xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "e1000_api.h"
37 
38 /**
39  *  e1000_init_mac_params - Initialize MAC function pointers
40  *  @hw: pointer to the HW structure
41  *
42  *  This function initializes the function pointers for the MAC
43  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
44  **/
45 s32 e1000_init_mac_params(struct e1000_hw *hw)
46 {
47 	s32 ret_val = E1000_SUCCESS;
48 
49 	if (hw->mac.ops.init_params) {
50 		ret_val = hw->mac.ops.init_params(hw);
51 		if (ret_val) {
52 			DEBUGOUT("MAC Initialization Error\n");
53 			goto out;
54 		}
55 	} else {
56 		DEBUGOUT("mac.init_mac_params was NULL\n");
57 		ret_val = -E1000_ERR_CONFIG;
58 	}
59 
60 out:
61 	return ret_val;
62 }
63 
64 /**
65  *  e1000_init_nvm_params - Initialize NVM function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  This function initializes the function pointers for the NVM
69  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
70  **/
71 s32 e1000_init_nvm_params(struct e1000_hw *hw)
72 {
73 	s32 ret_val = E1000_SUCCESS;
74 
75 	if (hw->nvm.ops.init_params) {
76 		ret_val = hw->nvm.ops.init_params(hw);
77 		if (ret_val) {
78 			DEBUGOUT("NVM Initialization Error\n");
79 			goto out;
80 		}
81 	} else {
82 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
83 		ret_val = -E1000_ERR_CONFIG;
84 	}
85 
86 out:
87 	return ret_val;
88 }
89 
90 /**
91  *  e1000_init_phy_params - Initialize PHY function pointers
92  *  @hw: pointer to the HW structure
93  *
94  *  This function initializes the function pointers for the PHY
95  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
96  **/
97 s32 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val =  -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_mbx_params - Initialize mailbox function pointers
118  *  @hw: pointer to the HW structure
119  *
120  *  This function initializes the function pointers for the PHY
121  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
122  **/
123 s32 e1000_init_mbx_params(struct e1000_hw *hw)
124 {
125 	s32 ret_val = E1000_SUCCESS;
126 
127 	if (hw->mbx.ops.init_params) {
128 		ret_val = hw->mbx.ops.init_params(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Mailbox Initialization Error\n");
131 			goto out;
132 		}
133 	} else {
134 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
135 		ret_val =  -E1000_ERR_CONFIG;
136 	}
137 
138 out:
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_set_mac_type - Sets MAC type
144  *  @hw: pointer to the HW structure
145  *
146  *  This function sets the mac type of the adapter based on the
147  *  device ID stored in the hw structure.
148  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
149  *  e1000_setup_init_funcs()).
150  **/
151 s32 e1000_set_mac_type(struct e1000_hw *hw)
152 {
153 	struct e1000_mac_info *mac = &hw->mac;
154 	s32 ret_val = E1000_SUCCESS;
155 
156 	DEBUGFUNC("e1000_set_mac_type");
157 
158 	switch (hw->device_id) {
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 	case E1000_DEV_ID_82543GC_FIBER:
163 	case E1000_DEV_ID_82543GC_COPPER:
164 		mac->type = e1000_82543;
165 		break;
166 	case E1000_DEV_ID_82544EI_COPPER:
167 	case E1000_DEV_ID_82544EI_FIBER:
168 	case E1000_DEV_ID_82544GC_COPPER:
169 	case E1000_DEV_ID_82544GC_LOM:
170 		mac->type = e1000_82544;
171 		break;
172 	case E1000_DEV_ID_82540EM:
173 	case E1000_DEV_ID_82540EM_LOM:
174 	case E1000_DEV_ID_82540EP:
175 	case E1000_DEV_ID_82540EP_LOM:
176 	case E1000_DEV_ID_82540EP_LP:
177 		mac->type = e1000_82540;
178 		break;
179 	case E1000_DEV_ID_82545EM_COPPER:
180 	case E1000_DEV_ID_82545EM_FIBER:
181 		mac->type = e1000_82545;
182 		break;
183 	case E1000_DEV_ID_82545GM_COPPER:
184 	case E1000_DEV_ID_82545GM_FIBER:
185 	case E1000_DEV_ID_82545GM_SERDES:
186 		mac->type = e1000_82545_rev_3;
187 		break;
188 	case E1000_DEV_ID_82546EB_COPPER:
189 	case E1000_DEV_ID_82546EB_FIBER:
190 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
191 		mac->type = e1000_82546;
192 		break;
193 	case E1000_DEV_ID_82546GB_COPPER:
194 	case E1000_DEV_ID_82546GB_FIBER:
195 	case E1000_DEV_ID_82546GB_SERDES:
196 	case E1000_DEV_ID_82546GB_PCIE:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
199 		mac->type = e1000_82546_rev_3;
200 		break;
201 	case E1000_DEV_ID_82541EI:
202 	case E1000_DEV_ID_82541EI_MOBILE:
203 	case E1000_DEV_ID_82541ER_LOM:
204 		mac->type = e1000_82541;
205 		break;
206 	case E1000_DEV_ID_82541ER:
207 	case E1000_DEV_ID_82541GI:
208 	case E1000_DEV_ID_82541GI_LF:
209 	case E1000_DEV_ID_82541GI_MOBILE:
