xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2010, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 	case E1000_DEV_ID_ICH10_HANKSVILLE:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_82575EB_COPPER:
294 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
295 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
296 	case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
297 		mac->type = e1000_82575;
298 		break;
299 	case E1000_DEV_ID_82576:
300 	case E1000_DEV_ID_82576_FIBER:
301 	case E1000_DEV_ID_82576_SERDES:
302 	case E1000_DEV_ID_82576_QUAD_COPPER:
303 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
304 	case E1000_DEV_ID_82576_NS:
305 	case E1000_DEV_ID_82576_NS_SERDES:
306 	case E1000_DEV_ID_82576_SERDES_QUAD:
307 		mac->type = e1000_82576;
308 		break;
309 	case E1000_DEV_ID_82580_COPPER:
310 	case E1000_DEV_ID_82580_FIBER:
311 	case E1000_DEV_ID_82580_SERDES:
312 	case E1000_DEV_ID_82580_SGMII:
313 	case E1000_DEV_ID_82580_COPPER_DUAL:
314 	case E1000_DEV_ID_82580_QUAD_FIBER:
315 	case E1000_DEV_ID_DH89XXCC_SGMII:
316 	case E1000_DEV_ID_DH89XXCC_SERDES:
317 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
318 	case E1000_DEV_ID_DH89XXCC_SFP:
319 		mac->type = e1000_82580;
320 		break;
321 	case E1000_DEV_ID_I350_COPPER:
322 	case E1000_DEV_ID_I350_FIBER:
323 	case E1000_DEV_ID_I350_SERDES:
324 	case E1000_DEV_ID_I350_SGMII:
325 		mac->type = e1000_i350;
326 		break;
327 	case E1000_DEV_ID_82576_VF:
328 		mac->type = e1000_vfadapt;
329 		break;
330 	case E1000_DEV_ID_I350_VF:
331 		mac->type = e1000_vfadapt_i350;
332 		break;
333 	default:
334 		/* Should never have loaded on this device */
335 		ret_val = -E1000_ERR_MAC_INIT;
336 		break;
337 	}
338 
339 	return ret_val;
340 }
341 
342 /**
343  *  e1000_setup_init_funcs - Initializes function pointers
344  *  @hw: pointer to the HW structure
345  *  @init_device: TRUE will initialize the rest of the function pointers
346  *                 getting the device ready for use.  FALSE will only set
347  *                 MAC type and the function pointers for the other init
348  *                 functions.  Passing FALSE will not generate any hardware
349  *                 reads or writes.
350  *
351  *  This function must be called by a driver in order to use the rest
352  *  of the 'shared' code files. Called by drivers only.
353  **/
354 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
355 {
356 	s32 ret_val;
357 
358 	/* Can't do much good without knowing the MAC type. */
359 	ret_val = e1000_set_mac_type(hw);
360 	if (ret_val) {
361 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
362 		goto out;
363 	}
364 
365 	if (!hw->hw_addr) {
366 		DEBUGOUT("ERROR: Registers not mapped\n");
367 		ret_val = -E1000_ERR_CONFIG;
368 		goto out;
369 	}
370 
371 	/*
372 	 * Init function pointers to generic implementations. We do this first
373 	 * allowing a driver module to override it afterward.
374 	 */
375 	e1000_init_mac_ops_generic(hw);
376 	e1000_init_phy_ops_generic(hw);
377 	e1000_init_nvm_ops_generic(hw);
378 	e1000_init_mbx_ops_generic(hw);
379 
380 	/*
381 	 * Set up the init function pointers. These are functions within the
382 	 * adapter family file that sets up function pointers for the rest of
383 	 * the functions in that family.
