1 /****************************************************************************** 2 3 Copyright (c) 2001-2010, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 case E1000_DEV_ID_ICH10_HANKSVILLE: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_82575EB_COPPER: 294 case E1000_DEV_ID_82575EB_FIBER_SERDES: 295 case E1000_DEV_ID_82575GB_QUAD_COPPER: 296 case E1000_DEV_ID_82575GB_QUAD_COPPER_PM: 297 mac->type = e1000_82575; 298 break; 299 case E1000_DEV_ID_82576: 300 case E1000_DEV_ID_82576_FIBER: 301 case E1000_DEV_ID_82576_SERDES: 302 case E1000_DEV_ID_82576_QUAD_COPPER: 303 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 304 case E1000_DEV_ID_82576_NS: 305 case E1000_DEV_ID_82576_NS_SERDES: 306 case E1000_DEV_ID_82576_SERDES_QUAD: 307 mac->type = e1000_82576; 308 break; 309 case E1000_DEV_ID_82580_COPPER: 310 case E1000_DEV_ID_82580_FIBER: 311 case E1000_DEV_ID_82580_SERDES: 312 case E1000_DEV_ID_82580_SGMII: 313 case E1000_DEV_ID_82580_COPPER_DUAL: 314 case E1000_DEV_ID_82580_QUAD_FIBER: 315 case E1000_DEV_ID_DH89XXCC_SGMII: 316 case E1000_DEV_ID_DH89XXCC_SERDES: 317 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 318 case E1000_DEV_ID_DH89XXCC_SFP: 319 mac->type = e1000_82580; 320 break; 321 case E1000_DEV_ID_I350_COPPER: 322 case E1000_DEV_ID_I350_FIBER: 323 case E1000_DEV_ID_I350_SERDES: 324 case E1000_DEV_ID_I350_SGMII: 325 mac->type = e1000_i350; 326 break; 327 case E1000_DEV_ID_82576_VF: 328 mac->type = e1000_vfadapt; 329 break; 330 case E1000_DEV_ID_I350_VF: 331 mac->type = e1000_vfadapt_i350; 332 break; 333 default: 334 /* Should never have loaded on this device */ 335 ret_val = -E1000_ERR_MAC_INIT; 336 break; 337 } 338 339 return ret_val; 340 } 341 342 /** 343 * e1000_setup_init_funcs - Initializes function pointers 344 * @hw: pointer to the HW structure 345 * @init_device: TRUE will initialize the rest of the function pointers 346 * getting the device ready for use. FALSE will only set 347 * MAC type and the function pointers for the other init 348 * functions. Passing FALSE will not generate any hardware 349 * reads or writes. 350 * 351 * This function must be called by a driver in order to use the rest 352 * of the 'shared' code files. Called by drivers only. 353 **/ 354 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 355 { 356 s32 ret_val; 357 358 /* Can't do much good without knowing the MAC type. */ 359 ret_val = e1000_set_mac_type(hw); 360 if (ret_val) { 361 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 362 goto out; 363 } 364 365 if (!hw->hw_addr) { 366 DEBUGOUT("ERROR: Registers not mapped\n"); 367 ret_val = -E1000_ERR_CONFIG; 368 goto out; 369 } 370 371 /* 372 * Init function pointers to generic implementations. We do this first 373 * allowing a driver module to override it afterward. 374 */ 375 e1000_init_mac_ops_generic(hw); 376 e1000_init_phy_ops_generic(hw); 377 e1000_init_nvm_ops_generic(hw); 378 e1000_init_mbx_ops_generic(hw); 379 380 /* 381 * Set up the init function pointers. These are functions within the 382 * adapter family file that sets up function pointers for the rest of 383 * the functions in that family. 384 */ 385 switch (hw->mac.type) { 386 case e1000_82542: 387 e1000_init_function_pointers_82542(hw); 388 break; 389 case e1000_82543: 390 case e1000_82544: 391 e1000_init_function_pointers_82543(hw); 392 break; 393 case e1000_82540: 394 case e1000_82545: 395 case e1000_82545_rev_3: 396 case e1000_82546: 397 case e1000_82546_rev_3: 398 e1000_init_function_pointers_82540(hw); 399 break; 400 case e1000_82541: 401 case e1000_82541_rev_2: 402 case e1000_82547: 403 case e1000_82547_rev_2: 404 e1000_init_function_pointers_82541(hw); 405 break; 406 case e1000_82571: 407 case e1000_82572: 408 case e1000_82573: 409 case e1000_82574: 410 case e1000_82583: 411 e1000_init_function_pointers_82571(hw); 412 break; 413 case e1000_80003es2lan: 414 e1000_init_function_pointers_80003es2lan(hw); 415 break; 416 case e1000_ich8lan: 