210 		mac->type = e1000_82541_rev_2;
211 		break;
212 	case E1000_DEV_ID_82547EI:
213 	case E1000_DEV_ID_82547EI_MOBILE:
214 		mac->type = e1000_82547;
215 		break;
216 	case E1000_DEV_ID_82547GI:
217 		mac->type = e1000_82547_rev_2;
218 		break;
219 	case E1000_DEV_ID_82571EB_COPPER:
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82571EB_SERDES:
222 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
223 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
224 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
225 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
226 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 		mac->type = e1000_pch_spt;
313 		break;
314 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
315 	case E1000_DEV_ID_PCH_CNP_I219_V6:
316 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
317 	case E1000_DEV_ID_PCH_CNP_I219_V7:
318 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
319 	case E1000_DEV_ID_PCH_ICP_I219_V8:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
321 	case E1000_DEV_ID_PCH_ICP_I219_V9:
322 		mac->type = e1000_pch_cnp;
323 		break;
324 	case E1000_DEV_ID_82575EB_COPPER:
325 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
326 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
327 		mac->type = e1000_82575;
328 		break;
329 	case E1000_DEV_ID_82576:
330 	case E1000_DEV_ID_82576_FIBER:
331 	case E1000_DEV_ID_82576_SERDES:
332 	case E1000_DEV_ID_82576_QUAD_COPPER:
333 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
334 	case E1000_DEV_ID_82576_NS:
335 	case E1000_DEV_ID_82576_NS_SERDES:
336 	case E1000_DEV_ID_82576_SERDES_QUAD:
337 		mac->type = e1000_82576;
338 		break;
339 	case E1000_DEV_ID_82580_COPPER:
340 	case E1000_DEV_ID_82580_FIBER:
341 	case E1000_DEV_ID_82580_SERDES:
342 	case E1000_DEV_ID_82580_SGMII:
343 	case E1000_DEV_ID_82580_COPPER_DUAL:
344 	case E1000_DEV_ID_82580_QUAD_FIBER:
345 	case E1000_DEV_ID_DH89XXCC_SGMII:
346 	case E1000_DEV_ID_DH89XXCC_SERDES:
347 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
348 	case E1000_DEV_ID_DH89XXCC_SFP:
349 		mac->type = e1000_82580;
350 		break;
351 	case E1000_DEV_ID_I350_COPPER:
352 	case E1000_DEV_ID_I350_FIBER:
353 	case E1000_DEV_ID_I350_SERDES:
354 	case E1000_DEV_ID_I350_SGMII:
355 	case E1000_DEV_ID_I350_DA4:
356 		mac->type = e1000_i350;
357 		break;
358 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
359 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
360 	case E1000_DEV_ID_I210_COPPER:
361 	case E1000_DEV_ID_I210_COPPER_OEM1:
362 	case E1000_DEV_ID_I210_COPPER_IT:
363 	case E1000_DEV_ID_I210_FIBER:
364 	case E1000_DEV_ID_I210_SERDES:
365 	case E1000_DEV_ID_I210_SGMII:
366 		mac->type = e1000_i210;
367 		break;
368 	case E1000_DEV_ID_I211_COPPER:
369 		mac->type = e1000_i211;
370 		break;
371 	case E1000_DEV_ID_82576_VF:
372 	case E1000_DEV_ID_82576_VF_HV:
373 		mac->type = e1000_vfadapt;
374 		break;
375 	case E1000_DEV_ID_I350_VF:
376 	case E1000_DEV_ID_I350_VF_HV:
377 		mac->type = e1000_vfadapt_i350;
378 		break;
379 
380 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
381 	case E1000_DEV_ID_I354_SGMII:
382 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
383 		mac->type = e1000_i354;
384 		break;
385 	default:
386 		/* Should never have loaded on this device */
387 		ret_val = -E1000_ERR_MAC_INIT;
388 		break;
389 	}
390 
391 	return ret_val;
392 }
393 
394 /**
395  *  e1000_setup_init_funcs - Initializes function pointers
396  *  @hw: pointer to the HW structure
397  *  @init_device: TRUE will initialize the rest of the function pointers
398  *		  getting the device ready for use.  FALSE will only set
399  *		  MAC type and the function pointers for the other init
400  *		  functions.  Passing FALSE will not generate any hardware
401  *		  reads or writes.
402  *
403  *  This function must be called by a driver in order to use the rest
404  *  of the 'shared' code files. Called by drivers only.
405  **/
406 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
407 {
408 	s32 ret_val;
409 
410 	/* Can't do much good without knowing the MAC type. */
411 	ret_val = e1000_set_mac_type(hw);
412 	if (ret_val) {
413 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
414 		goto out;
415 	}
416 
417 	if (!hw->hw_addr) {
418 		DEBUGOUT("ERROR: Registers not mapped\n");
419 		ret_val = -E1000_ERR_CONFIG;
420 		goto out;
421 	}
422 
423 	/*
424 	 * Init function pointers to generic implementations. We do this first
425 	 * allowing a driver module to override it afterward.