384 	 */
385 	switch (hw->mac.type) {
386 	case e1000_82542:
387 		e1000_init_function_pointers_82542(hw);
388 		break;
389 	case e1000_82543:
390 	case e1000_82544:
391 		e1000_init_function_pointers_82543(hw);
392 		break;
393 	case e1000_82540:
394 	case e1000_82545:
395 	case e1000_82545_rev_3:
396 	case e1000_82546:
397 	case e1000_82546_rev_3:
398 		e1000_init_function_pointers_82540(hw);
399 		break;
400 	case e1000_82541:
401 	case e1000_82541_rev_2:
402 	case e1000_82547:
403 	case e1000_82547_rev_2:
404 		e1000_init_function_pointers_82541(hw);
405 		break;
406 	case e1000_82571:
407 	case e1000_82572:
408 	case e1000_82573:
409 	case e1000_82574:
410 	case e1000_82583:
411 		e1000_init_function_pointers_82571(hw);
412 		break;
413 	case e1000_80003es2lan:
414 		e1000_init_function_pointers_80003es2lan(hw);
415 		break;
416 	case e1000_ich8lan:
417 	case e1000_ich9lan:
418 	case e1000_ich10lan:
419 	case e1000_pchlan:
420 	case e1000_pch2lan:
421 		e1000_init_function_pointers_ich8lan(hw);
422 		break;
423 	case e1000_82575:
424 	case e1000_82576:
425 	case e1000_82580:
426 	case e1000_i350:
427 		e1000_init_function_pointers_82575(hw);
428 		break;
429 	case e1000_vfadapt:
430 		e1000_init_function_pointers_vf(hw);
431 		break;
432 	case e1000_vfadapt_i350:
433 		e1000_init_function_pointers_vf(hw);
434 		break;
435 	default:
436 		DEBUGOUT("Hardware not supported\n");
437 		ret_val = -E1000_ERR_CONFIG;
438 		break;
439 	}
440 
441 	/*
442 	 * Initialize the rest of the function pointers. These require some
443 	 * register reads/writes in some cases.
444 	 */
445 	if (!(ret_val) && init_device) {
446 		ret_val = e1000_init_mac_params(hw);
447 		if (ret_val)
448 			goto out;
449 
450 		ret_val = e1000_init_nvm_params(hw);
451 		if (ret_val)
452 			goto out;
453 
454 		ret_val = e1000_init_phy_params(hw);
455 		if (ret_val)
456 			goto out;
457 
458 		ret_val = e1000_init_mbx_params(hw);
459 		if (ret_val)
460 			goto out;
461 	}
462 
463 out:
464 	return ret_val;
465 }
466 
467 /**
468  *  e1000_get_bus_info - Obtain bus information for adapter
469  *  @hw: pointer to the HW structure
470  *
471  *  This will obtain information about the HW bus for which the
472  *  adapter is attached and stores it in the hw structure. This is a
473  *  function pointer entry point called by drivers.
474  **/
475 s32 e1000_get_bus_info(struct e1000_hw *hw)
476 {
477 	if (hw->mac.ops.get_bus_info)
478 		return hw->mac.ops.get_bus_info(hw);
479 
480 	return E1000_SUCCESS;
481 }
482 
483 /**
484  *  e1000_clear_vfta - Clear VLAN filter table
485  *  @hw: pointer to the HW structure
486  *
487  *  This clears the VLAN filter table on the adapter. This is a function
488  *  pointer entry point called by drivers.
489  **/
490 void e1000_clear_vfta(struct e1000_hw *hw)
491 {
492 	if (hw->mac.ops.clear_vfta)
493 		hw->mac.ops.clear_vfta(hw);
494 }
495 
496 /**
497  *  e1000_write_vfta - Write value to VLAN filter table
498  *  @hw: pointer to the HW structure
499  *  @offset: the 32-bit offset in which to write the value to.
500  *  @value: the 32-bit value to write at location offset.
501  *
502  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
503  *  table. This is a function pointer entry point called by drivers.
504  **/
505 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
506 {
507 	if (hw->mac.ops.write_vfta)
508 		hw->mac.ops.write_vfta(hw, offset, value);
509 }
510 
511 /**
512  *  e1000_update_mc_addr_list - Update Multicast addresses
513  *  @hw: pointer to the HW structure
514  *  @mc_addr_list: array of multicast addresses to program
515  *  @mc_addr_count: number of multicast addresses to program
516  *
517  *  Updates the Multicast Table Array.
518  *  The caller must have a packed mc_addr_list of multicast addresses.
519  **/
520 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
521                                u32 mc_addr_count)
522 {
523 	if (hw->mac.ops.update_mc_addr_list)
524 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
525 		                                mc_addr_count);
526 }
527 
528 /**
529  *  e1000_force_mac_fc - Force MAC flow control
530  *  @hw: pointer to the HW structure
531  *
532  *  Force the MAC's flow control settings. Currently no func pointer exists
533  *  and all implementations are handled in the generic version of this
534  *  function.
