1 /****************************************************************************** 2 3 Copyright (c) 2001-2011, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_82575EB_COPPER: 293 case E1000_DEV_ID_82575EB_FIBER_SERDES: 294 case E1000_DEV_ID_82575GB_QUAD_COPPER: 295 mac->type = e1000_82575; 296 break; 297 case E1000_DEV_ID_82576: 298 case E1000_DEV_ID_82576_FIBER: 299 case E1000_DEV_ID_82576_SERDES: 300 case E1000_DEV_ID_82576_QUAD_COPPER: 301 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 302 case E1000_DEV_ID_82576_NS: 303 case E1000_DEV_ID_82576_NS_SERDES: 304 case E1000_DEV_ID_82576_SERDES_QUAD: 305 mac->type = e1000_82576; 306 break; 307 case E1000_DEV_ID_82580_COPPER: 308 case E1000_DEV_ID_82580_FIBER: 309 case E1000_DEV_ID_82580_SERDES: 310 case E1000_DEV_ID_82580_SGMII: 311 case E1000_DEV_ID_82580_COPPER_DUAL: 312 case E1000_DEV_ID_82580_QUAD_FIBER: 313 case E1000_DEV_ID_DH89XXCC_SGMII: 314 case E1000_DEV_ID_DH89XXCC_SERDES: 315 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 316 case E1000_DEV_ID_DH89XXCC_SFP: 317 mac->type = e1000_82580; 318 break; 319 case E1000_DEV_ID_I350_COPPER: 320 case E1000_DEV_ID_I350_FIBER: 321 case E1000_DEV_ID_I350_SERDES: 322 case E1000_DEV_ID_I350_SGMII: 323 case E1000_DEV_ID_I350_DA4: 324 mac->type = e1000_i350; 325 break; 326 case E1000_DEV_ID_82576_VF: 327 mac->type = e1000_vfadapt; 328 break; 329 case E1000_DEV_ID_I350_VF: 330 mac->type = e1000_vfadapt_i350; 331 break; 332 default: 333 /* Should never have loaded on this device */ 334 ret_val = -E1000_ERR_MAC_INIT; 335 break; 336 } 337 338 return ret_val; 339 } 340 341 /** 342 * e1000_setup_init_funcs - Initializes function pointers 343 * @hw: pointer to the HW structure 344 * @init_device: TRUE will initialize the rest of the function pointers 345 * getting the device ready for use. FALSE will only set 346 * MAC type and the function pointers for the other init 347 * functions. Passing FALSE will not generate any hardware 348 * reads or writes. 349 * 350 * This function must be called by a driver in order to use the rest 351 * of the 'shared' code files. Called by drivers only. 352 **/ 353 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 354 { 355 s32 ret_val; 356 357 /* Can't do much good without knowing the MAC type. */ 358 ret_val = e1000_set_mac_type(hw); 359 if (ret_val) { 360 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 361 goto out; 362 } 363 364 if (!hw->hw_addr) { 365 DEBUGOUT("ERROR: Registers not mapped\n"); 366 ret_val = -E1000_ERR_CONFIG; 367 goto out; 368 } 369 370 /* 371 * Init function pointers to generic implementations. We do this first 372 * allowing a driver module to override it afterward. 373 */ 374 e1000_init_mac_ops_generic(hw); 375 e1000_init_phy_ops_generic(hw); 376 e1000_init_nvm_ops_generic(hw); 377 e1000_init_mbx_ops_generic(hw); 378 379 /* 380 * Set up the init function pointers. These are functions within the 381 * adapter family file that sets up function pointers for the rest of 382 * the functions in that family. 383 */ 384 switch (hw->mac.type) { 385 case e1000_82542: 386 e1000_init_function_pointers_82542(hw); 387 break; 388 case e1000_82543: 389 case e1000_82544: 390 e1000_init_function_pointers_82543(hw); 391 break; 392 case e1000_82540: 393 case e1000_82545: 394 case e1000_82545_rev_3: 395 case e1000_82546: 396 case e1000_82546_rev_3: 397 e1000_init_function_pointers_82540(hw); 398 break; 399 case e1000_82541: 400 case e1000_82541_rev_2: 401 case e1000_82547: 402 case e1000_82547_rev_2: 403 e1000_init_function_pointers_82541(hw); 404 break; 405 case e1000_82571: 406 case e1000_82572: 407 case e1000_82573: 408 case e1000_82574: 409 case e1000_82583: 410 e1000_init_function_pointers_82571(hw); 411 break; 412 case e1000_80003es2lan: 413 e1000_init_function_pointers_80003es2lan(hw); 414 break; 415 case e1000_ich8lan: 416 case e1000_ich9lan: 417 case e1000_ich10lan: 418 case e1000_pchlan: 419 case