xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 3ff01b231dfa83d518854c63e7c9cd1debd1139e)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2015, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "e1000_api.h"
37 
38 /**
39  *  e1000_init_mac_params - Initialize MAC function pointers
40  *  @hw: pointer to the HW structure
41  *
42  *  This function initializes the function pointers for the MAC
43  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
44  **/
45 s32 e1000_init_mac_params(struct e1000_hw *hw)
46 {
47 	s32 ret_val = E1000_SUCCESS;
48 
49 	if (hw->mac.ops.init_params) {
50 		ret_val = hw->mac.ops.init_params(hw);
51 		if (ret_val) {
52 			DEBUGOUT("MAC Initialization Error\n");
53 			goto out;
54 		}
55 	} else {
56 		DEBUGOUT("mac.init_mac_params was NULL\n");
57 		ret_val = -E1000_ERR_CONFIG;
58 	}
59 
60 out:
61 	return ret_val;
62 }
63 
64 /**
65  *  e1000_init_nvm_params - Initialize NVM function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  This function initializes the function pointers for the NVM
69  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
70  **/
71 s32 e1000_init_nvm_params(struct e1000_hw *hw)
72 {
73 	s32 ret_val = E1000_SUCCESS;
74 
75 	if (hw->nvm.ops.init_params) {
76 		ret_val = hw->nvm.ops.init_params(hw);
77 		if (ret_val) {
78 			DEBUGOUT("NVM Initialization Error\n");
79 			goto out;
80 		}
81 	} else {
82 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
83 		ret_val = -E1000_ERR_CONFIG;
84 	}
85 
86 out:
87 	return ret_val;
88 }
89 
90 /**
91  *  e1000_init_phy_params - Initialize PHY function pointers
92  *  @hw: pointer to the HW structure
93  *
94  *  This function initializes the function pointers for the PHY
95  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
96  **/
97 s32 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val =  -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_mbx_params - Initialize mailbox function pointers
118  *  @hw: pointer to the HW structure
119  *
120  *  This function initializes the function pointers for the PHY
121  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
122  **/
123 s32 e1000_init_mbx_params(struct e1000_hw *hw)
124 {
125 	s32 ret_val = E1000_SUCCESS;
126 
127 	if (hw->mbx.ops.init_params) {
128 		ret_val = hw->mbx.ops.init_params(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Mailbox Initialization Error\n");
131 			goto out;
132 		}
133 	} else {
134 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
135 		ret_val =  -E1000_ERR_CONFIG;
136 	}
137 
138 out:
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_set_mac_type - Sets MAC type
144  *  @hw: pointer to the HW structure
145  *
146  *  This function sets the mac type of the adapter based on the
147  *  device ID stored in the hw structure.
148  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
149  *  e1000_setup_init_funcs()).
150  **/
151 s32 e1000_set_mac_type(struct e1000_hw *hw)
152 {
153 	struct e1000_mac_info *mac = &hw->mac;
154 	s32 ret_val = E1000_SUCCESS;
155 
156 	DEBUGFUNC("e1000_set_mac_type");
157 
158 	switch (hw->device_id) {
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 	case E1000_DEV_ID_82543GC_FIBER:
163 	case E1000_DEV_ID_82543GC_COPPER:
164 		mac->type = e1000_82543;
165 		break;
166 	case E1000_DEV_ID_82544EI_COPPER:
167 	case E1000_DEV_ID_82544EI_FIBER:
168 	case E1000_DEV_ID_82544GC_COPPER:
169 	case E1000_DEV_ID_82544GC_LOM:
170 		mac->type = e1000_82544;
171 		break;
172 	case E1000_DEV_ID_82540EM:
173 	case E1000_DEV_ID_82540EM_LOM:
174 	case E1000_DEV_ID_82540EP:
175 	case E1000_DEV_ID_82540EP_LOM:
176 	case E1000_DEV_ID_82540EP_LP:
177 		mac->type = e1000_82540;
178 		break;
179 	case E1000_DEV_ID_82545EM_COPPER:
180 	case E1000_DEV_ID_82545EM_FIBER:
181 		mac->type = e1000_82545;
182 		break;
183 	case E1000_DEV_ID_82545GM_COPPER:
184 	case E1000_DEV_ID_82545GM_FIBER:
185 	case E1000_DEV_ID_82545GM_SERDES:
186 		mac->type = e1000_82545_rev_3;
187 		break;
188 	case E1000_DEV_ID_82546EB_COPPER:
189 	case E1000_DEV_ID_82546EB_FIBER:
190 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
191 		mac->type = e1000_82546;
192 		break;
193 	case E1000_DEV_ID_82546GB_COPPER:
194 	case E1000_DEV_ID_82546GB_FIBER:
195 	case E1000_DEV_ID_82546GB_SERDES:
196 	case E1000_DEV_ID_82546GB_PCIE:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
199 		mac->type = e1000_82546_rev_3;
200 		break;
201 	case E1000_DEV_ID_82541EI:
202 	case E1000_DEV_ID_82541EI_MOBILE:
203 	case E1000_DEV_ID_82541ER_LOM:
204 		mac->type = e1000_82541;
205 		break;
206 	case E1000_DEV_ID_82541ER:
207 	case E1000_DEV_ID_82541GI:
208 	case E1000_DEV_ID_82541GI_LF:
209 	case E1000_DEV_ID_82541GI_MOBILE:
210 		mac->type = e1000_82541_rev_2;
211 		break;
212 	case E1000_DEV_ID_82547EI:
213 	case E1000_DEV_ID_82547EI_MOBILE:
214 		mac->type = e1000_82547;
215 		break;
216 	case E1000_DEV_ID_82547GI:
217 		mac->type = e1000_82547_rev_2;
218 		break;
219 	case E1000_DEV_ID_82571EB_COPPER:
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82571EB_SERDES:
222 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
223 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
224 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
225 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
226 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
313 	case E1000_DEV_ID_PCH_CMP_I219_V12:
314 		mac->type = e1000_pch_spt;
315 		break;
316 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
317 	case E1000_DEV_ID_PCH_CNP_I219_V6:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
319 	case E1000_DEV_ID_PCH_CNP_I219_V7:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
321 	case E1000_DEV_ID_PCH_ICP_I219_V8:
322 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
323 	case E1000_DEV_ID_PCH_ICP_I219_V9:
324 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
325 	case E1000_DEV_ID_PCH_CMP_I219_V10:
326 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
327 	case E1000_DEV_ID_PCH_CMP_I219_V11:
328 		mac->type = e1000_pch_cnp;
329 		break;
330 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
331 	case E1000_DEV_ID_PCH_TGP_I219_V13:
332 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
333 	case E1000_DEV_ID_PCH_TGP_I219_V14:
334 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
335 	case E1000_DEV_ID_PCH_TGP_I219_V15:
336 		mac->type = e1000_pch_tgp;
337 		break;
338 	case E1000_DEV_ID_PCH_ADL_I219_LM16:
339 	case E1000_DEV_ID_PCH_ADL_I219_V16:
340 	case E1000_DEV_ID_PCH_ADL_I219_LM17:
341 	case E1000_DEV_ID_PCH_ADL_I219_V17:
342 		mac->type = e1000_pch_adp;
343 		break;
344 	case E1000_DEV_ID_PCH_MTP_I219_LM18:
345 	case E1000_DEV_ID_PCH_MTP_I219_V18:
346 	case E1000_DEV_ID_PCH_MTP_I219_LM19:
347 	case E1000_DEV_ID_PCH_MTP_I219_V19:
348 		mac->type = e1000_pch_mtp;
349 		break;
350 	case E1000_DEV_ID_82575EB_COPPER:
351 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
352 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
353 		mac->type = e1000_82575;
354 		break;
355 	case E1000_DEV_ID_82576:
356 	case E1000_DEV_ID_82576_FIBER:
357 	case E1000_DEV_ID_82576_SERDES:
358 	case E1000_DEV_ID_82576_QUAD_COPPER:
359 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
360 	case E1000_DEV_ID_82576_NS:
361 	case E1000_DEV_ID_82576_NS_SERDES:
362 	case E1000_DEV_ID_82576_SERDES_QUAD:
363 		mac->type = e1000_82576;
364 		break;
365 	case E1000_DEV_ID_82580_COPPER:
366 	case E1000_DEV_ID_82580_FIBER:
367 	case E1000_DEV_ID_82580_SERDES:
368 	case E1000_DEV_ID_82580_SGMII:
369 	case E1000_DEV_ID_82580_COPPER_DUAL:
370 	case E1000_DEV_ID_82580_QUAD_FIBER:
371 	case E1000_DEV_ID_DH89XXCC_SGMII:
372 	case E1000_DEV_ID_DH89XXCC_SERDES:
373 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
374 	case E1000_DEV_ID_DH89XXCC_SFP:
375 		mac->type = e1000_82580;
376 		break;
377 	case E1000_DEV_ID_I350_COPPER:
378 	case E1000_DEV_ID_I350_FIBER:
379 	case E1000_DEV_ID_I350_SERDES:
380 	case E1000_DEV_ID_I350_SGMII:
381 	case E1000_DEV_ID_I350_DA4:
382 		mac->type = e1000_i350;
383 		break;
384 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
385 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
386 	case E1000_DEV_ID_I210_COPPER:
387 	case E1000_DEV_ID_I210_COPPER_OEM1:
388 	case E1000_DEV_ID_I210_COPPER_IT:
389 	case E1000_DEV_ID_I210_FIBER:
390 	case E1000_DEV_ID_I210_SERDES:
391 	case E1000_DEV_ID_I210_SGMII:
392 		mac->type = e1000_i210;
393 		break;
394 	case E1000_DEV_ID_I211_COPPER:
395 		mac->type = e1000_i211;
396 		break;
397 	case E1000_DEV_ID_82576_VF:
398 	case E1000_DEV_ID_82576_VF_HV:
399 		mac->type = e1000_vfadapt;
400 		break;
401 	case E1000_DEV_ID_I350_VF:
402 	case E1000_DEV_ID_I350_VF_HV:
403 		mac->type = e1000_vfadapt_i350;
404 		break;
405 
406 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
407 	case E1000_DEV_ID_I354_SGMII:
408 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
409 		mac->type = e1000_i354;
410 		break;
411 	default:
412 		/* Should never have loaded on this device */
413 		ret_val = -E1000_ERR_MAC_INIT;
414 		break;
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_setup_init_funcs - Initializes function pointers
422  *  @hw: pointer to the HW structure
423  *  @init_device: TRUE will initialize the rest of the function pointers
424  *		  getting the device ready for use.  FALSE will only set
425  *		  MAC type and the function pointers for the other init
426  *		  functions.  Passing FALSE will not generate any hardware
427  *		  reads or writes.
428  *
429  *  This function must be called by a driver in order to use the rest
430  *  of the 'shared' code files. Called by drivers only.
431  **/
432 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
433 {
434 	s32 ret_val;
435 
436 	/* Can't do much good without knowing the MAC type. */
437 	ret_val = e1000_set_mac_type(hw);
438 	if (ret_val) {
439 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
440 		goto out;
441 	}
442 
443 	if (!hw->hw_addr) {
444 		DEBUGOUT("ERROR: Registers not mapped\n");
445 		ret_val = -E1000_ERR_CONFIG;
446 		goto out;
447 	}
448 
449 	/*
450 	 * Init function pointers to generic implementations. We do this first
451 	 * allowing a driver module to override it afterward.
452 	 */
453 	e1000_init_mac_ops_generic(hw);
454 	e1000_init_phy_ops_generic(hw);
455 	e1000_init_nvm_ops_generic(hw);
456 	e1000_init_mbx_ops_generic(hw);
457 
458 	/*
459 	 * Set up the init function pointers. These are functions within the
460 	 * adapter family file that sets up function pointers for the rest of
461 	 * the functions in that family.
