1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 /** 39 * e1000_init_mac_params - Initialize MAC function pointers 40 * @hw: pointer to the HW structure 41 * 42 * This function initializes the function pointers for the MAC 43 * set of functions. Called by drivers or by e1000_setup_init_funcs. 44 **/ 45 s32 e1000_init_mac_params(struct e1000_hw *hw) 46 { 47 s32 ret_val = E1000_SUCCESS; 48 49 if (hw->mac.ops.init_params) { 50 ret_val = hw->mac.ops.init_params(hw); 51 if (ret_val) { 52 DEBUGOUT("MAC Initialization Error\n"); 53 goto out; 54 } 55 } else { 56 DEBUGOUT("mac.init_mac_params was NULL\n"); 57 ret_val = -E1000_ERR_CONFIG; 58 } 59 60 out: 61 return ret_val; 62 } 63 64 /** 65 * e1000_init_nvm_params - Initialize NVM function pointers 66 * @hw: pointer to the HW structure 67 * 68 * This function initializes the function pointers for the NVM 69 * set of functions. Called by drivers or by e1000_setup_init_funcs. 70 **/ 71 s32 e1000_init_nvm_params(struct e1000_hw *hw) 72 { 73 s32 ret_val = E1000_SUCCESS; 74 75 if (hw->nvm.ops.init_params) { 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_mbx_params - Initialize mailbox function pointers 118 * @hw: pointer to the HW structure 119 * 120 * This function initializes the function pointers for the PHY 121 * set of functions. Called by drivers or by e1000_setup_init_funcs. 122 **/ 123 s32 e1000_init_mbx_params(struct e1000_hw *hw) 124 { 125 s32 ret_val = E1000_SUCCESS; 126 127 if (hw->mbx.ops.init_params) { 128 ret_val = hw->mbx.ops.init_params(hw); 129 if (ret_val) { 130 DEBUGOUT("Mailbox Initialization Error\n"); 131 goto out; 132 } 133 } else { 134 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 135 ret_val = -E1000_ERR_CONFIG; 136 } 137 138 out: 139 return ret_val; 140 } 141 142 /** 143 * e1000_set_mac_type - Sets MAC type 144 * @hw: pointer to the HW structure 145 * 146 * This function sets the mac type of the adapter based on the 147 * device ID stored in the hw structure. 148 * MUST BE FIRST FUNCTION CALLED (explicitly or through 149 * e1000_setup_init_funcs()). 150 **/ 151 s32 e1000_set_mac_type(struct e1000_hw *hw) 152 { 153 struct e1000_mac_info *mac = &hw->mac; 154 s32 ret_val = E1000_SUCCESS; 155 156 DEBUGFUNC("e1000_set_mac_type"); 157 158 switch (hw->device_id) { 159 case E1000_DEV_ID_82542: 160 mac->type = e1000_82542; 161 break; 162 case E1000_DEV_ID_82543GC_FIBER: 163 case E1000_DEV_ID_82543GC_COPPER: 164 mac->type = e1000_82543; 165 break; 166 case E1000_DEV_ID_82544EI_COPPER: 167 case E1000_DEV_ID_82544EI_FIBER: 168 case E1000_DEV_ID_82544GC_COPPER: 169 case E1000_DEV_ID_82544GC_LOM: 170 mac->type = e1000_82544; 171 break; 172 case E1000_DEV_ID_82540EM: 173 case E1000_DEV_ID_82540EM_LOM: 174 case E1000_DEV_ID_82540EP: 175 case E1000_DEV_ID_82540EP_LOM: 176 case E1000_DEV_ID_82540EP_LP: 177 mac->type = e1000_82540; 178 break; 179 case E1000_DEV_ID_82545EM_COPPER: 180 case E1000_DEV_ID_82545EM_FIBER: 181 mac->type = e1000_82545; 182 break; 183 case E1000_DEV_ID_82545GM_COPPER: 184 case E1000_DEV_ID_82545GM_FIBER: 185 case E1000_DEV_ID_82545GM_SERDES: 186 mac->type = e1000_82545_rev_3; 187 break; 188 case E1000_DEV_ID_82546EB_COPPER: 189 case E1000_DEV_ID_82546EB_FIBER: 190 case E1000_DEV_ID_82546EB_QUAD_COPPER: 191 mac->type = e1000_82546; 192 break; 193 case E1000_DEV_ID_82546GB_COPPER: 194 case E1000_DEV_ID_82546GB_FIBER: 195 case E1000_DEV_ID_82546GB_SERDES: 196 case E1000_DEV_ID_82546GB_PCIE: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER: 198 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 199 mac->type = e1000_82546_rev_3; 200 break; 201 case E1000_DEV_ID_82541EI: 202 case E1000_DEV_ID_82541EI_MOBILE: 203 case E1000_DEV_ID_82541ER_LOM: 204 mac->type = e1000_82541; 205 break; 206 case E1000_DEV_ID_82541ER: 207 case E1000_DEV_ID_82541GI: 208 case E1000_DEV_ID_82541GI_LF: 209 case E1000_DEV_ID_82541GI_MOBILE: 210 mac->type = e1000_82541_rev_2; 211 break; 212 case E1000_DEV_ID_82547EI: 213 case E1000_DEV_ID_82547EI_MOBILE: 214 mac->type = e1000_82547; 215 break; 216 case E1000_DEV_ID_82547GI: 217 mac->type = e1000_82547_rev_2; 218 break; 219 case E1000_DEV_ID_82571EB_COPPER: 220 case E1000_DEV_ID_82571EB_FIBER: 221 case E1000_DEV_ID_82571EB_SERDES: 222 case E1000_DEV_ID_82571EB_SERDES_DUAL: 223 case E1000_DEV_ID_82571EB_SERDES_QUAD: 224 case E1000_DEV_ID_82571EB_QUAD_COPPER: 225 case E1000_DEV_ID_82571PT_QUAD_COPPER: 226 case E1000_DEV_ID_82571EB_QUAD_FIBER: 227 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 228 mac->type = e1000_82571; 229 break; 230 case E1000_DEV_ID_82572EI: 231 case E1000_DEV_ID_82572EI_COPPER: 232 case E1000_DEV_ID_82572EI_FIBER: 233 case E1000_DEV_ID_82572EI_SERDES: 234 mac->type = e1000_82572; 235 break; 236 case E1000_DEV_ID_82573E: 237 case E1000_DEV_ID_82573E_IAMT: 238 case E1000_DEV_ID_82573L: 239 mac->type = e1000_82573; 240 break; 241 case E1000_DEV_ID_82574L: 242 case E1000_DEV_ID_82574LA: 243 mac->type = e1000_82574; 244 break; 245 case E1000_DEV_ID_82583V: 246 mac->type = e1000_82583; 247 break; 248 