e1000_pch2lan: 420 e1000_init_function_pointers_ich8lan(hw); 421 break; 422 case e1000_82575: 423 case e1000_82576: 424 case e1000_82580: 425 case e1000_i350: 426 e1000_init_function_pointers_82575(hw); 427 break; 428 case e1000_vfadapt: 429 e1000_init_function_pointers_vf(hw); 430 break; 431 case e1000_vfadapt_i350: 432 e1000_init_function_pointers_vf(hw); 433 break; 434 default: 435 DEBUGOUT("Hardware not supported\n"); 436 ret_val = -E1000_ERR_CONFIG; 437 break; 438 } 439 440 /* 441 * Initialize the rest of the function pointers. These require some 442 * register reads/writes in some cases. 443 */ 444 if (!(ret_val) && init_device) { 445 ret_val = e1000_init_mac_params(hw); 446 if (ret_val) 447 goto out; 448 449 ret_val = e1000_init_nvm_params(hw); 450 if (ret_val) 451 goto out; 452 453 ret_val = e1000_init_phy_params(hw); 454 if (ret_val) 455 goto out; 456 457 ret_val = e1000_init_mbx_params(hw); 458 if (ret_val) 459 goto out; 460 } 461 462 out: 463 return ret_val; 464 } 465 466 /** 467 * e1000_get_bus_info - Obtain bus information for adapter 468 * @hw: pointer to the HW structure 469 * 470 * This will obtain information about the HW bus for which the 471 * adapter is attached and stores it in the hw structure. This is a 472 * function pointer entry point called by drivers. 473 **/ 474 s32 e1000_get_bus_info(struct e1000_hw *hw) 475 { 476 if (hw->mac.ops.get_bus_info) 477 return hw->mac.ops.get_bus_info(hw); 478 479 return E1000_SUCCESS; 480 } 481 482 /** 483 * e1000_clear_vfta - Clear VLAN filter table 484 * @hw: pointer to the HW structure 485 * 486 * This clears the VLAN filter table on the adapter. This is a function 487 * pointer entry point called by drivers. 488 **/ 489 void e1000_clear_vfta(struct e1000_hw *hw) 490 { 491 if (hw->mac.ops.clear_vfta) 492 hw->mac.ops.clear_vfta(hw); 493 } 494 495 /** 496 * e1000_write_vfta - Write value to VLAN filter table 497 * @hw: pointer to the HW structure 498 * @offset: the 32-bit offset in which to write the value to. 499 * @value: the 32-bit value to write at location offset. 500 * 501 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 502 * table. This is a function pointer entry point called by drivers. 503 **/ 504 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 505 { 506 if (hw->mac.ops.write_vfta) 507 hw->mac.ops.write_vfta(hw, offset, value); 508 } 509 510 /** 511 * e1000_update_mc_addr_list - Update Multicast addresses 512 * @hw: pointer to the HW structure 513 * @mc_addr_list: array of multicast addresses to program 514 * @mc_addr_count: number of multicast addresses to program 515 * 516 * Updates the Multicast Table Array. 517 * The caller must have a packed mc_addr_list of multicast addresses. 518 **/ 519 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 520 u32 mc_addr_count) 521 { 522 if (hw->mac.ops.update_mc_addr_list) 523 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 524 mc_addr_count); 525 } 526 527 /** 528 * e1000_force_mac_fc - Force MAC flow control 529 * @hw: pointer to the HW structure 530 * 531 * Force the MAC's flow control settings. Currently no func pointer exists 532 * and all implementations are handled in the generic version of this 533 * function. 534 **/ 535 s32 e1000_force_mac_fc(struct e1000_hw *hw) 536 { 537 return e1000_force_mac_fc_generic(hw); 538 } 539 540 /** 541 * e1000_check_for_link - Check/Store link connection 542 * @hw: pointer to the HW structure 543 * 544 * This checks the link condition of the adapter and stores the 545 * results in the hw->mac structure. This is a function pointer entry 546 * point called by drivers. 547 **/ 548 s32 e1000_check_for_link(struct e1000_hw *hw) 549 { 550 if (hw->mac.ops.check_for_link) 551 return hw->mac.ops.check_for_link(hw); 552 553 return -E1000_ERR_CONFIG; 554 } 555 556 /** 557 * e1000_check_mng_mode - Check management mode 558 * @hw: pointer to the HW structure 559 * 560 * This checks if the adapter has manageability enabled. 