535  **/
536 s32 e1000_force_mac_fc(struct e1000_hw *hw)
537 {
538 	return e1000_force_mac_fc_generic(hw);
539 }
540 
541 /**
542  *  e1000_check_for_link - Check/Store link connection
543  *  @hw: pointer to the HW structure
544  *
545  *  This checks the link condition of the adapter and stores the
546  *  results in the hw->mac structure. This is a function pointer entry
547  *  point called by drivers.
548  **/
549 s32 e1000_check_for_link(struct e1000_hw *hw)
550 {
551 	if (hw->mac.ops.check_for_link)
552 		return hw->mac.ops.check_for_link(hw);
553 
554 	return -E1000_ERR_CONFIG;
555 }
556 
557 /**
558  *  e1000_check_mng_mode - Check management mode
559  *  @hw: pointer to the HW structure
560  *
561  *  This checks if the adapter has manageability enabled.
562  *  This is a function pointer entry point called by drivers.
563  **/
564 bool e1000_check_mng_mode(struct e1000_hw *hw)
565 {
566 	if (hw->mac.ops.check_mng_mode)
567 		return hw->mac.ops.check_mng_mode(hw);
568 
569 	return FALSE;
570 }
571 
572 /**
573  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
574  *  @hw: pointer to the HW structure
575  *  @buffer: pointer to the host interface
576  *  @length: size of the buffer
577  *
578  *  Writes the DHCP information to the host interface.
579  **/
580 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
581 {
582 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
583 }
584 
585 /**
586  *  e1000_reset_hw - Reset hardware
587  *  @hw: pointer to the HW structure
588  *
589  *  This resets the hardware into a known state. This is a function pointer
590  *  entry point called by drivers.
591  **/
592 s32 e1000_reset_hw(struct e1000_hw *hw)
593 {
594 	if (hw->mac.ops.reset_hw)
595 		return hw->mac.ops.reset_hw(hw);
596 
597 	return -E1000_ERR_CONFIG;
598 }
599 
600 /**
601  *  e1000_init_hw - Initialize hardware
602  *  @hw: pointer to the HW structure
603  *
604  *  This inits the hardware readying it for operation. This is a function
605  *  pointer entry point called by drivers.
606  **/
607 s32 e1000_init_hw(struct e1000_hw *hw)
608 {
609 	if (hw->mac.ops.init_hw)
610 		return hw->mac.ops.init_hw(hw);
611 
612 	return -E1000_ERR_CONFIG;
613 }
614 
615 /**
616  *  e1000_setup_link - Configures link and flow control
617  *  @hw: pointer to the HW structure
618  *
619  *  This configures link and flow control settings for the adapter. This
620  *  is a function pointer entry point called by drivers. While modules can
621  *  also call this, they probably call their own version of this function.
622  **/
623 s32 e1000_setup_link(struct e1000_hw *hw)
624 {
625 	if (hw->mac.ops.setup_link)
626 		return hw->mac.ops.setup_link(hw);
627 
628 	return -E1000_ERR_CONFIG;
629 }
630 
631 /**
632  *  e1000_get_speed_and_duplex - Returns current speed and duplex
633  *  @hw: pointer to the HW structure
634  *  @speed: pointer to a 16-bit value to store the speed
635  *  @duplex: pointer to a 16-bit value to store the duplex.
636  *
637  *  This returns the speed and duplex of the adapter in the two 'out'
638  *  variables passed in. This is a function pointer entry point called
639  *  by drivers.
640  **/
641 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
642 {
643 	if (hw->mac.ops.get_link_up_info)
644 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
645 
646 	return -E1000_ERR_CONFIG;
647 }
648 
649 /**
650  *  e1000_setup_led - Configures SW controllable LED
651  *  @hw: pointer to the HW structure
652  *
653  *  This prepares the SW controllable LED for use and saves the current state
654  *  of the LED so it can be later restored. This is a function pointer entry
655  *  point called by drivers.
