1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 /** 39 * e1000_init_mac_params - Initialize MAC function pointers 40 * @hw: pointer to the HW structure 41 * 42 * This function initializes the function pointers for the MAC 43 * set of functions. Called by drivers or by e1000_setup_init_funcs. 44 **/ 45 s32 e1000_init_mac_params(struct e1000_hw *hw) 46 { 47 s32 ret_val = E1000_SUCCESS; 48 49 if (hw->mac.ops.init_params) { 50 ret_val = hw->mac.ops.init_params(hw); 51 if (ret_val) { 52 DEBUGOUT("MAC Initialization Error\n"); 53 goto out; 54 } 55 } else { 56 DEBUGOUT("mac.init_mac_params was NULL\n"); 57 ret_val = -E1000_ERR_CONFIG; 58 } 59 60 out: 61 return ret_val; 62 } 63 64 /** 65 * e1000_init_nvm_params - Initialize NVM function pointers 66 * @hw: pointer to the HW structure 67 * 68 * This function initializes the function pointers for the NVM 69 * set of functions. Called by drivers or by e1000_setup_init_funcs. 70 **/ 71 s32 e1000_init_nvm_params(struct e1000_hw *hw) 72 { 73 s32 ret_val = E1000_SUCCESS; 74 75 if (hw->nvm.ops.init_params) { 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_mbx_params - Initialize mailbox function pointers 118 * @hw: pointer to the HW structure 119 * 120 * This function initializes the function pointers for the PHY 121 * set of functions. Called by drivers or by e1000_setup_init_funcs. 122 **/ 123 s32 e1000_init_mbx_params(struct e1000_hw *hw) 124 { 125 s32 ret_val = E1000_SUCCESS; 126 127 if (hw->mbx.ops.init_params) { 128 ret_val = hw->mbx.ops.init_params(hw); 129 if (ret_val) { 130 DEBUGOUT("Mailbox Initialization Error\n"); 131 goto out; 132 } 133 } else { 134 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 135 ret_val = -E1000_ERR_CONFIG; 136 } 137 138 out: 139 return ret_val; 140 } 141 142 /** 143 * e1000_set_mac_type - Sets MAC type 144 * @hw: pointer to the HW structure 145 * 146 * This function sets the mac type of the adapter based on the 147 * device ID stored in the hw structure. 148 * MUST BE FIRST FUNCTION CALLED (explicitly or through 149 * e1000_setup_init_funcs()). 150 **/ 151 s32 e1000_set_mac_type(struct e1000_hw *hw) 152 { 153 struct e1000_mac_info *mac = &hw->mac; 154 s32 ret_val = E1000_SUCCESS; 155 156 DEBUGFUNC("e1000_set_mac_type"); 157 158 switch (hw->device_id) { 159 case E1000_DEV_ID_82542: 160 mac->type = e1000_82542; 161 break; 162 case E1000_DEV_ID_82543GC_FIBER: 163 case E1000_DEV_ID_82543GC_COPPER: 164 mac->type = e1000_82543; 165 break; 166 case E1000_DEV_ID_82544EI_COPPER: 167 case E1000_DEV_ID_82544EI_FIBER: 168 case E1000_DEV_ID_82544GC_COPPER: 169 case E1000_DEV_ID_82544GC_LOM: 170 mac->type = e1000_82544; 171 break; 172 case E1000_DEV_ID_82540EM: 173 case E1000_DEV_ID_82540EM_LOM: 174 case E1000_DEV_ID_82540EP: 175 case E1000_DEV_ID_82540EP_LOM: 176 case E1000_DEV_ID_82540EP_LP: 177 mac->type = e1000_82540; 178 break; 179 case E1000_DEV_ID_82545EM_COPPER: 180 case E1000_DEV_ID_82545EM_FIBER: 181 mac->type = e1000_82545; 182 break; 183 case E1000_DEV_ID_82545GM_COPPER: 184 case E1000_DEV_ID_82545GM_FIBER: 185 case E1000_DEV_ID_82545GM_SERDES: 186 mac->type = e1000_82545_rev_3; 187 break; 188 case E1000_DEV_ID_82546EB_COPPER: 189 case E1000_DEV_ID_82546EB_FIBER: 190 case E1000_DEV_ID_82546EB_QUAD_COPPER: 191 mac->type = e1000_82546; 192 break; 193 case E1000_DEV_ID_82546GB_COPPER: 194 case E1000_DEV_ID_82546GB_FIBER: 195 case E1000_DEV_ID_82546GB_SERDES: 196 case E1000_DEV_ID_82546GB_PCIE: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER: 198 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 199 mac->type = e1000_82546_rev_3; 200 break; 201 case E1000_DEV_ID_82541EI: 202 case E1000_DEV_ID_82541EI_MOBILE: 203 case E1000_DEV_ID_82541ER_LOM: 204 mac->type = e1000_82541; 205 break; 206 case E1000_DEV_ID_82541ER: 207 case E1000_DEV_ID_82541GI: 208 case E1000_DEV_ID_82541GI_LF: 209 case E1000_DEV_ID_82541GI_MOBILE: 210 mac->type = e1000_82541_rev_2; 211 break; 212 case E1000_DEV_ID_82547EI: 213 case E1000_DEV_ID_82547EI_MOBILE: 214 mac->type = e1000_82547; 215 break; 216 case E1000_DEV_ID_82547GI: 217 mac->type = e1000_82547_rev_2; 218 break; 219 case E1000_DEV_ID_82571EB_COPPER: 220 case E1000_DEV_ID_82571EB_FIBER: 221 case E1000_DEV_ID_82571EB_SERDES: 222 case E1000_DEV_ID_82571EB_SERDES_DUAL: 223 case E1000_DEV_ID_82571EB_SERDES_QUAD: 224 case E1000_DEV_ID_82571EB_QUAD_COPPER: 225 case E1000_DEV_ID_82571PT_QUAD_COPPER: 226 case E1000_DEV_ID_82571EB_QUAD_FIBER: 227 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 228 mac->type = e1000_82571; 229 break; 230 case E1000_DEV_ID_82572EI: 231 case E1000_DEV_ID_82572EI_COPPER: 232 case E1000_DEV_ID_82572EI_FIBER: 233 case E1000_DEV_ID_82572EI_SERDES: 234 mac->type = e1000_82572; 235 break; 236 case E1000_DEV_ID_82573E: 237 case E1000_DEV_ID_82573E_IAMT: 238 case E1000_DEV_ID_82573L: 239 mac->type = e1000_82573; 240 break; 241 case E1000_DEV_ID_82574L: 242 case E1000_DEV_ID_82574LA: 243 