561 * This is a function pointer entry point called by drivers. 562 **/ 563 bool e1000_check_mng_mode(struct e1000_hw *hw) 564 { 565 if (hw->mac.ops.check_mng_mode) 566 return hw->mac.ops.check_mng_mode(hw); 567 568 return FALSE; 569 } 570 571 /** 572 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 573 * @hw: pointer to the HW structure 574 * @buffer: pointer to the host interface 575 * @length: size of the buffer 576 * 577 * Writes the DHCP information to the host interface. 578 **/ 579 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 580 { 581 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 582 } 583 584 /** 585 * e1000_reset_hw - Reset hardware 586 * @hw: pointer to the HW structure 587 * 588 * This resets the hardware into a known state. This is a function pointer 589 * entry point called by drivers. 590 **/ 591 s32 e1000_reset_hw(struct e1000_hw *hw) 592 { 593 if (hw->mac.ops.reset_hw) 594 return hw->mac.ops.reset_hw(hw); 595 596 return -E1000_ERR_CONFIG; 597 } 598 599 /** 600 * e1000_init_hw - Initialize hardware 601 * @hw: pointer to the HW structure 602 * 603 * This inits the hardware readying it for operation. This is a function 604 * pointer entry point called by drivers. 605 **/ 606 s32 e1000_init_hw(struct e1000_hw *hw) 607 { 608 if (hw->mac.ops.init_hw) 609 return hw->mac.ops.init_hw(hw); 610 611 return -E1000_ERR_CONFIG; 612 } 613 614 /** 615 * e1000_setup_link - Configures link and flow control 616 * @hw: pointer to the HW structure 617 * 618 * This configures link and flow control settings for the adapter. This 619 * is a function pointer entry point called by drivers. While modules can 620 * also call this, they probably call their own version of this function. 621 **/ 622 s32 e1000_setup_link(struct e1000_hw *hw) 623 { 624 if (hw->mac.ops.setup_link) 625 return hw->mac.ops.setup_link(hw); 626 627 return -E1000_ERR_CONFIG; 628 } 629 630 /** 631 * e1000_get_speed_and_duplex - Returns current speed and duplex 632 * @hw: pointer to the HW structure 633 * @speed: pointer to a 16-bit value to store the speed 634 * @duplex: pointer to a 16-bit value to store the duplex. 635 * 636 * This returns the speed and duplex of the adapter in the two 'out' 637 * variables passed in. This is a function pointer entry point called 638 * by drivers. 639 **/ 640 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 641 { 642 if (hw->mac.ops.get_link_up_info) 643 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 644 645 return -E1000_ERR_CONFIG; 646 } 647 648 /** 649 * e1000_setup_led - Configures SW controllable LED 650 * @hw: pointer to the HW structure 651 * 652 * This prepares the SW controllable LED for use and saves the current state 653 * of the LED so it can be later restored. This is a function pointer entry 654 * point called by drivers. 655 **/ 656 s32 e1000_setup_led(struct e1000_hw *hw) 657 { 658 if (hw->mac.ops.setup_led) 659 return hw->mac.ops.setup_led(hw); 660 661 return E1000_SUCCESS; 662 } 663 664 /** 665 * e1000_cleanup_led - Restores SW controllable LED 666 * @hw: pointer to the HW structure 667 * 668 * This restores the SW controllable LED to the value saved off by 669 * e1000_setup_led. This is a function pointer entry point called by drivers. 670 **/ 671 s32 e1000_cleanup_led(struct e1000_hw *hw) 672 { 673 if (hw->mac.ops.cleanup_led) 674 return hw->mac.ops.cleanup_led(hw); 675 676 return E1000_SUCCESS; 677 } 678 679 /** 680 * e1000_blink_led - Blink SW controllable LED 681 * @hw: pointer to the HW structure 682 * 683 * This starts the adapter LED blinking. Request the LED to be setup first 684 * and cleaned up after. This is a function pointer entry point called by 685 * drivers. 686 **/ 687 s32 e1000_blink_led(struct e1000_hw *hw) 688 { 689 if (hw->mac.ops.blink_led) 690 return hw->mac.ops.blink_led(hw); 691 692 return E1000_SUCCESS; 693 } 694 695 /** 696 * e1000_id_led_init - store LED configurations in SW 697 * @hw: pointer to the HW structure 698 * 699 * Initializes the LED config in SW. This is a function pointer entry point 700 * called by drivers. 