426 	 */
427 	e1000_init_mac_ops_generic(hw);
428 	e1000_init_phy_ops_generic(hw);
429 	e1000_init_nvm_ops_generic(hw);
430 	e1000_init_mbx_ops_generic(hw);
431 
432 	/*
433 	 * Set up the init function pointers. These are functions within the
434 	 * adapter family file that sets up function pointers for the rest of
435 	 * the functions in that family.
436 	 */
437 	switch (hw->mac.type) {
438 	case e1000_82542:
439 		e1000_init_function_pointers_82542(hw);
440 		break;
441 	case e1000_82543:
442 	case e1000_82544:
443 		e1000_init_function_pointers_82543(hw);
444 		break;
445 	case e1000_82540:
446 	case e1000_82545:
447 	case e1000_82545_rev_3:
448 	case e1000_82546:
449 	case e1000_82546_rev_3:
450 		e1000_init_function_pointers_82540(hw);
451 		break;
452 	case e1000_82541:
453 	case e1000_82541_rev_2:
454 	case e1000_82547:
455 	case e1000_82547_rev_2:
456 		e1000_init_function_pointers_82541(hw);
457 		break;
458 	case e1000_82571:
459 	case e1000_82572:
460 	case e1000_82573:
461 	case e1000_82574:
462 	case e1000_82583:
463 		e1000_init_function_pointers_82571(hw);
464 		break;
465 	case e1000_80003es2lan:
466 		e1000_init_function_pointers_80003es2lan(hw);
467 		break;
468 	case e1000_ich8lan:
469 	case e1000_ich9lan:
470 	case e1000_ich10lan:
471 	case e1000_pchlan:
472 	case e1000_pch2lan:
473 	case e1000_pch_lpt:
474 	case e1000_pch_spt:
475 	case e1000_pch_cnp:
476 		e1000_init_function_pointers_ich8lan(hw);
477 		break;
478 	case e1000_82575:
479 	case e1000_82576:
480 	case e1000_82580:
481 	case e1000_i350:
482 	case e1000_i354:
483 		e1000_init_function_pointers_82575(hw);
484 		break;
485 	case e1000_i210:
486 	case e1000_i211:
487 		e1000_init_function_pointers_i210(hw);
488 		break;
489 	case e1000_vfadapt:
490 		e1000_init_function_pointers_vf(hw);
491 		break;
492 	case e1000_vfadapt_i350:
493 		e1000_init_function_pointers_vf(hw);
494 		break;
495 	default:
496 		DEBUGOUT("Hardware not supported\n");
497 		ret_val = -E1000_ERR_CONFIG;
498 		break;
499 	}
500 
501 	/*
502 	 * Initialize the rest of the function pointers. These require some
503 	 * register reads/writes in some cases.
504 	 */
505 	if (!(ret_val) && init_device) {
506 		ret_val = e1000_init_mac_params(hw);
507 		if (ret_val)
508 			goto out;
509 
510 		ret_val = e1000_init_nvm_params(hw);
511 		if (ret_val)
512 			goto out;
513 
514 		ret_val = e1000_init_phy_params(hw);
515 		if (ret_val)
516 			goto out;
517 
518 		ret_val = e1000_init_mbx_params(hw);
519 		if (ret_val)
520 			goto out;
521 	}
522 
523 out:
524 	return ret_val;
525 }
526 
527 /**
528  *  e1000_get_bus_info - Obtain bus information for adapter
529  *  @hw: pointer to the HW structure
530  *
531  *  This will obtain information about the HW bus for which the
532  *  adapter is attached and stores it in the hw structure. This is a
533  *  function pointer entry point called by drivers.
534  **/
535 s32 e1000_get_bus_info(struct e1000_hw *hw)
536 {
537 	if (hw->mac.ops.get_bus_info)
538 		return hw->mac.ops.get_bus_info(hw);
539 
540 	return E1000_SUCCESS;
541 }
542 
543 /**
544  *  e1000_clear_vfta - Clear VLAN filter table
545  *  @hw: pointer to the HW structure
546  *
547  *  This clears the VLAN filter table on the adapter. This is a function
548  *  pointer entry point called by drivers.
549  **/
550 void e1000_clear_vfta(struct e1000_hw *hw)
551 {
552 	if (hw->mac.ops.clear_vfta)
553 		hw->mac.ops.clear_vfta(hw);
554 }
555 
556 /**
557  *  e1000_write_vfta - Write value to VLAN filter table
558  *  @hw: pointer to the HW structure
559  *  @offset: the 32-bit offset in which to write the value to.
560  *  @value: the 32-bit value to write at location offset.
561  *
562  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
563  *  table. This is a function pointer entry point called by drivers.
564  **/
565 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
566 {
567 	if (hw->mac.ops.write_vfta)
568 		hw->mac.ops.write_vfta(hw, offset, value);
569 }
570 
571 /**
572  *  e1000_update_mc_addr_list - Update Multicast addresses
573  *  @hw: pointer to the HW structure
574  *  @mc_addr_list: array of multicast addresses to program
575  *  @mc_addr_count: number of multicast addresses to program
576  *
577  *  Updates the Multicast Table Array.