656  **/
657 s32 e1000_setup_led(struct e1000_hw *hw)
658 {
659 	if (hw->mac.ops.setup_led)
660 		return hw->mac.ops.setup_led(hw);
661 
662 	return E1000_SUCCESS;
663 }
664 
665 /**
666  *  e1000_cleanup_led - Restores SW controllable LED
667  *  @hw: pointer to the HW structure
668  *
669  *  This restores the SW controllable LED to the value saved off by
670  *  e1000_setup_led. This is a function pointer entry point called by drivers.
671  **/
672 s32 e1000_cleanup_led(struct e1000_hw *hw)
673 {
674 	if (hw->mac.ops.cleanup_led)
675 		return hw->mac.ops.cleanup_led(hw);
676 
677 	return E1000_SUCCESS;
678 }
679 
680 /**
681  *  e1000_blink_led - Blink SW controllable LED
682  *  @hw: pointer to the HW structure
683  *
684  *  This starts the adapter LED blinking. Request the LED to be setup first
685  *  and cleaned up after. This is a function pointer entry point called by
686  *  drivers.
687  **/
688 s32 e1000_blink_led(struct e1000_hw *hw)
689 {
690 	if (hw->mac.ops.blink_led)
691 		return hw->mac.ops.blink_led(hw);
692 
693 	return E1000_SUCCESS;
694 }
695 
696 /**
697  *  e1000_id_led_init - store LED configurations in SW
698  *  @hw: pointer to the HW structure
699  *
700  *  Initializes the LED config in SW. This is a function pointer entry point
701  *  called by drivers.
702  **/
703 s32 e1000_id_led_init(struct e1000_hw *hw)
704 {
705 	if (hw->mac.ops.id_led_init)
706 		return hw->mac.ops.id_led_init(hw);
707 
708 	return E1000_SUCCESS;
709 }
710 
711 /**
712  *  e1000_led_on - Turn on SW controllable LED
713  *  @hw: pointer to the HW structure
714  *
715  *  Turns the SW defined LED on. This is a function pointer entry point
716  *  called by drivers.
717  **/
718 s32 e1000_led_on(struct e1000_hw *hw)
719 {
720 	if (hw->mac.ops.led_on)
721 		return hw->mac.ops.led_on(hw);
722 
723 	return E1000_SUCCESS;
724 }
725 
726 /**
727  *  e1000_led_off - Turn off SW controllable LED
728  *  @hw: pointer to the HW structure
729  *
730  *  Turns the SW defined LED off. This is a function pointer entry point
731  *  called by drivers.
732  **/
733 s32 e1000_led_off(struct e1000_hw *hw)
734 {
735 	if (hw->mac.ops.led_off)
736 		return hw->mac.ops.led_off(hw);
737 
738 	return E1000_SUCCESS;
739 }
740 
741 /**
742  *  e1000_reset_adaptive - Reset adaptive IFS
743  *  @hw: pointer to the HW structure
744  *
745  *  Resets the adaptive IFS. Currently no func pointer exists and all
746  *  implementations are handled in the generic version of this function.
747  **/
748 void e1000_reset_adaptive(struct e1000_hw *hw)
749 {
750 	e1000_reset_adaptive_generic(hw);
751 }
752 
753 /**
754  *  e1000_update_adaptive - Update adaptive IFS
755  *  @hw: pointer to the HW structure
756  *
757  *  Updates adapter IFS. Currently no func pointer exists and all
758  *  implementations are handled in the generic version of this function.
759  **/
760 void e1000_update_adaptive(struct e1000_hw *hw)
761 {
762 	e1000_update_adaptive_generic(hw);
763 }
764 
765 /**
766  *  e1000_disable_pcie_master - Disable PCI-Express master access
767  *  @hw: pointer to the HW structure
768  *
769  *  Disables PCI-Express master access and verifies there are no pending
770  *  requests. Currently no func pointer exists and all implementations are
771  *  handled in the generic version of this function.
772  **/
773 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
774 {
775 	return e1000_disable_pcie_master_generic(hw);
776 }
777 
778 /**
779  *  e1000_config_collision_dist - Configure collision distance
780  *  @hw: pointer to the HW structure
781  *
782  *  Configures the collision distance to the default value and is used
783  *  during link setup.
