret_val; 410 411 /* Can't do much good without knowing the MAC type. */ 412 ret_val = e1000_set_mac_type(hw); 413 if (ret_val) { 414 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 415 goto out; 416 } 417 418 if (!hw->hw_addr) { 419 DEBUGOUT("ERROR: Registers not mapped\n"); 420 ret_val = -E1000_ERR_CONFIG; 421 goto out; 422 } 423 424 /* 425 * Init function pointers to generic implementations. We do this first 426 * allowing a driver module to override it afterward. 427 */ 428 e1000_init_mac_ops_generic(hw); 429 e1000_init_phy_ops_generic(hw); 430 e1000_init_nvm_ops_generic(hw); 431 e1000_init_mbx_ops_generic(hw); 432 433 /* 434 * Set up the init function pointers. These are functions within the 435 * adapter family file that sets up function pointers for the rest of 436 * the functions in that family. 437 */ 438 switch (hw->mac.type) { 439 case e1000_82542: 440 e1000_init_function_pointers_82542(hw); 441 break; 442 case e1000_82543: 443 case e1000_82544: 444 e1000_init_function_pointers_82543(hw); 445 break; 446 case e1000_82540: 447 case e1000_82545: 448 case e1000_82545_rev_3: 449 case e1000_82546: 450 case e1000_82546_rev_3: 451 e1000_init_function_pointers_82540(hw); 452 break; 453 case e1000_82541: 454 case e1000_82541_rev_2: 455 case e1000_82547: 456 case e1000_82547_rev_2: 457 e1000_init_function_pointers_82541(hw); 458 break; 459 case e1000_82571: 460 case e1000_82572: 461 case e1000_82573: 462 case e1000_82574: 463 case e1000_82583: 464 e1000_init_function_pointers_82571(hw); 465 break; 466 case e1000_80003es2lan: 467 e1000_init_function_pointers_80003es2lan(hw); 468 break; 469 case e1000_ich8lan: 470 case e1000_ich9lan: 471 case e1000_ich10lan: 472 case e1000_pchlan: 473 case e1000_pch2lan: 474 case e1000_pch_lpt: 475 case e1000_pch_spt: 476 case e1000_pch_cnp: 477 e1000_init_function_pointers_ich8lan(hw); 478 break; 479 case e1000_82575: 480 case e1000_82576: 481 case e1000_82580: 482 case e1000_i350: 483 case e1000_i354: 484 e1000_init_function_pointers_82575(hw); 485 break; 486 case e1000_i210: 487 case e1000_i211: 488 e1000_init_function_pointers_i210(hw); 489 break; 490 case e1000_vfadapt: 491 e1000_init_function_pointers_vf(hw); 492 break; 493 case e1000_vfadapt_i350: 494 e1000_init_function_pointers_vf(hw); 495 break; 496 default: 497 DEBUGOUT("Hardware not supported\n"); 498 ret_val = -E1000_ERR_CONFIG; 499 break; 500 } 501 502 /* 503 * Initialize the rest of the function pointers. These require some 504 * register reads/writes in some cases. 505 */ 506 if (!(ret_val) && init_device) { 507 ret_val = e1000_init_mac_params(hw); 508 if (ret_val) 509 goto out; 510 511 ret_val = e1000_init_nvm_params(hw); 512 if (ret_val) 513 goto out; 514 515 ret_val = e1000_init_phy_params(hw); 516 if (ret_val) 517 goto out; 518 519 ret_val = e1000_init_mbx_params(hw); 520 if (ret_val) 521 goto out; 522 } 523 524 out: 525 return ret_val; 526 } 527 528 /** 529 * e1000_get_bus_info - Obtain bus information for adapter 530 * @hw: pointer to the HW structure 531 * 532 * This will obtain information about the HW bus for which the 533 * adapter is attached and stores it in the hw structure. This is a 534 * function pointer entry point called by drivers. 535 **/ 536 s32 e1000_get_bus_info(struct e1000_hw *hw) 537 { 538 if (hw->mac.ops.get_bus_info) 539 return hw->mac.ops.get_bus_info(hw); 540 541 return E1000_SUCCESS; 542 } 543 544 /** 545 * e1000_clear_vfta - Clear VLAN filter table 546 * @hw: pointer to the HW structure 547 * 548 * This clears the VLAN filter table on the adapter. This is a function 549 * pointer entry point called by drivers. 550 **/ 551 void e1000_clear_vfta(struct e1000_hw *hw) 552 { 553 if (hw->mac.ops.clear_vfta) 554 hw->mac.ops.clear_vfta(hw); 555 } 556 557 /** 558 * e1000_write_vfta - Write value to VLAN filter table 559 * @hw: pointer to the HW structure 560 * @offset: the 32-bit offset in which to write the value to. 561 * @value: the 32-bit value to write at location offset. 562 * 563 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 564 * table. This is a function pointer entry point called by drivers. 