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 249 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 250 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 251 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 252 mac->type = e1000_80003es2lan; 253 break; 254 case E1000_DEV_ID_ICH8_IFE: 255 case E1000_DEV_ID_ICH8_IFE_GT: 256 case E1000_DEV_ID_ICH8_IFE_G: 257 case E1000_DEV_ID_ICH8_IGP_M: 258 case E1000_DEV_ID_ICH8_IGP_M_AMT: 259 case E1000_DEV_ID_ICH8_IGP_AMT: 260 case E1000_DEV_ID_ICH8_IGP_C: 261 case E1000_DEV_ID_ICH8_82567V_3: 262 mac->type = e1000_ich8lan; 263 break; 264 case E1000_DEV_ID_ICH9_IFE: 265 case E1000_DEV_ID_ICH9_IFE_GT: 266 case E1000_DEV_ID_ICH9_IFE_G: 267 case E1000_DEV_ID_ICH9_IGP_M: 268 case E1000_DEV_ID_ICH9_IGP_M_AMT: 269 case E1000_DEV_ID_ICH9_IGP_M_V: 270 case E1000_DEV_ID_ICH9_IGP_AMT: 271 case E1000_DEV_ID_ICH9_BM: 272 case E1000_DEV_ID_ICH9_IGP_C: 273 case E1000_DEV_ID_ICH10_R_BM_LM: 274 case E1000_DEV_ID_ICH10_R_BM_LF: 275 case E1000_DEV_ID_ICH10_R_BM_V: 276 mac->type = e1000_ich9lan; 277 break; 278 case E1000_DEV_ID_ICH10_D_BM_LM: 279 case E1000_DEV_ID_ICH10_D_BM_LF: 280 case E1000_DEV_ID_ICH10_D_BM_V: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_PCH_LPT_I217_LM: 294 case E1000_DEV_ID_PCH_LPT_I217_V: 295 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 296 case E1000_DEV_ID_PCH_LPTLP_I218_V: 297 case E1000_DEV_ID_PCH_I218_LM2: 298 case E1000_DEV_ID_PCH_I218_V2: 299 case E1000_DEV_ID_PCH_I218_LM3: 300 case E1000_DEV_ID_PCH_I218_V3: 301 mac->type = e1000_pch_lpt; 302 break; 303 case E1000_DEV_ID_PCH_SPT_I219_LM: 304 case E1000_DEV_ID_PCH_SPT_I219_V: 305 case E1000_DEV_ID_PCH_SPT_I219_LM2: 306 case E1000_DEV_ID_PCH_SPT_I219_V2: 307 case E1000_DEV_ID_PCH_LBG_I219_LM3: 308 case E1000_DEV_ID_PCH_SPT_I219_LM4: 309 case E1000_DEV_ID_PCH_SPT_I219_V4: 310 case E1000_DEV_ID_PCH_SPT_I219_LM5: 311 case E1000_DEV_ID_PCH_SPT_I219_V5: 312 case E1000_DEV_ID_PCH_CMP_I219_LM12: 313 case E1000_DEV_ID_PCH_CMP_I219_V12: 314 mac->type = e1000_pch_spt; 315 break; 316 case E1000_DEV_ID_PCH_CNP_I219_LM6: 317 case E1000_DEV_ID_PCH_CNP_I219_V6: 318 case E1000_DEV_ID_PCH_CNP_I219_LM7: 319 case E1000_DEV_ID_PCH_CNP_I219_V7: 320 case E1000_DEV_ID_PCH_ICP_I219_LM8: 321 case E1000_DEV_ID_PCH_ICP_I219_V8: 322 case E1000_DEV_ID_PCH_ICP_I219_LM9: 323 case E1000_DEV_ID_PCH_ICP_I219_V9: 324 case E1000_DEV_ID_PCH_CMP_I219_LM10: 325 case E1000_DEV_ID_PCH_CMP_I219_V10: 326 case E1000_DEV_ID_PCH_CMP_I219_LM11: 327 case E1000_DEV_ID_PCH_CMP_I219_V11: 328 mac->type = e1000_pch_cnp; 329 break; 330 case E1000_DEV_ID_PCH_TGP_I219_LM13: 331 case E1000_DEV_ID_PCH_TGP_I219_V13: 332 case E1000_DEV_ID_PCH_TGP_I219_LM14: 333 case E1000_DEV_ID_PCH_TGP_I219_V14: 334 case E1000_DEV_ID_PCH_TGP_I219_LM15: 335 case E1000_DEV_ID_PCH_TGP_I219_V15: 336 mac->type = e1000_pch_tgp; 337 break; 338 case E1000_DEV_ID_PCH_ADL_I219_LM16: 339 case E1000_DEV_ID_PCH_ADL_I219_V16: 340 case E1000_DEV_ID_PCH_ADL_I219_LM17: 341 case E1000_DEV_ID_PCH_ADL_I219_V17: 342 mac->type = e1000_pch_adp; 343 break; 344 case E1000_DEV_ID_PCH_MTP_I219_LM18: 345 case E1000_DEV_ID_PCH_MTP_I219_V18: 346 case E1000_DEV_ID_PCH_MTP_I219_LM19: 347 case E1000_DEV_ID_PCH_MTP_I219_V19: 348 mac->type = e1000_pch_mtp; 349 break; 350 case E1000_DEV_ID_82575EB_COPPER: 351 case E1000_DEV_ID_82575EB_FIBER_SERDES: 352 case E1000_DEV_ID_82575GB_QUAD_COPPER: 353 mac->type = e1000_82575; 354 break; 355 case E1000_DEV_ID_82576: 356 case E1000_DEV_ID_82576_FIBER: 357 case E1000_DEV_ID_82576_SERDES: 358 case E1000_DEV_ID_82576_QUAD_COPPER: 359 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 360 case E1000_DEV_ID_82576_NS: 361 case E1000_DEV_ID_82576_NS_SERDES: 362 case E1000_DEV_ID_82576_SERDES_QUAD: 363 mac->type = e1000_82576; 364 break; 365 case E1000_DEV_ID_82580_COPPER: 366 case E1000_DEV_ID_82580_FIBER: 367 case E1000_DEV_ID_82580_SERDES: 368 case E1000_DEV_ID_82580_SGMII: 369 case E1000_DEV_ID_82580_COPPER_DUAL: 370 case E1000_DEV_ID_82580_QUAD_FIBER: 371 case E1000_DEV_ID_DH89XXCC_SGMII: 372 case E1000_DEV_ID_DH89XXCC_SERDES: 373 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 374 case E1000_DEV_ID_DH89XXCC_SFP: 375 mac->type = e1000_82580; 376 break; 377 case E1000_DEV_ID_I350_COPPER: 378 case E1000_DEV_ID_I350_FIBER: 379 case E1000_DEV_ID_I350_SERDES: 380 case E1000_DEV_ID_I350_SGMII: 381 case E1000_DEV_ID_I350_DA4: 382 mac->type = e1000_i350; 383 break; 384 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 385 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 386 case E1000_DEV_ID_I210_COPPER: 387 case E1000_DEV_ID_I210_COPPER_OEM1: 388 case E1000_DEV_ID_I210_COPPER_IT: 389 case E1000_DEV_ID_I210_FIBER: 390 case E1000_DEV_ID_I210_SERDES: 391 case E1000_DEV_ID_I210_SGMII: 392 mac->type = e1000_i210; 393 break; 394 case E1000_DEV_ID_I211_COPPER: 395 mac->type = e1000_i211; 396 break; 397 case E1000_DEV_ID_82576_VF: 398 case E1000_DEV_ID_82576_VF_HV: 399 mac->type = e1000_vfadapt; 400 break; 401 case E1000_DEV_ID_I350_VF: 402 case E1000_DEV_ID_I350_VF_HV: 403 mac->type = e1000_vfadapt_i350; 404 break; 405 406 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 407 case E1000_DEV_ID_I354_SGMII: 408 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 409 mac->type = e1000_i354; 410 break; 411 default: 412 /* Should never have loaded on this device */ 413 ret_val = -E1000_ERR_MAC_INIT; 414 break; 415 } 416 417 return ret_val; 418 } 419 420 /** 421 * e1000_setup_init_funcs - Initializes function pointers 422 * @hw: pointer to the HW structure 423 * @init_device: TRUE will initialize the rest of the function pointers 424 * getting the device ready for use. FALSE will only set 425 * MAC type and the function pointers for the other init 426 * functions. Passing FALSE will not generate any hardware 427 * reads or writes. 