784  **/
785 void e1000_config_collision_dist(struct e1000_hw *hw)
786 {
787 	if (hw->mac.ops.config_collision_dist)
788 		hw->mac.ops.config_collision_dist(hw);
789 }
790 
791 /**
792  *  e1000_rar_set - Sets a receive address register
793  *  @hw: pointer to the HW structure
794  *  @addr: address to set the RAR to
795  *  @index: the RAR to set
796  *
797  *  Sets a Receive Address Register (RAR) to the specified address.
798  **/
799 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
800 {
801 	if (hw->mac.ops.rar_set)
802 		hw->mac.ops.rar_set(hw, addr, index);
803 }
804 
805 /**
806  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
807  *  @hw: pointer to the HW structure
808  *
809  *  Ensures that the MDI/MDIX SW state is valid.
810  **/
811 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
812 {
813 	if (hw->mac.ops.validate_mdi_setting)
814 		return hw->mac.ops.validate_mdi_setting(hw);
815 
816 	return E1000_SUCCESS;
817 }
818 
819 /**
820  *  e1000_hash_mc_addr - Determines address location in multicast table
821  *  @hw: pointer to the HW structure
822  *  @mc_addr: Multicast address to hash.
823  *
824  *  This hashes an address to determine its location in the multicast
825  *  table. Currently no func pointer exists and all implementations
826  *  are handled in the generic version of this function.
827  **/
828 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
829 {
830 	return e1000_hash_mc_addr_generic(hw, mc_addr);
831 }
832 
833 /**
834  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
835  *  @hw: pointer to the HW structure
836  *
837  *  Enables packet filtering on transmit packets if manageability is enabled
838  *  and host interface is enabled.
839  *  Currently no func pointer exists and all implementations are handled in the
840  *  generic version of this function.
841  **/
842 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
843 {
844 	return e1000_enable_tx_pkt_filtering_generic(hw);
845 }
846 
847 /**
848  *  e1000_mng_host_if_write - Writes to the manageability host interface
849  *  @hw: pointer to the HW structure
850  *  @buffer: pointer to the host interface buffer
851  *  @length: size of the buffer
852  *  @offset: location in the buffer to write to
853  *  @sum: sum of the data (not checksum)
854  *
855  *  This function writes the buffer content at the offset given on the host if.
856  *  It also does alignment considerations to do the writes in most efficient
857  *  way.  Also fills up the sum of the buffer in *buffer parameter.
858  **/
859 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
860                             u16 offset, u8 *sum)
861 {
862 	if (hw->mac.ops.mng_host_if_write)
863 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
864 		                                     offset, sum);
865 
866 	return E1000_NOT_IMPLEMENTED;
867 }
868 
869 /**
870  *  e1000_mng_write_cmd_header - Writes manageability command header
871  *  @hw: pointer to the HW structure
872  *  @hdr: pointer to the host interface command header
873  *
874  *  Writes the command header after does the checksum calculation.
875  **/
876 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
877                                struct e1000_host_mng_command_header *hdr)
878 {
879 	if (hw->mac.ops.mng_write_cmd_header)
880 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
881 
882 	return E1000_NOT_IMPLEMENTED;
883 }
884 
885 /**
886  *  e1000_mng_enable_host_if - Checks host interface is enabled
887  *  @hw: pointer to the HW structure
888  *
889  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
890  *
891  *  This function checks whether the HOST IF is enabled for command operation
892  *  and also checks whether the previous command is completed.  It busy waits
893  *  in case of previous command is not completed.
894  **/
895 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
896 {
897 	if (hw->mac.ops.mng_enable_host_if)
898 		return hw->mac.ops.mng_enable_host_if(hw);
899 
900 	return E1000_NOT_IMPLEMENTED;
901 }
902 
903 /**
904  *  e1000_wait_autoneg - Waits for autonegotiation completion
905  *  @hw: pointer to the HW structure
906  *
907  *  Waits for autoneg to complete. Currently no func pointer exists and all
908  *  implementations are handled in the generic version of this function.
909  **/
910 s32 e1000_wait_autoneg(struct e1000_hw *hw)
911 {
912 	if (hw->mac.ops.wait_autoneg)
913 		return hw->mac.ops.wait_autoneg(hw);
914 
915 	return E1000_SUCCESS;
916 }
917 
918 /**
919  *  e1000_check_reset_block - Verifies PHY can be reset
920  *  @hw: pointer to the HW structure
921  *
922  *  Checks if the PHY is in a state that can be reset or if manageability
923  *  has it tied up. This is a function pointer entry point called by drivers.