701 **/ 702 s32 e1000_id_led_init(struct e1000_hw *hw) 703 { 704 if (hw->mac.ops.id_led_init) 705 return hw->mac.ops.id_led_init(hw); 706 707 return E1000_SUCCESS; 708 } 709 710 /** 711 * e1000_led_on - Turn on SW controllable LED 712 * @hw: pointer to the HW structure 713 * 714 * Turns the SW defined LED on. This is a function pointer entry point 715 * called by drivers. 716 **/ 717 s32 e1000_led_on(struct e1000_hw *hw) 718 { 719 if (hw->mac.ops.led_on) 720 return hw->mac.ops.led_on(hw); 721 722 return E1000_SUCCESS; 723 } 724 725 /** 726 * e1000_led_off - Turn off SW controllable LED 727 * @hw: pointer to the HW structure 728 * 729 * Turns the SW defined LED off. This is a function pointer entry point 730 * called by drivers. 731 **/ 732 s32 e1000_led_off(struct e1000_hw *hw) 733 { 734 if (hw->mac.ops.led_off) 735 return hw->mac.ops.led_off(hw); 736 737 return E1000_SUCCESS; 738 } 739 740 /** 741 * e1000_reset_adaptive - Reset adaptive IFS 742 * @hw: pointer to the HW structure 743 * 744 * Resets the adaptive IFS. Currently no func pointer exists and all 745 * implementations are handled in the generic version of this function. 746 **/ 747 void e1000_reset_adaptive(struct e1000_hw *hw) 748 { 749 e1000_reset_adaptive_generic(hw); 750 } 751 752 /** 753 * e1000_update_adaptive - Update adaptive IFS 754 * @hw: pointer to the HW structure 755 * 756 * Updates adapter IFS. Currently no func pointer exists and all 757 * implementations are handled in the generic version of this function. 758 **/ 759 void e1000_update_adaptive(struct e1000_hw *hw) 760 { 761 e1000_update_adaptive_generic(hw); 762 } 763 764 /** 765 * e1000_disable_pcie_master - Disable PCI-Express master access 766 * @hw: pointer to the HW structure 767 * 768 * Disables PCI-Express master access and verifies there are no pending 769 * requests. Currently no func pointer exists and all implementations are 770 * handled in the generic version of this function. 771 **/ 772 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 773 { 774 return e1000_disable_pcie_master_generic(hw); 775 } 776 777 /** 778 * e1000_config_collision_dist - Configure collision distance 779 * @hw: pointer to the HW structure 780 * 781 * Configures the collision distance to the default value and is used 782 * during link setup. 783 **/ 784 void e1000_config_collision_dist(struct e1000_hw *hw) 785 { 786 if (hw->mac.ops.config_collision_dist) 787 hw->mac.ops.config_collision_dist(hw); 788 } 789 790 /** 791 * e1000_rar_set - Sets a receive address register 792 * @hw: pointer to the HW structure 793 * @addr: address to set the RAR to 794 * @index: the RAR to set 795 * 796 * Sets a Receive Address Register (RAR) to the specified address. 797 **/ 798 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 799 { 800 if (hw->mac.ops.rar_set) 801 hw->mac.ops.rar_set(hw, addr, index); 802 } 803 804 /** 805 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 806 * @hw: pointer to the HW structure 807 * 808 * Ensures that the MDI/MDIX SW state is valid. 809 **/ 810 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 811 { 812 if (hw->mac.ops.validate_mdi_setting) 813 return hw->mac.ops.validate_mdi_setting(hw); 814 815 return E1000_SUCCESS; 816 } 817 818 /** 819 * e1000_hash_mc_addr - Determines address location in multicast table 820 * @hw: pointer to the HW structure 821 * @mc_addr: Multicast address to hash. 822 * 823 * This hashes an address to determine its location in the multicast 824 * table. Currently no func pointer exists and all implementations 825 * are handled in the generic version of this function. 