428 * 429 * This function must be called by a driver in order to use the rest 430 * of the 'shared' code files. Called by drivers only. 431 **/ 432 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 433 { 434 s32 ret_val; 435 436 /* Can't do much good without knowing the MAC type. */ 437 ret_val = e1000_set_mac_type(hw); 438 if (ret_val) { 439 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 440 goto out; 441 } 442 443 if (!hw->hw_addr) { 444 DEBUGOUT("ERROR: Registers not mapped\n"); 445 ret_val = -E1000_ERR_CONFIG; 446 goto out; 447 } 448 449 /* 450 * Init function pointers to generic implementations. We do this first 451 * allowing a driver module to override it afterward. 452 */ 453 e1000_init_mac_ops_generic(hw); 454 e1000_init_phy_ops_generic(hw); 455 e1000_init_nvm_ops_generic(hw); 456 e1000_init_mbx_ops_generic(hw); 457 458 /* 459 * Set up the init function pointers. These are functions within the 460 * adapter family file that sets up function pointers for the rest of 461 * the functions in that family. 462 */ 463 switch (hw->mac.type) { 464 case e1000_82542: 465 e1000_init_function_pointers_82542(hw); 466 break; 467 case e1000_82543: 468 case e1000_82544: 469 e1000_init_function_pointers_82543(hw); 470 break; 471 case e1000_82540: 472 case e1000_82545: 473 case e1000_82545_rev_3: 474 case e1000_82546: 475 case e1000_82546_rev_3: 476 e1000_init_function_pointers_82540(hw); 477 break; 478 case e1000_82541: 479 case e1000_82541_rev_2: 480 case e1000_82547: 481 case e1000_82547_rev_2: 482 e1000_init_function_pointers_82541(hw); 483 break; 484 case e1000_82571: 485 case e1000_82572: 486 case e1000_82573: 487 case e1000_82574: 488 case e1000_82583: 489 e1000_init_function_pointers_82571(hw); 490 break; 491 case e1000_80003es2lan: 492 e1000_init_function_pointers_80003es2lan(hw); 493 break; 494 case e1000_ich8lan: 495 case e1000_ich9lan: 496 case e1000_ich10lan: 497 case e1000_pchlan: 498 case e1000_pch2lan: 499 case e1000_pch_lpt: 500 case e1000_pch_spt: 501 case e1000_pch_cnp: 502 case e1000_pch_tgp: 503 case e1000_pch_adp: 504 case e1000_pch_mtp: 505 e1000_init_function_pointers_ich8lan(hw); 506 break; 507 case e1000_82575: 508 case e1000_82576: 509 case e1000_82580: 510 case e1000_i350: 511 case e1000_i354: 512 e1000_init_function_pointers_82575(hw); 513 break; 514 case e1000_i210: 515 case e1000_i211: 516 e1000_init_function_pointers_i210(hw); 517 break; 518 case e1000_vfadapt: 519 e1000_init_function_pointers_vf(hw); 520 break; 521 case e1000_vfadapt_i350: 522 e1000_init_function_pointers_vf(hw); 523 break; 524 default: 525 DEBUGOUT("Hardware not supported\n"); 526 ret_val = -E1000_ERR_CONFIG; 527 break; 528 } 529 530 /* 531 * Initialize the rest of the function pointers. These require some 532 * register reads/writes in some cases. 533 */ 534 if (!(ret_val) && init_device) { 535 ret_val = e1000_init_mac_params(hw); 536 if (ret_val) 537 goto out; 538 539 ret_val = e1000_init_nvm_params(hw); 540 if (ret_val) 541 goto out; 542 543 ret_val = e1000_init_phy_params(hw); 544 if (ret_val) 545 goto out; 546 547 ret_val = e1000_init_mbx_params(hw); 548 if (ret_val) 549 goto out; 550 } 551 552 out: 553 return ret_val; 554 } 555 556 /** 557 * e1000_get_bus_info - Obtain bus information for adapter 558 * @hw: pointer to the HW structure 559 * 560 * This will obtain information about the HW bus for which the 561 * adapter is attached and stores it in the hw structure. This is a 562 * function pointer entry point called by drivers. 563 **/ 564 s32 e1000_get_bus_info(struct e1000_hw *hw) 565 { 566 if (hw->mac.ops.get_bus_info) 567 return hw->mac.ops.get_bus_info(hw); 568 569 return E1000_SUCCESS; 570 } 571 572 /** 573 * e1000_clear_vfta - Clear VLAN filter table 574 * @hw: pointer to the HW structure 575 * 576 * This clears the VLAN filter table on the adapter. This is a function 577 * pointer entry point called by drivers. 578 **/ 579 void e1000_clear_vfta(struct e1000_hw *hw) 580 { 581 if (hw->mac.ops.clear_vfta) 582 hw->mac.ops.clear_vfta(hw); 583 } 584 585 /** 586 * e1000_write_vfta - Write value to VLAN filter table 587 * @hw: pointer to the HW structure 588 * @offset: the 32-bit offset in which to write the value to. 589 * @value: the 32-bit value to write at location offset. 