924  **/
925 s32 e1000_check_reset_block(struct e1000_hw *hw)
926 {
927 	if (hw->phy.ops.check_reset_block)
928 		return hw->phy.ops.check_reset_block(hw);
929 
930 	return E1000_SUCCESS;
931 }
932 
933 /**
934  *  e1000_read_phy_reg - Reads PHY register
935  *  @hw: pointer to the HW structure
936  *  @offset: the register to read
937  *  @data: the buffer to store the 16-bit read.
938  *
939  *  Reads the PHY register and returns the value in data.
940  *  This is a function pointer entry point called by drivers.
941  **/
942 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
943 {
944 	if (hw->phy.ops.read_reg)
945 		return hw->phy.ops.read_reg(hw, offset, data);
946 
947 	return E1000_SUCCESS;
948 }
949 
950 /**
951  *  e1000_write_phy_reg - Writes PHY register
952  *  @hw: pointer to the HW structure
953  *  @offset: the register to write
954  *  @data: the value to write.
955  *
956  *  Writes the PHY register at offset with the value in data.
957  *  This is a function pointer entry point called by drivers.
958  **/
959 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
960 {
961 	if (hw->phy.ops.write_reg)
962 		return hw->phy.ops.write_reg(hw, offset, data);
963 
964 	return E1000_SUCCESS;
965 }
966 
967 /**
968  *  e1000_release_phy - Generic release PHY
969  *  @hw: pointer to the HW structure
970  *
971  *  Return if silicon family does not require a semaphore when accessing the
972  *  PHY.
973  **/
974 void e1000_release_phy(struct e1000_hw *hw)
975 {
976 	if (hw->phy.ops.release)
977 		hw->phy.ops.release(hw);
978 }
979 
980 /**
981  *  e1000_acquire_phy - Generic acquire PHY
982  *  @hw: pointer to the HW structure
983  *
984  *  Return success if silicon family does not require a semaphore when
985  *  accessing the PHY.
986  **/
987 s32 e1000_acquire_phy(struct e1000_hw *hw)
988 {
989 	if (hw->phy.ops.acquire)
990 		return hw->phy.ops.acquire(hw);
991 
992 	return E1000_SUCCESS;
993 }
994 
995 /**
996  *  e1000_cfg_on_link_up - Configure PHY upon link up
997  *  @hw: pointer to the HW structure
998  **/
999 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1000 {
1001 	if (hw->phy.ops.cfg_on_link_up)
1002 		return hw->phy.ops.cfg_on_link_up(hw);
1003 
1004 	return E1000_SUCCESS;
1005 }
1006 
1007 /**
1008  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1009  *  @hw: pointer to the HW structure
1010  *  @offset: the register to read
1011  *  @data: the location to store the 16-bit value read.
1012  *
1013  *  Reads a register out of the Kumeran interface. Currently no func pointer
1014  *  exists and all implementations are handled in the generic version of
1015  *  this function.
1016  **/
1017 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1018 {
1019 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1020 }
1021 
1022 /**
1023  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1024  *  @hw: pointer to the HW structure
1025  *  @offset: the register to write
1026  *  @data: the value to write.
1027  *
1028  *  Writes a register to the Kumeran interface. Currently no func pointer
1029  *  exists and all implementations are handled in the generic version of
1030  *  this function.
1031  **/
1032 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1033 {
1034 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1035 }
1036 
1037 /**
1038  *  e1000_get_cable_length - Retrieves cable length estimation
1039  *  @hw: pointer to the HW structure
1040  *
1041  *  This function estimates the cable length and stores them in
1042  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1043  *  entry point called by drivers.
1044  **/
1045 s32 e1000_get_cable_length(struct e1000_hw *hw)
1046 {
1047 	if (hw->phy.ops.get_cable_length)
1048 		return hw->phy.ops.get_cable_length(hw);
1049 
1050 	return E1000_SUCCESS;
1051 }
1052 
1053 /**
1054  *  e1000_get_phy_info - Retrieves PHY information from registers
1055  *  @hw: pointer to the HW structure
1056  *
1057  *  This function gets some information from various PHY registers and
1058  *  populates hw->phy values with it. This is a function pointer entry
1059  *  point called by drivers.