565 **/ 566 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 567 { 568 if (hw->mac.ops.write_vfta) 569 hw->mac.ops.write_vfta(hw, offset, value); 570 } 571 572 /** 573 * e1000_update_mc_addr_list - Update Multicast addresses 574 * @hw: pointer to the HW structure 575 * @mc_addr_list: array of multicast addresses to program 576 * @mc_addr_count: number of multicast addresses to program 577 * 578 * Updates the Multicast Table Array. 579 * The caller must have a packed mc_addr_list of multicast addresses. 580 **/ 581 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 582 u32 mc_addr_count) 583 { 584 if (hw->mac.ops.update_mc_addr_list) 585 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 586 mc_addr_count); 587 } 588 589 /** 590 * e1000_force_mac_fc - Force MAC flow control 591 * @hw: pointer to the HW structure 592 * 593 * Force the MAC's flow control settings. Currently no func pointer exists 594 * and all implementations are handled in the generic version of this 595 * function. 596 **/ 597 s32 e1000_force_mac_fc(struct e1000_hw *hw) 598 { 599 return e1000_force_mac_fc_generic(hw); 600 } 601 602 /** 603 * e1000_check_for_link - Check/Store link connection 604 * @hw: pointer to the HW structure 605 * 606 * This checks the link condition of the adapter and stores the 607 * results in the hw->mac structure. This is a function pointer entry 608 * point called by drivers. 609 **/ 610 s32 e1000_check_for_link(struct e1000_hw *hw) 611 { 612 if (hw->mac.ops.check_for_link) 613 return hw->mac.ops.check_for_link(hw); 614 615 return -E1000_ERR_CONFIG; 616 } 617 618 /** 619 * e1000_check_mng_mode - Check management mode 620 * @hw: pointer to the HW structure 621 * 622 * This checks if the adapter has manageability enabled. 623 * This is a function pointer entry point called by drivers. 624 **/ 625 bool e1000_check_mng_mode(struct e1000_hw *hw) 626 { 627 if (hw->mac.ops.check_mng_mode) 628 return hw->mac.ops.check_mng_mode(hw); 629 630 return FALSE; 631 } 632 633 /** 634 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 635 * @hw: pointer to the HW structure 636 * @buffer: pointer to the host interface 637 * @length: size of the buffer 638 * 639 * Writes the DHCP information to the host interface. 640 **/ 641 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 642 { 643 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 644 } 645 646 /** 647 * e1000_reset_hw - Reset hardware 648 * @hw: pointer to the HW structure 649 * 650 * This resets the hardware into a known state. This is a function pointer 651 * entry point called by drivers. 652 **/ 653 s32 e1000_reset_hw(struct e1000_hw *hw) 654 { 655 if (hw->mac.ops.reset_hw) 656 return hw->mac.ops.reset_hw(hw); 657 658 return -E1000_ERR_CONFIG; 659 } 660 661 /** 662 * e1000_init_hw - Initialize hardware 663 * @hw: pointer to the HW structure 664 * 665 * This inits the hardware readying it for operation. This is a function 666 * pointer entry point called by drivers. 667 **/ 668 s32 e1000_init_hw(struct e1000_hw *hw) 669 { 670 if (hw->mac.ops.init_hw) 671 return hw->mac.ops.init_hw(hw); 672 673 return -E1000_ERR_CONFIG; 674 } 675 676 /** 677 * e1000_setup_link - Configures link and flow control 678 * @hw: pointer to the HW structure 679 * 680 * This configures link and flow control settings for the adapter. This 681 * is a function pointer entry point called by drivers. While modules can 682 * also call this, they probably call their own version of this function. 683 **/ 684 s32 e1000_setup_link(struct e1000_hw *hw) 685 { 686 if (hw->mac.ops.setup_link) 687 return hw->mac.ops.setup_link(hw); 688 689 return -E1000_ERR_CONFIG; 690 } 691 692 /** 693 * e1000_get_speed_and_duplex - Returns current speed and duplex 694 * @hw: pointer to the HW structure 695 * @speed: pointer to a 16-bit value to store the speed 696 * @duplex: pointer to a 16-bit value to store the duplex. 697 * 698 * This returns the speed and duplex of the adapter in the two 'out' 699 * variables passed in. This is a function pointer entry point called 700 * by drivers. 