xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 8a272653d9fbd9fc37691c9aad6a05089b4ecb4d)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "e1000_api.h"
37 
38 /**
39  *  e1000_init_mac_params - Initialize MAC function pointers
40  *  @hw: pointer to the HW structure
41  *
42  *  This function initializes the function pointers for the MAC
43  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
44  **/
45 s32 e1000_init_mac_params(struct e1000_hw *hw)
46 {
47 	s32 ret_val = E1000_SUCCESS;
48 
49 	if (hw->mac.ops.init_params) {
50 		ret_val = hw->mac.ops.init_params(hw);
51 		if (ret_val) {
52 			DEBUGOUT("MAC Initialization Error\n");
53 			goto out;
54 		}
55 	} else {
56 		DEBUGOUT("mac.init_mac_params was NULL\n");
57 		ret_val = -E1000_ERR_CONFIG;
58 	}
59 
60 out:
61 	return ret_val;
62 }
63 
64 /**
65  *  e1000_init_nvm_params - Initialize NVM function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  This function initializes the function pointers for the NVM
69  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
70  **/
71 s32 e1000_init_nvm_params(struct e1000_hw *hw)
72 {
73 	s32 ret_val = E1000_SUCCESS;
74 
75 	if (hw->nvm.ops.init_params) {
76 		ret_val = hw->nvm.ops.init_params(hw);
77 		if (ret_val) {
78 			DEBUGOUT("NVM Initialization Error\n");
79 			goto out;
80 		}
81 	} else {
82 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
83 		ret_val = -E1000_ERR_CONFIG;
84 	}
85 
86 out:
87 	return ret_val;
88 }
89 
90 /**
91  *  e1000_init_phy_params - Initialize PHY function pointers
92  *  @hw: pointer to the HW structure
93  *
94  *  This function initializes the function pointers for the PHY
95  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
96  **/
97 s32 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val =  -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_mbx_params - Initialize mailbox function pointers
118  *  @hw: pointer to the HW structure
119  *
120  *  This function initializes the function pointers for the PHY
121  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
122  **/
123 s32 e1000_init_mbx_params(struct e1000_hw *hw)
124 {
125 	s32 ret_val = E1000_SUCCESS;
126 
127 	if (hw->mbx.ops.init_params) {
128 		ret_val = hw->mbx.ops.init_params(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Mailbox Initialization Error\n");
131 			goto out;
132 		}
133 	} else {
134 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
135 		ret_val =  -E1000_ERR_CONFIG;
136 	}
137 
138 out:
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_set_mac_type - Sets MAC type
144  *  @hw: pointer to the HW structure
145  *
146  *  This function sets the mac type of the adapter based on the
147  *  device ID stored in the hw structure.
148  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
149  *  e1000_setup_init_funcs()).
150  **/
151 s32 e1000_set_mac_type(struct e1000_hw *hw)
152 {
153 	struct e1000_mac_info *mac = &hw->mac;
154 	s32 ret_val = E1000_SUCCESS;
155 
156 	DEBUGFUNC("e1000_set_mac_type");
157 
158 	switch (hw->device_id) {
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 	case E1000_DEV_ID_82543GC_FIBER:
163 	case E1000_DEV_ID_82543GC_COPPER:
164 		mac->type = e1000_82543;
165 		break;
166 	case E1000_DEV_ID_82544EI_COPPER:
167 	case E1000_DEV_ID_82544EI_FIBER:
168 	case E1000_DEV_ID_82544GC_COPPER:
169 	case E1000_DEV_ID_82544GC_LOM:
170 		mac->type = e1000_82544;
171 		break;
172 	case E1000_DEV_ID_82540EM:
173 	case E1000_DEV_ID_82540EM_LOM:
174 	case E1000_DEV_ID_82540EP:
175 	case E1000_DEV_ID_82540EP_LOM:
176 	case E1000_DEV_ID_82540EP_LP:
177 		mac->type = e1000_82540;
178 		break;
179 	case E1000_DEV_ID_82545EM_COPPER:
180 	case E1000_DEV_ID_82545EM_FIBER:
181 		mac->type = e1000_82545;
182 		break;
183 	case E1000_DEV_ID_82545GM_COPPER:
184 	case E1000_DEV_ID_82545GM_FIBER:
185 	case E1000_DEV_ID_82545GM_SERDES:
186 		mac->type = e1000_82545_rev_3;
187 		break;
188 	case E1000_DEV_ID_82546EB_COPPER:
189 	case E1000_DEV_ID_82546EB_FIBER:
190 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
191 		mac->type = e1000_82546;
192 		break;
193 	case E1000_DEV_ID_82546GB_COPPER:
194 	case E1000_DEV_ID_82546GB_FIBER:
195 	case E1000_DEV_ID_82546GB_SERDES:
196 	case E1000_DEV_ID_82546GB_PCIE:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
199 		mac->type = e1000_82546_rev_3;
200 		break;
201 	case E1000_DEV_ID_82541EI:
202 	case E1000_DEV_ID_82541EI_MOBILE:
203 	case E1000_DEV_ID_82541ER_LOM:
204 		mac->type = e1000_82541;
205 		break;
206 	case E1000_DEV_ID_82541ER:
207 	case E1000_DEV_ID_82541GI:
208 	case E1000_DEV_ID_82541GI_LF:
209 	case E1000_DEV_ID_82541GI_MOBILE:
210 		mac->type = e1000_82541_rev_2;
211 		break;
212 	case E1000_DEV_ID_82547EI:
213 	case E1000_DEV_ID_82547EI_MOBILE:
214 		mac->type = e1000_82547;
215 		break;
216 	case E1000_DEV_ID_82547GI:
217 		mac->type = e1000_82547_rev_2;
218 		break;
219 	case E1000_DEV_ID_82571EB_COPPER:
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82571EB_SERDES:
222 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
223 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
224 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
225 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
226 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
313 	case E1000_DEV_ID_PCH_CMP_I219_V12:
314 		mac->type = e1000_pch_spt;
315 		break;
316 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
317 	case E1000_DEV_ID_PCH_CNP_I219_V6:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
319 	case E1000_DEV_ID_PCH_CNP_I219_V7:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
321 	case E1000_DEV_ID_PCH_ICP_I219_V8:
322 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
323 	case E1000_DEV_ID_PCH_ICP_I219_V9:
324 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
325 	case E1000_DEV_ID_PCH_CMP_I219_V10:
326 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
327 	case E1000_DEV_ID_PCH_CMP_I219_V11:
328 		mac->type = e1000_pch_cnp;
329 		break;
330 	case E1000_DEV_ID_82575EB_COPPER:
331 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
332 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
333 		mac->type = e1000_82575;
334 		break;
335 	case E1000_DEV_ID_82576:
336 	case E1000_DEV_ID_82576_FIBER:
337 	case E1000_DEV_ID_82576_SERDES:
338 	case E1000_DEV_ID_82576_QUAD_COPPER:
339 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
340 	case E1000_DEV_ID_82576_NS:
341 	case E1000_DEV_ID_82576_NS_SERDES:
342 	case E1000_DEV_ID_82576_SERDES_QUAD:
343 		mac->type = e1000_82576;
344 		break;
345 	case E1000_DEV_ID_82580_COPPER:
346 	case E1000_DEV_ID_82580_FIBER:
347 	case E1000_DEV_ID_82580_SERDES:
348 	case E1000_DEV_ID_82580_SGMII:
349 	case E1000_DEV_ID_82580_COPPER_DUAL:
350 	case E1000_DEV_ID_82580_QUAD_FIBER:
351 	case E1000_DEV_ID_DH89XXCC_SGMII:
352 	case E1000_DEV_ID_DH89XXCC_SERDES:
353 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
354 	case E1000_DEV_ID_DH89XXCC_SFP:
355 		mac->type = e1000_82580;
356 		break;
357 	case E1000_DEV_ID_I350_COPPER:
358 	case E1000_DEV_ID_I350_FIBER:
359 	case E1000_DEV_ID_I350_SERDES:
360 	case E1000_DEV_ID_I350_SGMII:
361 	case E1000_DEV_ID_I350_DA4:
362 		mac->type = e1000_i350;
363 		break;
364 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
365 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
366 	case E1000_DEV_ID_I210_COPPER:
367 	case E1000_DEV_ID_I210_COPPER_OEM1:
368 	case E1000_DEV_ID_I210_COPPER_IT:
369 	case E1000_DEV_ID_I210_FIBER:
370 	case E1000_DEV_ID_I210_SERDES:
371 	case E1000_DEV_ID_I210_SGMII:
372 		mac->type = e1000_i210;
373 		break;
374 	case E1000_DEV_ID_I211_COPPER:
375 		mac->type = e1000_i211;
376 		break;
377 	case E1000_DEV_ID_82576_VF:
378 	case E1000_DEV_ID_82576_VF_HV:
379 		mac->type = e1000_vfadapt;
380 		break;
381 	case E1000_DEV_ID_I350_VF:
382 	case E1000_DEV_ID_I350_VF_HV:
383 		mac->type = e1000_vfadapt_i350;
384 		break;
385 
386 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
387 	case E1000_DEV_ID_I354_SGMII:
388 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
389 		mac->type = e1000_i354;
390 		break;
391 	default:
392 		/* Should never have loaded on this device */
393 		ret_val = -E1000_ERR_MAC_INIT;
394 		break;
395 	}
396 
397 	return ret_val;
398 }
399 
400 /**
401  *  e1000_setup_init_funcs - Initializes function pointers
402  *  @hw: pointer to the HW structure
403  *  @init_device: TRUE will initialize the rest of the function pointers
404  *		  getting the device ready for use.  FALSE will only set
405  *		  MAC type and the function pointers for the other init
406  *		  functions.  Passing FALSE will not generate any hardware
407  *		  reads or writes.
408  *
409  *  This function must be called by a driver in order to use the rest
410  *  of the 'shared' code files. Called by drivers only.