mac->type = e1000_82574; 244 break; 245 case E1000_DEV_ID_82583V: 246 mac->type = e1000_82583; 247 break; 248 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 249 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 250 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 251 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 252 mac->type = e1000_80003es2lan; 253 break; 254 case E1000_DEV_ID_ICH8_IFE: 255 case E1000_DEV_ID_ICH8_IFE_GT: 256 case E1000_DEV_ID_ICH8_IFE_G: 257 case E1000_DEV_ID_ICH8_IGP_M: 258 case E1000_DEV_ID_ICH8_IGP_M_AMT: 259 case E1000_DEV_ID_ICH8_IGP_AMT: 260 case E1000_DEV_ID_ICH8_IGP_C: 261 case E1000_DEV_ID_ICH8_82567V_3: 262 mac->type = e1000_ich8lan; 263 break; 264 case E1000_DEV_ID_ICH9_IFE: 265 case E1000_DEV_ID_ICH9_IFE_GT: 266 case E1000_DEV_ID_ICH9_IFE_G: 267 case E1000_DEV_ID_ICH9_IGP_M: 268 case E1000_DEV_ID_ICH9_IGP_M_AMT: 269 case E1000_DEV_ID_ICH9_IGP_M_V: 270 case E1000_DEV_ID_ICH9_IGP_AMT: 271 case E1000_DEV_ID_ICH9_BM: 272 case E1000_DEV_ID_ICH9_IGP_C: 273 case E1000_DEV_ID_ICH10_R_BM_LM: 274 case E1000_DEV_ID_ICH10_R_BM_LF: 275 case E1000_DEV_ID_ICH10_R_BM_V: 276 mac->type = e1000_ich9lan; 277 break; 278 case E1000_DEV_ID_ICH10_D_BM_LM: 279 case E1000_DEV_ID_ICH10_D_BM_LF: 280 case E1000_DEV_ID_ICH10_D_BM_V: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_PCH_LPT_I217_LM: 294 case E1000_DEV_ID_PCH_LPT_I217_V: 295 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 296 case E1000_DEV_ID_PCH_LPTLP_I218_V: 297 case E1000_DEV_ID_PCH_I218_LM2: 298 case E1000_DEV_ID_PCH_I218_V2: 299 case E1000_DEV_ID_PCH_I218_LM3: 300 case E1000_DEV_ID_PCH_I218_V3: 301 mac->type = e1000_pch_lpt; 302 break; 303 case E1000_DEV_ID_PCH_SPT_I219_LM: 304 case E1000_DEV_ID_PCH_SPT_I219_V: 305 case E1000_DEV_ID_PCH_SPT_I219_LM2: 306 case E1000_DEV_ID_PCH_SPT_I219_V2: 307 case E1000_DEV_ID_PCH_LBG_I219_LM3: 308 case E1000_DEV_ID_PCH_SPT_I219_LM4: 309 case E1000_DEV_ID_PCH_SPT_I219_V4: 310 case E1000_DEV_ID_PCH_SPT_I219_LM5: 311 case E1000_DEV_ID_PCH_SPT_I219_V5: 312 mac->type = e1000_pch_spt; 313 break; 314 case E1000_DEV_ID_PCH_CNP_I219_LM6: 315 case E1000_DEV_ID_PCH_CNP_I219_V6: 316 case E1000_DEV_ID_PCH_CNP_I219_LM7: 317 case E1000_DEV_ID_PCH_CNP_I219_V7: 318 case E1000_DEV_ID_PCH_ICP_I219_LM8: 319 case E1000_DEV_ID_PCH_ICP_I219_V8: 320 case E1000_DEV_ID_PCH_ICP_I219_LM9: 321 case E1000_DEV_ID_PCH_ICP_I219_V9: 322 mac->type = e1000_pch_cnp; 323 break; 324 case E1000_DEV_ID_82575EB_COPPER: 325 case E1000_DEV_ID_82575EB_FIBER_SERDES: 326 case E1000_DEV_ID_82575GB_QUAD_COPPER: 327 mac->type = e1000_82575; 328 break; 329 case E1000_DEV_ID_82576: 330 case E1000_DEV_ID_82576_FIBER: 331 case E1000_DEV_ID_82576_SERDES: 332 case E1000_DEV_ID_82576_QUAD_COPPER: 333 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 334 case E1000_DEV_ID_82576_NS: 335 case E1000_DEV_ID_82576_NS_SERDES: 336 case E1000_DEV_ID_82576_SERDES_QUAD: 337 mac->type = e1000_82576; 338 break; 339 case E1000_DEV_ID_82580_COPPER: 340 case E1000_DEV_ID_82580_FIBER: 341 case E1000_DEV_ID_82580_SERDES: 342 case E1000_DEV_ID_82580_SGMII: 343 case E1000_DEV_ID_82580_COPPER_DUAL: 344 case E1000_DEV_ID_82580_QUAD_FIBER: 345 case E1000_DEV_ID_DH89XXCC_SGMII: 346 case E1000_DEV_ID_DH89XXCC_SERDES: 347 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 348 case E1000_DEV_ID_DH89XXCC_SFP: 349 mac->type = e1000_82580; 350 break; 351 case E1000_DEV_ID_I350_COPPER: 352 case E1000_DEV_ID_I350_FIBER: 353 case E1000_DEV_ID_I350_SERDES: 354 case E1000_DEV_ID_I350_SGMII: 355 case E1000_DEV_ID_I350_DA4: 356 mac->type = e1000_i350; 357 break; 358 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 359 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 360 case E1000_DEV_ID_I210_COPPER: 361 case E1000_DEV_ID_I210_COPPER_OEM1: 362 case E1000_DEV_ID_I210_COPPER_IT: 363 case E1000_DEV_ID_I210_FIBER: 364 case E1000_DEV_ID_I210_SERDES: 365 case E1000_DEV_ID_I210_SGMII: 366 mac->type = e1000_i210; 367 break; 368 case E1000_DEV_ID_I211_COPPER: 369 mac->type = e1000_i211; 370 break; 371 case E1000_DEV_ID_82576_VF: 372 case E1000_DEV_ID_82576_VF_HV: 373 mac->type = e1000_vfadapt; 374 break; 375 case E1000_DEV_ID_I350_VF: 376 case E1000_DEV_ID_I350_VF_HV: 377 mac->type = e1000_vfadapt_i350; 378 break; 379 380 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 381 case E1000_DEV_ID_I354_SGMII: 382 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 383 mac->type = e1000_i354; 384 break; 385 default: 386 /* Should never have loaded on this device */ 387 ret_val = -E1000_ERR_MAC_INIT; 388 break; 389 } 390 391 return ret_val; 392 } 393 394 /** 395 * e1000_setup_init_funcs - Initializes function pointers 396 * @hw: pointer to the HW structure 397 * @init_device: TRUE will initialize the rest of the function pointers 398 * getting the device ready for use. FALSE will only set 399 * MAC type and the function pointers for the other init 400 * functions. Passing FALSE will not generate any hardware 401 * reads or writes. 