417 case e1000_ich9lan: 418 case e1000_ich10lan: 419 case e1000_pchlan: 420 case e1000_pch2lan: 421 e1000_init_function_pointers_ich8lan(hw); 422 break; 423 case e1000_82575: 424 case e1000_82576: 425 case e1000_82580: 426 case e1000_i350: 427 e1000_init_function_pointers_82575(hw); 428 break; 429 case e1000_vfadapt: 430 e1000_init_function_pointers_vf(hw); 431 break; 432 case e1000_vfadapt_i350: 433 e1000_init_function_pointers_vf(hw); 434 break; 435 default: 436 DEBUGOUT("Hardware not supported\n"); 437 ret_val = -E1000_ERR_CONFIG; 438 break; 439 } 440 441 /* 442 * Initialize the rest of the function pointers. These require some 443 * register reads/writes in some cases. 444 */ 445 if (!(ret_val) && init_device) { 446 ret_val = e1000_init_mac_params(hw); 447 if (ret_val) 448 goto out; 449 450 ret_val = e1000_init_nvm_params(hw); 451 if (ret_val) 452 goto out; 453 454 ret_val = e1000_init_phy_params(hw); 455 if (ret_val) 456 goto out; 457 458 ret_val = e1000_init_mbx_params(hw); 459 if (ret_val) 460 goto out; 461 } 462 463 out: 464 return ret_val; 465 } 466 467 /** 468 * e1000_get_bus_info - Obtain bus information for adapter 469 * @hw: pointer to the HW structure 470 * 471 * This will obtain information about the HW bus for which the 472 * adapter is attached and stores it in the hw structure. This is a 473 * function pointer entry point called by drivers. 474 **/ 475 s32 e1000_get_bus_info(struct e1000_hw *hw) 476 { 477 if (hw->mac.ops.get_bus_info) 478 return hw->mac.ops.get_bus_info(hw); 479 480 return E1000_SUCCESS; 481 } 482 483 /** 484 * e1000_clear_vfta - Clear VLAN filter table 485 * @hw: pointer to the HW structure 486 * 487 * This clears the VLAN filter table on the adapter. This is a function 488 * pointer entry point called by drivers. 489 **/ 490 void e1000_clear_vfta(struct e1000_hw *hw) 491 { 492 if (hw->mac.ops.clear_vfta) 493 hw->mac.ops.clear_vfta(hw); 494 } 495 496 /** 497 * e1000_write_vfta - Write value to VLAN filter table 498 * @hw: pointer to the HW structure 499 * @offset: the 32-bit offset in which to write the value to. 500 * @value: the 32-bit value to write at location offset. 501 * 502 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 503 * table. This is a function pointer entry point called by drivers. 504 **/ 505 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 506 { 507 if (hw->mac.ops.write_vfta) 508 hw->mac.ops.write_vfta(hw, offset, value); 509 } 510 511 /** 512 * e1000_update_mc_addr_list - Update Multicast addresses 513 * @hw: pointer to the HW structure 514 * @mc_addr_list: array of multicast addresses to program 515 * @mc_addr_count: number of multicast addresses to program 516 * 517 * Updates the Multicast Table Array. 518 * The caller must have a packed mc_addr_list of multicast addresses. 519 **/ 520 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 521 u32 mc_addr_count) 522 { 523 if (hw->mac.ops.update_mc_addr_list) 524 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 525 mc_addr_count); 526 } 527 528 /** 529 * e1000_force_mac_fc - Force MAC flow control 530 * @hw: pointer to the HW structure 531 * 532 * Force the MAC's flow control settings. Currently no func pointer exists 533 * and all implementations are handled in the generic version of this 534 * function. 535 **/ 536 s32 e1000_force_mac_fc(struct e1000_hw *hw) 537 { 538 return e1000_force_mac_fc_generic(hw); 539 } 540 541 /** 542 * e1000_check_for_link - Check/Store link connection 543 * @hw: pointer to the HW structure 544 * 545 * This checks the link condition of the adapter and stores the 546 * results in the hw->mac structure. This is a function pointer entry 547 * point called by drivers. 548 **/ 549 s32 e1000_check_for_link(struct e1000_hw *hw) 550 { 551 if (hw->mac.ops.check_for_link) 552 return hw->mac.ops.check_for_link(hw); 553 554 return -E1000_ERR_CONFIG; 555 } 556 557 /** 558 * e1000_check_mng_mode - Check management mode 559 * @hw: pointer to the HW structure 560 * 561 * This checks if the adapter has manageability enabled. 