411  **/
412 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
413 {
414 	s32 ret_val;
415 
416 	/* Can't do much good without knowing the MAC type. */
417 	ret_val = e1000_set_mac_type(hw);
418 	if (ret_val) {
419 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
420 		goto out;
421 	}
422 
423 	if (!hw->hw_addr) {
424 		DEBUGOUT("ERROR: Registers not mapped\n");
425 		ret_val = -E1000_ERR_CONFIG;
426 		goto out;
427 	}
428 
429 	/*
430 	 * Init function pointers to generic implementations. We do this first
431 	 * allowing a driver module to override it afterward.
432 	 */
433 	e1000_init_mac_ops_generic(hw);
434 	e1000_init_phy_ops_generic(hw);
435 	e1000_init_nvm_ops_generic(hw);
436 	e1000_init_mbx_ops_generic(hw);
437 
438 	/*
439 	 * Set up the init function pointers. These are functions within the
440 	 * adapter family file that sets up function pointers for the rest of
441 	 * the functions in that family.
442 	 */
443 	switch (hw->mac.type) {
444 	case e1000_82542:
445 		e1000_init_function_pointers_82542(hw);
446 		break;
447 	case e1000_82543:
448 	case e1000_82544:
449 		e1000_init_function_pointers_82543(hw);
450 		break;
451 	case e1000_82540:
452 	case e1000_82545:
453 	case e1000_82545_rev_3:
454 	case e1000_82546:
455 	case e1000_82546_rev_3:
456 		e1000_init_function_pointers_82540(hw);
457 		break;
458 	case e1000_82541:
459 	case e1000_82541_rev_2:
460 	case e1000_82547:
461 	case e1000_82547_rev_2:
462 		e1000_init_function_pointers_82541(hw);
463 		break;
464 	case e1000_82571:
465 	case e1000_82572:
466 	case e1000_82573:
467 	case e1000_82574:
468 	case e1000_82583:
469 		e1000_init_function_pointers_82571(hw);
470 		break;
471 	case e1000_80003es2lan:
472 		e1000_init_function_pointers_80003es2lan(hw);
473 		break;
474 	case e1000_ich8lan:
475 	case e1000_ich9lan:
476 	case e1000_ich10lan:
477 	case e1000_pchlan:
478 	case e1000_pch2lan:
479 	case e1000_pch_lpt:
480 	case e1000_pch_spt:
481 	case e1000_pch_cnp:
482 		e1000_init_function_pointers_ich8lan(hw);
483 		break;
484 	case e1000_82575:
485 	case e1000_82576:
486 	case e1000_82580:
487 	case e1000_i350:
488 	case e1000_i354:
489 		e1000_init_function_pointers_82575(hw);
490 		break;
491 	case e1000_i210:
492 	case e1000_i211:
493 		e1000_init_function_pointers_i210(hw);
494 		break;
495 	case e1000_vfadapt:
496 		e1000_init_function_pointers_vf(hw);
497 		break;
498 	case e1000_vfadapt_i350:
499 		e1000_init_function_pointers_vf(hw);
500 		break;
501 	default:
502 		DEBUGOUT("Hardware not supported\n");
503 		ret_val = -E1000_ERR_CONFIG;
504 		break;
505 	}
506 
507 	/*
508 	 * Initialize the rest of the function pointers. These require some
509 	 * register reads/writes in some cases.
510 	 */
511 	if (!(ret_val) && init_device) {
512 		ret_val = e1000_init_mac_params(hw);
513 		if (ret_val)
514 			goto out;
515 
516 		ret_val = e1000_init_nvm_params(hw);
517 		if (ret_val)
518 			goto out;
519 
520 		ret_val = e1000_init_phy_params(hw);
521 		if (ret_val)
522 			goto out;
523 
524 		ret_val = e1000_init_mbx_params(hw);
525 		if (ret_val)
526 			goto out;
527 	}
528 
529 out:
530 	return ret_val;
531 }
532 
533 /**
534  *  e1000_get_bus_info - Obtain bus information for adapter
535  *  @hw: pointer to the HW structure
536  *
537  *  This will obtain information about the HW bus for which the
538  *  adapter is attached and stores it in the hw structure. This is a
539  *  function pointer entry point called by drivers.
540  **/
541 s32 e1000_get_bus_info(struct e1000_hw *hw)
542 {
543 	if (hw->mac.ops.get_bus_info)
544 		return hw->mac.ops.get_bus_info(hw);
545 
546 	return E1000_SUCCESS;
547 }
548 
549 /**
550  *  e1000_clear_vfta - Clear VLAN filter table
551  *  @hw: pointer to the HW structure
552  *
553  *  This clears the VLAN filter table on the adapter. This is a function
554  *  pointer entry point called by drivers.
555  **/
556 void e1000_clear_vfta(struct e1000_hw *hw)
557 {
558 	if (hw->mac.ops.clear_vfta)
559 		hw->mac.ops.clear_vfta(hw);
560 }
561 
562 /**
563  *  e1000_write_vfta - Write value to VLAN filter table
564  *  @hw: pointer to the HW structure
565  *  @offset: the 32-bit offset in which to write the value to.
566  *  @value: the 32-bit value to write at location offset.
567  *
568  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
569  *  table. This is a function pointer entry point called by drivers.