578  *  The caller must have a packed mc_addr_list of multicast addresses.
579  **/
580 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
581 			       u32 mc_addr_count)
582 {
583 	if (hw->mac.ops.update_mc_addr_list)
584 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
585 						mc_addr_count);
586 }
587 
588 /**
589  *  e1000_force_mac_fc - Force MAC flow control
590  *  @hw: pointer to the HW structure
591  *
592  *  Force the MAC's flow control settings. Currently no func pointer exists
593  *  and all implementations are handled in the generic version of this
594  *  function.
595  **/
596 s32 e1000_force_mac_fc(struct e1000_hw *hw)
597 {
598 	return e1000_force_mac_fc_generic(hw);
599 }
600 
601 /**
602  *  e1000_check_for_link - Check/Store link connection
603  *  @hw: pointer to the HW structure
604  *
605  *  This checks the link condition of the adapter and stores the
606  *  results in the hw->mac structure. This is a function pointer entry
607  *  point called by drivers.
608  **/
609 s32 e1000_check_for_link(struct e1000_hw *hw)
610 {
611 	if (hw->mac.ops.check_for_link)
612 		return hw->mac.ops.check_for_link(hw);
613 
614 	return -E1000_ERR_CONFIG;
615 }
616 
617 /**
618  *  e1000_check_mng_mode - Check management mode
619  *  @hw: pointer to the HW structure
620  *
621  *  This checks if the adapter has manageability enabled.
622  *  This is a function pointer entry point called by drivers.
623  **/
624 bool e1000_check_mng_mode(struct e1000_hw *hw)
625 {
626 	if (hw->mac.ops.check_mng_mode)
627 		return hw->mac.ops.check_mng_mode(hw);
628 
629 	return FALSE;
630 }
631 
632 /**
633  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
634  *  @hw: pointer to the HW structure
635  *  @buffer: pointer to the host interface
636  *  @length: size of the buffer
637  *
638  *  Writes the DHCP information to the host interface.
639  **/
640 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
641 {
642 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
643 }
644 
645 /**
646  *  e1000_reset_hw - Reset hardware
647  *  @hw: pointer to the HW structure
648  *
649  *  This resets the hardware into a known state. This is a function pointer
650  *  entry point called by drivers.
651  **/
652 s32 e1000_reset_hw(struct e1000_hw *hw)
653 {
654 	if (hw->mac.ops.reset_hw)
655 		return hw->mac.ops.reset_hw(hw);
656 
657 	return -E1000_ERR_CONFIG;
658 }
659 
660 /**
661  *  e1000_init_hw - Initialize hardware
662  *  @hw: pointer to the HW structure
663  *
664  *  This inits the hardware readying it for operation. This is a function
665  *  pointer entry point called by drivers.
666  **/
667 s32 e1000_init_hw(struct e1000_hw *hw)
668 {
669 	if (hw->mac.ops.init_hw)
670 		return hw->mac.ops.init_hw(hw);
671 
672 	return -E1000_ERR_CONFIG;
673 }
674 
675 /**
676  *  e1000_setup_link - Configures link and flow control
677  *  @hw: pointer to the HW structure
678  *
679  *  This configures link and flow control settings for the adapter. This
680  *  is a function pointer entry point called by drivers. While modules can
681  *  also call this, they probably call their own version of this function.
682  **/
683 s32 e1000_setup_link(struct e1000_hw *hw)
684 {
685 	if (hw->mac.ops.setup_link)
686 		return hw->mac.ops.setup_link(hw);
687 
688 	return -E1000_ERR_CONFIG;
689 }
690 
691 /**
692  *  e1000_get_speed_and_duplex - Returns current speed and duplex
693  *  @hw: pointer to the HW structure
694  *  @speed: pointer to a 16-bit value to store the speed
695  *  @duplex: pointer to a 16-bit value to store the duplex.
696  *
697  *  This returns the speed and duplex of the adapter in the two 'out'
698  *  variables passed in. This is a function pointer entry point called
699  *  by drivers.
700  **/
701 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
702 {
703 	if (hw->mac.ops.get_link_up_info)
704 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
705 
706 	return -E1000_ERR_CONFIG;
707 }
708 
709 /**
710  *  e1000_setup_led - Configures SW controllable LED
711  *  @hw: pointer to the HW structure
712  *
713  *  This prepares the SW controllable LED for use and saves the current state
714  *  of the LED so it can be later restored. This is a function pointer entry
715  *  point called by drivers.
716  **/
717 s32 e1000_setup_led(struct e1000_hw *hw)
718 {
719 	if (hw->mac.ops.setup_led)
720 		return hw->mac.ops.setup_led(hw);
721 
722 	return E1000_SUCCESS;
723 }
724 
725 /**
726  *  e1000_cleanup_led - Restores SW controllable LED
727  *  @hw: pointer to the HW structure
728  *
729  *  This restores the SW controllable LED to the value saved off by
730  *  e1000_setup_led. This is a function pointer entry point called by drivers.
