1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 /** 39 * e1000_init_mac_params - Initialize MAC function pointers 40 * @hw: pointer to the HW structure 41 * 42 * This function initializes the function pointers for the MAC 43 * set of functions. Called by drivers or by e1000_setup_init_funcs. 44 **/ 45 s32 e1000_init_mac_params(struct e1000_hw *hw) 46 { 47 s32 ret_val = E1000_SUCCESS; 48 49 if (hw->mac.ops.init_params) { 50 ret_val = hw->mac.ops.init_params(hw); 51 if (ret_val) { 52 DEBUGOUT("MAC Initialization Error\n"); 53 goto out; 54 } 55 } else { 56 DEBUGOUT("mac.init_mac_params was NULL\n"); 57 ret_val = -E1000_ERR_CONFIG; 58 } 59 60 out: 61 return ret_val; 62 } 63 64 /** 65 * e1000_init_nvm_params - Initialize NVM function pointers 66 * @hw: pointer to the HW structure 67 * 68 * This function initializes the function pointers for the NVM 69 * set of functions. Called by drivers or by e1000_setup_init_funcs. 70 **/ 71 s32 e1000_init_nvm_params(struct e1000_hw *hw) 72 { 73 s32 ret_val = E1000_SUCCESS; 74 75 if (hw->nvm.ops.init_params) { 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_mbx_params - Initialize mailbox function pointers 118 * @hw: pointer to the HW structure 119 * 120 * This function initializes the function pointers for the PHY 121 * set of functions. Called by drivers or by e1000_setup_init_funcs. 122 **/ 123 s32 e1000_init_mbx_params(struct e1000_hw *hw) 124 { 125 s32 ret_val = E1000_SUCCESS; 126 127 if (hw->mbx.ops.init_params) { 128 ret_val = hw->mbx.ops.init_params(hw); 129 if (ret_val) { 130 DEBUGOUT("Mailbox Initialization Error\n"); 131 goto out; 132 } 133 } else { 134 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 135 ret_val = -E1000_ERR_CONFIG; 136 } 137 138 out: 139 return ret_val; 140 } 141 142 /** 143 * e1000_set_mac_type - Sets MAC type 144 * @hw: pointer to the HW structure 145 * 146 * This function sets the mac type of the adapter based on the 147 * device ID stored in the hw structure. 148 * MUST BE FIRST FUNCTION CALLED (explicitly or through 149 * e1000_setup_init_funcs()). 150 **/ 151 s32 e1000_set_mac_type(struct e1000_hw *hw) 152 { 153 struct e1000_mac_info *mac = &hw->mac; 154 s32 ret_val = E1000_SUCCESS; 155 156 DEBUGFUNC("e1000_set_mac_type"); 157 158 switch (hw->device_id) { 159 case E1000_DEV_ID_82542: 160 mac->type = e1000_82542; 161 break; 162 case E1000_DEV_ID_82543GC_FIBER: 163 case E1000_DEV_ID_82543GC_COPPER: 164 mac->type = e1000_82543; 165 break; 166 case E1000_DEV_ID_82544EI_COPPER: 167 case E1000_DEV_ID_82544EI_FIBER: 168 case E1000_DEV_ID_82544GC_COPPER: 169 case E1000_DEV_ID_82544GC_LOM: 170 mac->type = e1000_82544; 171 break; 172 case E1000_DEV_ID_82540EM: 173 case E1000_DEV_ID_82540EM_LOM: 174 case E1000_DEV_ID_82540EP: 175 case E1000_DEV_ID_82540EP_LOM: 176 case E1000_DEV_ID_82540EP_LP: 177 mac->type = e1000_82540; 178 break; 179 case E1000_DEV_ID_82545EM_COPPER: 180 case E1000_DEV_ID_82545EM_FIBER: 181 mac->type = e1000_82545; 182 break; 183 case E1000_DEV_ID_82545GM_COPPER: 184 case E1000_DEV_ID_82545GM_FIBER: 185 case E1000_DEV_ID_82545GM_SERDES: 186 mac->type = e1000_82545_rev_3; 187 break; 188 case E1000_DEV_ID_82546EB_COPPER: 189 case E1000_DEV_ID_82546EB_FIBER: 190 case E1000_DEV_ID_82546EB_QUAD_COPPER: 191 mac->type = e1000_82546; 192 break; 193 case E1000_DEV_ID_82546GB_COPPER: 194 case E1000_DEV_ID_82546GB_FIBER: 195 case E1000_DEV_ID_82546GB_SERDES: 196 case E1000_DEV_ID_82546GB_PCIE: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER: 198 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 199 mac->type = e1000_82546_rev_3; 200 break; 201 case E1000_DEV_ID_82541EI: 202 case E1000_DEV_ID_82541EI_MOBILE: 203 case E1000_DEV_ID_82541ER_LOM: 204 mac->type = e1000_82541; 205 break; 206 case E1000_DEV_ID_82541ER: 207 case E1000_DEV_ID_82541GI: 208 case E1000_DEV_ID_82541GI_LF: 209 case E1000_DEV_ID_82541GI_MOBILE: 210 mac->type = e1000_82541_rev_2; 211 break; 212 case E1000_DEV_ID_82547EI: 213 case E1000_DEV_ID_82547EI_MOBILE: 214 mac->type = e1000_82547; 215 break; 216 case E1000_DEV_ID_82547GI: 217 mac->type = e1000_82547_rev_2; 218 break; 219 case E1000_DEV_ID_82571EB_COPPER: 220 case E1000_DEV_ID_82571EB_FIBER: 221 case E1000_DEV_ID_82571EB_SERDES: 222 case E1000_DEV_ID_82571EB_SERDES_DUAL: 223 case E1000_DEV_ID_82571EB_SERDES_QUAD: 224 case E1000_DEV_ID_82571EB_QUAD_COPPER: 225 case E1000_DEV_ID_82571PT_QUAD_COPPER: 226 case E1000_DEV_ID_82571EB_QUAD_FIBER: 227 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 228 mac->type = e1000_82571; 229 break; 230 case E1000_DEV_ID_82572EI: 231 case E1000_DEV_ID_82572EI_COPPER: 232 case E1000_DEV_ID_82572EI_FIBER: 233 case E1000_DEV_ID_82572EI_SERDES: 234 mac->type = e1000_82572; 235 break; 236 case E1000_DEV_ID_82573E: 237 case E1000_DEV_ID_82573E_IAMT: 238 case E1000_DEV_ID_82573L: 239 mac->type = e1000_82573; 240 break; 241 case E1000_DEV_ID_82574L: 242 case E1000_DEV_ID_82574LA: 243 mac->type = e1000_82574; 244 