570  **/
571 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
572 {
573 	if (hw->mac.ops.write_vfta)
574 		hw->mac.ops.write_vfta(hw, offset, value);
575 }
576 
577 /**
578  *  e1000_update_mc_addr_list - Update Multicast addresses
579  *  @hw: pointer to the HW structure
580  *  @mc_addr_list: array of multicast addresses to program
581  *  @mc_addr_count: number of multicast addresses to program
582  *
583  *  Updates the Multicast Table Array.
584  *  The caller must have a packed mc_addr_list of multicast addresses.
585  **/
586 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
587 			       u32 mc_addr_count)
588 {
589 	if (hw->mac.ops.update_mc_addr_list)
590 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
591 						mc_addr_count);
592 }
593 
594 /**
595  *  e1000_force_mac_fc - Force MAC flow control
596  *  @hw: pointer to the HW structure
597  *
598  *  Force the MAC's flow control settings. Currently no func pointer exists
599  *  and all implementations are handled in the generic version of this
600  *  function.
601  **/
602 s32 e1000_force_mac_fc(struct e1000_hw *hw)
603 {
604 	return e1000_force_mac_fc_generic(hw);
605 }
606 
607 /**
608  *  e1000_check_for_link - Check/Store link connection
609  *  @hw: pointer to the HW structure
610  *
611  *  This checks the link condition of the adapter and stores the
612  *  results in the hw->mac structure. This is a function pointer entry
613  *  point called by drivers.
614  **/
615 s32 e1000_check_for_link(struct e1000_hw *hw)
616 {
617 	if (hw->mac.ops.check_for_link)
618 		return hw->mac.ops.check_for_link(hw);
619 
620 	return -E1000_ERR_CONFIG;
621 }
622 
623 /**
624  *  e1000_check_mng_mode - Check management mode
625  *  @hw: pointer to the HW structure
626  *
627  *  This checks if the adapter has manageability enabled.
628  *  This is a function pointer entry point called by drivers.
629  **/
630 bool e1000_check_mng_mode(struct e1000_hw *hw)
631 {
632 	if (hw->mac.ops.check_mng_mode)
633 		return hw->mac.ops.check_mng_mode(hw);
634 
635 	return FALSE;
636 }
637 
638 /**
639  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
640  *  @hw: pointer to the HW structure
641  *  @buffer: pointer to the host interface
642  *  @length: size of the buffer
643  *
644  *  Writes the DHCP information to the host interface.
645  **/
646 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
647 {
648 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
649 }
650 
651 /**
652  *  e1000_reset_hw - Reset hardware
653  *  @hw: pointer to the HW structure
654  *
655  *  This resets the hardware into a known state. This is a function pointer
656  *  entry point called by drivers.
657  **/
658 s32 e1000_reset_hw(struct e1000_hw *hw)
659 {
660 	if (hw->mac.ops.reset_hw)
661 		return hw->mac.ops.reset_hw(hw);
662 
663 	return -E1000_ERR_CONFIG;
664 }
665 
666 /**
667  *  e1000_init_hw - Initialize hardware
668  *  @hw: pointer to the HW structure
669  *
670  *  This inits the hardware readying it for operation. This is a function
671  *  pointer entry point called by drivers.
672  **/
673 s32 e1000_init_hw(struct e1000_hw *hw)
674 {
675 	if (hw->mac.ops.init_hw)
676 		return hw->mac.ops.init_hw(hw);
677 
678 	return -E1000_ERR_CONFIG;
679 }
680 
681 /**
682  *  e1000_setup_link - Configures link and flow control
683  *  @hw: pointer to the HW structure
684  *
685  *  This configures link and flow control settings for the adapter. This
686  *  is a function pointer entry point called by drivers. While modules can
687  *  also call this, they probably call their own version of this function.
688  **/
689 s32 e1000_setup_link(struct e1000_hw *hw)
690 {
691 	if (hw->mac.ops.setup_link)
692 		return hw->mac.ops.setup_link(hw);
693 
694 	return -E1000_ERR_CONFIG;
695 }
696 
697 /**
698  *  e1000_get_speed_and_duplex - Returns current speed and duplex
699  *  @hw: pointer to the HW structure
700  *  @speed: pointer to a 16-bit value to store the speed
701  *  @duplex: pointer to a 16-bit value to store the duplex.
702  *
703  *  This returns the speed and duplex of the adapter in the two 'out'
704  *  variables passed in. This is a function pointer entry point called
705  *  by drivers.
706  **/
707 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
708 {
709 	if (hw->mac.ops.get_link_up_info)
710 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
711 
712 	return -E1000_ERR_CONFIG;
713 }
714 
715 /**
716  *  e1000_setup_led - Configures SW controllable LED
717  *  @hw: pointer to the HW structure
718  *
719  *  This prepares the SW controllable LED for use and saves the current state
720  *  of the LED so it can be later restored. This is a function pointer entry
721  *  point called by drivers.
722  **/
723 s32 e1000_setup_led(struct e1000_hw *hw)
724 {
725 	if (hw->mac.ops.setup_led)
726 		return hw->mac.ops.setup_led(hw);
727 
728 	return E1000_SUCCESS;
729 }
730 
731 /**
732  *  e1000_cleanup_led - Restores SW controllable LED
733  *  @hw: pointer to the HW structure
734  *
735  *  This restores the SW controllable LED to the value saved off by
736  *  e1000_setup_led. This is a function pointer entry point called by drivers.