402 * 403 * This function must be called by a driver in order to use the rest 404 * of the 'shared' code files. Called by drivers only. 405 **/ 406 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 407 { 408 s32 ret_val; 409 410 /* Can't do much good without knowing the MAC type. */ 411 ret_val = e1000_set_mac_type(hw); 412 if (ret_val) { 413 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 414 goto out; 415 } 416 417 if (!hw->hw_addr) { 418 DEBUGOUT("ERROR: Registers not mapped\n"); 419 ret_val = -E1000_ERR_CONFIG; 420 goto out; 421 } 422 423 /* 424 * Init function pointers to generic implementations. We do this first 425 * allowing a driver module to override it afterward. 426 */ 427 e1000_init_mac_ops_generic(hw); 428 e1000_init_phy_ops_generic(hw); 429 e1000_init_nvm_ops_generic(hw); 430 e1000_init_mbx_ops_generic(hw); 431 432 /* 433 * Set up the init function pointers. These are functions within the 434 * adapter family file that sets up function pointers for the rest of 435 * the functions in that family. 436 */ 437 switch (hw->mac.type) { 438 case e1000_82542: 439 e1000_init_function_pointers_82542(hw); 440 break; 441 case e1000_82543: 442 case e1000_82544: 443 e1000_init_function_pointers_82543(hw); 444 break; 445 case e1000_82540: 446 case e1000_82545: 447 case e1000_82545_rev_3: 448 case e1000_82546: 449 case e1000_82546_rev_3: 450 e1000_init_function_pointers_82540(hw); 451 break; 452 case e1000_82541: 453 case e1000_82541_rev_2: 454 case e1000_82547: 455 case e1000_82547_rev_2: 456 e1000_init_function_pointers_82541(hw); 457 break; 458 case e1000_82571: 459 case e1000_82572: 460 case e1000_82573: 461 case e1000_82574: 462 case e1000_82583: 463 e1000_init_function_pointers_82571(hw); 464 break; 465 case e1000_80003es2lan: 466 e1000_init_function_pointers_80003es2lan(hw); 467 break; 468 case e1000_ich8lan: 469 case e1000_ich9lan: 470 case e1000_ich10lan: 471 case e1000_pchlan: 472 case e1000_pch2lan: 473 case e1000_pch_lpt: 474 case e1000_pch_spt: 475 case e1000_pch_cnp: 476 e1000_init_function_pointers_ich8lan(hw); 477 break; 478 case e1000_82575: 479 case e1000_82576: 480 case e1000_82580: 481 case e1000_i350: 482 case e1000_i354: 483 e1000_init_function_pointers_82575(hw); 484 break; 485 case e1000_i210: 486 case e1000_i211: 487 e1000_init_function_pointers_i210(hw); 488 break; 489 case e1000_vfadapt: 490 e1000_init_function_pointers_vf(hw); 491 break; 492 case e1000_vfadapt_i350: 493 e1000_init_function_pointers_vf(hw); 494 break; 495 default: 496 DEBUGOUT("Hardware not supported\n"); 497 ret_val = -E1000_ERR_CONFIG; 498 break; 499 } 500 501 /* 502 * Initialize the rest of the function pointers. These require some 503 * register reads/writes in some cases. 504 */ 505 if (!(ret_val) && init_device) { 506 ret_val = e1000_init_mac_params(hw); 507 if (ret_val) 508 goto out; 509 510 ret_val = e1000_init_nvm_params(hw); 511 if (ret_val) 512 goto out; 513 514 ret_val = e1000_init_phy_params(hw); 515 if (ret_val) 516 goto out; 517 518 ret_val = e1000_init_mbx_params(hw); 519 if (ret_val) 520 goto out; 521 } 522 523 out: 524 return ret_val; 525 } 526 527 /** 528 * e1000_get_bus_info - Obtain bus information for adapter 529 * @hw: pointer to the HW structure 530 * 531 * This will obtain information about the HW bus for which the 532 * adapter is attached and stores it in the hw structure. This is a 533 * function pointer entry point called by drivers. 534 **/ 535 s32 e1000_get_bus_info(struct e1000_hw *hw) 536 { 537 if (hw->mac.ops.get_bus_info) 538 return hw->mac.ops.get_bus_info(hw); 539 540 return E1000_SUCCESS; 541 } 542 543 /** 544 * e1000_clear_vfta - Clear VLAN filter table 545 * @hw: pointer to the HW structure 546 * 547 * This clears the VLAN filter table on the adapter. This is a function 548 * pointer entry point called by drivers. 549 **/ 550 void e1000_clear_vfta(struct e1000_hw *hw) 551 { 552 if (hw->mac.ops.clear_vfta) 553 hw->mac.ops.clear_vfta(hw); 554 } 555 556 /** 557 * e1000_write_vfta - Write value to VLAN filter table 558 * @hw: pointer to the HW structure 559 * @offset: the 32-bit offset in which to write the value to. 560 * @value: the 32-bit value to write at location offset. 561 * 562 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 563 * table. This is a function pointer entry point called by drivers. 564 **/ 565 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 566 { 567 if (hw->mac.ops.write_vfta) 568 hw->mac.ops.write_vfta(hw, offset, value); 569 } 570 571 /** 572 * e1000_update_mc_addr_list - Update Multicast addresses 573 * @hw: pointer to the HW structure 574 * @mc_addr_list: array of multicast addresses to program 575 * @mc_addr_count: number of multicast addresses to program 576 * 577 * Updates the Multicast Table Array. 578 * The caller must have a packed mc_addr_list of multicast addresses. 