break; 245 case E1000_DEV_ID_82583V: 246 mac->type = e1000_82583; 247 break; 248 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 249 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 250 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 251 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 252 mac->type = e1000_80003es2lan; 253 break; 254 case E1000_DEV_ID_ICH8_IFE: 255 case E1000_DEV_ID_ICH8_IFE_GT: 256 case E1000_DEV_ID_ICH8_IFE_G: 257 case E1000_DEV_ID_ICH8_IGP_M: 258 case E1000_DEV_ID_ICH8_IGP_M_AMT: 259 case E1000_DEV_ID_ICH8_IGP_AMT: 260 case E1000_DEV_ID_ICH8_IGP_C: 261 case E1000_DEV_ID_ICH8_82567V_3: 262 mac->type = e1000_ich8lan; 263 break; 264 case E1000_DEV_ID_ICH9_IFE: 265 case E1000_DEV_ID_ICH9_IFE_GT: 266 case E1000_DEV_ID_ICH9_IFE_G: 267 case E1000_DEV_ID_ICH9_IGP_M: 268 case E1000_DEV_ID_ICH9_IGP_M_AMT: 269 case E1000_DEV_ID_ICH9_IGP_M_V: 270 case E1000_DEV_ID_ICH9_IGP_AMT: 271 case E1000_DEV_ID_ICH9_BM: 272 case E1000_DEV_ID_ICH9_IGP_C: 273 case E1000_DEV_ID_ICH10_R_BM_LM: 274 case E1000_DEV_ID_ICH10_R_BM_LF: 275 case E1000_DEV_ID_ICH10_R_BM_V: 276 mac->type = e1000_ich9lan; 277 break; 278 case E1000_DEV_ID_ICH10_D_BM_LM: 279 case E1000_DEV_ID_ICH10_D_BM_LF: 280 case E1000_DEV_ID_ICH10_D_BM_V: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_PCH_LPT_I217_LM: 294 case E1000_DEV_ID_PCH_LPT_I217_V: 295 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 296 case E1000_DEV_ID_PCH_LPTLP_I218_V: 297 case E1000_DEV_ID_PCH_I218_LM2: 298 case E1000_DEV_ID_PCH_I218_V2: 299 case E1000_DEV_ID_PCH_I218_LM3: 300 case E1000_DEV_ID_PCH_I218_V3: 301 mac->type = e1000_pch_lpt; 302 break; 303 case E1000_DEV_ID_PCH_SPT_I219_LM: 304 case E1000_DEV_ID_PCH_SPT_I219_V: 305 case E1000_DEV_ID_PCH_SPT_I219_LM2: 306 case E1000_DEV_ID_PCH_SPT_I219_V2: 307 case E1000_DEV_ID_PCH_LBG_I219_LM3: 308 case E1000_DEV_ID_PCH_SPT_I219_LM4: 309 case E1000_DEV_ID_PCH_SPT_I219_V4: 310 case E1000_DEV_ID_PCH_SPT_I219_LM5: 311 case E1000_DEV_ID_PCH_SPT_I219_V5: 312 case E1000_DEV_ID_PCH_CMP_I219_LM12: 313 case E1000_DEV_ID_PCH_CMP_I219_V12: 314 mac->type = e1000_pch_spt; 315 break; 316 case E1000_DEV_ID_PCH_CNP_I219_LM6: 317 case E1000_DEV_ID_PCH_CNP_I219_V6: 318 case E1000_DEV_ID_PCH_CNP_I219_LM7: 319 case E1000_DEV_ID_PCH_CNP_I219_V7: 320 case E1000_DEV_ID_PCH_ICP_I219_LM8: 321 case E1000_DEV_ID_PCH_ICP_I219_V8: 322 case E1000_DEV_ID_PCH_ICP_I219_LM9: 323 case E1000_DEV_ID_PCH_ICP_I219_V9: 324 case E1000_DEV_ID_PCH_CMP_I219_LM10: 325 case E1000_DEV_ID_PCH_CMP_I219_V10: 326 case E1000_DEV_ID_PCH_CMP_I219_LM11: 327 case E1000_DEV_ID_PCH_CMP_I219_V11: 328 mac->type = e1000_pch_cnp; 329 break; 330 case E1000_DEV_ID_82575EB_COPPER: 331 case E1000_DEV_ID_82575EB_FIBER_SERDES: 332 case E1000_DEV_ID_82575GB_QUAD_COPPER: 333 mac->type = e1000_82575; 334 break; 335 case E1000_DEV_ID_82576: 336 case E1000_DEV_ID_82576_FIBER: 337 case E1000_DEV_ID_82576_SERDES: 338 case E1000_DEV_ID_82576_QUAD_COPPER: 339 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 340 case E1000_DEV_ID_82576_NS: 341 case E1000_DEV_ID_82576_NS_SERDES: 342 case E1000_DEV_ID_82576_SERDES_QUAD: 343 mac->type = e1000_82576; 344 break; 345 case E1000_DEV_ID_82580_COPPER: 346 case E1000_DEV_ID_82580_FIBER: 347 case E1000_DEV_ID_82580_SERDES: 348 case E1000_DEV_ID_82580_SGMII: 349 case E1000_DEV_ID_82580_COPPER_DUAL: 350 case E1000_DEV_ID_82580_QUAD_FIBER: 351 case E1000_DEV_ID_DH89XXCC_SGMII: 352 case E1000_DEV_ID_DH89XXCC_SERDES: 353 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 354 case E1000_DEV_ID_DH89XXCC_SFP: 355 mac->type = e1000_82580; 356 break; 357 case E1000_DEV_ID_I350_COPPER: 358 case E1000_DEV_ID_I350_FIBER: 359 case E1000_DEV_ID_I350_SERDES: 360 case E1000_DEV_ID_I350_SGMII: 361 case E1000_DEV_ID_I350_DA4: 362 mac->type = e1000_i350; 363 break; 364 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 365 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 366 case E1000_DEV_ID_I210_COPPER: 367 case E1000_DEV_ID_I210_COPPER_OEM1: 368 case E1000_DEV_ID_I210_COPPER_IT: 369 case E1000_DEV_ID_I210_FIBER: 370 case E1000_DEV_ID_I210_SERDES: 371 case E1000_DEV_ID_I210_SGMII: 372 mac->type = e1000_i210; 373 break; 374 case E1000_DEV_ID_I211_COPPER: 375 mac->type = e1000_i211; 376 break; 377 case E1000_DEV_ID_82576_VF: 378 case E1000_DEV_ID_82576_VF_HV: 379 mac->type = e1000_vfadapt; 380 break; 381 case E1000_DEV_ID_I350_VF: 382 case E1000_DEV_ID_I350_VF_HV: 383 mac->type = e1000_vfadapt_i350; 384 break; 385 386 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 387 case E1000_DEV_ID_I354_SGMII: 388 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 389 mac->type = e1000_i354; 390 break; 391 default: 392 /* Should never have loaded on this device */ 393 ret_val = -E1000_ERR_MAC_INIT; 394 break; 395 } 396 397 return ret_val; 398 } 399 400 /** 401 * e1000_setup_init_funcs - Initializes function pointers 402 * @hw: pointer to the HW structure 403 * @init_device: TRUE will initialize the rest of the function pointers 404 * getting the device ready for use. FALSE will only set 405 * MAC type and the function pointers for the other init 406 * functions. Passing FALSE will not generate any hardware 407 * reads or writes. 