701 **/ 702 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 703 { 704 if (hw->mac.ops.get_link_up_info) 705 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 706 707 return -E1000_ERR_CONFIG; 708 } 709 710 /** 711 * e1000_setup_led - Configures SW controllable LED 712 * @hw: pointer to the HW structure 713 * 714 * This prepares the SW controllable LED for use and saves the current state 715 * of the LED so it can be later restored. This is a function pointer entry 716 * point called by drivers. 717 **/ 718 s32 e1000_setup_led(struct e1000_hw *hw) 719 { 720 if (hw->mac.ops.setup_led) 721 return hw->mac.ops.setup_led(hw); 722 723 return E1000_SUCCESS; 724 } 725 726 /** 727 * e1000_cleanup_led - Restores SW controllable LED 728 * @hw: pointer to the HW structure 729 * 730 * This restores the SW controllable LED to the value saved off by 731 * e1000_setup_led. This is a function pointer entry point called by drivers. 732 **/ 733 s32 e1000_cleanup_led(struct e1000_hw *hw) 734 { 735 if (hw->mac.ops.cleanup_led) 736 return hw->mac.ops.cleanup_led(hw); 737 738 return E1000_SUCCESS; 739 } 740 741 /** 742 * e1000_blink_led - Blink SW controllable LED 743 * @hw: pointer to the HW structure 744 * 745 * This starts the adapter LED blinking. Request the LED to be setup first 746 * and cleaned up after. This is a function pointer entry point called by 747 * drivers. 748 **/ 749 s32 e1000_blink_led(struct e1000_hw *hw) 750 { 751 if (hw->mac.ops.blink_led) 752 return hw->mac.ops.blink_led(hw); 753 754 return E1000_SUCCESS; 755 } 756 757 /** 758 * e1000_id_led_init - store LED configurations in SW 759 * @hw: pointer to the HW structure 760 * 761 * Initializes the LED config in SW. This is a function pointer entry point 762 * called by drivers. 763 **/ 764 s32 e1000_id_led_init(struct e1000_hw *hw) 765 { 766 if (hw->mac.ops.id_led_init) 767 return hw->mac.ops.id_led_init(hw); 768 769 return E1000_SUCCESS; 770 } 771 772 /** 773 * e1000_led_on - Turn on SW controllable LED 774 * @hw: pointer to the HW structure 775 * 776 * Turns the SW defined LED on. This is a function pointer entry point 777 * called by drivers. 778 **/ 779 s32 e1000_led_on(struct e1000_hw *hw) 780 { 781 if (hw->mac.ops.led_on) 782 return hw->mac.ops.led_on(hw); 783 784 return E1000_SUCCESS; 785 } 786 787 /** 788 * e1000_led_off - Turn off SW controllable LED 789 * @hw: pointer to the HW structure 790 * 791 * Turns the SW defined LED off. This is a function pointer entry point 792 * called by drivers. 793 **/ 794 s32 e1000_led_off(struct e1000_hw *hw) 795 { 796 if (hw->mac.ops.led_off) 797 return hw->mac.ops.led_off(hw); 798 799 return E1000_SUCCESS; 800 } 801 802 /** 803 * e1000_reset_adaptive - Reset adaptive IFS 804 * @hw: pointer to the HW structure 805 * 806 * Resets the adaptive IFS. Currently no func pointer exists and all 807 * implementations are handled in the generic version of this function. 808 **/ 809 void e1000_reset_adaptive(struct e1000_hw *hw) 810 { 811 e1000_reset_adaptive_generic(hw); 812 } 813 814 /** 815 * e1000_update_adaptive - Update adaptive IFS 816 * @hw: pointer to the HW structure 817 * 818 * Updates adapter IFS. Currently no func pointer exists and all 819 * implementations are handled in the generic version of this function. 820 **/ 821 void e1000_update_adaptive(struct e1000_hw *hw) 822 { 823 e1000_update_adaptive_generic(hw); 824 } 825 826 /** 827 * e1000_disable_pcie_master - Disable PCI-Express master access 828 * @hw: pointer to the HW structure 829 * 830 * Disables PCI-Express master access and verifies there are no pending 831 * requests. Currently no func pointer exists and all implementations are 832 * handled in the generic version of this function. 833 **/ 834 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 835 { 836 return e1000_disable_pcie_master_generic(hw); 837 } 838 839 /** 840 * e1000_config_collision_dist - Configure collision distance 841 * @hw: pointer to the HW structure 842 * 843 * Configures the collision distance to the default value and is used 844 * during link setup. 845 **/ 846 void e1000_config_collision_dist(struct e1000_hw *hw) 847 { 848 if (hw->mac.ops.config_collision_dist) 849 hw->mac.ops.config_collision_dist(hw); 850 } 851 852 /** 853 * e1000_rar_set - Sets a receive address register 854 * @hw: pointer to the HW structure 855 * @addr: address to set the RAR to 856 * @index: the RAR to set 857 * 858 * Sets a Receive Address Register (RAR) to the specified address. 