562 * This is a function pointer entry point called by drivers. 563 **/ 564 bool e1000_check_mng_mode(struct e1000_hw *hw) 565 { 566 if (hw->mac.ops.check_mng_mode) 567 return hw->mac.ops.check_mng_mode(hw); 568 569 return FALSE; 570 } 571 572 /** 573 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 574 * @hw: pointer to the HW structure 575 * @buffer: pointer to the host interface 576 * @length: size of the buffer 577 * 578 * Writes the DHCP information to the host interface. 579 **/ 580 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 581 { 582 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 583 } 584 585 /** 586 * e1000_reset_hw - Reset hardware 587 * @hw: pointer to the HW structure 588 * 589 * This resets the hardware into a known state. This is a function pointer 590 * entry point called by drivers. 591 **/ 592 s32 e1000_reset_hw(struct e1000_hw *hw) 593 { 594 if (hw->mac.ops.reset_hw) 595 return hw->mac.ops.reset_hw(hw); 596 597 return -E1000_ERR_CONFIG; 598 } 599 600 /** 601 * e1000_init_hw - Initialize hardware 602 * @hw: pointer to the HW structure 603 * 604 * This inits the hardware readying it for operation. This is a function 605 * pointer entry point called by drivers. 606 **/ 607 s32 e1000_init_hw(struct e1000_hw *hw) 608 { 609 if (hw->mac.ops.init_hw) 610 return hw->mac.ops.init_hw(hw); 611 612 return -E1000_ERR_CONFIG; 613 } 614 615 /** 616 * e1000_setup_link - Configures link and flow control 617 * @hw: pointer to the HW structure 618 * 619 * This configures link and flow control settings for the adapter. This 620 * is a function pointer entry point called by drivers. While modules can 621 * also call this, they probably call their own version of this function. 622 **/ 623 s32 e1000_setup_link(struct e1000_hw *hw) 624 { 625 if (hw->mac.ops.setup_link) 626 return hw->mac.ops.setup_link(hw); 627 628 return -E1000_ERR_CONFIG; 629 } 630 631 /** 632 * e1000_get_speed_and_duplex - Returns current speed and duplex 633 * @hw: pointer to the HW structure 634 * @speed: pointer to a 16-bit value to store the speed 635 * @duplex: pointer to a 16-bit value to store the duplex. 636 * 637 * This returns the speed and duplex of the adapter in the two 'out' 638 * variables passed in. This is a function pointer entry point called 639 * by drivers. 640 **/ 641 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 642 { 643 if (hw->mac.ops.get_link_up_info) 644 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 645 646 return -E1000_ERR_CONFIG; 647 } 648 649 /** 650 * e1000_setup_led - Configures SW controllable LED 651 * @hw: pointer to the HW structure 652 * 653 * This prepares the SW controllable LED for use and saves the current state 654 * of the LED so it can be later restored. This is a function pointer entry 655 * point called by drivers. 656 **/ 657 s32 e1000_setup_led(struct e1000_hw *hw) 658 { 659 if (hw->mac.ops.setup_led) 660 return hw->mac.ops.setup_led(hw); 661 662 return E1000_SUCCESS; 663 } 664 665 /** 666 * e1000_cleanup_led - Restores SW controllable LED 667 * @hw: pointer to the HW structure 668 * 669 * This restores the SW controllable LED to the value saved off by 670 * e1000_setup_led. This is a function pointer entry point called by drivers. 671 **/ 672 s32 e1000_cleanup_led(struct e1000_hw *hw) 673 { 674 if (hw->mac.ops.cleanup_led) 675 return hw->mac.ops.cleanup_led(hw); 676 677 return E1000_SUCCESS; 678 } 679 680 /** 681 * e1000_blink_led - Blink SW controllable LED 682 * @hw: pointer to the HW structure 683 * 684 * This starts the adapter LED blinking. Request the LED to be setup first 685 * and cleaned up after. This is a function pointer entry point called by 686 * drivers. 