462 	 */
463 	switch (hw->mac.type) {
464 	case e1000_82542:
465 		e1000_init_function_pointers_82542(hw);
466 		break;
467 	case e1000_82543:
468 	case e1000_82544:
469 		e1000_init_function_pointers_82543(hw);
470 		break;
471 	case e1000_82540:
472 	case e1000_82545:
473 	case e1000_82545_rev_3:
474 	case e1000_82546:
475 	case e1000_82546_rev_3:
476 		e1000_init_function_pointers_82540(hw);
477 		break;
478 	case e1000_82541:
479 	case e1000_82541_rev_2:
480 	case e1000_82547:
481 	case e1000_82547_rev_2:
482 		e1000_init_function_pointers_82541(hw);
483 		break;
484 	case e1000_82571:
485 	case e1000_82572:
486 	case e1000_82573:
487 	case e1000_82574:
488 	case e1000_82583:
489 		e1000_init_function_pointers_82571(hw);
490 		break;
491 	case e1000_80003es2lan:
492 		e1000_init_function_pointers_80003es2lan(hw);
493 		break;
494 	case e1000_ich8lan:
495 	case e1000_ich9lan:
496 	case e1000_ich10lan:
497 	case e1000_pchlan:
498 	case e1000_pch2lan:
499 	case e1000_pch_lpt:
500 	case e1000_pch_spt:
501 	case e1000_pch_cnp:
502 	case e1000_pch_tgp:
503 	case e1000_pch_adp:
504 	case e1000_pch_mtp:
505 		e1000_init_function_pointers_ich8lan(hw);
506 		break;
507 	case e1000_82575:
508 	case e1000_82576:
509 	case e1000_82580:
510 	case e1000_i350:
511 	case e1000_i354:
512 		e1000_init_function_pointers_82575(hw);
513 		break;
514 	case e1000_i210:
515 	case e1000_i211:
516 		e1000_init_function_pointers_i210(hw);
517 		break;
518 	case e1000_vfadapt:
519 		e1000_init_function_pointers_vf(hw);
520 		break;
521 	case e1000_vfadapt_i350:
522 		e1000_init_function_pointers_vf(hw);
523 		break;
524 	default:
525 		DEBUGOUT("Hardware not supported\n");
526 		ret_val = -E1000_ERR_CONFIG;
527 		break;
528 	}
529 
530 	/*
531 	 * Initialize the rest of the function pointers. These require some
532 	 * register reads/writes in some cases.
533 	 */
534 	if (!(ret_val) && init_device) {
535 		ret_val = e1000_init_mac_params(hw);
536 		if (ret_val)
537 			goto out;
538 
539 		ret_val = e1000_init_nvm_params(hw);
540 		if (ret_val)
541 			goto out;
542 
543 		ret_val = e1000_init_phy_params(hw);
544 		if (ret_val)
545 			goto out;
546 
547 		ret_val = e1000_init_mbx_params(hw);
548 		if (ret_val)
549 			goto out;
550 	}
551 
552 out:
553 	return ret_val;
554 }
555 
556 /**
557  *  e1000_get_bus_info - Obtain bus information for adapter
558  *  @hw: pointer to the HW structure
559  *
560  *  This will obtain information about the HW bus for which the
561  *  adapter is attached and stores it in the hw structure. This is a
562  *  function pointer entry point called by drivers.
563  **/
564 s32 e1000_get_bus_info(struct e1000_hw *hw)
565 {
566 	if (hw->mac.ops.get_bus_info)
567 		return hw->mac.ops.get_bus_info(hw);
568 
569 	return E1000_SUCCESS;
570 }
571 
572 /**
573  *  e1000_clear_vfta - Clear VLAN filter table
574  *  @hw: pointer to the HW structure
575  *
576  *  This clears the VLAN filter table on the adapter. This is a function
577  *  pointer entry point called by drivers.
578  **/
579 void e1000_clear_vfta(struct e1000_hw *hw)
580 {
581 	if (hw->mac.ops.clear_vfta)
582 		hw->mac.ops.clear_vfta(hw);
583 }
584 
585 /**
586  *  e1000_write_vfta - Write value to VLAN filter table
587  *  @hw: pointer to the HW structure
588  *  @offset: the 32-bit offset in which to write the value to.
589  *  @value: the 32-bit value to write at location offset.
590  *
591  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
592  *  table. This is a function pointer entry point called by drivers.