731  **/
732 s32 e1000_cleanup_led(struct e1000_hw *hw)
733 {
734 	if (hw->mac.ops.cleanup_led)
735 		return hw->mac.ops.cleanup_led(hw);
736 
737 	return E1000_SUCCESS;
738 }
739 
740 /**
741  *  e1000_blink_led - Blink SW controllable LED
742  *  @hw: pointer to the HW structure
743  *
744  *  This starts the adapter LED blinking. Request the LED to be setup first
745  *  and cleaned up after. This is a function pointer entry point called by
746  *  drivers.
747  **/
748 s32 e1000_blink_led(struct e1000_hw *hw)
749 {
750 	if (hw->mac.ops.blink_led)
751 		return hw->mac.ops.blink_led(hw);
752 
753 	return E1000_SUCCESS;
754 }
755 
756 /**
757  *  e1000_id_led_init - store LED configurations in SW
758  *  @hw: pointer to the HW structure
759  *
760  *  Initializes the LED config in SW. This is a function pointer entry point
761  *  called by drivers.
762  **/
763 s32 e1000_id_led_init(struct e1000_hw *hw)
764 {
765 	if (hw->mac.ops.id_led_init)
766 		return hw->mac.ops.id_led_init(hw);
767 
768 	return E1000_SUCCESS;
769 }
770 
771 /**
772  *  e1000_led_on - Turn on SW controllable LED
773  *  @hw: pointer to the HW structure
774  *
775  *  Turns the SW defined LED on. This is a function pointer entry point
776  *  called by drivers.
777  **/
778 s32 e1000_led_on(struct e1000_hw *hw)
779 {
780 	if (hw->mac.ops.led_on)
781 		return hw->mac.ops.led_on(hw);
782 
783 	return E1000_SUCCESS;
784 }
785 
786 /**
787  *  e1000_led_off - Turn off SW controllable LED
788  *  @hw: pointer to the HW structure
789  *
790  *  Turns the SW defined LED off. This is a function pointer entry point
791  *  called by drivers.
792  **/
793 s32 e1000_led_off(struct e1000_hw *hw)
794 {
795 	if (hw->mac.ops.led_off)
796 		return hw->mac.ops.led_off(hw);
797 
798 	return E1000_SUCCESS;
799 }
800 
801 /**
802  *  e1000_reset_adaptive - Reset adaptive IFS
803  *  @hw: pointer to the HW structure
804  *
805  *  Resets the adaptive IFS. Currently no func pointer exists and all
806  *  implementations are handled in the generic version of this function.
807  **/
808 void e1000_reset_adaptive(struct e1000_hw *hw)
809 {
810 	e1000_reset_adaptive_generic(hw);
811 }
812 
813 /**
814  *  e1000_update_adaptive - Update adaptive IFS
815  *  @hw: pointer to the HW structure
816  *
817  *  Updates adapter IFS. Currently no func pointer exists and all
818  *  implementations are handled in the generic version of this function.
819  **/
820 void e1000_update_adaptive(struct e1000_hw *hw)
821 {
822 	e1000_update_adaptive_generic(hw);
823 }
824 
825 /**
826  *  e1000_disable_pcie_master - Disable PCI-Express master access
827  *  @hw: pointer to the HW structure
828  *
829  *  Disables PCI-Express master access and verifies there are no pending
830  *  requests. Currently no func pointer exists and all implementations are
831  *  handled in the generic version of this function.
832  **/
833 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
834 {
835 	return e1000_disable_pcie_master_generic(hw);
836 }
837 
838 /**
839  *  e1000_config_collision_dist - Configure collision distance
840  *  @hw: pointer to the HW structure
841  *
842  *  Configures the collision distance to the default value and is used
843  *  during link setup.
844  **/
845 void e1000_config_collision_dist(struct e1000_hw *hw)
846 {
847 	if (hw->mac.ops.config_collision_dist)
848 		hw->mac.ops.config_collision_dist(hw);
849 }
850 
851 /**
852  *  e1000_rar_set - Sets a receive address register
853  *  @hw: pointer to the HW structure
854  *  @addr: address to set the RAR to
855  *  @index: the RAR to set
856  *
857  *  Sets a Receive Address Register (RAR) to the specified address.
858  **/
859 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
860 {
861 	if (hw->mac.ops.rar_set)
862 		return hw->mac.ops.rar_set(hw, addr, index);
863 
864 	return E1000_SUCCESS;
865 }
866 
867 /**
868  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
869  *  @hw: pointer to the HW structure
870  *
871  *  Ensures that the MDI/MDIX SW state is valid.
872  **/
873 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
874 {
875 	if (hw->mac.ops.validate_mdi_setting)
876 		return hw->mac.ops.validate_mdi_setting(hw);
877 
878 	return E1000_SUCCESS;
879 }
880 
881 /**
882  *  e1000_hash_mc_addr - Determines address location in multicast table
883  *  @hw: pointer to the HW structure
884  *  @mc_addr: Multicast address to hash.
885  *
886  *  This hashes an address to determine its location in the multicast
887  *  table. Currently no func pointer exists and all implementations
888  *  are handled in the generic version of this function.