408 * 409 * This function must be called by a driver in order to use the rest 410 * of the 'shared' code files. Called by drivers only. 411 **/ 412 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 413 { 414 s32 ret_val; 415 416 /* Can't do much good without knowing the MAC type. */ 417 ret_val = e1000_set_mac_type(hw); 418 if (ret_val) { 419 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 420 goto out; 421 } 422 423 if (!hw->hw_addr) { 424 DEBUGOUT("ERROR: Registers not mapped\n"); 425 ret_val = -E1000_ERR_CONFIG; 426 goto out; 427 } 428 429 /* 430 * Init function pointers to generic implementations. We do this first 431 * allowing a driver module to override it afterward. 432 */ 433 e1000_init_mac_ops_generic(hw); 434 e1000_init_phy_ops_generic(hw); 435 e1000_init_nvm_ops_generic(hw); 436 e1000_init_mbx_ops_generic(hw); 437 438 /* 439 * Set up the init function pointers. These are functions within the 440 * adapter family file that sets up function pointers for the rest of 441 * the functions in that family. 442 */ 443 switch (hw->mac.type) { 444 case e1000_82542: 445 e1000_init_function_pointers_82542(hw); 446 break; 447 case e1000_82543: 448 case e1000_82544: 449 e1000_init_function_pointers_82543(hw); 450 break; 451 case e1000_82540: 452 case e1000_82545: 453 case e1000_82545_rev_3: 454 case e1000_82546: 455 case e1000_82546_rev_3: 456 e1000_init_function_pointers_82540(hw); 457 break; 458 case e1000_82541: 459 case e1000_82541_rev_2: 460 case e1000_82547: 461 case e1000_82547_rev_2: 462 e1000_init_function_pointers_82541(hw); 463 break; 464 case e1000_82571: 465 case e1000_82572: 466 case e1000_82573: 467 case e1000_82574: 468 case e1000_82583: 469 e1000_init_function_pointers_82571(hw); 470 break; 471 case e1000_80003es2lan: 472 e1000_init_function_pointers_80003es2lan(hw); 473 break; 474 case e1000_ich8lan: 475 case e1000_ich9lan: 476 case e1000_ich10lan: 477 case e1000_pchlan: 478 case e1000_pch2lan: 479 case e1000_pch_lpt: 480 case e1000_pch_spt: 481 case e1000_pch_cnp: 482 e1000_init_function_pointers_ich8lan(hw); 483 break; 484 case e1000_82575: 485 case e1000_82576: 486 case e1000_82580: 487 case e1000_i350: 488 case e1000_i354: 489 e1000_init_function_pointers_82575(hw); 490 break; 491 case e1000_i210: 492 case e1000_i211: 493 e1000_init_function_pointers_i210(hw); 494 break; 495 case e1000_vfadapt: 496 e1000_init_function_pointers_vf(hw); 497 break; 498 case e1000_vfadapt_i350: 499 e1000_init_function_pointers_vf(hw); 500 break; 501 default: 502 DEBUGOUT("Hardware not supported\n"); 503 ret_val = -E1000_ERR_CONFIG; 504 break; 505 } 506 507 /* 508 * Initialize the rest of the function pointers. These require some 509 * register reads/writes in some cases. 510 */ 511 if (!(ret_val) && init_device) { 512 ret_val = e1000_init_mac_params(hw); 513 if (ret_val) 514 goto out; 515 516 ret_val = e1000_init_nvm_params(hw); 517 if (ret_val) 518 goto out; 519 520 ret_val = e1000_init_phy_params(hw); 521 if (ret_val) 522 goto out; 523 524 ret_val = e1000_init_mbx_params(hw); 525 if (ret_val) 526 goto out; 527 } 528 529 out: 530 return ret_val; 531 } 532 533 /** 534 * e1000_get_bus_info - Obtain bus information for adapter 535 * @hw: pointer to the HW structure 536 * 537 * This will obtain information about the HW bus for which the 538 * adapter is attached and stores it in the hw structure. This is a 539 * function pointer entry point called by drivers. 540 **/ 541 s32 e1000_get_bus_info(struct e1000_hw *hw) 542 { 543 if (hw->mac.ops.get_bus_info) 544 return hw->mac.ops.get_bus_info(hw); 545 546 return E1000_SUCCESS; 547 } 548 549 /** 550 * e1000_clear_vfta - Clear VLAN filter table 551 * @hw: pointer to the HW structure 552 * 553 * This clears the VLAN filter table on the adapter. This is a function 554 * pointer entry point called by drivers. 555 **/ 556 void e1000_clear_vfta(struct e1000_hw *hw) 557 { 558 if (hw->mac.ops.clear_vfta) 559 hw->mac.ops.clear_vfta(hw); 560 } 561 562 /** 563 * e1000_write_vfta - Write value to VLAN filter table 564 * @hw: pointer to the HW structure 565 * @offset: the 32-bit offset in which to write the value to. 566 * @value: the 32-bit value to write at location offset. 567 * 568 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 569 * table. This is a function pointer entry point called by drivers. 570 **/ 571 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 572 { 573 if (hw->mac.ops.write_vfta) 574 hw->mac.ops.write_vfta(hw, offset, value); 575 } 576 577 /** 578 * e1000_update_mc_addr_list - Update Multicast addresses 579 * @hw: pointer to the HW structure 580 * @mc_addr_list: array of multicast addresses to program 581 * @mc_addr_count: number of multicast addresses to program 582 * 583 * Updates the Multicast Table Array. 