859 **/ 860 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 861 { 862 if (hw->mac.ops.rar_set) 863 return hw->mac.ops.rar_set(hw, addr, index); 864 865 return E1000_SUCCESS; 866 } 867 868 /** 869 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 870 * @hw: pointer to the HW structure 871 * 872 * Ensures that the MDI/MDIX SW state is valid. 873 **/ 874 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 875 { 876 if (hw->mac.ops.validate_mdi_setting) 877 return hw->mac.ops.validate_mdi_setting(hw); 878 879 return E1000_SUCCESS; 880 } 881 882 /** 883 * e1000_hash_mc_addr - Determines address location in multicast table 884 * @hw: pointer to the HW structure 885 * @mc_addr: Multicast address to hash. 886 * 887 * This hashes an address to determine its location in the multicast 888 * table. Currently no func pointer exists and all implementations 889 * are handled in the generic version of this function. 890 **/ 891 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 892 { 893 return e1000_hash_mc_addr_generic(hw, mc_addr); 894 } 895 896 /** 897 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 898 * @hw: pointer to the HW structure 899 * 900 * Enables packet filtering on transmit packets if manageability is enabled 901 * and host interface is enabled. 902 * Currently no func pointer exists and all implementations are handled in the 903 * generic version of this function. 904 **/ 905 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 906 { 907 return e1000_enable_tx_pkt_filtering_generic(hw); 908 } 909 910 /** 911 * e1000_mng_host_if_write - Writes to the manageability host interface 912 * @hw: pointer to the HW structure 913 * @buffer: pointer to the host interface buffer 914 * @length: size of the buffer 915 * @offset: location in the buffer to write to 916 * @sum: sum of the data (not checksum) 917 * 918 * This function writes the buffer content at the offset given on the host if. 919 * It also does alignment considerations to do the writes in most efficient 920 * way. Also fills up the sum of the buffer in *buffer parameter. 921 **/ 922 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 923 u16 offset, u8 *sum) 924 { 925 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 926 } 927 928 /** 929 * e1000_mng_write_cmd_header - Writes manageability command header 930 * @hw: pointer to the HW structure 931 * @hdr: pointer to the host interface command header 932 * 933 * Writes the command header after does the checksum calculation. 934 **/ 935 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 936 struct e1000_host_mng_command_header *hdr) 937 { 938 return e1000_mng_write_cmd_header_generic(hw, hdr); 939 } 940 941 /** 942 * e1000_mng_enable_host_if - Checks host interface is enabled 943 * @hw: pointer to the HW structure 944 * 945 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 946 * 947 * This function checks whether the HOST IF is enabled for command operation 948 * and also checks whether the previous command is completed. It busy waits 949 * in case of previous command is not completed. 950 **/ 951 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 952 { 953 return e1000_mng_enable_host_if_generic(hw); 954 } 955 956 /** 957 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 958 * @hw: pointer to the HW structure 959 * @itr: u32 indicating itr value 960 * 961 * Set the OBFF timer based on the given interrupt rate. 962 **/ 963 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 964 { 965 if (hw->mac.ops.set_obff_timer) 966 return hw->mac.ops.set_obff_timer(hw, itr); 967 968 return E1000_SUCCESS; 969 } 970 971 /** 972 * e1000_check_reset_block - Verifies PHY can be reset 973 * @hw: pointer to the HW structure 974 * 975 * Checks if the PHY is in a state that can be reset or if manageability 976 * has it tied up. This is a function pointer entry point called by drivers. 