579 **/ 580 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 581 u32 mc_addr_count) 582 { 583 if (hw->mac.ops.update_mc_addr_list) 584 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 585 mc_addr_count); 586 } 587 588 /** 589 * e1000_force_mac_fc - Force MAC flow control 590 * @hw: pointer to the HW structure 591 * 592 * Force the MAC's flow control settings. Currently no func pointer exists 593 * and all implementations are handled in the generic version of this 594 * function. 595 **/ 596 s32 e1000_force_mac_fc(struct e1000_hw *hw) 597 { 598 return e1000_force_mac_fc_generic(hw); 599 } 600 601 /** 602 * e1000_check_for_link - Check/Store link connection 603 * @hw: pointer to the HW structure 604 * 605 * This checks the link condition of the adapter and stores the 606 * results in the hw->mac structure. This is a function pointer entry 607 * point called by drivers. 608 **/ 609 s32 e1000_check_for_link(struct e1000_hw *hw) 610 { 611 if (hw->mac.ops.check_for_link) 612 return hw->mac.ops.check_for_link(hw); 613 614 return -E1000_ERR_CONFIG; 615 } 616 617 /** 618 * e1000_check_mng_mode - Check management mode 619 * @hw: pointer to the HW structure 620 * 621 * This checks if the adapter has manageability enabled. 622 * This is a function pointer entry point called by drivers. 623 **/ 624 bool e1000_check_mng_mode(struct e1000_hw *hw) 625 { 626 if (hw->mac.ops.check_mng_mode) 627 return hw->mac.ops.check_mng_mode(hw); 628 629 return FALSE; 630 } 631 632 /** 633 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 634 * @hw: pointer to the HW structure 635 * @buffer: pointer to the host interface 636 * @length: size of the buffer 637 * 638 * Writes the DHCP information to the host interface. 639 **/ 640 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 641 { 642 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 643 } 644 645 /** 646 * e1000_reset_hw - Reset hardware 647 * @hw: pointer to the HW structure 648 * 649 * This resets the hardware into a known state. This is a function pointer 650 * entry point called by drivers. 651 **/ 652 s32 e1000_reset_hw(struct e1000_hw *hw) 653 { 654 if (hw->mac.ops.reset_hw) 655 return hw->mac.ops.reset_hw(hw); 656 657 return -E1000_ERR_CONFIG; 658 } 659 660 /** 661 * e1000_init_hw - Initialize hardware 662 * @hw: pointer to the HW structure 663 * 664 * This inits the hardware readying it for operation. This is a function 665 * pointer entry point called by drivers. 666 **/ 667 s32 e1000_init_hw(struct e1000_hw *hw) 668 { 669 if (hw->mac.ops.init_hw) 670 return hw->mac.ops.init_hw(hw); 671 672 return -E1000_ERR_CONFIG; 673 } 674 675 /** 676 * e1000_setup_link - Configures link and flow control 677 * @hw: pointer to the HW structure 678 * 679 * This configures link and flow control settings for the adapter. This 680 * is a function pointer entry point called by drivers. While modules can 681 * also call this, they probably call their own version of this function. 682 **/ 683 s32 e1000_setup_link(struct e1000_hw *hw) 684 { 685 if (hw->mac.ops.setup_link) 686 return hw->mac.ops.setup_link(hw); 687 688 return -E1000_ERR_CONFIG; 689 } 690 691 /** 692 * e1000_get_speed_and_duplex - Returns current speed and duplex 693 * @hw: pointer to the HW structure 694 * @speed: pointer to a 16-bit value to store the speed 695 * @duplex: pointer to a 16-bit value to store the duplex. 696 * 697 * This returns the speed and duplex of the adapter in the two 'out' 698 * variables passed in. This is a function pointer entry point called 699 * by drivers. 700 **/ 701 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 702 { 703 if (hw->mac.ops.get_link_up_info) 704 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 705 706 return -E1000_ERR_CONFIG; 707 } 708 709 /** 710 * e1000_setup_led - Configures SW controllable LED 711 * @hw: pointer to the HW structure 712 * 713 * This prepares the SW controllable LED for use and saves the current state 714 * of the LED so it can be later restored. This is a function pointer entry 715 * point called by drivers. 716 **/ 717 s32 e1000_setup_led(struct e1000_hw *hw) 718 { 719 if (hw->mac.ops.setup_led) 720 return hw->mac.ops.setup_led(hw); 721 722 return E1000_SUCCESS; 723 } 724 725 /** 726 * e1000_cleanup_led - Restores SW controllable LED 727 * @hw: pointer to the HW structure 728 * 729 * This restores the SW controllable LED to the value saved off by 730 * e1000_setup_led. This is a function pointer entry point called by drivers. 731 **/ 732 s32 e1000_cleanup_led(struct e1000_hw *hw) 733 { 734 if (hw->mac.ops.cleanup_led) 735 return hw->mac.ops.cleanup_led(hw); 736 737 return E1000_SUCCESS; 738 } 739 740 /** 741 * e1000_blink_led - Blink SW controllable LED 742 * @hw: pointer to the HW structure 743 * 744 * This starts the adapter LED blinking. Request the LED to be setup first 745 * and cleaned up after. This is a function pointer entry point called by 746 * drivers. 