826 **/ 827 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 828 { 829 return e1000_hash_mc_addr_generic(hw, mc_addr); 830 } 831 832 /** 833 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 834 * @hw: pointer to the HW structure 835 * 836 * Enables packet filtering on transmit packets if manageability is enabled 837 * and host interface is enabled. 838 * Currently no func pointer exists and all implementations are handled in the 839 * generic version of this function. 840 **/ 841 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 842 { 843 return e1000_enable_tx_pkt_filtering_generic(hw); 844 } 845 846 /** 847 * e1000_mng_host_if_write - Writes to the manageability host interface 848 * @hw: pointer to the HW structure 849 * @buffer: pointer to the host interface buffer 850 * @length: size of the buffer 851 * @offset: location in the buffer to write to 852 * @sum: sum of the data (not checksum) 853 * 854 * This function writes the buffer content at the offset given on the host if. 855 * It also does alignment considerations to do the writes in most efficient 856 * way. Also fills up the sum of the buffer in *buffer parameter. 857 **/ 858 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 859 u16 offset, u8 *sum) 860 { 861 if (hw->mac.ops.mng_host_if_write) 862 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 863 offset, sum); 864 865 return E1000_NOT_IMPLEMENTED; 866 } 867 868 /** 869 * e1000_mng_write_cmd_header - Writes manageability command header 870 * @hw: pointer to the HW structure 871 * @hdr: pointer to the host interface command header 872 * 873 * Writes the command header after does the checksum calculation. 874 **/ 875 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 876 struct e1000_host_mng_command_header *hdr) 877 { 878 if (hw->mac.ops.mng_write_cmd_header) 879 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 880 881 return E1000_NOT_IMPLEMENTED; 882 } 883 884 /** 885 * e1000_mng_enable_host_if - Checks host interface is enabled 886 * @hw: pointer to the HW structure 887 * 888 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 889 * 890 * This function checks whether the HOST IF is enabled for command operation 891 * and also checks whether the previous command is completed. It busy waits 892 * in case of previous command is not completed. 893 **/ 894 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 895 { 896 if (hw->mac.ops.mng_enable_host_if) 897 return hw->mac.ops.mng_enable_host_if(hw); 898 899 return E1000_NOT_IMPLEMENTED; 900 } 901 902 /** 903 * e1000_wait_autoneg - Waits for autonegotiation completion 904 * @hw: pointer to the HW structure 905 * 906 * Waits for autoneg to complete. Currently no func pointer exists and all 907 * implementations are handled in the generic version of this function. 908 **/ 909 s32 e1000_wait_autoneg(struct e1000_hw *hw) 910 { 911 if (hw->mac.ops.wait_autoneg) 912 return hw->mac.ops.wait_autoneg(hw); 913 914 return E1000_SUCCESS; 915 } 916 917 /** 918 * e1000_check_reset_block - Verifies PHY can be reset 919 * @hw: pointer to the HW structure 920 * 921 * Checks if the PHY is in a state that can be reset or if manageability 922 * has it tied up. This is a function pointer entry point called by drivers. 923 **/ 924 s32 e1000_check_reset_block(struct e1000_hw *hw) 925 { 926 if (hw->phy.ops.check_reset_block) 927 return hw->phy.ops.check_reset_block(hw); 928 929 return E1000_SUCCESS; 930 } 931 932 /** 933 * e1000_read_phy_reg - Reads PHY register 934 * @hw: pointer to the HW structure 935 * @offset: the register to read 936 * @data: the buffer to store the 16-bit read. 937 * 938 * Reads the PHY register and returns the value in data. 939 * This is a function pointer entry point called by drivers. 940 **/ 941 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 942 { 943 if (hw->phy.ops.read_reg) 944 return hw->phy.ops.read_reg(hw, offset, data); 945 946 return E1000_SUCCESS; 947 } 948 949 /** 950 * e1000_write_phy_reg - Writes PHY register 951 * @hw: pointer to the HW structure 952 * @offset: the register to write 953 * @data: the value to write. 