977 **/ 978 s32 e1000_check_reset_block(struct e1000_hw *hw) 979 { 980 if (hw->phy.ops.check_reset_block) 981 return hw->phy.ops.check_reset_block(hw); 982 983 return E1000_SUCCESS; 984 } 985 986 /** 987 * e1000_read_phy_reg - Reads PHY register 988 * @hw: pointer to the HW structure 989 * @offset: the register to read 990 * @data: the buffer to store the 16-bit read. 991 * 992 * Reads the PHY register and returns the value in data. 993 * This is a function pointer entry point called by drivers. 994 **/ 995 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 996 { 997 if (hw->phy.ops.read_reg) 998 return hw->phy.ops.read_reg(hw, offset, data); 999 1000 return E1000_SUCCESS; 1001 } 1002 1003 /** 1004 * e1000_write_phy_reg - Writes PHY register 1005 * @hw: pointer to the HW structure 1006 * @offset: the register to write 1007 * @data: the value to write. 1008 * 1009 * Writes the PHY register at offset with the value in data. 1010 * This is a function pointer entry point called by drivers. 1011 **/ 1012 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1013 { 1014 if (hw->phy.ops.write_reg) 1015 return hw->phy.ops.write_reg(hw, offset, data); 1016 1017 return E1000_SUCCESS; 1018 } 1019 1020 /** 1021 * e1000_release_phy - Generic release PHY 1022 * @hw: pointer to the HW structure 1023 * 1024 * Return if silicon family does not require a semaphore when accessing the 1025 * PHY. 1026 **/ 1027 void e1000_release_phy(struct e1000_hw *hw) 1028 { 1029 if (hw->phy.ops.release) 1030 hw->phy.ops.release(hw); 1031 } 1032 1033 /** 1034 * e1000_acquire_phy - Generic acquire PHY 1035 * @hw: pointer to the HW structure 1036 * 1037 * Return success if silicon family does not require a semaphore when 1038 * accessing the PHY. 1039 **/ 1040 s32 e1000_acquire_phy(struct e1000_hw *hw) 1041 { 1042 if (hw->phy.ops.acquire) 1043 return hw->phy.ops.acquire(hw); 1044 1045 return E1000_SUCCESS; 1046 } 1047 1048 /** 1049 * e1000_cfg_on_link_up - Configure PHY upon link up 1050 * @hw: pointer to the HW structure 1051 **/ 1052 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1053 { 1054 if (hw->phy.ops.cfg_on_link_up) 1055 return hw->phy.ops.cfg_on_link_up(hw); 1056 1057 return E1000_SUCCESS; 1058 } 1059 1060 /** 1061 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1062 * @hw: pointer to the HW structure 1063 * @offset: the register to read 1064 * @data: the location to store the 16-bit value read. 1065 * 1066 * Reads a register out of the Kumeran interface. Currently no func pointer 1067 * exists and all implementations are handled in the generic version of 1068 * this function. 1069 **/ 1070 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1071 { 1072 return e1000_read_kmrn_reg_generic(hw, offset, data); 1073 } 1074 1075 /** 1076 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1077 * @hw: pointer to the HW structure 1078 * @offset: the register to write 1079 * @data: the value to write. 1080 * 1081 * Writes a register to the Kumeran interface. Currently no func pointer 1082 * exists and all implementations are handled in the generic version of 1083 * this function. 1084 **/ 1085 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1086 { 1087 return e1000_write_kmrn_reg_generic(hw, offset, data); 1088 } 1089 1090 /** 1091 * e1000_get_cable_length - Retrieves cable length estimation 1092 * @hw: pointer to the HW structure 1093 * 1094 * This function estimates the cable length and stores them in 1095 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1096 * entry point called by drivers. 1097 **/ 1098 s32 e1000_get_cable_length(struct e1000_hw *hw) 1099 { 1100 if (hw->phy.ops.get_cable_length) 1101 return hw->phy.ops.get_cable_length(hw); 1102 1103 return E1000_SUCCESS; 1104 } 1105 1106 /** 1107 * e1000_get_phy_info - Retrieves PHY information from registers 1108 * @hw: pointer to the HW structure 1109 * 1110 * This function gets some information from various PHY registers and 1111 * populates hw->phy values with it. This is a function pointer entry 1112 * point called by drivers. 1113 **/ 1114 s32 e1000_get_phy_info(struct e1000_hw *hw) 1115 { 1116 if (hw->phy.ops.get_info) 1117 return hw->phy.ops.get_info(hw); 1118 1119 return E1000_SUCCESS; 1120 } 1121 1122 /** 1123 * e1000_phy_hw_reset - Hard PHY reset 1124 * @hw: pointer to the HW structure 1125 * 1126 * Performs a hard PHY reset. This is a function pointer entry point called 1127 * by drivers. 