889  **/
890 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
891 {
892 	return e1000_hash_mc_addr_generic(hw, mc_addr);
893 }
894 
895 /**
896  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
897  *  @hw: pointer to the HW structure
898  *
899  *  Enables packet filtering on transmit packets if manageability is enabled
900  *  and host interface is enabled.
901  *  Currently no func pointer exists and all implementations are handled in the
902  *  generic version of this function.
903  **/
904 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
905 {
906 	return e1000_enable_tx_pkt_filtering_generic(hw);
907 }
908 
909 /**
910  *  e1000_mng_host_if_write - Writes to the manageability host interface
911  *  @hw: pointer to the HW structure
912  *  @buffer: pointer to the host interface buffer
913  *  @length: size of the buffer
914  *  @offset: location in the buffer to write to
915  *  @sum: sum of the data (not checksum)
916  *
917  *  This function writes the buffer content at the offset given on the host if.
918  *  It also does alignment considerations to do the writes in most efficient
919  *  way.  Also fills up the sum of the buffer in *buffer parameter.
920  **/
921 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
922 			    u16 offset, u8 *sum)
923 {
924 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
925 }
926 
927 /**
928  *  e1000_mng_write_cmd_header - Writes manageability command header
929  *  @hw: pointer to the HW structure
930  *  @hdr: pointer to the host interface command header
931  *
932  *  Writes the command header after does the checksum calculation.
933  **/
934 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
935 			       struct e1000_host_mng_command_header *hdr)
936 {
937 	return e1000_mng_write_cmd_header_generic(hw, hdr);
938 }
939 
940 /**
941  *  e1000_mng_enable_host_if - Checks host interface is enabled
942  *  @hw: pointer to the HW structure
943  *
944  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
945  *
946  *  This function checks whether the HOST IF is enabled for command operation
947  *  and also checks whether the previous command is completed.  It busy waits
948  *  in case of previous command is not completed.
949  **/
950 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
951 {
952 	return e1000_mng_enable_host_if_generic(hw);
953 }
954 
955 /**
956  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
957  *  @hw: pointer to the HW structure
958  *  @itr: u32 indicating itr value
959  *
960  *  Set the OBFF timer based on the given interrupt rate.
961  **/
962 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
963 {
964 	if (hw->mac.ops.set_obff_timer)
965 		return hw->mac.ops.set_obff_timer(hw, itr);
966 
967 	return E1000_SUCCESS;
968 }
969 
970 /**
971  *  e1000_check_reset_block - Verifies PHY can be reset
972  *  @hw: pointer to the HW structure
973  *
974  *  Checks if the PHY is in a state that can be reset or if manageability
975  *  has it tied up. This is a function pointer entry point called by drivers.
976  **/
977 s32 e1000_check_reset_block(struct e1000_hw *hw)
978 {
979 	if (hw->phy.ops.check_reset_block)
980 		return hw->phy.ops.check_reset_block(hw);
981 
982 	return E1000_SUCCESS;
983 }
984 
985 /**
986  *  e1000_read_phy_reg - Reads PHY register
987  *  @hw: pointer to the HW structure
988  *  @offset: the register to read
989  *  @data: the buffer to store the 16-bit read.
990  *
991  *  Reads the PHY register and returns the value in data.
992  *  This is a function pointer entry point called by drivers.
993  **/
994 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
995 {
996 	if (hw->phy.ops.read_reg)
997 		return hw->phy.ops.read_reg(hw, offset, data);
998 
999 	return E1000_SUCCESS;
1000 }
1001 
1002 /**
1003  *  e1000_write_phy_reg - Writes PHY register
1004  *  @hw: pointer to the HW structure
1005  *  @offset: the register to write
1006  *  @data: the value to write.
1007  *
1008  *  Writes the PHY register at offset with the value in data.
1009  *  This is a function pointer entry point called by drivers.
1010  **/
1011 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1012 {
1013 	if (hw->phy.ops.write_reg)
1014 		return hw->phy.ops.write_reg(hw, offset, data);
1015 
1016 	return E1000_SUCCESS;
1017 }
1018 
1019 /**
1020  *  e1000_release_phy - Generic release PHY
1021  *  @hw: pointer to the HW structure
1022  *
1023  *  Return if silicon family does not require a semaphore when accessing the
1024  *  PHY.
1025  **/
1026 void e1000_release_phy(struct e1000_hw *hw)
1027 {
1028 	if (hw->phy.ops.release)
1029 		hw->phy.ops.release(hw);
1030 }
1031 
1032 /**
1033  *  e1000_acquire_phy - Generic acquire PHY
1034  *  @hw: pointer to the HW structure
1035  *
1036  *  Return success if silicon family does not require a semaphore when
1037  *  accessing the PHY.
1038  **/
1039 s32 e1000_acquire_phy(struct e1000_hw *hw)
1040 {
1041 	if (hw->phy.ops.acquire)
1042 		return hw->phy.ops.acquire(hw);
1043 
1044 	return E1000_SUCCESS;
1045 }
1046 
1047 /**
1048  *  e1000_cfg_on_link_up - Configure PHY upon link up
1049  *  @hw: pointer to the HW structure
1050  **/
1051 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1052 {
1053 	if (hw->phy.ops.cfg_on_link_up)
1054 		return hw->phy.ops.cfg_on_link_up(hw);
1055 
1056 	return E1000_SUCCESS;
1057 }
1058 
1059 /**
1060  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1061  *  @hw: pointer to the HW structure
1062  *  @offset: the register to read
1063  *  @data: the location to store the 16-bit value read.