747 **/ 748 s32 e1000_blink_led(struct e1000_hw *hw) 749 { 750 if (hw->mac.ops.blink_led) 751 return hw->mac.ops.blink_led(hw); 752 753 return E1000_SUCCESS; 754 } 755 756 /** 757 * e1000_id_led_init - store LED configurations in SW 758 * @hw: pointer to the HW structure 759 * 760 * Initializes the LED config in SW. This is a function pointer entry point 761 * called by drivers. 762 **/ 763 s32 e1000_id_led_init(struct e1000_hw *hw) 764 { 765 if (hw->mac.ops.id_led_init) 766 return hw->mac.ops.id_led_init(hw); 767 768 return E1000_SUCCESS; 769 } 770 771 /** 772 * e1000_led_on - Turn on SW controllable LED 773 * @hw: pointer to the HW structure 774 * 775 * Turns the SW defined LED on. This is a function pointer entry point 776 * called by drivers. 777 **/ 778 s32 e1000_led_on(struct e1000_hw *hw) 779 { 780 if (hw->mac.ops.led_on) 781 return hw->mac.ops.led_on(hw); 782 783 return E1000_SUCCESS; 784 } 785 786 /** 787 * e1000_led_off - Turn off SW controllable LED 788 * @hw: pointer to the HW structure 789 * 790 * Turns the SW defined LED off. This is a function pointer entry point 791 * called by drivers. 792 **/ 793 s32 e1000_led_off(struct e1000_hw *hw) 794 { 795 if (hw->mac.ops.led_off) 796 return hw->mac.ops.led_off(hw); 797 798 return E1000_SUCCESS; 799 } 800 801 /** 802 * e1000_reset_adaptive - Reset adaptive IFS 803 * @hw: pointer to the HW structure 804 * 805 * Resets the adaptive IFS. Currently no func pointer exists and all 806 * implementations are handled in the generic version of this function. 807 **/ 808 void e1000_reset_adaptive(struct e1000_hw *hw) 809 { 810 e1000_reset_adaptive_generic(hw); 811 } 812 813 /** 814 * e1000_update_adaptive - Update adaptive IFS 815 * @hw: pointer to the HW structure 816 * 817 * Updates adapter IFS. Currently no func pointer exists and all 818 * implementations are handled in the generic version of this function. 819 **/ 820 void e1000_update_adaptive(struct e1000_hw *hw) 821 { 822 e1000_update_adaptive_generic(hw); 823 } 824 825 /** 826 * e1000_disable_pcie_master - Disable PCI-Express master access 827 * @hw: pointer to the HW structure 828 * 829 * Disables PCI-Express master access and verifies there are no pending 830 * requests. Currently no func pointer exists and all implementations are 831 * handled in the generic version of this function. 832 **/ 833 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 834 { 835 return e1000_disable_pcie_master_generic(hw); 836 } 837 838 /** 839 * e1000_config_collision_dist - Configure collision distance 840 * @hw: pointer to the HW structure 841 * 842 * Configures the collision distance to the default value and is used 843 * during link setup. 844 **/ 845 void e1000_config_collision_dist(struct e1000_hw *hw) 846 { 847 if (hw->mac.ops.config_collision_dist) 848 hw->mac.ops.config_collision_dist(hw); 849 } 850 851 /** 852 * e1000_rar_set - Sets a receive address register 853 * @hw: pointer to the HW structure 854 * @addr: address to set the RAR to 855 * @index: the RAR to set 856 * 857 * Sets a Receive Address Register (RAR) to the specified address. 858 **/ 859 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 860 { 861 if (hw->mac.ops.rar_set) 862 return hw->mac.ops.rar_set(hw, addr, index); 863 864 return E1000_SUCCESS; 865 } 866 867 /** 868 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 869 * @hw: pointer to the HW structure 870 * 871 * Ensures that the MDI/MDIX SW state is valid. 872 **/ 873 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 874 { 875 if (hw->mac.ops.validate_mdi_setting) 876 return hw->mac.ops.validate_mdi_setting(hw); 877 878 return E1000_SUCCESS; 879 } 880 881 /** 882 * e1000_hash_mc_addr - Determines address location in multicast table 883 * @hw: pointer to the HW structure 884 * @mc_addr: Multicast address to hash. 885 * 886 * This hashes an address to determine its location in the multicast 887 * table. Currently no func pointer exists and all implementations 888 * are handled in the generic version of this function. 889 **/ 890 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 891 { 892 return e1000_hash_mc_addr_generic(hw, mc_addr); 893 } 894 895 /** 896 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 897 * @hw: pointer to the HW structure 898 * 899 * Enables packet filtering on transmit packets if manageability is enabled 900 * and host interface is enabled. 901 * Currently no func pointer exists and all implementations are handled in the 902 * generic version of this function. 903 **/ 904 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 905 { 906 return e1000_enable_tx_pkt_filtering_generic(hw); 907 } 908 909 /** 910 * e1000_mng_host_if_write - Writes to the manageability host interface 911 * @hw: pointer to the HW structure 912 * @buffer: pointer to the host interface buffer 913 * @length: size of the buffer 914 * @offset: location in the buffer to write to 915 * @sum: sum of the data (not checksum) 916 * 917 * This function writes the buffer content at the offset given on the host if. 918 * It also does alignment considerations to do the writes in most efficient 919 * way. Also fills up the sum of the buffer in *buffer parameter. 