687 **/ 688 s32 e1000_blink_led(struct e1000_hw *hw) 689 { 690 if (hw->mac.ops.blink_led) 691 return hw->mac.ops.blink_led(hw); 692 693 return E1000_SUCCESS; 694 } 695 696 /** 697 * e1000_id_led_init - store LED configurations in SW 698 * @hw: pointer to the HW structure 699 * 700 * Initializes the LED config in SW. This is a function pointer entry point 701 * called by drivers. 702 **/ 703 s32 e1000_id_led_init(struct e1000_hw *hw) 704 { 705 if (hw->mac.ops.id_led_init) 706 return hw->mac.ops.id_led_init(hw); 707 708 return E1000_SUCCESS; 709 } 710 711 /** 712 * e1000_led_on - Turn on SW controllable LED 713 * @hw: pointer to the HW structure 714 * 715 * Turns the SW defined LED on. This is a function pointer entry point 716 * called by drivers. 717 **/ 718 s32 e1000_led_on(struct e1000_hw *hw) 719 { 720 if (hw->mac.ops.led_on) 721 return hw->mac.ops.led_on(hw); 722 723 return E1000_SUCCESS; 724 } 725 726 /** 727 * e1000_led_off - Turn off SW controllable LED 728 * @hw: pointer to the HW structure 729 * 730 * Turns the SW defined LED off. This is a function pointer entry point 731 * called by drivers. 732 **/ 733 s32 e1000_led_off(struct e1000_hw *hw) 734 { 735 if (hw->mac.ops.led_off) 736 return hw->mac.ops.led_off(hw); 737 738 return E1000_SUCCESS; 739 } 740 741 /** 742 * e1000_reset_adaptive - Reset adaptive IFS 743 * @hw: pointer to the HW structure 744 * 745 * Resets the adaptive IFS. Currently no func pointer exists and all 746 * implementations are handled in the generic version of this function. 747 **/ 748 void e1000_reset_adaptive(struct e1000_hw *hw) 749 { 750 e1000_reset_adaptive_generic(hw); 751 } 752 753 /** 754 * e1000_update_adaptive - Update adaptive IFS 755 * @hw: pointer to the HW structure 756 * 757 * Updates adapter IFS. Currently no func pointer exists and all 758 * implementations are handled in the generic version of this function. 759 **/ 760 void e1000_update_adaptive(struct e1000_hw *hw) 761 { 762 e1000_update_adaptive_generic(hw); 763 } 764 765 /** 766 * e1000_disable_pcie_master - Disable PCI-Express master access 767 * @hw: pointer to the HW structure 768 * 769 * Disables PCI-Express master access and verifies there are no pending 770 * requests. Currently no func pointer exists and all implementations are 771 * handled in the generic version of this function. 772 **/ 773 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 774 { 775 return e1000_disable_pcie_master_generic(hw); 776 } 777 778 /** 779 * e1000_config_collision_dist - Configure collision distance 780 * @hw: pointer to the HW structure 781 * 782 * Configures the collision distance to the default value and is used 783 * during link setup. 784 **/ 785 void e1000_config_collision_dist(struct e1000_hw *hw) 786 { 787 if (hw->mac.ops.config_collision_dist) 788 hw->mac.ops.config_collision_dist(hw); 789 } 790 791 /** 792 * e1000_rar_set - Sets a receive address register 793 * @hw: pointer to the HW structure 794 * @addr: address to set the RAR to 795 * @index: the RAR to set 796 * 797 * Sets a Receive Address Register (RAR) to the specified address. 798 **/ 799 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 800 { 801 if (hw->mac.ops.rar_set) 802 hw->mac.ops.rar_set(hw, addr, index); 803 } 804 805 /** 806 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 807 * @hw: pointer to the HW structure 808 * 809 * Ensures that the MDI/MDIX SW state is valid. 810 **/ 811 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 812 { 813 if (hw->mac.ops.validate_mdi_setting) 814 return hw->mac.ops.validate_mdi_setting(hw); 815 816 return E1000_SUCCESS; 817 } 818 819 /** 820 * e1000_hash_mc_addr - Determines address location in multicast table 821 * @hw: pointer to the HW structure 822 * @mc_addr: Multicast address to hash. 823 * 824 * This hashes an address to determine its location in the multicast 825 * table. Currently no func pointer exists and all implementations 826 * are handled in the generic version of this function. 