593  **/
594 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
595 {
596 	if (hw->mac.ops.write_vfta)
597 		hw->mac.ops.write_vfta(hw, offset, value);
598 }
599 
600 /**
601  *  e1000_update_mc_addr_list - Update Multicast addresses
602  *  @hw: pointer to the HW structure
603  *  @mc_addr_list: array of multicast addresses to program
604  *  @mc_addr_count: number of multicast addresses to program
605  *
606  *  Updates the Multicast Table Array.
607  *  The caller must have a packed mc_addr_list of multicast addresses.
608  **/
609 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
610 			       u32 mc_addr_count)
611 {
612 	if (hw->mac.ops.update_mc_addr_list)
613 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
614 						mc_addr_count);
615 }
616 
617 /**
618  *  e1000_force_mac_fc - Force MAC flow control
619  *  @hw: pointer to the HW structure
620  *
621  *  Force the MAC's flow control settings. Currently no func pointer exists
622  *  and all implementations are handled in the generic version of this
623  *  function.
624  **/
625 s32 e1000_force_mac_fc(struct e1000_hw *hw)
626 {
627 	return e1000_force_mac_fc_generic(hw);
628 }
629 
630 /**
631  *  e1000_check_for_link - Check/Store link connection
632  *  @hw: pointer to the HW structure
633  *
634  *  This checks the link condition of the adapter and stores the
635  *  results in the hw->mac structure. This is a function pointer entry
636  *  point called by drivers.
637  **/
638 s32 e1000_check_for_link(struct e1000_hw *hw)
639 {
640 	if (hw->mac.ops.check_for_link)
641 		return hw->mac.ops.check_for_link(hw);
642 
643 	return -E1000_ERR_CONFIG;
644 }
645 
646 /**
647  *  e1000_check_mng_mode - Check management mode
648  *  @hw: pointer to the HW structure
649  *
650  *  This checks if the adapter has manageability enabled.
651  *  This is a function pointer entry point called by drivers.
652  **/
653 bool e1000_check_mng_mode(struct e1000_hw *hw)
654 {
655 	if (hw->mac.ops.check_mng_mode)
656 		return hw->mac.ops.check_mng_mode(hw);
657 
658 	return FALSE;
659 }
660 
661 /**
662  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
663  *  @hw: pointer to the HW structure
664  *  @buffer: pointer to the host interface
665  *  @length: size of the buffer
666  *
667  *  Writes the DHCP information to the host interface.
668  **/
669 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
670 {
671 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
672 }
673 
674 /**
675  *  e1000_reset_hw - Reset hardware
676  *  @hw: pointer to the HW structure
677  *
678  *  This resets the hardware into a known state. This is a function pointer
679  *  entry point called by drivers.
680  **/
681 s32 e1000_reset_hw(struct e1000_hw *hw)
682 {
683 	if (hw->mac.ops.reset_hw)
684 		return hw->mac.ops.reset_hw(hw);
685 
686 	return -E1000_ERR_CONFIG;
687 }
688 
689 /**
690  *  e1000_init_hw - Initialize hardware
691  *  @hw: pointer to the HW structure
692  *
693  *  This inits the hardware readying it for operation. This is a function
694  *  pointer entry point called by drivers.
695  **/
696 s32 e1000_init_hw(struct e1000_hw *hw)
697 {
698 	if (hw->mac.ops.init_hw)
699 		return hw->mac.ops.init_hw(hw);
700 
701 	return -E1000_ERR_CONFIG;
702 }
703 
704 /**
705  *  e1000_setup_link - Configures link and flow control
706  *  @hw: pointer to the HW structure
707  *
708  *  This configures link and flow control settings for the adapter. This
709  *  is a function pointer entry point called by drivers. While modules can
710  *  also call this, they probably call their own version of this function.
711  **/
712 s32 e1000_setup_link(struct e1000_hw *hw)
713 {
714 	if (hw->mac.ops.setup_link)
715 		return hw->mac.ops.setup_link(hw);
716 
717 	return -E1000_ERR_CONFIG;
718 }
719 
720 /**
721  *  e1000_get_speed_and_duplex - Returns current speed and duplex
722  *  @hw: pointer to the HW structure
723  *  @speed: pointer to a 16-bit value to store the speed
724  *  @duplex: pointer to a 16-bit value to store the duplex.