737  **/
738 s32 e1000_cleanup_led(struct e1000_hw *hw)
739 {
740 	if (hw->mac.ops.cleanup_led)
741 		return hw->mac.ops.cleanup_led(hw);
742 
743 	return E1000_SUCCESS;
744 }
745 
746 /**
747  *  e1000_blink_led - Blink SW controllable LED
748  *  @hw: pointer to the HW structure
749  *
750  *  This starts the adapter LED blinking. Request the LED to be setup first
751  *  and cleaned up after. This is a function pointer entry point called by
752  *  drivers.
753  **/
754 s32 e1000_blink_led(struct e1000_hw *hw)
755 {
756 	if (hw->mac.ops.blink_led)
757 		return hw->mac.ops.blink_led(hw);
758 
759 	return E1000_SUCCESS;
760 }
761 
762 /**
763  *  e1000_id_led_init - store LED configurations in SW
764  *  @hw: pointer to the HW structure
765  *
766  *  Initializes the LED config in SW. This is a function pointer entry point
767  *  called by drivers.
768  **/
769 s32 e1000_id_led_init(struct e1000_hw *hw)
770 {
771 	if (hw->mac.ops.id_led_init)
772 		return hw->mac.ops.id_led_init(hw);
773 
774 	return E1000_SUCCESS;
775 }
776 
777 /**
778  *  e1000_led_on - Turn on SW controllable LED
779  *  @hw: pointer to the HW structure
780  *
781  *  Turns the SW defined LED on. This is a function pointer entry point
782  *  called by drivers.
783  **/
784 s32 e1000_led_on(struct e1000_hw *hw)
785 {
786 	if (hw->mac.ops.led_on)
787 		return hw->mac.ops.led_on(hw);
788 
789 	return E1000_SUCCESS;
790 }
791 
792 /**
793  *  e1000_led_off - Turn off SW controllable LED
794  *  @hw: pointer to the HW structure
795  *
796  *  Turns the SW defined LED off. This is a function pointer entry point
797  *  called by drivers.
798  **/
799 s32 e1000_led_off(struct e1000_hw *hw)
800 {
801 	if (hw->mac.ops.led_off)
802 		return hw->mac.ops.led_off(hw);
803 
804 	return E1000_SUCCESS;
805 }
806 
807 /**
808  *  e1000_reset_adaptive - Reset adaptive IFS
809  *  @hw: pointer to the HW structure
810  *
811  *  Resets the adaptive IFS. Currently no func pointer exists and all
812  *  implementations are handled in the generic version of this function.
813  **/
814 void e1000_reset_adaptive(struct e1000_hw *hw)
815 {
816 	e1000_reset_adaptive_generic(hw);
817 }
818 
819 /**
820  *  e1000_update_adaptive - Update adaptive IFS
821  *  @hw: pointer to the HW structure
822  *
823  *  Updates adapter IFS. Currently no func pointer exists and all
824  *  implementations are handled in the generic version of this function.
825  **/
826 void e1000_update_adaptive(struct e1000_hw *hw)
827 {
828 	e1000_update_adaptive_generic(hw);
829 }
830 
831 /**
832  *  e1000_disable_pcie_master - Disable PCI-Express master access
833  *  @hw: pointer to the HW structure
834  *
835  *  Disables PCI-Express master access and verifies there are no pending
836  *  requests. Currently no func pointer exists and all implementations are
837  *  handled in the generic version of this function.
838  **/
839 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
840 {
841 	return e1000_disable_pcie_master_generic(hw);
842 }
843 
844 /**
845  *  e1000_config_collision_dist - Configure collision distance
846  *  @hw: pointer to the HW structure
847  *
848  *  Configures the collision distance to the default value and is used
849  *  during link setup.
850  **/
851 void e1000_config_collision_dist(struct e1000_hw *hw)
852 {
853 	if (hw->mac.ops.config_collision_dist)
854 		hw->mac.ops.config_collision_dist(hw);
855 }
856 
857 /**
858  *  e1000_rar_set - Sets a receive address register
859  *  @hw: pointer to the HW structure
860  *  @addr: address to set the RAR to
861  *  @index: the RAR to set
862  *
863  *  Sets a Receive Address Register (RAR) to the specified address.
864  **/
865 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
866 {
867 	if (hw->mac.ops.rar_set)
868 		return hw->mac.ops.rar_set(hw, addr, index);
869 
870 	return E1000_SUCCESS;
871 }
872 
873 /**
874  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
875  *  @hw: pointer to the HW structure
876  *
877  *  Ensures that the MDI/MDIX SW state is valid.
878  **/
879 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
880 {
881 	if (hw->mac.ops.validate_mdi_setting)
882 		return hw->mac.ops.validate_mdi_setting(hw);
883 
884 	return E1000_SUCCESS;
885 }
886 
887 /**
888  *  e1000_hash_mc_addr - Determines address location in multicast table
889  *  @hw: pointer to the HW structure
890  *  @mc_addr: Multicast address to hash.