827 **/ 828 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 829 { 830 return e1000_hash_mc_addr_generic(hw, mc_addr); 831 } 832 833 /** 834 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 835 * @hw: pointer to the HW structure 836 * 837 * Enables packet filtering on transmit packets if manageability is enabled 838 * and host interface is enabled. 839 * Currently no func pointer exists and all implementations are handled in the 840 * generic version of this function. 841 **/ 842 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 843 { 844 return e1000_enable_tx_pkt_filtering_generic(hw); 845 } 846 847 /** 848 * e1000_mng_host_if_write - Writes to the manageability host interface 849 * @hw: pointer to the HW structure 850 * @buffer: pointer to the host interface buffer 851 * @length: size of the buffer 852 * @offset: location in the buffer to write to 853 * @sum: sum of the data (not checksum) 854 * 855 * This function writes the buffer content at the offset given on the host if. 856 * It also does alignment considerations to do the writes in most efficient 857 * way. Also fills up the sum of the buffer in *buffer parameter. 858 **/ 859 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 860 u16 offset, u8 *sum) 861 { 862 if (hw->mac.ops.mng_host_if_write) 863 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 864 offset, sum); 865 866 return E1000_NOT_IMPLEMENTED; 867 } 868 869 /** 870 * e1000_mng_write_cmd_header - Writes manageability command header 871 * @hw: pointer to the HW structure 872 * @hdr: pointer to the host interface command header 873 * 874 * Writes the command header after does the checksum calculation. 875 **/ 876 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 877 struct e1000_host_mng_command_header *hdr) 878 { 879 if (hw->mac.ops.mng_write_cmd_header) 880 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 881 882 return E1000_NOT_IMPLEMENTED; 883 } 884 885 /** 886 * e1000_mng_enable_host_if - Checks host interface is enabled 887 * @hw: pointer to the HW structure 888 * 889 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 890 * 891 * This function checks whether the HOST IF is enabled for command operation 892 * and also checks whether the previous command is completed. It busy waits 893 * in case of previous command is not completed. 894 **/ 895 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 896 { 897 if (hw->mac.ops.mng_enable_host_if) 898 return hw->mac.ops.mng_enable_host_if(hw); 899 900 return E1000_NOT_IMPLEMENTED; 901 } 902 903 /** 904 * e1000_wait_autoneg - Waits for autonegotiation completion 905 * @hw: pointer to the HW structure 906 * 907 * Waits for autoneg to complete. Currently no func pointer exists and all 908 * implementations are handled in the generic version of this function. 909 **/ 910 s32 e1000_wait_autoneg(struct e1000_hw *hw) 911 { 912 if (hw->mac.ops.wait_autoneg) 913 return hw->mac.ops.wait_autoneg(hw); 914 915 return E1000_SUCCESS; 916 } 917 918 /** 919 * e1000_check_reset_block - Verifies PHY can be reset 920 * @hw: pointer to the HW structure 921 * 922 * Checks if the PHY is in a state that can be reset or if manageability 923 * has it tied up. This is a function pointer entry point called by drivers. 924 **/ 925 s32 e1000_check_reset_block(struct e1000_hw *hw) 926 { 927 if (hw->phy.ops.check_reset_block) 928 return hw->phy.ops.check_reset_block(hw); 929 930 return E1000_SUCCESS; 931 } 932 933 /** 934 * e1000_read_phy_reg - Reads PHY register 935 * @hw: pointer to the HW structure 936 * @offset: the register to read 937 * @data: the buffer to store the 16-bit read. 938 * 939 * Reads the PHY register and returns the value in data. 940 * This is a function pointer entry point called by drivers. 941 **/ 942 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 943 { 944 if (hw->phy.ops.read_reg) 945 return hw->phy.ops.read_reg(hw, offset, data); 946 947 return E1000_SUCCESS; 948 } 949 950 /** 951 * e1000_write_phy_reg - Writes PHY register 952 * @hw: pointer to the HW structure 953 * @offset: the register to write 954 * @data: the value to write. 