590 * 591 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 592 * table. This is a function pointer entry point called by drivers. 593 **/ 594 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 595 { 596 if (hw->mac.ops.write_vfta) 597 hw->mac.ops.write_vfta(hw, offset, value); 598 } 599 600 /** 601 * e1000_update_mc_addr_list - Update Multicast addresses 602 * @hw: pointer to the HW structure 603 * @mc_addr_list: array of multicast addresses to program 604 * @mc_addr_count: number of multicast addresses to program 605 * 606 * Updates the Multicast Table Array. 607 * The caller must have a packed mc_addr_list of multicast addresses. 608 **/ 609 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 610 u32 mc_addr_count) 611 { 612 if (hw->mac.ops.update_mc_addr_list) 613 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 614 mc_addr_count); 615 } 616 617 /** 618 * e1000_force_mac_fc - Force MAC flow control 619 * @hw: pointer to the HW structure 620 * 621 * Force the MAC's flow control settings. Currently no func pointer exists 622 * and all implementations are handled in the generic version of this 623 * function. 624 **/ 625 s32 e1000_force_mac_fc(struct e1000_hw *hw) 626 { 627 return e1000_force_mac_fc_generic(hw); 628 } 629 630 /** 631 * e1000_check_for_link - Check/Store link connection 632 * @hw: pointer to the HW structure 633 * 634 * This checks the link condition of the adapter and stores the 635 * results in the hw->mac structure. This is a function pointer entry 636 * point called by drivers. 637 **/ 638 s32 e1000_check_for_link(struct e1000_hw *hw) 639 { 640 if (hw->mac.ops.check_for_link) 641 return hw->mac.ops.check_for_link(hw); 642 643 return -E1000_ERR_CONFIG; 644 } 645 646 /** 647 * e1000_check_mng_mode - Check management mode 648 * @hw: pointer to the HW structure 649 * 650 * This checks if the adapter has manageability enabled. 651 * This is a function pointer entry point called by drivers. 652 **/ 653 bool e1000_check_mng_mode(struct e1000_hw *hw) 654 { 655 if (hw->mac.ops.check_mng_mode) 656 return hw->mac.ops.check_mng_mode(hw); 657 658 return FALSE; 659 } 660 661 /** 662 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 663 * @hw: pointer to the HW structure 664 * @buffer: pointer to the host interface 665 * @length: size of the buffer 666 * 667 * Writes the DHCP information to the host interface. 668 **/ 669 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 670 { 671 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 672 } 673 674 /** 675 * e1000_reset_hw - Reset hardware 676 * @hw: pointer to the HW structure 677 * 678 * This resets the hardware into a known state. This is a function pointer 679 * entry point called by drivers. 680 **/ 681 s32 e1000_reset_hw(struct e1000_hw *hw) 682 { 683 if (hw->mac.ops.reset_hw) 684 return hw->mac.ops.reset_hw(hw); 685 686 return -E1000_ERR_CONFIG; 687 } 688 689 /** 690 * e1000_init_hw - Initialize hardware 691 * @hw: pointer to the HW structure 692 * 693 * This inits the hardware readying it for operation. This is a function 694 * pointer entry point called by drivers. 695 **/ 696 s32 e1000_init_hw(struct e1000_hw *hw) 697 { 698 if (hw->mac.ops.init_hw) 699 return hw->mac.ops.init_hw(hw); 700 701 return -E1000_ERR_CONFIG; 702 } 703 704 /** 705 * e1000_setup_link - Configures link and flow control 706 * @hw: pointer to the HW structure 707 * 708 * This configures link and flow control settings for the adapter. This 709 * is a function pointer entry point called by drivers. While modules can 710 * also call this, they probably call their own version of this function. 711 **/ 712 s32 e1000_setup_link(struct e1000_hw *hw) 713 { 714 if (hw->mac.ops.setup_link) 715 return hw->mac.ops.setup_link(hw); 716 717 return -E1000_ERR_CONFIG; 718 } 719 720 /** 721 * e1000_get_speed_and_duplex - Returns current speed and duplex 722 * @hw: pointer to the HW structure 723 * @speed: pointer to a 16-bit value to store the speed 724 * @duplex: pointer to a 16-bit value to store the duplex. 725 * 726 * This returns the speed and duplex of the adapter in the two 'out' 727 * variables passed in. This is a function pointer entry point called 728 * by drivers. 729 **/ 730 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 731 { 732 if (hw->mac.ops.get_link_up_info) 733 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 734 735 return -E1000_ERR_CONFIG; 736 } 737 738 /** 739 * e1000_setup_led - Configures SW controllable LED 740 * @hw: pointer to the HW structure 741 * 742 * This prepares the SW controllable LED for use and saves the current state 743 * of the LED so it can be later restored. This is a function pointer entry 744 * point called by drivers. 745 **/ 746 s32 e1000_setup_led(struct e1000_hw *hw) 747 { 748 if (hw->mac.ops.setup_led) 749 return hw->mac.ops.setup_led(hw); 750 751 return E1000_SUCCESS; 752 } 753 754 /** 755 * e1000_cleanup_led - Restores SW controllable LED 756 * @hw: pointer to the HW structure 757 * 758 * This restores the SW controllable LED to the value saved off by 759 * e1000_setup_led. This is a function pointer entry point called by drivers. 