891  *
892  *  This hashes an address to determine its location in the multicast
893  *  table. Currently no func pointer exists and all implementations
894  *  are handled in the generic version of this function.
895  **/
896 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
897 {
898 	return e1000_hash_mc_addr_generic(hw, mc_addr);
899 }
900 
901 /**
902  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
903  *  @hw: pointer to the HW structure
904  *
905  *  Enables packet filtering on transmit packets if manageability is enabled
906  *  and host interface is enabled.
907  *  Currently no func pointer exists and all implementations are handled in the
908  *  generic version of this function.
909  **/
910 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
911 {
912 	return e1000_enable_tx_pkt_filtering_generic(hw);
913 }
914 
915 /**
916  *  e1000_mng_host_if_write - Writes to the manageability host interface
917  *  @hw: pointer to the HW structure
918  *  @buffer: pointer to the host interface buffer
919  *  @length: size of the buffer
920  *  @offset: location in the buffer to write to
921  *  @sum: sum of the data (not checksum)
922  *
923  *  This function writes the buffer content at the offset given on the host if.
924  *  It also does alignment considerations to do the writes in most efficient
925  *  way.  Also fills up the sum of the buffer in *buffer parameter.
926  **/
927 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
928 			    u16 offset, u8 *sum)
929 {
930 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
931 }
932 
933 /**
934  *  e1000_mng_write_cmd_header - Writes manageability command header
935  *  @hw: pointer to the HW structure
936  *  @hdr: pointer to the host interface command header
937  *
938  *  Writes the command header after does the checksum calculation.
939  **/
940 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
941 			       struct e1000_host_mng_command_header *hdr)
942 {
943 	return e1000_mng_write_cmd_header_generic(hw, hdr);
944 }
945 
946 /**
947  *  e1000_mng_enable_host_if - Checks host interface is enabled
948  *  @hw: pointer to the HW structure
949  *
950  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
951  *
952  *  This function checks whether the HOST IF is enabled for command operation
953  *  and also checks whether the previous command is completed.  It busy waits
954  *  in case of previous command is not completed.
955  **/
956 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
957 {
958 	return e1000_mng_enable_host_if_generic(hw);
959 }
960 
961 /**
962  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
963  *  @hw: pointer to the HW structure
964  *  @itr: u32 indicating itr value
965  *
966  *  Set the OBFF timer based on the given interrupt rate.
967  **/
968 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
969 {
970 	if (hw->mac.ops.set_obff_timer)
971 		return hw->mac.ops.set_obff_timer(hw, itr);
972 
973 	return E1000_SUCCESS;
974 }
975 
976 /**
977  *  e1000_check_reset_block - Verifies PHY can be reset
978  *  @hw: pointer to the HW structure
979  *
980  *  Checks if the PHY is in a state that can be reset or if manageability
981  *  has it tied up. This is a function pointer entry point called by drivers.
982  **/
983 s32 e1000_check_reset_block(struct e1000_hw *hw)
984 {
985 	if (hw->phy.ops.check_reset_block)
986 		return hw->phy.ops.check_reset_block(hw);
987 
988 	return E1000_SUCCESS;
989 }
990 
991 /**
992  *  e1000_read_phy_reg - Reads PHY register
993  *  @hw: pointer to the HW structure
994  *  @offset: the register to read
995  *  @data: the buffer to store the 16-bit read.
996  *
997  *  Reads the PHY register and returns the value in data.
998  *  This is a function pointer entry point called by drivers.
999  **/
1000 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1001 {
1002 	if (hw->phy.ops.read_reg)
1003 		return hw->phy.ops.read_reg(hw, offset, data);
1004 
1005 	return E1000_SUCCESS;
1006 }
1007 
1008 /**
1009  *  e1000_write_phy_reg - Writes PHY register
1010  *  @hw: pointer to the HW structure
1011  *  @offset: the register to write
1012  *  @data: the value to write.
1013  *
1014  *  Writes the PHY register at offset with the value in data.
1015  *  This is a function pointer entry point called by drivers.
1016  **/
1017 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1018 {
1019 	if (hw->phy.ops.write_reg)
1020 		return hw->phy.ops.write_reg(hw, offset, data);
1021 
1022 	return E1000_SUCCESS;
1023 }
1024 
1025 /**
1026  *  e1000_release_phy - Generic release PHY
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  Return if silicon family does not require a semaphore when accessing the
1030  *  PHY.
1031  **/
1032 void e1000_release_phy(struct e1000_hw *hw)
1033 {
1034 	if (hw->phy.ops.release)
1035 		hw->phy.ops.release(hw);
1036 }
1037 
1038 /**
1039  *  e1000_acquire_phy - Generic acquire PHY
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  Return success if silicon family does not require a semaphore when
1043  *  accessing the PHY.
1044  **/
1045 s32 e1000_acquire_phy(struct e1000_hw *hw)
1046 {
1047 	if (hw->phy.ops.acquire)
1048 		return hw->phy.ops.acquire(hw);
1049 
1050 	return E1000_SUCCESS;
1051 }
1052 
1053 /**
1054  *  e1000_cfg_on_link_up - Configure PHY upon link up
1055  *  @hw: pointer to the HW structure
1056  **/
1057 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1058 {
1059 	if (hw->phy.ops.cfg_on_link_up)
1060 		return hw->phy.ops.cfg_on_link_up(hw);
1061 
1062 	return E1000_SUCCESS;
1063 }
1064 
1065 /**
1066  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1067  *  @hw: pointer to the HW structure
1068  *  @offset: the register to read
1069  *  @data: the location to store the 16-bit value read.