584 * The caller must have a packed mc_addr_list of multicast addresses. 585 **/ 586 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 587 u32 mc_addr_count) 588 { 589 if (hw->mac.ops.update_mc_addr_list) 590 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 591 mc_addr_count); 592 } 593 594 /** 595 * e1000_force_mac_fc - Force MAC flow control 596 * @hw: pointer to the HW structure 597 * 598 * Force the MAC's flow control settings. Currently no func pointer exists 599 * and all implementations are handled in the generic version of this 600 * function. 601 **/ 602 s32 e1000_force_mac_fc(struct e1000_hw *hw) 603 { 604 return e1000_force_mac_fc_generic(hw); 605 } 606 607 /** 608 * e1000_check_for_link - Check/Store link connection 609 * @hw: pointer to the HW structure 610 * 611 * This checks the link condition of the adapter and stores the 612 * results in the hw->mac structure. This is a function pointer entry 613 * point called by drivers. 614 **/ 615 s32 e1000_check_for_link(struct e1000_hw *hw) 616 { 617 if (hw->mac.ops.check_for_link) 618 return hw->mac.ops.check_for_link(hw); 619 620 return -E1000_ERR_CONFIG; 621 } 622 623 /** 624 * e1000_check_mng_mode - Check management mode 625 * @hw: pointer to the HW structure 626 * 627 * This checks if the adapter has manageability enabled. 628 * This is a function pointer entry point called by drivers. 629 **/ 630 bool e1000_check_mng_mode(struct e1000_hw *hw) 631 { 632 if (hw->mac.ops.check_mng_mode) 633 return hw->mac.ops.check_mng_mode(hw); 634 635 return FALSE; 636 } 637 638 /** 639 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 640 * @hw: pointer to the HW structure 641 * @buffer: pointer to the host interface 642 * @length: size of the buffer 643 * 644 * Writes the DHCP information to the host interface. 645 **/ 646 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 647 { 648 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 649 } 650 651 /** 652 * e1000_reset_hw - Reset hardware 653 * @hw: pointer to the HW structure 654 * 655 * This resets the hardware into a known state. This is a function pointer 656 * entry point called by drivers. 657 **/ 658 s32 e1000_reset_hw(struct e1000_hw *hw) 659 { 660 if (hw->mac.ops.reset_hw) 661 return hw->mac.ops.reset_hw(hw); 662 663 return -E1000_ERR_CONFIG; 664 } 665 666 /** 667 * e1000_init_hw - Initialize hardware 668 * @hw: pointer to the HW structure 669 * 670 * This inits the hardware readying it for operation. This is a function 671 * pointer entry point called by drivers. 672 **/ 673 s32 e1000_init_hw(struct e1000_hw *hw) 674 { 675 if (hw->mac.ops.init_hw) 676 return hw->mac.ops.init_hw(hw); 677 678 return -E1000_ERR_CONFIG; 679 } 680 681 /** 682 * e1000_setup_link - Configures link and flow control 683 * @hw: pointer to the HW structure 684 * 685 * This configures link and flow control settings for the adapter. This 686 * is a function pointer entry point called by drivers. While modules can 687 * also call this, they probably call their own version of this function. 688 **/ 689 s32 e1000_setup_link(struct e1000_hw *hw) 690 { 691 if (hw->mac.ops.setup_link) 692 return hw->mac.ops.setup_link(hw); 693 694 return -E1000_ERR_CONFIG; 695 } 696 697 /** 698 * e1000_get_speed_and_duplex - Returns current speed and duplex 699 * @hw: pointer to the HW structure 700 * @speed: pointer to a 16-bit value to store the speed 701 * @duplex: pointer to a 16-bit value to store the duplex. 702 * 703 * This returns the speed and duplex of the adapter in the two 'out' 704 * variables passed in. This is a function pointer entry point called 705 * by drivers. 706 **/ 707 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 708 { 709 if (hw->mac.ops.get_link_up_info) 710 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 711 712 return -E1000_ERR_CONFIG; 713 } 714 715 /** 716 * e1000_setup_led - Configures SW controllable LED 717 * @hw: pointer to the HW structure 718 * 719 * This prepares the SW controllable LED for use and saves the current state 720 * of the LED so it can be later restored. This is a function pointer entry 721 * point called by drivers. 722 **/ 723 s32 e1000_setup_led(struct e1000_hw *hw) 724 { 725 if (hw->mac.ops.setup_led) 726 return hw->mac.ops.setup_led(hw); 727 728 return E1000_SUCCESS; 729 } 730 731 /** 732 * e1000_cleanup_led - Restores SW controllable LED 733 * @hw: pointer to the HW structure 734 * 735 * This restores the SW controllable LED to the value saved off by 736 * e1000_setup_led. This is a function pointer entry point called by drivers. 737 **/ 738 s32 e1000_cleanup_led(struct e1000_hw *hw) 739 { 740 if (hw->mac.ops.cleanup_led) 741 return hw->mac.ops.cleanup_led(hw); 742 743 return E1000_SUCCESS; 744 } 745 746 /** 747 * e1000_blink_led - Blink SW controllable LED 748 * @hw: pointer to the HW structure 749 * 750 * This starts the adapter LED blinking. Request the LED to be setup first 751 * and cleaned up after. This is a function pointer entry point called by 752 * drivers. 