1060  **/
1061 s32 e1000_get_phy_info(struct e1000_hw *hw)
1062 {
1063 	if (hw->phy.ops.get_info)
1064 		return hw->phy.ops.get_info(hw);
1065 
1066 	return E1000_SUCCESS;
1067 }
1068 
1069 /**
1070  *  e1000_phy_hw_reset - Hard PHY reset
1071  *  @hw: pointer to the HW structure
1072  *
1073  *  Performs a hard PHY reset. This is a function pointer entry point called
1074  *  by drivers.
1075  **/
1076 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1077 {
1078 	if (hw->phy.ops.reset)
1079 		return hw->phy.ops.reset(hw);
1080 
1081 	return E1000_SUCCESS;
1082 }
1083 
1084 /**
1085  *  e1000_phy_commit - Soft PHY reset
1086  *  @hw: pointer to the HW structure
1087  *
1088  *  Performs a soft PHY reset on those that apply. This is a function pointer
1089  *  entry point called by drivers.
1090  **/
1091 s32 e1000_phy_commit(struct e1000_hw *hw)
1092 {
1093 	if (hw->phy.ops.commit)
1094 		return hw->phy.ops.commit(hw);
1095 
1096 	return E1000_SUCCESS;
1097 }
1098 
1099 /**
1100  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1101  *  @hw: pointer to the HW structure
1102  *  @active: boolean used to enable/disable lplu
1103  *
1104  *  Success returns 0, Failure returns 1
1105  *
1106  *  The low power link up (lplu) state is set to the power management level D0
1107  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1108  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1109  *  is used during Dx states where the power conservation is most important.
1110  *  During driver activity, SmartSpeed should be enabled so performance is
1111  *  maintained.  This is a function pointer entry point called by drivers.
1112  **/
1113 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1114 {
1115 	if (hw->phy.ops.set_d0_lplu_state)
1116 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1117 
1118 	return E1000_SUCCESS;
1119 }
1120 
1121 /**
1122  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1123  *  @hw: pointer to the HW structure
1124  *  @active: boolean used to enable/disable lplu
1125  *
1126  *  Success returns 0, Failure returns 1
1127  *
1128  *  The low power link up (lplu) state is set to the power management level D3
1129  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1130  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1131  *  is used during Dx states where the power conservation is most important.
1132  *  During driver activity, SmartSpeed should be enabled so performance is
1133  *  maintained.  This is a function pointer entry point called by drivers.
1134  **/
1135 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1136 {
1137 	if (hw->phy.ops.set_d3_lplu_state)
1138 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1139 
1140 	return E1000_SUCCESS;
1141 }
1142 
1143 /**
1144  *  e1000_read_mac_addr - Reads MAC address
1145  *  @hw: pointer to the HW structure
1146  *
1147  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1148  *  Currently no func pointer exists and all implementations are handled in the
1149  *  generic version of this function.
1150  **/
1151 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1152 {
1153 	if (hw->mac.ops.read_mac_addr)
1154 		return hw->mac.ops.read_mac_addr(hw);
1155 
1156 	return e1000_read_mac_addr_generic(hw);
1157 }
1158 
1159 /**
1160  *  e1000_read_pba_string - Read device part number string
1161  *  @hw: pointer to the HW structure
1162  *  @pba_num: pointer to device part number
1163  *  @pba_num_size: size of part number buffer
1164  *
1165  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1166  *  the value in pba_num.
1167  *  Currently no func pointer exists and all implementations are handled in the
1168  *  generic version of this function.
1169  **/
1170 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1171 {
1172 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1173 }
1174 
1175 /**
1176  *  e1000_read_pba_length - Read device part number string length
1177  *  @hw: pointer to the HW structure
1178  *  @pba_num_size: size of part number buffer
1179  *
1180  *  Reads the product board assembly (PBA) number length from the EEPROM and
1181  *  stores the value in pba_num.
1182  *  Currently no func pointer exists and all implementations are handled in the
1183  *  generic version of this function.
1184  **/
1185 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1186 {
1187 	return e1000_read_pba_length_generic(hw, pba_num_size);
1188 }
1189 
1190 /**
1191  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1192  *  @hw: pointer to the HW structure
1193  *
1194  *  Validates the NVM checksum is correct. This is a function pointer entry
1195  *  point called by drivers.