760 **/ 761 s32 e1000_cleanup_led(struct e1000_hw *hw) 762 { 763 if (hw->mac.ops.cleanup_led) 764 return hw->mac.ops.cleanup_led(hw); 765 766 return E1000_SUCCESS; 767 } 768 769 /** 770 * e1000_blink_led - Blink SW controllable LED 771 * @hw: pointer to the HW structure 772 * 773 * This starts the adapter LED blinking. Request the LED to be setup first 774 * and cleaned up after. This is a function pointer entry point called by 775 * drivers. 776 **/ 777 s32 e1000_blink_led(struct e1000_hw *hw) 778 { 779 if (hw->mac.ops.blink_led) 780 return hw->mac.ops.blink_led(hw); 781 782 return E1000_SUCCESS; 783 } 784 785 /** 786 * e1000_id_led_init - store LED configurations in SW 787 * @hw: pointer to the HW structure 788 * 789 * Initializes the LED config in SW. This is a function pointer entry point 790 * called by drivers. 791 **/ 792 s32 e1000_id_led_init(struct e1000_hw *hw) 793 { 794 if (hw->mac.ops.id_led_init) 795 return hw->mac.ops.id_led_init(hw); 796 797 return E1000_SUCCESS; 798 } 799 800 /** 801 * e1000_led_on - Turn on SW controllable LED 802 * @hw: pointer to the HW structure 803 * 804 * Turns the SW defined LED on. This is a function pointer entry point 805 * called by drivers. 806 **/ 807 s32 e1000_led_on(struct e1000_hw *hw) 808 { 809 if (hw->mac.ops.led_on) 810 return hw->mac.ops.led_on(hw); 811 812 return E1000_SUCCESS; 813 } 814 815 /** 816 * e1000_led_off - Turn off SW controllable LED 817 * @hw: pointer to the HW structure 818 * 819 * Turns the SW defined LED off. This is a function pointer entry point 820 * called by drivers. 821 **/ 822 s32 e1000_led_off(struct e1000_hw *hw) 823 { 824 if (hw->mac.ops.led_off) 825 return hw->mac.ops.led_off(hw); 826 827 return E1000_SUCCESS; 828 } 829 830 /** 831 * e1000_reset_adaptive - Reset adaptive IFS 832 * @hw: pointer to the HW structure 833 * 834 * Resets the adaptive IFS. Currently no func pointer exists and all 835 * implementations are handled in the generic version of this function. 836 **/ 837 void e1000_reset_adaptive(struct e1000_hw *hw) 838 { 839 e1000_reset_adaptive_generic(hw); 840 } 841 842 /** 843 * e1000_update_adaptive - Update adaptive IFS 844 * @hw: pointer to the HW structure 845 * 846 * Updates adapter IFS. Currently no func pointer exists and all 847 * implementations are handled in the generic version of this function. 848 **/ 849 void e1000_update_adaptive(struct e1000_hw *hw) 850 { 851 e1000_update_adaptive_generic(hw); 852 } 853 854 /** 855 * e1000_disable_pcie_master - Disable PCI-Express master access 856 * @hw: pointer to the HW structure 857 * 858 * Disables PCI-Express master access and verifies there are no pending 859 * requests. Currently no func pointer exists and all implementations are 860 * handled in the generic version of this function. 861 **/ 862 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 863 { 864 return e1000_disable_pcie_master_generic(hw); 865 } 866 867 /** 868 * e1000_config_collision_dist - Configure collision distance 869 * @hw: pointer to the HW structure 870 * 871 * Configures the collision distance to the default value and is used 872 * during link setup. 873 **/ 874 void e1000_config_collision_dist(struct e1000_hw *hw) 875 { 876 if (hw->mac.ops.config_collision_dist) 877 hw->mac.ops.config_collision_dist(hw); 878 } 879 880 /** 881 * e1000_rar_set - Sets a receive address register 882 * @hw: pointer to the HW structure 883 * @addr: address to set the RAR to 884 * @index: the RAR to set 885 * 886 * Sets a Receive Address Register (RAR) to the specified address. 887 **/ 888 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 889 { 890 if (hw->mac.ops.rar_set) 891 return hw->mac.ops.rar_set(hw, addr, index); 892 893 return E1000_SUCCESS; 894 } 895 896 /** 897 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 898 * @hw: pointer to the HW structure 899 * 900 * Ensures that the MDI/MDIX SW state is valid. 901 **/ 902 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 903 { 904 if (hw->mac.ops.validate_mdi_setting) 905 return hw->mac.ops.validate_mdi_setting(hw); 906 907 return E1000_SUCCESS; 908 } 909 910 /** 911 * e1000_hash_mc_addr - Determines address location in multicast table 912 * @hw: pointer to the HW structure 913 * @mc_addr: Multicast address to hash. 914 * 915 * This hashes an address to determine its location in the multicast 916 * table. Currently no func pointer exists and all implementations 917 * are handled in the generic version of this function. 918 **/ 919 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 920 { 921 return e1000_hash_mc_addr_generic(hw, mc_addr); 922 } 923 924 /** 925 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 926 * @hw: pointer to the HW structure 927 * 928 * Enables packet filtering on transmit packets if manageability is enabled 929 * and host interface is enabled. 930 * Currently no func pointer exists and all implementations are handled in the 931 * generic version of this function. 