753 **/ 754 s32 e1000_blink_led(struct e1000_hw *hw) 755 { 756 if (hw->mac.ops.blink_led) 757 return hw->mac.ops.blink_led(hw); 758 759 return E1000_SUCCESS; 760 } 761 762 /** 763 * e1000_id_led_init - store LED configurations in SW 764 * @hw: pointer to the HW structure 765 * 766 * Initializes the LED config in SW. This is a function pointer entry point 767 * called by drivers. 768 **/ 769 s32 e1000_id_led_init(struct e1000_hw *hw) 770 { 771 if (hw->mac.ops.id_led_init) 772 return hw->mac.ops.id_led_init(hw); 773 774 return E1000_SUCCESS; 775 } 776 777 /** 778 * e1000_led_on - Turn on SW controllable LED 779 * @hw: pointer to the HW structure 780 * 781 * Turns the SW defined LED on. This is a function pointer entry point 782 * called by drivers. 783 **/ 784 s32 e1000_led_on(struct e1000_hw *hw) 785 { 786 if (hw->mac.ops.led_on) 787 return hw->mac.ops.led_on(hw); 788 789 return E1000_SUCCESS; 790 } 791 792 /** 793 * e1000_led_off - Turn off SW controllable LED 794 * @hw: pointer to the HW structure 795 * 796 * Turns the SW defined LED off. This is a function pointer entry point 797 * called by drivers. 798 **/ 799 s32 e1000_led_off(struct e1000_hw *hw) 800 { 801 if (hw->mac.ops.led_off) 802 return hw->mac.ops.led_off(hw); 803 804 return E1000_SUCCESS; 805 } 806 807 /** 808 * e1000_reset_adaptive - Reset adaptive IFS 809 * @hw: pointer to the HW structure 810 * 811 * Resets the adaptive IFS. Currently no func pointer exists and all 812 * implementations are handled in the generic version of this function. 813 **/ 814 void e1000_reset_adaptive(struct e1000_hw *hw) 815 { 816 e1000_reset_adaptive_generic(hw); 817 } 818 819 /** 820 * e1000_update_adaptive - Update adaptive IFS 821 * @hw: pointer to the HW structure 822 * 823 * Updates adapter IFS. Currently no func pointer exists and all 824 * implementations are handled in the generic version of this function. 825 **/ 826 void e1000_update_adaptive(struct e1000_hw *hw) 827 { 828 e1000_update_adaptive_generic(hw); 829 } 830 831 /** 832 * e1000_disable_pcie_master - Disable PCI-Express master access 833 * @hw: pointer to the HW structure 834 * 835 * Disables PCI-Express master access and verifies there are no pending 836 * requests. Currently no func pointer exists and all implementations are 837 * handled in the generic version of this function. 838 **/ 839 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 840 { 841 return e1000_disable_pcie_master_generic(hw); 842 } 843 844 /** 845 * e1000_config_collision_dist - Configure collision distance 846 * @hw: pointer to the HW structure 847 * 848 * Configures the collision distance to the default value and is used 849 * during link setup. 850 **/ 851 void e1000_config_collision_dist(struct e1000_hw *hw) 852 { 853 if (hw->mac.ops.config_collision_dist) 854 hw->mac.ops.config_collision_dist(hw); 855 } 856 857 /** 858 * e1000_rar_set - Sets a receive address register 859 * @hw: pointer to the HW structure 860 * @addr: address to set the RAR to 861 * @index: the RAR to set 862 * 863 * Sets a Receive Address Register (RAR) to the specified address. 864 **/ 865 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 866 { 867 if (hw->mac.ops.rar_set) 868 return hw->mac.ops.rar_set(hw, addr, index); 869 870 return E1000_SUCCESS; 871 } 872 873 /** 874 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 875 * @hw: pointer to the HW structure 876 * 877 * Ensures that the MDI/MDIX SW state is valid. 878 **/ 879 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 880 { 881 if (hw->mac.ops.validate_mdi_setting) 882 return hw->mac.ops.validate_mdi_setting(hw); 883 884 return E1000_SUCCESS; 885 } 886 887 /** 888 * e1000_hash_mc_addr - Determines address location in multicast table 889 * @hw: pointer to the HW structure 890 * @mc_addr: Multicast address to hash. 891 * 892 * This hashes an address to determine its location in the multicast 893 * table. Currently no func pointer exists and all implementations 894 * are handled in the generic version of this function. 895 **/ 896 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 897 { 898 return e1000_hash_mc_addr_generic(hw, mc_addr); 899 } 900 901 /** 902 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 903 * @hw: pointer to the HW structure 904 * 905 * Enables packet filtering on transmit packets if manageability is enabled 906 * and host interface is enabled. 907 * Currently no func pointer exists and all implementations are handled in the 908 * generic version of this function. 