954 * 955 * Writes the PHY register at offset with the value in data. 956 * This is a function pointer entry point called by drivers. 957 **/ 958 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 959 { 960 if (hw->phy.ops.write_reg) 961 return hw->phy.ops.write_reg(hw, offset, data); 962 963 return E1000_SUCCESS; 964 } 965 966 /** 967 * e1000_release_phy - Generic release PHY 968 * @hw: pointer to the HW structure 969 * 970 * Return if silicon family does not require a semaphore when accessing the 971 * PHY. 972 **/ 973 void e1000_release_phy(struct e1000_hw *hw) 974 { 975 if (hw->phy.ops.release) 976 hw->phy.ops.release(hw); 977 } 978 979 /** 980 * e1000_acquire_phy - Generic acquire PHY 981 * @hw: pointer to the HW structure 982 * 983 * Return success if silicon family does not require a semaphore when 984 * accessing the PHY. 985 **/ 986 s32 e1000_acquire_phy(struct e1000_hw *hw) 987 { 988 if (hw->phy.ops.acquire) 989 return hw->phy.ops.acquire(hw); 990 991 return E1000_SUCCESS; 992 } 993 994 /** 995 * e1000_cfg_on_link_up - Configure PHY upon link up 996 * @hw: pointer to the HW structure 997 **/ 998 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 999 { 1000 if (hw->phy.ops.cfg_on_link_up) 1001 return hw->phy.ops.cfg_on_link_up(hw); 1002 1003 return E1000_SUCCESS; 1004 } 1005 1006 /** 1007 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1008 * @hw: pointer to the HW structure 1009 * @offset: the register to read 1010 * @data: the location to store the 16-bit value read. 1011 * 1012 * Reads a register out of the Kumeran interface. Currently no func pointer 1013 * exists and all implementations are handled in the generic version of 1014 * this function. 1015 **/ 1016 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1017 { 1018 return e1000_read_kmrn_reg_generic(hw, offset, data); 1019 } 1020 1021 /** 1022 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1023 * @hw: pointer to the HW structure 1024 * @offset: the register to write 1025 * @data: the value to write. 1026 * 1027 * Writes a register to the Kumeran interface. Currently no func pointer 1028 * exists and all implementations are handled in the generic version of 1029 * this function. 1030 **/ 1031 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1032 { 1033 return e1000_write_kmrn_reg_generic(hw, offset, data); 1034 } 1035 1036 /** 1037 * e1000_get_cable_length - Retrieves cable length estimation 1038 * @hw: pointer to the HW structure 1039 * 1040 * This function estimates the cable length and stores them in 1041 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1042 * entry point called by drivers. 1043 **/ 1044 s32 e1000_get_cable_length(struct e1000_hw *hw) 1045 { 1046 if (hw->phy.ops.get_cable_length) 1047 return hw->phy.ops.get_cable_length(hw); 1048 1049 return E1000_SUCCESS; 1050 } 1051 1052 /** 1053 * e1000_get_phy_info - Retrieves PHY information from registers 1054 * @hw: pointer to the HW structure 1055 * 1056 * This function gets some information from various PHY registers and 1057 * populates hw->phy values with it. This is a function pointer entry 1058 * point called by drivers. 1059 **/ 1060 s32 e1000_get_phy_info(struct e1000_hw *hw) 1061 { 1062 if (hw->phy.ops.get_info) 1063 return hw->phy.ops.get_info(hw); 1064 1065 return E1000_SUCCESS; 1066 } 1067 1068 /** 1069 * e1000_phy_hw_reset - Hard PHY reset 1070 * @hw: pointer to the HW structure 1071 * 1072 * Performs a hard PHY reset. This is a function pointer entry point called 1073 * by drivers. 1074 **/ 1075 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1076 { 1077 if (hw->phy.ops.reset) 1078 return hw->phy.ops.reset(hw); 1079 1080 return E1000_SUCCESS; 1081 } 1082 1083 /** 1084 * e1000_phy_commit - Soft PHY reset 1085 * @hw: pointer to the HW structure 1086 * 1087 * Performs a soft PHY reset on those that apply. This is a function pointer 1088 * entry point called by drivers. 