955 * 956 * Writes the PHY register at offset with the value in data. 957 * This is a function pointer entry point called by drivers. 958 **/ 959 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 960 { 961 if (hw->phy.ops.write_reg) 962 return hw->phy.ops.write_reg(hw, offset, data); 963 964 return E1000_SUCCESS; 965 } 966 967 /** 968 * e1000_release_phy - Generic release PHY 969 * @hw: pointer to the HW structure 970 * 971 * Return if silicon family does not require a semaphore when accessing the 972 * PHY. 973 **/ 974 void e1000_release_phy(struct e1000_hw *hw) 975 { 976 if (hw->phy.ops.release) 977 hw->phy.ops.release(hw); 978 } 979 980 /** 981 * e1000_acquire_phy - Generic acquire PHY 982 * @hw: pointer to the HW structure 983 * 984 * Return success if silicon family does not require a semaphore when 985 * accessing the PHY. 986 **/ 987 s32 e1000_acquire_phy(struct e1000_hw *hw) 988 { 989 if (hw->phy.ops.acquire) 990 return hw->phy.ops.acquire(hw); 991 992 return E1000_SUCCESS; 993 } 994 995 /** 996 * e1000_cfg_on_link_up - Configure PHY upon link up 997 * @hw: pointer to the HW structure 998 **/ 999 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1000 { 1001 if (hw->phy.ops.cfg_on_link_up) 1002 return hw->phy.ops.cfg_on_link_up(hw); 1003 1004 return E1000_SUCCESS; 1005 } 1006 1007 /** 1008 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1009 * @hw: pointer to the HW structure 1010 * @offset: the register to read 1011 * @data: the location to store the 16-bit value read. 1012 * 1013 * Reads a register out of the Kumeran interface. Currently no func pointer 1014 * exists and all implementations are handled in the generic version of 1015 * this function. 1016 **/ 1017 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1018 { 1019 return e1000_read_kmrn_reg_generic(hw, offset, data); 1020 } 1021 1022 /** 1023 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1024 * @hw: pointer to the HW structure 1025 * @offset: the register to write 1026 * @data: the value to write. 1027 * 1028 * Writes a register to the Kumeran interface. Currently no func pointer 1029 * exists and all implementations are handled in the generic version of 1030 * this function. 1031 **/ 1032 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1033 { 1034 return e1000_write_kmrn_reg_generic(hw, offset, data); 1035 } 1036 1037 /** 1038 * e1000_get_cable_length - Retrieves cable length estimation 1039 * @hw: pointer to the HW structure 1040 * 1041 * This function estimates the cable length and stores them in 1042 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1043 * entry point called by drivers. 1044 **/ 1045 s32 e1000_get_cable_length(struct e1000_hw *hw) 1046 { 1047 if (hw->phy.ops.get_cable_length) 1048 return hw->phy.ops.get_cable_length(hw); 1049 1050 return E1000_SUCCESS; 1051 } 1052 1053 /** 1054 * e1000_get_phy_info - Retrieves PHY information from registers 1055 * @hw: pointer to the HW structure 1056 * 1057 * This function gets some information from various PHY registers and 1058 * populates hw->phy values with it. This is a function pointer entry 1059 * point called by drivers. 1060 **/ 1061 s32 e1000_get_phy_info(struct e1000_hw *hw) 1062 { 1063 if (hw->phy.ops.get_info) 1064 return hw->phy.ops.get_info(hw); 1065 1066 return E1000_SUCCESS; 1067 } 1068 1069 /** 1070 * e1000_phy_hw_reset - Hard PHY reset 1071 * @hw: pointer to the HW structure 1072 * 1073 * Performs a hard PHY reset. This is a function pointer entry point called 1074 * by drivers. 1075 **/ 1076 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1077 { 1078 if (hw->phy.ops.reset) 1079 return hw->phy.ops.reset(hw); 1080 1081 return E1000_SUCCESS; 1082 } 1083 1084 /** 1085 * e1000_phy_commit - Soft PHY reset 1086 * @hw: pointer to the HW structure 1087 * 1088 * Performs a soft PHY reset on those that apply. This is a function pointer 1089 * entry point called by drivers. 