1128 **/ 1129 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1130 { 1131 if (hw->phy.ops.reset) 1132 return hw->phy.ops.reset(hw); 1133 1134 return E1000_SUCCESS; 1135 } 1136 1137 /** 1138 * e1000_phy_commit - Soft PHY reset 1139 * @hw: pointer to the HW structure 1140 * 1141 * Performs a soft PHY reset on those that apply. This is a function pointer 1142 * entry point called by drivers. 1143 **/ 1144 s32 e1000_phy_commit(struct e1000_hw *hw) 1145 { 1146 if (hw->phy.ops.commit) 1147 return hw->phy.ops.commit(hw); 1148 1149 return E1000_SUCCESS; 1150 } 1151 1152 /** 1153 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1154 * @hw: pointer to the HW structure 1155 * @active: boolean used to enable/disable lplu 1156 * 1157 * Success returns 0, Failure returns 1 1158 * 1159 * The low power link up (lplu) state is set to the power management level D0 1160 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1161 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1162 * is used during Dx states where the power conservation is most important. 1163 * During driver activity, SmartSpeed should be enabled so performance is 1164 * maintained. This is a function pointer entry point called by drivers. 1165 **/ 1166 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1167 { 1168 if (hw->phy.ops.set_d0_lplu_state) 1169 return hw->phy.ops.set_d0_lplu_state(hw, active); 1170 1171 return E1000_SUCCESS; 1172 } 1173 1174 /** 1175 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1176 * @hw: pointer to the HW structure 1177 * @active: boolean used to enable/disable lplu 1178 * 1179 * Success returns 0, Failure returns 1 1180 * 1181 * The low power link up (lplu) state is set to the power management level D3 1182 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1183 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1184 * is used during Dx states where the power conservation is most important. 1185 * During driver activity, SmartSpeed should be enabled so performance is 1186 * maintained. This is a function pointer entry point called by drivers. 1187 **/ 1188 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1189 { 1190 if (hw->phy.ops.set_d3_lplu_state) 1191 return hw->phy.ops.set_d3_lplu_state(hw, active); 1192 1193 return E1000_SUCCESS; 1194 } 1195 1196 /** 1197 * e1000_read_mac_addr - Reads MAC address 1198 * @hw: pointer to the HW structure 1199 * 1200 * Reads the MAC address out of the adapter and stores it in the HW structure. 1201 * Currently no func pointer exists and all implementations are handled in the 1202 * generic version of this function. 1203 **/ 1204 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1205 { 1206 if (hw->mac.ops.read_mac_addr) 1207 return hw->mac.ops.read_mac_addr(hw); 1208 1209 return e1000_read_mac_addr_generic(hw); 1210 } 1211 1212 /** 1213 * e1000_read_pba_string - Read device part number string 1214 * @hw: pointer to the HW structure 1215 * @pba_num: pointer to device part number 1216 * @pba_num_size: size of part number buffer 1217 * 1218 * Reads the product board assembly (PBA) number from the EEPROM and stores 1219 * the value in pba_num. 1220 * Currently no func pointer exists and all implementations are handled in the 1221 * generic version of this function. 1222 **/ 1223 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1224 { 1225 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1226 } 1227 1228 /** 1229 * e1000_read_pba_length - Read device part number string length 1230 * @hw: pointer to the HW structure 1231 * @pba_num_size: size of part number buffer 1232 * 1233 * Reads the product board assembly (PBA) number length from the EEPROM and 1234 * stores the value in pba_num. 1235 * Currently no func pointer exists and all implementations are handled in the 1236 * generic version of this function. 1237 **/ 1238 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1239 { 1240 return e1000_read_pba_length_generic(hw, pba_num_size); 1241 } 1242 1243 /** 1244 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1245 * @hw: pointer to the HW structure 1246 * 1247 * Validates the NVM checksum is correct. This is a function pointer entry 1248 * point called by drivers. 