920 **/ 921 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 922 u16 offset, u8 *sum) 923 { 924 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 925 } 926 927 /** 928 * e1000_mng_write_cmd_header - Writes manageability command header 929 * @hw: pointer to the HW structure 930 * @hdr: pointer to the host interface command header 931 * 932 * Writes the command header after does the checksum calculation. 933 **/ 934 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 935 struct e1000_host_mng_command_header *hdr) 936 { 937 return e1000_mng_write_cmd_header_generic(hw, hdr); 938 } 939 940 /** 941 * e1000_mng_enable_host_if - Checks host interface is enabled 942 * @hw: pointer to the HW structure 943 * 944 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 945 * 946 * This function checks whether the HOST IF is enabled for command operation 947 * and also checks whether the previous command is completed. It busy waits 948 * in case of previous command is not completed. 949 **/ 950 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 951 { 952 return e1000_mng_enable_host_if_generic(hw); 953 } 954 955 /** 956 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 957 * @hw: pointer to the HW structure 958 * @itr: u32 indicating itr value 959 * 960 * Set the OBFF timer based on the given interrupt rate. 961 **/ 962 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 963 { 964 if (hw->mac.ops.set_obff_timer) 965 return hw->mac.ops.set_obff_timer(hw, itr); 966 967 return E1000_SUCCESS; 968 } 969 970 /** 971 * e1000_check_reset_block - Verifies PHY can be reset 972 * @hw: pointer to the HW structure 973 * 974 * Checks if the PHY is in a state that can be reset or if manageability 975 * has it tied up. This is a function pointer entry point called by drivers. 976 **/ 977 s32 e1000_check_reset_block(struct e1000_hw *hw) 978 { 979 if (hw->phy.ops.check_reset_block) 980 return hw->phy.ops.check_reset_block(hw); 981 982 return E1000_SUCCESS; 983 } 984 985 /** 986 * e1000_read_phy_reg - Reads PHY register 987 * @hw: pointer to the HW structure 988 * @offset: the register to read 989 * @data: the buffer to store the 16-bit read. 990 * 991 * Reads the PHY register and returns the value in data. 992 * This is a function pointer entry point called by drivers. 993 **/ 994 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 995 { 996 if (hw->phy.ops.read_reg) 997 return hw->phy.ops.read_reg(hw, offset, data); 998 999 return E1000_SUCCESS; 1000 } 1001 1002 /** 1003 * e1000_write_phy_reg - Writes PHY register 1004 * @hw: pointer to the HW structure 1005 * @offset: the register to write 1006 * @data: the value to write. 1007 * 1008 * Writes the PHY register at offset with the value in data. 1009 * This is a function pointer entry point called by drivers. 1010 **/ 1011 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1012 { 1013 if (hw->phy.ops.write_reg) 1014 return hw->phy.ops.write_reg(hw, offset, data); 1015 1016 return E1000_SUCCESS; 1017 } 1018 1019 /** 1020 * e1000_release_phy - Generic release PHY 1021 * @hw: pointer to the HW structure 1022 * 1023 * Return if silicon family does not require a semaphore when accessing the 1024 * PHY. 1025 **/ 1026 void e1000_release_phy(struct e1000_hw *hw) 1027 { 1028 if (hw->phy.ops.release) 1029 hw->phy.ops.release(hw); 1030 } 1031 1032 /** 1033 * e1000_acquire_phy - Generic acquire PHY 1034 * @hw: pointer to the HW structure 1035 * 1036 * Return success if silicon family does not require a semaphore when 1037 * accessing the PHY. 1038 **/ 1039 s32 e1000_acquire_phy(struct e1000_hw *hw) 1040 { 1041 if (hw->phy.ops.acquire) 1042 return hw->phy.ops.acquire(hw); 1043 1044 return E1000_SUCCESS; 1045 } 1046 1047 /** 1048 * e1000_cfg_on_link_up - Configure PHY upon link up 1049 * @hw: pointer to the HW structure 1050 **/ 1051 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1052 { 1053 if (hw->phy.ops.cfg_on_link_up) 1054 return hw->phy.ops.cfg_on_link_up(hw); 1055 1056 return E1000_SUCCESS; 1057 } 1058 1059 /** 1060 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1061 * @hw: pointer to the HW structure 1062 * @offset: the register to read 1063 * @data: the location to store the 16-bit value read. 1064 * 1065 * Reads a register out of the Kumeran interface. Currently no func pointer 1066 * exists and all implementations are handled in the generic version of 1067 * this function. 1068 **/ 1069 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1070 { 1071 return e1000_read_kmrn_reg_generic(hw, offset, data); 1072 } 1073 1074 /** 1075 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1076 * @hw: pointer to the HW structure 1077 * @offset: the register to write 1078 * @data: the value to write. 