1090 **/ 1091 s32 e1000_phy_commit(struct e1000_hw *hw) 1092 { 1093 if (hw->phy.ops.commit) 1094 return hw->phy.ops.commit(hw); 1095 1096 return E1000_SUCCESS; 1097 } 1098 1099 /** 1100 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1101 * @hw: pointer to the HW structure 1102 * @active: boolean used to enable/disable lplu 1103 * 1104 * Success returns 0, Failure returns 1 1105 * 1106 * The low power link up (lplu) state is set to the power management level D0 1107 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1108 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1109 * is used during Dx states where the power conservation is most important. 1110 * During driver activity, SmartSpeed should be enabled so performance is 1111 * maintained. This is a function pointer entry point called by drivers. 1112 **/ 1113 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1114 { 1115 if (hw->phy.ops.set_d0_lplu_state) 1116 return hw->phy.ops.set_d0_lplu_state(hw, active); 1117 1118 return E1000_SUCCESS; 1119 } 1120 1121 /** 1122 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1123 * @hw: pointer to the HW structure 1124 * @active: boolean used to enable/disable lplu 1125 * 1126 * Success returns 0, Failure returns 1 1127 * 1128 * The low power link up (lplu) state is set to the power management level D3 1129 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1130 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1131 * is used during Dx states where the power conservation is most important. 1132 * During driver activity, SmartSpeed should be enabled so performance is 1133 * maintained. This is a function pointer entry point called by drivers. 1134 **/ 1135 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1136 { 1137 if (hw->phy.ops.set_d3_lplu_state) 1138 return hw->phy.ops.set_d3_lplu_state(hw, active); 1139 1140 return E1000_SUCCESS; 1141 } 1142 1143 /** 1144 * e1000_read_mac_addr - Reads MAC address 1145 * @hw: pointer to the HW structure 1146 * 1147 * Reads the MAC address out of the adapter and stores it in the HW structure. 1148 * Currently no func pointer exists and all implementations are handled in the 1149 * generic version of this function. 1150 **/ 1151 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1152 { 1153 if (hw->mac.ops.read_mac_addr) 1154 return hw->mac.ops.read_mac_addr(hw); 1155 1156 return e1000_read_mac_addr_generic(hw); 1157 } 1158 1159 /** 1160 * e1000_read_pba_string - Read device part number string 1161 * @hw: pointer to the HW structure 1162 * @pba_num: pointer to device part number 1163 * @pba_num_size: size of part number buffer 1164 * 1165 * Reads the product board assembly (PBA) number from the EEPROM and stores 1166 * the value in pba_num. 1167 * Currently no func pointer exists and all implementations are handled in the 1168 * generic version of this function. 1169 **/ 1170 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1171 { 1172 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1173 } 1174 1175 /** 1176 * e1000_read_pba_length - Read device part number string length 1177 * @hw: pointer to the HW structure 1178 * @pba_num_size: size of part number buffer 1179 * 1180 * Reads the product board assembly (PBA) number length from the EEPROM and 1181 * stores the value in pba_num. 1182 * Currently no func pointer exists and all implementations are handled in the 1183 * generic version of this function. 1184 **/ 1185 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1186 { 1187 return e1000_read_pba_length_generic(hw, pba_num_size); 1188 } 1189 1190 /** 1191 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1192 * @hw: pointer to the HW structure 1193 * 1194 * Validates the NVM checksum is correct. This is a function pointer entry 1195 * point called by drivers. 