932 **/ 933 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 934 { 935 return e1000_enable_tx_pkt_filtering_generic(hw); 936 } 937 938 /** 939 * e1000_mng_host_if_write - Writes to the manageability host interface 940 * @hw: pointer to the HW structure 941 * @buffer: pointer to the host interface buffer 942 * @length: size of the buffer 943 * @offset: location in the buffer to write to 944 * @sum: sum of the data (not checksum) 945 * 946 * This function writes the buffer content at the offset given on the host if. 947 * It also does alignment considerations to do the writes in most efficient 948 * way. Also fills up the sum of the buffer in *buffer parameter. 949 **/ 950 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 951 u16 offset, u8 *sum) 952 { 953 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 954 } 955 956 /** 957 * e1000_mng_write_cmd_header - Writes manageability command header 958 * @hw: pointer to the HW structure 959 * @hdr: pointer to the host interface command header 960 * 961 * Writes the command header after does the checksum calculation. 962 **/ 963 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 964 struct e1000_host_mng_command_header *hdr) 965 { 966 return e1000_mng_write_cmd_header_generic(hw, hdr); 967 } 968 969 /** 970 * e1000_mng_enable_host_if - Checks host interface is enabled 971 * @hw: pointer to the HW structure 972 * 973 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 974 * 975 * This function checks whether the HOST IF is enabled for command operation 976 * and also checks whether the previous command is completed. It busy waits 977 * in case of previous command is not completed. 978 **/ 979 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 980 { 981 return e1000_mng_enable_host_if_generic(hw); 982 } 983 984 /** 985 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 986 * @hw: pointer to the HW structure 987 * @itr: u32 indicating itr value 988 * 989 * Set the OBFF timer based on the given interrupt rate. 990 **/ 991 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 992 { 993 if (hw->mac.ops.set_obff_timer) 994 return hw->mac.ops.set_obff_timer(hw, itr); 995 996 return E1000_SUCCESS; 997 } 998 999 /** 1000 * e1000_check_reset_block - Verifies PHY can be reset 1001 * @hw: pointer to the HW structure 1002 * 1003 * Checks if the PHY is in a state that can be reset or if manageability 1004 * has it tied up. This is a function pointer entry point called by drivers. 1005 **/ 1006 s32 e1000_check_reset_block(struct e1000_hw *hw) 1007 { 1008 if (hw->phy.ops.check_reset_block) 1009 return hw->phy.ops.check_reset_block(hw); 1010 1011 return E1000_SUCCESS; 1012 } 1013 1014 /** 1015 * e1000_read_phy_reg - Reads PHY register 1016 * @hw: pointer to the HW structure 1017 * @offset: the register to read 1018 * @data: the buffer to store the 16-bit read. 1019 * 1020 * Reads the PHY register and returns the value in data. 1021 * This is a function pointer entry point called by drivers. 1022 **/ 1023 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1024 { 1025 if (hw->phy.ops.read_reg) 1026 return hw->phy.ops.read_reg(hw, offset, data); 1027 1028 return E1000_SUCCESS; 1029 } 1030 1031 /** 1032 * e1000_write_phy_reg - Writes PHY register 1033 * @hw: pointer to the HW structure 1034 * @offset: the register to write 1035 * @data: the value to write. 1036 * 1037 * Writes the PHY register at offset with the value in data. 1038 * This is a function pointer entry point called by drivers. 1039 **/ 1040 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1041 { 1042 if (hw->phy.ops.write_reg) 1043 return hw->phy.ops.write_reg(hw, offset, data); 1044 1045 return E1000_SUCCESS; 1046 } 1047 1048 /** 1049 * e1000_release_phy - Generic release PHY 1050 * @hw: pointer to the HW structure 1051 * 1052 * Return if silicon family does not require a semaphore when accessing the 1053 * PHY. 1054 **/ 1055 void e1000_release_phy(struct e1000_hw *hw) 1056 { 1057 if (hw->phy.ops.release) 1058 hw->phy.ops.release(hw); 1059 } 1060 1061 /** 1062 * e1000_acquire_phy - Generic acquire PHY 1063 * @hw: pointer to the HW structure 1064 * 1065 * Return success if silicon family does not require a semaphore when 1066 * accessing the PHY. 1067 **/ 1068 s32 e1000_acquire_phy(struct e1000_hw *hw) 1069 { 1070 if (hw->phy.ops.acquire) 1071 return hw->phy.ops.acquire(hw); 1072 1073 return E1000_SUCCESS; 1074 } 1075 1076 /** 1077 * e1000_cfg_on_link_up - Configure PHY upon link up 1078 * @hw: pointer to the HW structure 1079 **/ 1080 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1081 { 1082 if (hw->phy.ops.cfg_on_link_up) 1083 return hw->phy.ops.cfg_on_link_up(hw); 1084 1085 return E1000_SUCCESS; 1086 } 1087 1088 /** 1089 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1090 * @hw: pointer to the HW structure 1091 * @offset: the register to read 1092 * @data: the location to store the 16-bit value read. 1093 * 1094 * Reads a register out of the Kumeran interface. Currently no func pointer 1095 * exists and all implementations are handled in the generic version of 1096 * this function. 