1079 * 1080 * Writes a register to the Kumeran interface. Currently no func pointer 1081 * exists and all implementations are handled in the generic version of 1082 * this function. 1083 **/ 1084 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1085 { 1086 return e1000_write_kmrn_reg_generic(hw, offset, data); 1087 } 1088 1089 /** 1090 * e1000_get_cable_length - Retrieves cable length estimation 1091 * @hw: pointer to the HW structure 1092 * 1093 * This function estimates the cable length and stores them in 1094 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1095 * entry point called by drivers. 1096 **/ 1097 s32 e1000_get_cable_length(struct e1000_hw *hw) 1098 { 1099 if (hw->phy.ops.get_cable_length) 1100 return hw->phy.ops.get_cable_length(hw); 1101 1102 return E1000_SUCCESS; 1103 } 1104 1105 /** 1106 * e1000_get_phy_info - Retrieves PHY information from registers 1107 * @hw: pointer to the HW structure 1108 * 1109 * This function gets some information from various PHY registers and 1110 * populates hw->phy values with it. This is a function pointer entry 1111 * point called by drivers. 1112 **/ 1113 s32 e1000_get_phy_info(struct e1000_hw *hw) 1114 { 1115 if (hw->phy.ops.get_info) 1116 return hw->phy.ops.get_info(hw); 1117 1118 return E1000_SUCCESS; 1119 } 1120 1121 /** 1122 * e1000_phy_hw_reset - Hard PHY reset 1123 * @hw: pointer to the HW structure 1124 * 1125 * Performs a hard PHY reset. This is a function pointer entry point called 1126 * by drivers. 1127 **/ 1128 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1129 { 1130 if (hw->phy.ops.reset) 1131 return hw->phy.ops.reset(hw); 1132 1133 return E1000_SUCCESS; 1134 } 1135 1136 /** 1137 * e1000_phy_commit - Soft PHY reset 1138 * @hw: pointer to the HW structure 1139 * 1140 * Performs a soft PHY reset on those that apply. This is a function pointer 1141 * entry point called by drivers. 1142 **/ 1143 s32 e1000_phy_commit(struct e1000_hw *hw) 1144 { 1145 if (hw->phy.ops.commit) 1146 return hw->phy.ops.commit(hw); 1147 1148 return E1000_SUCCESS; 1149 } 1150 1151 /** 1152 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1153 * @hw: pointer to the HW structure 1154 * @active: boolean used to enable/disable lplu 1155 * 1156 * Success returns 0, Failure returns 1 1157 * 1158 * The low power link up (lplu) state is set to the power management level D0 1159 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1160 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1161 * is used during Dx states where the power conservation is most important. 1162 * During driver activity, SmartSpeed should be enabled so performance is 1163 * maintained. This is a function pointer entry point called by drivers. 1164 **/ 1165 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1166 { 1167 if (hw->phy.ops.set_d0_lplu_state) 1168 return hw->phy.ops.set_d0_lplu_state(hw, active); 1169 1170 return E1000_SUCCESS; 1171 } 1172 1173 /** 1174 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1175 * @hw: pointer to the HW structure 1176 * @active: boolean used to enable/disable lplu 1177 * 1178 * Success returns 0, Failure returns 1 1179 * 1180 * The low power link up (lplu) state is set to the power management level D3 1181 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1182 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1183 * is used during Dx states where the power conservation is most important. 1184 * During driver activity, SmartSpeed should be enabled so performance is 1185 * maintained. This is a function pointer entry point called by drivers. 1186 **/ 1187 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1188 { 1189 if (hw->phy.ops.set_d3_lplu_state) 1190 return hw->phy.ops.set_d3_lplu_state(hw, active); 1191 1192 return E1000_SUCCESS; 1193 } 1194 1195 /** 1196 * e1000_read_mac_addr - Reads MAC address 1197 * @hw: pointer to the HW structure 1198 * 1199 * Reads the MAC address out of the adapter and stores it in the HW structure. 1200 * Currently no func pointer exists and all implementations are handled in the 1201 * generic version of this function. 1202 **/ 1203 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1204 { 1205 if (hw->mac.ops.read_mac_addr) 1206 return hw->mac.ops.read_mac_addr(hw); 1207 1208 return e1000_read_mac_addr_generic(hw); 1209 } 1210 1211 /** 1212 * e1000_read_pba_string - Read device part number string 1213 * @hw: pointer to the HW structure 1214 * @pba_num: pointer to device part number 1215 * @pba_num_size: size of part number buffer 1216 * 1217 * Reads the product board assembly (PBA) number from the EEPROM and stores 1218 * the value in pba_num. 1219 * Currently no func pointer exists and all implementations are handled in the 1220 * generic version of this function. 