1196  **/
1197 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1198 {
1199 	if (hw->nvm.ops.validate)
1200 		return hw->nvm.ops.validate(hw);
1201 
1202 	return -E1000_ERR_CONFIG;
1203 }
1204 
1205 /**
1206  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Updates the NVM checksum. Currently no func pointer exists and all
1210  *  implementations are handled in the generic version of this function.
1211  **/
1212 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1213 {
1214 	if (hw->nvm.ops.update)
1215 		return hw->nvm.ops.update(hw);
1216 
1217 	return -E1000_ERR_CONFIG;
1218 }
1219 
1220 /**
1221  *  e1000_reload_nvm - Reloads EEPROM
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1225  *  extended control register.
1226  **/
1227 void e1000_reload_nvm(struct e1000_hw *hw)
1228 {
1229 	if (hw->nvm.ops.reload)
1230 		hw->nvm.ops.reload(hw);
1231 }
1232 
1233 /**
1234  *  e1000_read_nvm - Reads NVM (EEPROM)
1235  *  @hw: pointer to the HW structure
1236  *  @offset: the word offset to read
1237  *  @words: number of 16-bit words to read
1238  *  @data: pointer to the properly sized buffer for the data.
1239  *
1240  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1241  *  pointer entry point called by drivers.
1242  **/
1243 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1244 {
1245 	if (hw->nvm.ops.read)
1246 		return hw->nvm.ops.read(hw, offset, words, data);
1247 
1248 	return -E1000_ERR_CONFIG;
1249 }
1250 
1251 /**
1252  *  e1000_write_nvm - Writes to NVM (EEPROM)
1253  *  @hw: pointer to the HW structure
1254  *  @offset: the word offset to read
1255  *  @words: number of 16-bit words to write
1256  *  @data: pointer to the properly sized buffer for the data.
1257  *
1258  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1259  *  pointer entry point called by drivers.
1260  **/
1261 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1262 {
1263 	if (hw->nvm.ops.write)
1264 		return hw->nvm.ops.write(hw, offset, words, data);
1265 
1266 	return E1000_SUCCESS;
1267 }
1268 
1269 /**
1270  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1271  *  @hw: pointer to the HW structure
1272  *  @reg: 32bit register offset
1273  *  @offset: the register to write
1274  *  @data: the value to write.
1275  *
1276  *  Writes the PHY register at offset with the value in data.
1277  *  This is a function pointer entry point called by drivers.
1278  **/
1279 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1280                               u8 data)
1281 {
1282 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1283 }
1284 
1285 /**
1286  * e1000_power_up_phy - Restores link in case of PHY power down
1287  * @hw: pointer to the HW structure
1288  *
1289  * The phy may be powered down to save power, to turn off link when the
1290  * driver is unloaded, or wake on lan is not enabled (among others).
1291  **/
1292 void e1000_power_up_phy(struct e1000_hw *hw)
1293 {
1294 	if (hw->phy.ops.power_up)
1295 		hw->phy.ops.power_up(hw);
1296 
1297 	e1000_setup_link(hw);
1298 }
1299 
1300 /**
1301  * e1000_power_down_phy - Power down PHY
1302  * @hw: pointer to the HW structure
1303  *
1304  * The phy may be powered down to save power, to turn off link when the
1305  * driver is unloaded, or wake on lan is not enabled (among others).
1306  **/
1307 void e1000_power_down_phy(struct e1000_hw *hw)
1308 {
1309 	if (hw->phy.ops.power_down)
1310 		hw->phy.ops.power_down(hw);
1311 }
1312 
1313 /**
1314  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1315  *  @hw: pointer to the HW structure
1316  *
1317  *  Power on the optics and PCS.
1318  **/
1319 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1320 {
1321 	if (hw->mac.ops.power_up_serdes)
1322 		hw->mac.ops.power_up_serdes(hw);
1323 }
1324 
1325 /**
1326  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1327  *  @hw: pointer to the HW structure
1328  *
1329  *  Shutdown the optics and PCS on driver unload.
1330  **/
1331 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1332 {
1333 	if (hw->mac.ops.shutdown_serdes)
1334 		hw->mac.ops.shutdown_serdes(hw);
1335 }
1336 
1337