1097 **/ 1098 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1099 { 1100 return e1000_read_kmrn_reg_generic(hw, offset, data); 1101 } 1102 1103 /** 1104 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1105 * @hw: pointer to the HW structure 1106 * @offset: the register to write 1107 * @data: the value to write. 1108 * 1109 * Writes a register to the Kumeran interface. Currently no func pointer 1110 * exists and all implementations are handled in the generic version of 1111 * this function. 1112 **/ 1113 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1114 { 1115 return e1000_write_kmrn_reg_generic(hw, offset, data); 1116 } 1117 1118 /** 1119 * e1000_get_cable_length - Retrieves cable length estimation 1120 * @hw: pointer to the HW structure 1121 * 1122 * This function estimates the cable length and stores them in 1123 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1124 * entry point called by drivers. 1125 **/ 1126 s32 e1000_get_cable_length(struct e1000_hw *hw) 1127 { 1128 if (hw->phy.ops.get_cable_length) 1129 return hw->phy.ops.get_cable_length(hw); 1130 1131 return E1000_SUCCESS; 1132 } 1133 1134 /** 1135 * e1000_get_phy_info - Retrieves PHY information from registers 1136 * @hw: pointer to the HW structure 1137 * 1138 * This function gets some information from various PHY registers and 1139 * populates hw->phy values with it. This is a function pointer entry 1140 * point called by drivers. 1141 **/ 1142 s32 e1000_get_phy_info(struct e1000_hw *hw) 1143 { 1144 if (hw->phy.ops.get_info) 1145 return hw->phy.ops.get_info(hw); 1146 1147 return E1000_SUCCESS; 1148 } 1149 1150 /** 1151 * e1000_phy_hw_reset - Hard PHY reset 1152 * @hw: pointer to the HW structure 1153 * 1154 * Performs a hard PHY reset. This is a function pointer entry point called 1155 * by drivers. 1156 **/ 1157 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1158 { 1159 if (hw->phy.ops.reset) 1160 return hw->phy.ops.reset(hw); 1161 1162 return E1000_SUCCESS; 1163 } 1164 1165 /** 1166 * e1000_phy_commit - Soft PHY reset 1167 * @hw: pointer to the HW structure 1168 * 1169 * Performs a soft PHY reset on those that apply. This is a function pointer 1170 * entry point called by drivers. 1171 **/ 1172 s32 e1000_phy_commit(struct e1000_hw *hw) 1173 { 1174 if (hw->phy.ops.commit) 1175 return hw->phy.ops.commit(hw); 1176 1177 return E1000_SUCCESS; 1178 } 1179 1180 /** 1181 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1182 * @hw: pointer to the HW structure 1183 * @active: boolean used to enable/disable lplu 1184 * 1185 * Success returns 0, Failure returns 1 1186 * 1187 * The low power link up (lplu) state is set to the power management level D0 1188 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1189 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1190 * is used during Dx states where the power conservation is most important. 1191 * During driver activity, SmartSpeed should be enabled so performance is 1192 * maintained. This is a function pointer entry point called by drivers. 1193 **/ 1194 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1195 { 1196 if (hw->phy.ops.set_d0_lplu_state) 1197 return hw->phy.ops.set_d0_lplu_state(hw, active); 1198 1199 return E1000_SUCCESS; 1200 } 1201 1202 /** 1203 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1204 * @hw: pointer to the HW structure 1205 * @active: boolean used to enable/disable lplu 1206 * 1207 * Success returns 0, Failure returns 1 1208 * 1209 * The low power link up (lplu) state is set to the power management level D3 1210 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1211 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1212 * is used during Dx states where the power conservation is most important. 1213 * During driver activity, SmartSpeed should be enabled so performance is 1214 * maintained. This is a function pointer entry point called by drivers. 1215 **/ 1216 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1217 { 1218 if (hw->phy.ops.set_d3_lplu_state) 1219 return hw->phy.ops.set_d3_lplu_state(hw, active); 1220 1221 return E1000_SUCCESS; 1222 } 1223 1224 /** 1225 * e1000_read_mac_addr - Reads MAC address 1226 * @hw: pointer to the HW structure 1227 * 1228 * Reads the MAC address out of the adapter and stores it in the HW structure. 1229 * Currently no func pointer exists and all implementations are handled in the 1230 * generic version of this function. 1231 **/ 1232 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1233 { 1234 if (hw->mac.ops.read_mac_addr) 1235 return hw->mac.ops.read_mac_addr(hw); 1236 1237 return e1000_read_mac_addr_generic(hw); 1238 } 1239 1240 /** 1241 * e1000_read_pba_string - Read device part number string 1242 * @hw: pointer to the HW structure 1243 * @pba_num: pointer to device part number 1244 * @pba_num_size: size of part number buffer 1245 * 1246 * Reads the product board assembly (PBA) number from the EEPROM and stores 1247 * the value in pba_num. 1248 * Currently no func pointer exists and all implementations are handled in the 1249 * generic version of this function. 