909 **/ 910 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 911 { 912 return e1000_enable_tx_pkt_filtering_generic(hw); 913 } 914 915 /** 916 * e1000_mng_host_if_write - Writes to the manageability host interface 917 * @hw: pointer to the HW structure 918 * @buffer: pointer to the host interface buffer 919 * @length: size of the buffer 920 * @offset: location in the buffer to write to 921 * @sum: sum of the data (not checksum) 922 * 923 * This function writes the buffer content at the offset given on the host if. 924 * It also does alignment considerations to do the writes in most efficient 925 * way. Also fills up the sum of the buffer in *buffer parameter. 926 **/ 927 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 928 u16 offset, u8 *sum) 929 { 930 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 931 } 932 933 /** 934 * e1000_mng_write_cmd_header - Writes manageability command header 935 * @hw: pointer to the HW structure 936 * @hdr: pointer to the host interface command header 937 * 938 * Writes the command header after does the checksum calculation. 939 **/ 940 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 941 struct e1000_host_mng_command_header *hdr) 942 { 943 return e1000_mng_write_cmd_header_generic(hw, hdr); 944 } 945 946 /** 947 * e1000_mng_enable_host_if - Checks host interface is enabled 948 * @hw: pointer to the HW structure 949 * 950 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 951 * 952 * This function checks whether the HOST IF is enabled for command operation 953 * and also checks whether the previous command is completed. It busy waits 954 * in case of previous command is not completed. 955 **/ 956 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 957 { 958 return e1000_mng_enable_host_if_generic(hw); 959 } 960 961 /** 962 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 963 * @hw: pointer to the HW structure 964 * @itr: u32 indicating itr value 965 * 966 * Set the OBFF timer based on the given interrupt rate. 967 **/ 968 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 969 { 970 if (hw->mac.ops.set_obff_timer) 971 return hw->mac.ops.set_obff_timer(hw, itr); 972 973 return E1000_SUCCESS; 974 } 975 976 /** 977 * e1000_check_reset_block - Verifies PHY can be reset 978 * @hw: pointer to the HW structure 979 * 980 * Checks if the PHY is in a state that can be reset or if manageability 981 * has it tied up. This is a function pointer entry point called by drivers. 982 **/ 983 s32 e1000_check_reset_block(struct e1000_hw *hw) 984 { 985 if (hw->phy.ops.check_reset_block) 986 return hw->phy.ops.check_reset_block(hw); 987 988 return E1000_SUCCESS; 989 } 990 991 /** 992 * e1000_read_phy_reg - Reads PHY register 993 * @hw: pointer to the HW structure 994 * @offset: the register to read 995 * @data: the buffer to store the 16-bit read. 996 * 997 * Reads the PHY register and returns the value in data. 998 * This is a function pointer entry point called by drivers. 999 **/ 1000 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1001 { 1002 if (hw->phy.ops.read_reg) 1003 return hw->phy.ops.read_reg(hw, offset, data); 1004 1005 return E1000_SUCCESS; 1006 } 1007 1008 /** 1009 * e1000_write_phy_reg - Writes PHY register 1010 * @hw: pointer to the HW structure 1011 * @offset: the register to write 1012 * @data: the value to write. 1013 * 1014 * Writes the PHY register at offset with the value in data. 1015 * This is a function pointer entry point called by drivers. 1016 **/ 1017 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1018 { 1019 if (hw->phy.ops.write_reg) 1020 return hw->phy.ops.write_reg(hw, offset, data); 1021 1022 return E1000_SUCCESS; 1023 } 1024 1025 /** 1026 * e1000_release_phy - Generic release PHY 1027 * @hw: pointer to the HW structure 1028 * 1029 * Return if silicon family does not require a semaphore when accessing the 1030 * PHY. 1031 **/ 1032 void e1000_release_phy(struct e1000_hw *hw) 1033 { 1034 if (hw->phy.ops.release) 1035 hw->phy.ops.release(hw); 1036 } 1037 1038 /** 1039 * e1000_acquire_phy - Generic acquire PHY 1040 * @hw: pointer to the HW structure 1041 * 1042 * Return success if silicon family does not require a semaphore when 1043 * accessing the PHY. 1044 **/ 1045 s32 e1000_acquire_phy(struct e1000_hw *hw) 1046 { 1047 if (hw->phy.ops.acquire) 1048 return hw->phy.ops.acquire(hw); 1049 1050 return E1000_SUCCESS; 1051 } 1052 1053 /** 1054 * e1000_cfg_on_link_up - Configure PHY upon link up 1055 * @hw: pointer to the HW structure 1056 **/ 1057 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1058 { 1059 if (hw->phy.ops.cfg_on_link_up) 1060 return hw->phy.ops.cfg_on_link_up(hw); 1061 1062 return E1000_SUCCESS; 1063 } 1064 1065 /** 1066 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1067 * @hw: pointer to the HW structure 1068 * @offset: the register to read 1069 * @data: the location to store the 16-bit value read. 1070 * 1071 * Reads a register out of the Kumeran interface. Currently no func pointer 1072 * exists and all implementations are handled in the generic version of 1073 * this function. 1074 **/ 1075 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1076 { 1077 return e1000_read_kmrn_reg_generic(hw, offset, data); 1078 } 1079 1080 /** 1081 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1082 * @hw: pointer to the HW structure 1083 * @offset: the register to write 1084 * @data: the value to write. 