1070  *
1071  *  Reads a register out of the Kumeran interface. Currently no func pointer
1072  *  exists and all implementations are handled in the generic version of
1073  *  this function.
1074  **/
1075 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1076 {
1077 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1078 }
1079 
1080 /**
1081  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1082  *  @hw: pointer to the HW structure
1083  *  @offset: the register to write
1084  *  @data: the value to write.
1085  *
1086  *  Writes a register to the Kumeran interface. Currently no func pointer
1087  *  exists and all implementations are handled in the generic version of
1088  *  this function.
1089  **/
1090 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1091 {
1092 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1093 }
1094 
1095 /**
1096  *  e1000_get_cable_length - Retrieves cable length estimation
1097  *  @hw: pointer to the HW structure
1098  *
1099  *  This function estimates the cable length and stores them in
1100  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1101  *  entry point called by drivers.
1102  **/
1103 s32 e1000_get_cable_length(struct e1000_hw *hw)
1104 {
1105 	if (hw->phy.ops.get_cable_length)
1106 		return hw->phy.ops.get_cable_length(hw);
1107 
1108 	return E1000_SUCCESS;
1109 }
1110 
1111 /**
1112  *  e1000_get_phy_info - Retrieves PHY information from registers
1113  *  @hw: pointer to the HW structure
1114  *
1115  *  This function gets some information from various PHY registers and
1116  *  populates hw->phy values with it. This is a function pointer entry
1117  *  point called by drivers.
1118  **/
1119 s32 e1000_get_phy_info(struct e1000_hw *hw)
1120 {
1121 	if (hw->phy.ops.get_info)
1122 		return hw->phy.ops.get_info(hw);
1123 
1124 	return E1000_SUCCESS;
1125 }
1126 
1127 /**
1128  *  e1000_phy_hw_reset - Hard PHY reset
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  Performs a hard PHY reset. This is a function pointer entry point called
1132  *  by drivers.
1133  **/
1134 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1135 {
1136 	if (hw->phy.ops.reset)
1137 		return hw->phy.ops.reset(hw);
1138 
1139 	return E1000_SUCCESS;
1140 }
1141 
1142 /**
1143  *  e1000_phy_commit - Soft PHY reset
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  Performs a soft PHY reset on those that apply. This is a function pointer
1147  *  entry point called by drivers.
1148  **/
1149 s32 e1000_phy_commit(struct e1000_hw *hw)
1150 {
1151 	if (hw->phy.ops.commit)
1152 		return hw->phy.ops.commit(hw);
1153 
1154 	return E1000_SUCCESS;
1155 }
1156 
1157 /**
1158  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1159  *  @hw: pointer to the HW structure
1160  *  @active: boolean used to enable/disable lplu
1161  *
1162  *  Success returns 0, Failure returns 1
1163  *
1164  *  The low power link up (lplu) state is set to the power management level D0
1165  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1166  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1167  *  is used during Dx states where the power conservation is most important.
1168  *  During driver activity, SmartSpeed should be enabled so performance is
1169  *  maintained.  This is a function pointer entry point called by drivers.
1170  **/
1171 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1172 {
1173 	if (hw->phy.ops.set_d0_lplu_state)
1174 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1175 
1176 	return E1000_SUCCESS;
1177 }
1178 
1179 /**
1180  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1181  *  @hw: pointer to the HW structure
1182  *  @active: boolean used to enable/disable lplu
1183  *
1184  *  Success returns 0, Failure returns 1
1185  *
1186  *  The low power link up (lplu) state is set to the power management level D3
1187  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1188  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1189  *  is used during Dx states where the power conservation is most important.
1190  *  During driver activity, SmartSpeed should be enabled so performance is
1191  *  maintained.  This is a function pointer entry point called by drivers.
1192  **/
1193 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1194 {
1195 	if (hw->phy.ops.set_d3_lplu_state)
1196 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1197 
1198 	return E1000_SUCCESS;
1199 }
1200 
1201 /**
1202  *  e1000_read_mac_addr - Reads MAC address
1203  *  @hw: pointer to the HW structure
1204  *
1205  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1206  *  Currently no func pointer exists and all implementations are handled in the
1207  *  generic version of this function.
1208  **/
1209 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1210 {
1211 	if (hw->mac.ops.read_mac_addr)
1212 		return hw->mac.ops.read_mac_addr(hw);
1213 
1214 	return e1000_read_mac_addr_generic(hw);
1215 }
1216 
1217 /**
1218  *  e1000_read_pba_string - Read device part number string
1219  *  @hw: pointer to the HW structure
1220  *  @pba_num: pointer to device part number
1221  *  @pba_num_size: size of part number buffer
1222  *
1223  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1224  *  the value in pba_num.
1225  *  Currently no func pointer exists and all implementations are handled in the
1226  *  generic version of this function.