1089 **/ 1090 s32 e1000_phy_commit(struct e1000_hw *hw) 1091 { 1092 if (hw->phy.ops.commit) 1093 return hw->phy.ops.commit(hw); 1094 1095 return E1000_SUCCESS; 1096 } 1097 1098 /** 1099 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1100 * @hw: pointer to the HW structure 1101 * @active: boolean used to enable/disable lplu 1102 * 1103 * Success returns 0, Failure returns 1 1104 * 1105 * The low power link up (lplu) state is set to the power management level D0 1106 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1107 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1108 * is used during Dx states where the power conservation is most important. 1109 * During driver activity, SmartSpeed should be enabled so performance is 1110 * maintained. This is a function pointer entry point called by drivers. 1111 **/ 1112 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1113 { 1114 if (hw->phy.ops.set_d0_lplu_state) 1115 return hw->phy.ops.set_d0_lplu_state(hw, active); 1116 1117 return E1000_SUCCESS; 1118 } 1119 1120 /** 1121 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1122 * @hw: pointer to the HW structure 1123 * @active: boolean used to enable/disable lplu 1124 * 1125 * Success returns 0, Failure returns 1 1126 * 1127 * The low power link up (lplu) state is set to the power management level D3 1128 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1129 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1130 * is used during Dx states where the power conservation is most important. 1131 * During driver activity, SmartSpeed should be enabled so performance is 1132 * maintained. This is a function pointer entry point called by drivers. 1133 **/ 1134 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1135 { 1136 if (hw->phy.ops.set_d3_lplu_state) 1137 return hw->phy.ops.set_d3_lplu_state(hw, active); 1138 1139 return E1000_SUCCESS; 1140 } 1141 1142 /** 1143 * e1000_read_mac_addr - Reads MAC address 1144 * @hw: pointer to the HW structure 1145 * 1146 * Reads the MAC address out of the adapter and stores it in the HW structure. 1147 * Currently no func pointer exists and all implementations are handled in the 1148 * generic version of this function. 1149 **/ 1150 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1151 { 1152 if (hw->mac.ops.read_mac_addr) 1153 return hw->mac.ops.read_mac_addr(hw); 1154 1155 return e1000_read_mac_addr_generic(hw); 1156 } 1157 1158 /** 1159 * e1000_read_pba_string - Read device part number string 1160 * @hw: pointer to the HW structure 1161 * @pba_num: pointer to device part number 1162 * @pba_num_size: size of part number buffer 1163 * 1164 * Reads the product board assembly (PBA) number from the EEPROM and stores 1165 * the value in pba_num. 1166 * Currently no func pointer exists and all implementations are handled in the 1167 * generic version of this function. 1168 **/ 1169 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1170 { 1171 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1172 } 1173 1174 /** 1175 * e1000_read_pba_length - Read device part number string length 1176 * @hw: pointer to the HW structure 1177 * @pba_num_size: size of part number buffer 1178 * 1179 * Reads the product board assembly (PBA) number length from the EEPROM and 1180 * stores the value in pba_num. 1181 * Currently no func pointer exists and all implementations are handled in the 1182 * generic version of this function. 1183 **/ 1184 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1185 { 1186 return e1000_read_pba_length_generic(hw, pba_num_size); 1187 } 1188 1189 /** 1190 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1191 * @hw: pointer to the HW structure 1192 * 1193 * Validates the NVM checksum is correct. This is a function pointer entry 1194 * point called by drivers. 