1085 * 1086 * Writes a register to the Kumeran interface. Currently no func pointer 1087 * exists and all implementations are handled in the generic version of 1088 * this function. 1089 **/ 1090 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1091 { 1092 return e1000_write_kmrn_reg_generic(hw, offset, data); 1093 } 1094 1095 /** 1096 * e1000_get_cable_length - Retrieves cable length estimation 1097 * @hw: pointer to the HW structure 1098 * 1099 * This function estimates the cable length and stores them in 1100 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1101 * entry point called by drivers. 1102 **/ 1103 s32 e1000_get_cable_length(struct e1000_hw *hw) 1104 { 1105 if (hw->phy.ops.get_cable_length) 1106 return hw->phy.ops.get_cable_length(hw); 1107 1108 return E1000_SUCCESS; 1109 } 1110 1111 /** 1112 * e1000_get_phy_info - Retrieves PHY information from registers 1113 * @hw: pointer to the HW structure 1114 * 1115 * This function gets some information from various PHY registers and 1116 * populates hw->phy values with it. This is a function pointer entry 1117 * point called by drivers. 1118 **/ 1119 s32 e1000_get_phy_info(struct e1000_hw *hw) 1120 { 1121 if (hw->phy.ops.get_info) 1122 return hw->phy.ops.get_info(hw); 1123 1124 return E1000_SUCCESS; 1125 } 1126 1127 /** 1128 * e1000_phy_hw_reset - Hard PHY reset 1129 * @hw: pointer to the HW structure 1130 * 1131 * Performs a hard PHY reset. This is a function pointer entry point called 1132 * by drivers. 1133 **/ 1134 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1135 { 1136 if (hw->phy.ops.reset) 1137 return hw->phy.ops.reset(hw); 1138 1139 return E1000_SUCCESS; 1140 } 1141 1142 /** 1143 * e1000_phy_commit - Soft PHY reset 1144 * @hw: pointer to the HW structure 1145 * 1146 * Performs a soft PHY reset on those that apply. This is a function pointer 1147 * entry point called by drivers. 1148 **/ 1149 s32 e1000_phy_commit(struct e1000_hw *hw) 1150 { 1151 if (hw->phy.ops.commit) 1152 return hw->phy.ops.commit(hw); 1153 1154 return E1000_SUCCESS; 1155 } 1156 1157 /** 1158 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1159 * @hw: pointer to the HW structure 1160 * @active: boolean used to enable/disable lplu 1161 * 1162 * Success returns 0, Failure returns 1 1163 * 1164 * The low power link up (lplu) state is set to the power management level D0 1165 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1166 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1167 * is used during Dx states where the power conservation is most important. 1168 * During driver activity, SmartSpeed should be enabled so performance is 1169 * maintained. This is a function pointer entry point called by drivers. 1170 **/ 1171 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1172 { 1173 if (hw->phy.ops.set_d0_lplu_state) 1174 return hw->phy.ops.set_d0_lplu_state(hw, active); 1175 1176 return E1000_SUCCESS; 1177 } 1178 1179 /** 1180 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1181 * @hw: pointer to the HW structure 1182 * @active: boolean used to enable/disable lplu 1183 * 1184 * Success returns 0, Failure returns 1 1185 * 1186 * The low power link up (lplu) state is set to the power management level D3 1187 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1188 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1189 * is used during Dx states where the power conservation is most important. 1190 * During driver activity, SmartSpeed should be enabled so performance is 1191 * maintained. This is a function pointer entry point called by drivers. 1192 **/ 1193 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1194 { 1195 if (hw->phy.ops.set_d3_lplu_state) 1196 return hw->phy.ops.set_d3_lplu_state(hw, active); 1197 1198 return E1000_SUCCESS; 1199 } 1200 1201 /** 1202 * e1000_read_mac_addr - Reads MAC address 1203 * @hw: pointer to the HW structure 1204 * 1205 * Reads the MAC address out of the adapter and stores it in the HW structure. 1206 * Currently no func pointer exists and all implementations are handled in the 1207 * generic version of this function. 1208 **/ 1209 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1210 { 1211 if (hw->mac.ops.read_mac_addr) 1212 return hw->mac.ops.read_mac_addr(hw); 1213 1214 return e1000_read_mac_addr_generic(hw); 1215 } 1216 1217 /** 1218 * e1000_read_pba_string - Read device part number string 1219 * @hw: pointer to the HW structure 1220 * @pba_num: pointer to device part number 1221 * @pba_num_size: size of part number buffer 1222 * 1223 * Reads the product board assembly (PBA) number from the EEPROM and stores 1224 * the value in pba_num. 1225 * Currently no func pointer exists and all implementations are handled in the 1226 * generic version of this function. 