1250 **/ 1251 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1252 { 1253 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1254 } 1255 1256 /** 1257 * e1000_read_pba_length - Read device part number string length 1258 * @hw: pointer to the HW structure 1259 * @pba_num_size: size of part number buffer 1260 * 1261 * Reads the product board assembly (PBA) number length from the EEPROM and 1262 * stores the value in pba_num. 1263 * Currently no func pointer exists and all implementations are handled in the 1264 * generic version of this function. 1265 **/ 1266 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1267 { 1268 return e1000_read_pba_length_generic(hw, pba_num_size); 1269 } 1270 1271 /** 1272 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1273 * @hw: pointer to the HW structure 1274 * 1275 * Validates the NVM checksum is correct. This is a function pointer entry 1276 * point called by drivers. 1277 **/ 1278 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1279 { 1280 if (hw->nvm.ops.validate) 1281 return hw->nvm.ops.validate(hw); 1282 1283 return -E1000_ERR_CONFIG; 1284 } 1285 1286 /** 1287 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1288 * @hw: pointer to the HW structure 1289 * 1290 * Updates the NVM checksum. Currently no func pointer exists and all 1291 * implementations are handled in the generic version of this function. 1292 **/ 1293 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1294 { 1295 if (hw->nvm.ops.update) 1296 return hw->nvm.ops.update(hw); 1297 1298 return -E1000_ERR_CONFIG; 1299 } 1300 1301 /** 1302 * e1000_reload_nvm - Reloads EEPROM 1303 * @hw: pointer to the HW structure 1304 * 1305 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1306 * extended control register. 1307 **/ 1308 void e1000_reload_nvm(struct e1000_hw *hw) 1309 { 1310 if (hw->nvm.ops.reload) 1311 hw->nvm.ops.reload(hw); 1312 } 1313 1314 /** 1315 * e1000_read_nvm - Reads NVM (EEPROM) 1316 * @hw: pointer to the HW structure 1317 * @offset: the word offset to read 1318 * @words: number of 16-bit words to read 1319 * @data: pointer to the properly sized buffer for the data. 1320 * 1321 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1322 * pointer entry point called by drivers. 1323 **/ 1324 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1325 { 1326 if (hw->nvm.ops.read) 1327 return hw->nvm.ops.read(hw, offset, words, data); 1328 1329 return -E1000_ERR_CONFIG; 1330 } 1331 1332 /** 1333 * e1000_write_nvm - Writes to NVM (EEPROM) 1334 * @hw: pointer to the HW structure 1335 * @offset: the word offset to read 1336 * @words: number of 16-bit words to write 1337 * @data: pointer to the properly sized buffer for the data. 1338 * 1339 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1340 * pointer entry point called by drivers. 1341 **/ 1342 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1343 { 1344 if (hw->nvm.ops.write) 1345 return hw->nvm.ops.write(hw, offset, words, data); 1346 1347 return E1000_SUCCESS; 1348 } 1349 1350 /** 1351 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1352 * @hw: pointer to the HW structure 1353 * @reg: 32bit register offset 1354 * @offset: the register to write 1355 * @data: the value to write. 1356 * 1357 * Writes the PHY register at offset with the value in data. 1358 * This is a function pointer entry point called by drivers. 1359 **/ 1360 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1361 u8 data) 1362 { 1363 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1364 } 1365 1366 /** 1367 * e1000_power_up_phy - Restores link in case of PHY power down 1368 * @hw: pointer to the HW structure 1369 * 1370 * The phy may be powered down to save power, to turn off link when the 1371 * driver is unloaded, or wake on lan is not enabled (among others). 1372 **/ 1373 void e1000_power_up_phy(struct e1000_hw *hw) 1374 { 1375 if (hw->phy.ops.power_up) 1376 hw->phy.ops.power_up(hw); 1377 1378 e1000_setup_link(hw); 1379 } 1380 1381 /** 1382 * e1000_power_down_phy - Power down PHY 1383 * @hw: pointer to the HW structure 1384 * 1385 * The phy may be powered down to save power, to turn off link when the 1386 * driver is unloaded, or wake on lan is not enabled (among others). 1387 **/ 1388 void e1000_power_down_phy(struct e1000_hw *hw) 1389 { 1390 if (hw->phy.ops.power_down) 1391 hw->phy.ops.power_down(hw); 1392 } 1393 1394 /** 1395 * e1000_power_up_fiber_serdes_link - Power up serdes link 1396 * @hw: pointer to the HW structure 1397 * 1398 * Power on the optics and PCS. 1399 **/ 1400 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1401 { 1402 if (hw->mac.ops.power_up_serdes) 1403 hw->mac.ops.power_up_serdes(hw); 1404 } 1405 1406 /** 1407 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1408 * @hw: pointer to the HW structure 1409 * 1410 * Shutdown the optics and PCS on driver unload. 1411 **/ 1412 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1413 { 1414 if (hw->mac.ops.shutdown_serdes) 1415 hw->mac.ops.shutdown_serdes(hw); 1416 } 1417 1418