1064  *
1065  *  Reads a register out of the Kumeran interface. Currently no func pointer
1066  *  exists and all implementations are handled in the generic version of
1067  *  this function.
1068  **/
1069 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1070 {
1071 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1072 }
1073 
1074 /**
1075  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1076  *  @hw: pointer to the HW structure
1077  *  @offset: the register to write
1078  *  @data: the value to write.
1079  *
1080  *  Writes a register to the Kumeran interface. Currently no func pointer
1081  *  exists and all implementations are handled in the generic version of
1082  *  this function.
1083  **/
1084 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1085 {
1086 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1087 }
1088 
1089 /**
1090  *  e1000_get_cable_length - Retrieves cable length estimation
1091  *  @hw: pointer to the HW structure
1092  *
1093  *  This function estimates the cable length and stores them in
1094  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1095  *  entry point called by drivers.
1096  **/
1097 s32 e1000_get_cable_length(struct e1000_hw *hw)
1098 {
1099 	if (hw->phy.ops.get_cable_length)
1100 		return hw->phy.ops.get_cable_length(hw);
1101 
1102 	return E1000_SUCCESS;
1103 }
1104 
1105 /**
1106  *  e1000_get_phy_info - Retrieves PHY information from registers
1107  *  @hw: pointer to the HW structure
1108  *
1109  *  This function gets some information from various PHY registers and
1110  *  populates hw->phy values with it. This is a function pointer entry
1111  *  point called by drivers.
1112  **/
1113 s32 e1000_get_phy_info(struct e1000_hw *hw)
1114 {
1115 	if (hw->phy.ops.get_info)
1116 		return hw->phy.ops.get_info(hw);
1117 
1118 	return E1000_SUCCESS;
1119 }
1120 
1121 /**
1122  *  e1000_phy_hw_reset - Hard PHY reset
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Performs a hard PHY reset. This is a function pointer entry point called
1126  *  by drivers.
1127  **/
1128 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1129 {
1130 	if (hw->phy.ops.reset)
1131 		return hw->phy.ops.reset(hw);
1132 
1133 	return E1000_SUCCESS;
1134 }
1135 
1136 /**
1137  *  e1000_phy_commit - Soft PHY reset
1138  *  @hw: pointer to the HW structure
1139  *
1140  *  Performs a soft PHY reset on those that apply. This is a function pointer
1141  *  entry point called by drivers.
1142  **/
1143 s32 e1000_phy_commit(struct e1000_hw *hw)
1144 {
1145 	if (hw->phy.ops.commit)
1146 		return hw->phy.ops.commit(hw);
1147 
1148 	return E1000_SUCCESS;
1149 }
1150 
1151 /**
1152  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1153  *  @hw: pointer to the HW structure
1154  *  @active: boolean used to enable/disable lplu
1155  *
1156  *  Success returns 0, Failure returns 1
1157  *
1158  *  The low power link up (lplu) state is set to the power management level D0
1159  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1160  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1161  *  is used during Dx states where the power conservation is most important.
1162  *  During driver activity, SmartSpeed should be enabled so performance is
1163  *  maintained.  This is a function pointer entry point called by drivers.
1164  **/
1165 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1166 {
1167 	if (hw->phy.ops.set_d0_lplu_state)
1168 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1169 
1170 	return E1000_SUCCESS;
1171 }
1172 
1173 /**
1174  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1175  *  @hw: pointer to the HW structure
1176  *  @active: boolean used to enable/disable lplu
1177  *
1178  *  Success returns 0, Failure returns 1
1179  *
1180  *  The low power link up (lplu) state is set to the power management level D3
1181  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1182  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1183  *  is used during Dx states where the power conservation is most important.
1184  *  During driver activity, SmartSpeed should be enabled so performance is
1185  *  maintained.  This is a function pointer entry point called by drivers.
1186  **/
1187 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1188 {
1189 	if (hw->phy.ops.set_d3_lplu_state)
1190 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1191 
1192 	return E1000_SUCCESS;
1193 }
1194 
1195 /**
1196  *  e1000_read_mac_addr - Reads MAC address
1197  *  @hw: pointer to the HW structure
1198  *
1199  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1200  *  Currently no func pointer exists and all implementations are handled in the
1201  *  generic version of this function.
1202  **/
1203 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1204 {
1205 	if (hw->mac.ops.read_mac_addr)
1206 		return hw->mac.ops.read_mac_addr(hw);
1207 
1208 	return e1000_read_mac_addr_generic(hw);
1209 }
1210 
1211 /**
1212  *  e1000_read_pba_string - Read device part number string
1213  *  @hw: pointer to the HW structure
1214  *  @pba_num: pointer to device part number
1215  *  @pba_num_size: size of part number buffer
1216  *
1217  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1218  *  the value in pba_num.
1219  *  Currently no func pointer exists and all implementations are handled in the
1220  *  generic version of this function.