1227  **/
1228 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1229 {
1230 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1231 }
1232 
1233 /**
1234  *  e1000_read_pba_length - Read device part number string length
1235  *  @hw: pointer to the HW structure
1236  *  @pba_num_size: size of part number buffer
1237  *
1238  *  Reads the product board assembly (PBA) number length from the EEPROM and
1239  *  stores the value in pba_num.
1240  *  Currently no func pointer exists and all implementations are handled in the
1241  *  generic version of this function.
1242  **/
1243 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1244 {
1245 	return e1000_read_pba_length_generic(hw, pba_num_size);
1246 }
1247 
1248 /**
1249  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1250  *  @hw: pointer to the HW structure
1251  *
1252  *  Validates the NVM checksum is correct. This is a function pointer entry
1253  *  point called by drivers.
1254  **/
1255 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1256 {
1257 	if (hw->nvm.ops.validate)
1258 		return hw->nvm.ops.validate(hw);
1259 
1260 	return -E1000_ERR_CONFIG;
1261 }
1262 
1263 /**
1264  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1265  *  @hw: pointer to the HW structure
1266  *
1267  *  Updates the NVM checksum. Currently no func pointer exists and all
1268  *  implementations are handled in the generic version of this function.
1269  **/
1270 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1271 {
1272 	if (hw->nvm.ops.update)
1273 		return hw->nvm.ops.update(hw);
1274 
1275 	return -E1000_ERR_CONFIG;
1276 }
1277 
1278 /**
1279  *  e1000_reload_nvm - Reloads EEPROM
1280  *  @hw: pointer to the HW structure
1281  *
1282  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1283  *  extended control register.
1284  **/
1285 void e1000_reload_nvm(struct e1000_hw *hw)
1286 {
1287 	if (hw->nvm.ops.reload)
1288 		hw->nvm.ops.reload(hw);
1289 }
1290 
1291 /**
1292  *  e1000_read_nvm - Reads NVM (EEPROM)
1293  *  @hw: pointer to the HW structure
1294  *  @offset: the word offset to read
1295  *  @words: number of 16-bit words to read
1296  *  @data: pointer to the properly sized buffer for the data.
1297  *
1298  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1299  *  pointer entry point called by drivers.
1300  **/
1301 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1302 {
1303 	if (hw->nvm.ops.read)
1304 		return hw->nvm.ops.read(hw, offset, words, data);
1305 
1306 	return -E1000_ERR_CONFIG;
1307 }
1308 
1309 /**
1310  *  e1000_write_nvm - Writes to NVM (EEPROM)
1311  *  @hw: pointer to the HW structure
1312  *  @offset: the word offset to read
1313  *  @words: number of 16-bit words to write
1314  *  @data: pointer to the properly sized buffer for the data.
1315  *
1316  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1317  *  pointer entry point called by drivers.
1318  **/
1319 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1320 {
1321 	if (hw->nvm.ops.write)
1322 		return hw->nvm.ops.write(hw, offset, words, data);
1323 
1324 	return E1000_SUCCESS;
1325 }
1326 
1327 /**
1328  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1329  *  @hw: pointer to the HW structure
1330  *  @reg: 32bit register offset
1331  *  @offset: the register to write
1332  *  @data: the value to write.
1333  *
1334  *  Writes the PHY register at offset with the value in data.
1335  *  This is a function pointer entry point called by drivers.
1336  **/
1337 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1338 			      u8 data)
1339 {
1340 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1341 }
1342 
1343 /**
1344  * e1000_power_up_phy - Restores link in case of PHY power down
1345  * @hw: pointer to the HW structure
1346  *
1347  * The phy may be powered down to save power, to turn off link when the
1348  * driver is unloaded, or wake on lan is not enabled (among others).
1349  **/
1350 void e1000_power_up_phy(struct e1000_hw *hw)
1351 {
1352 	if (hw->phy.ops.power_up)
1353 		hw->phy.ops.power_up(hw);
1354 
1355 	e1000_setup_link(hw);
1356 }
1357 
1358 /**
1359  * e1000_power_down_phy - Power down PHY
1360  * @hw: pointer to the HW structure
1361  *
1362  * The phy may be powered down to save power, to turn off link when the
1363  * driver is unloaded, or wake on lan is not enabled (among others).
1364  **/
1365 void e1000_power_down_phy(struct e1000_hw *hw)
1366 {
1367 	if (hw->phy.ops.power_down)
1368 		hw->phy.ops.power_down(hw);
1369 }
1370 
1371 /**
1372  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1373  *  @hw: pointer to the HW structure
1374  *
1375  *  Power on the optics and PCS.
1376  **/
1377 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1378 {
1379 	if (hw->mac.ops.power_up_serdes)
1380 		hw->mac.ops.power_up_serdes(hw);
1381 }
1382 
1383 /**
1384  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1385  *  @hw: pointer to the HW structure
1386  *
1387  *  Shutdown the optics and PCS on driver unload.
1388  **/
1389 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1390 {
1391 	if (hw->mac.ops.shutdown_serdes)
1392 		hw->mac.ops.shutdown_serdes(hw);
1393 }
1394 
1395