1196 **/ 1197 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1198 { 1199 if (hw->nvm.ops.validate) 1200 return hw->nvm.ops.validate(hw); 1201 1202 return -E1000_ERR_CONFIG; 1203 } 1204 1205 /** 1206 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1207 * @hw: pointer to the HW structure 1208 * 1209 * Updates the NVM checksum. Currently no func pointer exists and all 1210 * implementations are handled in the generic version of this function. 1211 **/ 1212 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1213 { 1214 if (hw->nvm.ops.update) 1215 return hw->nvm.ops.update(hw); 1216 1217 return -E1000_ERR_CONFIG; 1218 } 1219 1220 /** 1221 * e1000_reload_nvm - Reloads EEPROM 1222 * @hw: pointer to the HW structure 1223 * 1224 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1225 * extended control register. 1226 **/ 1227 void e1000_reload_nvm(struct e1000_hw *hw) 1228 { 1229 if (hw->nvm.ops.reload) 1230 hw->nvm.ops.reload(hw); 1231 } 1232 1233 /** 1234 * e1000_read_nvm - Reads NVM (EEPROM) 1235 * @hw: pointer to the HW structure 1236 * @offset: the word offset to read 1237 * @words: number of 16-bit words to read 1238 * @data: pointer to the properly sized buffer for the data. 1239 * 1240 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1241 * pointer entry point called by drivers. 1242 **/ 1243 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1244 { 1245 if (hw->nvm.ops.read) 1246 return hw->nvm.ops.read(hw, offset, words, data); 1247 1248 return -E1000_ERR_CONFIG; 1249 } 1250 1251 /** 1252 * e1000_write_nvm - Writes to NVM (EEPROM) 1253 * @hw: pointer to the HW structure 1254 * @offset: the word offset to read 1255 * @words: number of 16-bit words to write 1256 * @data: pointer to the properly sized buffer for the data. 1257 * 1258 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1259 * pointer entry point called by drivers. 1260 **/ 1261 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1262 { 1263 if (hw->nvm.ops.write) 1264 return hw->nvm.ops.write(hw, offset, words, data); 1265 1266 return E1000_SUCCESS; 1267 } 1268 1269 /** 1270 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1271 * @hw: pointer to the HW structure 1272 * @reg: 32bit register offset 1273 * @offset: the register to write 1274 * @data: the value to write. 1275 * 1276 * Writes the PHY register at offset with the value in data. 1277 * This is a function pointer entry point called by drivers. 1278 **/ 1279 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1280 u8 data) 1281 { 1282 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1283 } 1284 1285 /** 1286 * e1000_power_up_phy - Restores link in case of PHY power down 1287 * @hw: pointer to the HW structure 1288 * 1289 * The phy may be powered down to save power, to turn off link when the 1290 * driver is unloaded, or wake on lan is not enabled (among others). 1291 **/ 1292 void e1000_power_up_phy(struct e1000_hw *hw) 1293 { 1294 if (hw->phy.ops.power_up) 1295 hw->phy.ops.power_up(hw); 1296 1297 e1000_setup_link(hw); 1298 } 1299 1300 /** 1301 * e1000_power_down_phy - Power down PHY 1302 * @hw: pointer to the HW structure 1303 * 1304 * The phy may be powered down to save power, to turn off link when the 1305 * driver is unloaded, or wake on lan is not enabled (among others). 1306 **/ 1307 void e1000_power_down_phy(struct e1000_hw *hw) 1308 { 1309 if (hw->phy.ops.power_down) 1310 hw->phy.ops.power_down(hw); 1311 } 1312 1313 /** 1314 * e1000_power_up_fiber_serdes_link - Power up serdes link 1315 * @hw: pointer to the HW structure 1316 * 1317 * Power on the optics and PCS. 1318 **/ 1319 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1320 { 1321 if (hw->mac.ops.power_up_serdes) 1322 hw->mac.ops.power_up_serdes(hw); 1323 } 1324 1325 /** 1326 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1327 * @hw: pointer to the HW structure 1328 * 1329 * Shutdown the optics and PCS on driver unload. 1330 **/ 1331 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1332 { 1333 if (hw->mac.ops.shutdown_serdes) 1334 hw->mac.ops.shutdown_serdes(hw); 1335 } 1336 1337