1249 **/ 1250 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1251 { 1252 if (hw->nvm.ops.validate) 1253 return hw->nvm.ops.validate(hw); 1254 1255 return -E1000_ERR_CONFIG; 1256 } 1257 1258 /** 1259 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1260 * @hw: pointer to the HW structure 1261 * 1262 * Updates the NVM checksum. Currently no func pointer exists and all 1263 * implementations are handled in the generic version of this function. 1264 **/ 1265 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1266 { 1267 if (hw->nvm.ops.update) 1268 return hw->nvm.ops.update(hw); 1269 1270 return -E1000_ERR_CONFIG; 1271 } 1272 1273 /** 1274 * e1000_reload_nvm - Reloads EEPROM 1275 * @hw: pointer to the HW structure 1276 * 1277 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1278 * extended control register. 1279 **/ 1280 void e1000_reload_nvm(struct e1000_hw *hw) 1281 { 1282 if (hw->nvm.ops.reload) 1283 hw->nvm.ops.reload(hw); 1284 } 1285 1286 /** 1287 * e1000_read_nvm - Reads NVM (EEPROM) 1288 * @hw: pointer to the HW structure 1289 * @offset: the word offset to read 1290 * @words: number of 16-bit words to read 1291 * @data: pointer to the properly sized buffer for the data. 1292 * 1293 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1294 * pointer entry point called by drivers. 1295 **/ 1296 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1297 { 1298 if (hw->nvm.ops.read) 1299 return hw->nvm.ops.read(hw, offset, words, data); 1300 1301 return -E1000_ERR_CONFIG; 1302 } 1303 1304 /** 1305 * e1000_write_nvm - Writes to NVM (EEPROM) 1306 * @hw: pointer to the HW structure 1307 * @offset: the word offset to read 1308 * @words: number of 16-bit words to write 1309 * @data: pointer to the properly sized buffer for the data. 1310 * 1311 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1312 * pointer entry point called by drivers. 1313 **/ 1314 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1315 { 1316 if (hw->nvm.ops.write) 1317 return hw->nvm.ops.write(hw, offset, words, data); 1318 1319 return E1000_SUCCESS; 1320 } 1321 1322 /** 1323 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1324 * @hw: pointer to the HW structure 1325 * @reg: 32bit register offset 1326 * @offset: the register to write 1327 * @data: the value to write. 1328 * 1329 * Writes the PHY register at offset with the value in data. 1330 * This is a function pointer entry point called by drivers. 1331 **/ 1332 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1333 u8 data) 1334 { 1335 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1336 } 1337 1338 /** 1339 * e1000_power_up_phy - Restores link in case of PHY power down 1340 * @hw: pointer to the HW structure 1341 * 1342 * The phy may be powered down to save power, to turn off link when the 1343 * driver is unloaded, or wake on lan is not enabled (among others). 1344 **/ 1345 void e1000_power_up_phy(struct e1000_hw *hw) 1346 { 1347 if (hw->phy.ops.power_up) 1348 hw->phy.ops.power_up(hw); 1349 1350 e1000_setup_link(hw); 1351 } 1352 1353 /** 1354 * e1000_power_down_phy - Power down PHY 1355 * @hw: pointer to the HW structure 1356 * 1357 * The phy may be powered down to save power, to turn off link when the 1358 * driver is unloaded, or wake on lan is not enabled (among others). 1359 **/ 1360 void e1000_power_down_phy(struct e1000_hw *hw) 1361 { 1362 if (hw->phy.ops.power_down) 1363 hw->phy.ops.power_down(hw); 1364 } 1365 1366 /** 1367 * e1000_power_up_fiber_serdes_link - Power up serdes link 1368 * @hw: pointer to the HW structure 1369 * 1370 * Power on the optics and PCS. 1371 **/ 1372 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1373 { 1374 if (hw->mac.ops.power_up_serdes) 1375 hw->mac.ops.power_up_serdes(hw); 1376 } 1377 1378 /** 1379 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1380 * @hw: pointer to the HW structure 1381 * 1382 * Shutdown the optics and PCS on driver unload. 1383 **/ 1384 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1385 { 1386 if (hw->mac.ops.shutdown_serdes) 1387 hw->mac.ops.shutdown_serdes(hw); 1388 } 1389 1390