1227 **/ 1228 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1229 { 1230 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1231 } 1232 1233 /** 1234 * e1000_read_pba_length - Read device part number string length 1235 * @hw: pointer to the HW structure 1236 * @pba_num_size: size of part number buffer 1237 * 1238 * Reads the product board assembly (PBA) number length from the EEPROM and 1239 * stores the value in pba_num. 1240 * Currently no func pointer exists and all implementations are handled in the 1241 * generic version of this function. 1242 **/ 1243 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1244 { 1245 return e1000_read_pba_length_generic(hw, pba_num_size); 1246 } 1247 1248 /** 1249 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1250 * @hw: pointer to the HW structure 1251 * 1252 * Validates the NVM checksum is correct. This is a function pointer entry 1253 * point called by drivers. 1254 **/ 1255 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1256 { 1257 if (hw->nvm.ops.validate) 1258 return hw->nvm.ops.validate(hw); 1259 1260 return -E1000_ERR_CONFIG; 1261 } 1262 1263 /** 1264 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1265 * @hw: pointer to the HW structure 1266 * 1267 * Updates the NVM checksum. Currently no func pointer exists and all 1268 * implementations are handled in the generic version of this function. 1269 **/ 1270 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1271 { 1272 if (hw->nvm.ops.update) 1273 return hw->nvm.ops.update(hw); 1274 1275 return -E1000_ERR_CONFIG; 1276 } 1277 1278 /** 1279 * e1000_reload_nvm - Reloads EEPROM 1280 * @hw: pointer to the HW structure 1281 * 1282 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1283 * extended control register. 1284 **/ 1285 void e1000_reload_nvm(struct e1000_hw *hw) 1286 { 1287 if (hw->nvm.ops.reload) 1288 hw->nvm.ops.reload(hw); 1289 } 1290 1291 /** 1292 * e1000_read_nvm - Reads NVM (EEPROM) 1293 * @hw: pointer to the HW structure 1294 * @offset: the word offset to read 1295 * @words: number of 16-bit words to read 1296 * @data: pointer to the properly sized buffer for the data. 1297 * 1298 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1299 * pointer entry point called by drivers. 1300 **/ 1301 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1302 { 1303 if (hw->nvm.ops.read) 1304 return hw->nvm.ops.read(hw, offset, words, data); 1305 1306 return -E1000_ERR_CONFIG; 1307 } 1308 1309 /** 1310 * e1000_write_nvm - Writes to NVM (EEPROM) 1311 * @hw: pointer to the HW structure 1312 * @offset: the word offset to read 1313 * @words: number of 16-bit words to write 1314 * @data: pointer to the properly sized buffer for the data. 1315 * 1316 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1317 * pointer entry point called by drivers. 1318 **/ 1319 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1320 { 1321 if (hw->nvm.ops.write) 1322 return hw->nvm.ops.write(hw, offset, words, data); 1323 1324 return E1000_SUCCESS; 1325 } 1326 1327 /** 1328 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1329 * @hw: pointer to the HW structure 1330 * @reg: 32bit register offset 1331 * @offset: the register to write 1332 * @data: the value to write. 1333 * 1334 * Writes the PHY register at offset with the value in data. 1335 * This is a function pointer entry point called by drivers. 1336 **/ 1337 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1338 u8 data) 1339 { 1340 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1341 } 1342 1343 /** 1344 * e1000_power_up_phy - Restores link in case of PHY power down 1345 * @hw: pointer to the HW structure 1346 * 1347 * The phy may be powered down to save power, to turn off link when the 1348 * driver is unloaded, or wake on lan is not enabled (among others). 1349 **/ 1350 void e1000_power_up_phy(struct e1000_hw *hw) 1351 { 1352 if (hw->phy.ops.power_up) 1353 hw->phy.ops.power_up(hw); 1354 1355 e1000_setup_link(hw); 1356 } 1357 1358 /** 1359 * e1000_power_down_phy - Power down PHY 1360 * @hw: pointer to the HW structure 1361 * 1362 * The phy may be powered down to save power, to turn off link when the 1363 * driver is unloaded, or wake on lan is not enabled (among others). 1364 **/ 1365 void e1000_power_down_phy(struct e1000_hw *hw) 1366 { 1367 if (hw->phy.ops.power_down) 1368 hw->phy.ops.power_down(hw); 1369 } 1370 1371 /** 1372 * e1000_power_up_fiber_serdes_link - Power up serdes link 1373 * @hw: pointer to the HW structure 1374 * 1375 * Power on the optics and PCS. 1376 **/ 1377 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1378 { 1379 if (hw->mac.ops.power_up_serdes) 1380 hw->mac.ops.power_up_serdes(hw); 1381 } 1382 1383 /** 1384 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1385 * @hw: pointer to the HW structure 1386 * 1387 * Shutdown the optics and PCS on driver unload. 1388 **/ 1389 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1390 { 1391 if (hw->mac.ops.shutdown_serdes) 1392 hw->mac.ops.shutdown_serdes(hw); 1393 } 1394 1395