1195 **/ 1196 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1197 { 1198 if (hw->nvm.ops.validate) 1199 return hw->nvm.ops.validate(hw); 1200 1201 return -E1000_ERR_CONFIG; 1202 } 1203 1204 /** 1205 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1206 * @hw: pointer to the HW structure 1207 * 1208 * Updates the NVM checksum. Currently no func pointer exists and all 1209 * implementations are handled in the generic version of this function. 1210 **/ 1211 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1212 { 1213 if (hw->nvm.ops.update) 1214 return hw->nvm.ops.update(hw); 1215 1216 return -E1000_ERR_CONFIG; 1217 } 1218 1219 /** 1220 * e1000_reload_nvm - Reloads EEPROM 1221 * @hw: pointer to the HW structure 1222 * 1223 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1224 * extended control register. 1225 **/ 1226 void e1000_reload_nvm(struct e1000_hw *hw) 1227 { 1228 if (hw->nvm.ops.reload) 1229 hw->nvm.ops.reload(hw); 1230 } 1231 1232 /** 1233 * e1000_read_nvm - Reads NVM (EEPROM) 1234 * @hw: pointer to the HW structure 1235 * @offset: the word offset to read 1236 * @words: number of 16-bit words to read 1237 * @data: pointer to the properly sized buffer for the data. 1238 * 1239 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1240 * pointer entry point called by drivers. 1241 **/ 1242 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1243 { 1244 if (hw->nvm.ops.read) 1245 return hw->nvm.ops.read(hw, offset, words, data); 1246 1247 return -E1000_ERR_CONFIG; 1248 } 1249 1250 /** 1251 * e1000_write_nvm - Writes to NVM (EEPROM) 1252 * @hw: pointer to the HW structure 1253 * @offset: the word offset to read 1254 * @words: number of 16-bit words to write 1255 * @data: pointer to the properly sized buffer for the data. 1256 * 1257 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1258 * pointer entry point called by drivers. 1259 **/ 1260 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1261 { 1262 if (hw->nvm.ops.write) 1263 return hw->nvm.ops.write(hw, offset, words, data); 1264 1265 return E1000_SUCCESS; 1266 } 1267 1268 /** 1269 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1270 * @hw: pointer to the HW structure 1271 * @reg: 32bit register offset 1272 * @offset: the register to write 1273 * @data: the value to write. 1274 * 1275 * Writes the PHY register at offset with the value in data. 1276 * This is a function pointer entry point called by drivers. 1277 **/ 1278 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1279 u8 data) 1280 { 1281 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1282 } 1283 1284 /** 1285 * e1000_power_up_phy - Restores link in case of PHY power down 1286 * @hw: pointer to the HW structure 1287 * 1288 * The phy may be powered down to save power, to turn off link when the 1289 * driver is unloaded, or wake on lan is not enabled (among others). 1290 **/ 1291 void e1000_power_up_phy(struct e1000_hw *hw) 1292 { 1293 if (hw->phy.ops.power_up) 1294 hw->phy.ops.power_up(hw); 1295 1296 e1000_setup_link(hw); 1297 } 1298 1299 /** 1300 * e1000_power_down_phy - Power down PHY 1301 * @hw: pointer to the HW structure 1302 * 1303 * The phy may be powered down to save power, to turn off link when the 1304 * driver is unloaded, or wake on lan is not enabled (among others). 1305 **/ 1306 void e1000_power_down_phy(struct e1000_hw *hw) 1307 { 1308 if (hw->phy.ops.power_down) 1309 hw->phy.ops.power_down(hw); 1310 } 1311 1312 /** 1313 * e1000_power_up_fiber_serdes_link - Power up serdes link 1314 * @hw: pointer to the HW structure 1315 * 1316 * Power on the optics and PCS. 1317 **/ 1318 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1319 { 1320 if (hw->mac.ops.power_up_serdes) 1321 hw->mac.ops.power_up_serdes(hw); 1322 } 1323 1324 /** 1325 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1326 * @hw: pointer to the HW structure 1327 * 1328 * Shutdown the optics and PCS on driver unload. 1329 **/ 1330 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1331 { 1332 if (hw->mac.ops.shutdown_serdes) 1333 hw->mac.ops.shutdown_serdes(hw); 1334 } 1335 1336