1221  **/
1222 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1223 {
1224 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1225 }
1226 
1227 /**
1228  *  e1000_read_pba_length - Read device part number string length
1229  *  @hw: pointer to the HW structure
1230  *  @pba_num_size: size of part number buffer
1231  *
1232  *  Reads the product board assembly (PBA) number length from the EEPROM and
1233  *  stores the value in pba_num.
1234  *  Currently no func pointer exists and all implementations are handled in the
1235  *  generic version of this function.
1236  **/
1237 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1238 {
1239 	return e1000_read_pba_length_generic(hw, pba_num_size);
1240 }
1241 
1242 /**
1243  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1244  *  @hw: pointer to the HW structure
1245  *
1246  *  Validates the NVM checksum is correct. This is a function pointer entry
1247  *  point called by drivers.
1248  **/
1249 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1250 {
1251 	if (hw->nvm.ops.validate)
1252 		return hw->nvm.ops.validate(hw);
1253 
1254 	return -E1000_ERR_CONFIG;
1255 }
1256 
1257 /**
1258  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1259  *  @hw: pointer to the HW structure
1260  *
1261  *  Updates the NVM checksum. Currently no func pointer exists and all
1262  *  implementations are handled in the generic version of this function.
1263  **/
1264 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1265 {
1266 	if (hw->nvm.ops.update)
1267 		return hw->nvm.ops.update(hw);
1268 
1269 	return -E1000_ERR_CONFIG;
1270 }
1271 
1272 /**
1273  *  e1000_reload_nvm - Reloads EEPROM
1274  *  @hw: pointer to the HW structure
1275  *
1276  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1277  *  extended control register.
1278  **/
1279 void e1000_reload_nvm(struct e1000_hw *hw)
1280 {
1281 	if (hw->nvm.ops.reload)
1282 		hw->nvm.ops.reload(hw);
1283 }
1284 
1285 /**
1286  *  e1000_read_nvm - Reads NVM (EEPROM)
1287  *  @hw: pointer to the HW structure
1288  *  @offset: the word offset to read
1289  *  @words: number of 16-bit words to read
1290  *  @data: pointer to the properly sized buffer for the data.
1291  *
1292  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1293  *  pointer entry point called by drivers.
1294  **/
1295 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1296 {
1297 	if (hw->nvm.ops.read)
1298 		return hw->nvm.ops.read(hw, offset, words, data);
1299 
1300 	return -E1000_ERR_CONFIG;
1301 }
1302 
1303 /**
1304  *  e1000_write_nvm - Writes to NVM (EEPROM)
1305  *  @hw: pointer to the HW structure
1306  *  @offset: the word offset to read
1307  *  @words: number of 16-bit words to write
1308  *  @data: pointer to the properly sized buffer for the data.
1309  *
1310  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1311  *  pointer entry point called by drivers.
1312  **/
1313 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1314 {
1315 	if (hw->nvm.ops.write)
1316 		return hw->nvm.ops.write(hw, offset, words, data);
1317 
1318 	return E1000_SUCCESS;
1319 }
1320 
1321 /**
1322  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1323  *  @hw: pointer to the HW structure
1324  *  @reg: 32bit register offset
1325  *  @offset: the register to write
1326  *  @data: the value to write.
1327  *
1328  *  Writes the PHY register at offset with the value in data.
1329  *  This is a function pointer entry point called by drivers.
1330  **/
1331 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1332 			      u8 data)
1333 {
1334 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1335 }
1336 
1337 /**
1338  * e1000_power_up_phy - Restores link in case of PHY power down
1339  * @hw: pointer to the HW structure
1340  *
1341  * The phy may be powered down to save power, to turn off link when the
1342  * driver is unloaded, or wake on lan is not enabled (among others).
1343  **/
1344 void e1000_power_up_phy(struct e1000_hw *hw)
1345 {
1346 	if (hw->phy.ops.power_up)
1347 		hw->phy.ops.power_up(hw);
1348 
1349 	e1000_setup_link(hw);
1350 }
1351 
1352 /**
1353  * e1000_power_down_phy - Power down PHY
1354  * @hw: pointer to the HW structure
1355  *
1356  * The phy may be powered down to save power, to turn off link when the
1357  * driver is unloaded, or wake on lan is not enabled (among others).
1358  **/
1359 void e1000_power_down_phy(struct e1000_hw *hw)
1360 {
1361 	if (hw->phy.ops.power_down)
1362 		hw->phy.ops.power_down(hw);
1363 }
1364 
1365 /**
1366  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1367  *  @hw: pointer to the HW structure
1368  *
1369  *  Power on the optics and PCS.
1370  **/
1371 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1372 {
1373 	if (hw->mac.ops.power_up_serdes)
1374 		hw->mac.ops.power_up_serdes(hw);
1375 }
1376 
1377 /**
1378  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1379  *  @hw: pointer to the HW structure
1380  *
1381  *  Shutdown the optics and PCS on driver unload.
1382  **/
1383 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1384 {
1385 	if (hw->mac.ops.shutdown_serdes)
1386 		hw->mac.ops.shutdown_serdes(hw);
1387 }
1388 
1389