1221 **/ 1222 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1223 { 1224 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1225 } 1226 1227 /** 1228 * e1000_read_pba_length - Read device part number string length 1229 * @hw: pointer to the HW structure 1230 * @pba_num_size: size of part number buffer 1231 * 1232 * Reads the product board assembly (PBA) number length from the EEPROM and 1233 * stores the value in pba_num. 1234 * Currently no func pointer exists and all implementations are handled in the 1235 * generic version of this function. 1236 **/ 1237 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1238 { 1239 return e1000_read_pba_length_generic(hw, pba_num_size); 1240 } 1241 1242 /** 1243 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1244 * @hw: pointer to the HW structure 1245 * 1246 * Validates the NVM checksum is correct. This is a function pointer entry 1247 * point called by drivers. 1248 **/ 1249 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1250 { 1251 if (hw->nvm.ops.validate) 1252 return hw->nvm.ops.validate(hw); 1253 1254 return -E1000_ERR_CONFIG; 1255 } 1256 1257 /** 1258 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1259 * @hw: pointer to the HW structure 1260 * 1261 * Updates the NVM checksum. Currently no func pointer exists and all 1262 * implementations are handled in the generic version of this function. 1263 **/ 1264 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1265 { 1266 if (hw->nvm.ops.update) 1267 return hw->nvm.ops.update(hw); 1268 1269 return -E1000_ERR_CONFIG; 1270 } 1271 1272 /** 1273 * e1000_reload_nvm - Reloads EEPROM 1274 * @hw: pointer to the HW structure 1275 * 1276 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1277 * extended control register. 1278 **/ 1279 void e1000_reload_nvm(struct e1000_hw *hw) 1280 { 1281 if (hw->nvm.ops.reload) 1282 hw->nvm.ops.reload(hw); 1283 } 1284 1285 /** 1286 * e1000_read_nvm - Reads NVM (EEPROM) 1287 * @hw: pointer to the HW structure 1288 * @offset: the word offset to read 1289 * @words: number of 16-bit words to read 1290 * @data: pointer to the properly sized buffer for the data. 1291 * 1292 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1293 * pointer entry point called by drivers. 1294 **/ 1295 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1296 { 1297 if (hw->nvm.ops.read) 1298 return hw->nvm.ops.read(hw, offset, words, data); 1299 1300 return -E1000_ERR_CONFIG; 1301 } 1302 1303 /** 1304 * e1000_write_nvm - Writes to NVM (EEPROM) 1305 * @hw: pointer to the HW structure 1306 * @offset: the word offset to read 1307 * @words: number of 16-bit words to write 1308 * @data: pointer to the properly sized buffer for the data. 1309 * 1310 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1311 * pointer entry point called by drivers. 1312 **/ 1313 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1314 { 1315 if (hw->nvm.ops.write) 1316 return hw->nvm.ops.write(hw, offset, words, data); 1317 1318 return E1000_SUCCESS; 1319 } 1320 1321 /** 1322 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1323 * @hw: pointer to the HW structure 1324 * @reg: 32bit register offset 1325 * @offset: the register to write 1326 * @data: the value to write. 1327 * 1328 * Writes the PHY register at offset with the value in data. 1329 * This is a function pointer entry point called by drivers. 1330 **/ 1331 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1332 u8 data) 1333 { 1334 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1335 } 1336 1337 /** 1338 * e1000_power_up_phy - Restores link in case of PHY power down 1339 * @hw: pointer to the HW structure 1340 * 1341 * The phy may be powered down to save power, to turn off link when the 1342 * driver is unloaded, or wake on lan is not enabled (among others). 1343 **/ 1344 void e1000_power_up_phy(struct e1000_hw *hw) 1345 { 1346 if (hw->phy.ops.power_up) 1347 hw->phy.ops.power_up(hw); 1348 1349 e1000_setup_link(hw); 1350 } 1351 1352 /** 1353 * e1000_power_down_phy - Power down PHY 1354 * @hw: pointer to the HW structure 1355 * 1356 * The phy may be powered down to save power, to turn off link when the 1357 * driver is unloaded, or wake on lan is not enabled (among others). 1358 **/ 1359 void e1000_power_down_phy(struct e1000_hw *hw) 1360 { 1361 if (hw->phy.ops.power_down) 1362 hw->phy.ops.power_down(hw); 1363 } 1364 1365 /** 1366 * e1000_power_up_fiber_serdes_link - Power up serdes link 1367 * @hw: pointer to the HW structure 1368 * 1369 * Power on the optics and PCS. 1370 **/ 1371 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1372 { 1373 if (hw->mac.ops.power_up_serdes) 1374 hw->mac.ops.power_up_serdes(hw); 1375 } 1376 1377 /** 1378 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1379 * @hw: pointer to the HW structure 1380 * 1381 * Shutdown the optics and PCS on driver unload. 1382 **/ 1383 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1384 { 1385 if (hw->mac.ops.shutdown_serdes) 1386 hw->mac.ops.shutdown_serdes(hw); 1387 } 1388 1389