725  *
726  *  This returns the speed and duplex of the adapter in the two 'out'
727  *  variables passed in. This is a function pointer entry point called
728  *  by drivers.
729  **/
730 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
731 {
732 	if (hw->mac.ops.get_link_up_info)
733 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
734 
735 	return -E1000_ERR_CONFIG;
736 }
737 
738 /**
739  *  e1000_setup_led - Configures SW controllable LED
740  *  @hw: pointer to the HW structure
741  *
742  *  This prepares the SW controllable LED for use and saves the current state
743  *  of the LED so it can be later restored. This is a function pointer entry
744  *  point called by drivers.
745  **/
746 s32 e1000_setup_led(struct e1000_hw *hw)
747 {
748 	if (hw->mac.ops.setup_led)
749 		return hw->mac.ops.setup_led(hw);
750 
751 	return E1000_SUCCESS;
752 }
753 
754 /**
755  *  e1000_cleanup_led - Restores SW controllable LED
756  *  @hw: pointer to the HW structure
757  *
758  *  This restores the SW controllable LED to the value saved off by
759  *  e1000_setup_led. This is a function pointer entry point called by drivers.
760  **/
761 s32 e1000_cleanup_led(struct e1000_hw *hw)
762 {
763 	if (hw->mac.ops.cleanup_led)
764 		return hw->mac.ops.cleanup_led(hw);
765 
766 	return E1000_SUCCESS;
767 }
768 
769 /**
770  *  e1000_blink_led - Blink SW controllable LED
771  *  @hw: pointer to the HW structure
772  *
773  *  This starts the adapter LED blinking. Request the LED to be setup first
774  *  and cleaned up after. This is a function pointer entry point called by
775  *  drivers.
776  **/
777 s32 e1000_blink_led(struct e1000_hw *hw)
778 {
779 	if (hw->mac.ops.blink_led)
780 		return hw->mac.ops.blink_led(hw);
781 
782 	return E1000_SUCCESS;
783 }
784 
785 /**
786  *  e1000_id_led_init - store LED configurations in SW
787  *  @hw: pointer to the HW structure
788  *
789  *  Initializes the LED config in SW. This is a function pointer entry point
790  *  called by drivers.
791  **/
792 s32 e1000_id_led_init(struct e1000_hw *hw)
793 {
794 	if (hw->mac.ops.id_led_init)
795 		return hw->mac.ops.id_led_init(hw);
796 
797 	return E1000_SUCCESS;
798 }
799 
800 /**
801  *  e1000_led_on - Turn on SW controllable LED
802  *  @hw: pointer to the HW structure
803  *
804  *  Turns the SW defined LED on. This is a function pointer entry point
805  *  called by drivers.
806  **/
807 s32 e1000_led_on(struct e1000_hw *hw)
808 {
809 	if (hw->mac.ops.led_on)
810 		return hw->mac.ops.led_on(hw);
811 
812 	return E1000_SUCCESS;
813 }
814 
815 /**
816  *  e1000_led_off - Turn off SW controllable LED
817  *  @hw: pointer to the HW structure
818  *
819  *  Turns the SW defined LED off. This is a function pointer entry point
820  *  called by drivers.
821  **/
822 s32 e1000_led_off(struct e1000_hw *hw)
823 {
824 	if (hw->mac.ops.led_off)
825 		return hw->mac.ops.led_off(hw);
826 
827 	return E1000_SUCCESS;
828 }
829 
830 /**
831  *  e1000_reset_adaptive - Reset adaptive IFS
832  *  @hw: pointer to the HW structure
833  *
834  *  Resets the adaptive IFS. Currently no func pointer exists and all
835  *  implementations are handled in the generic version of this function.
836  **/
837 void e1000_reset_adaptive(struct e1000_hw *hw)
838 {
839 	e1000_reset_adaptive_generic(hw);
840 }
841 
842 /**
843  *  e1000_update_adaptive - Update adaptive IFS
844  *  @hw: pointer to the HW structure
845  *
846  *  Updates adapter IFS. Currently no func pointer exists and all
847  *  implementations are handled in the generic version of this function.
848  **/
849 void e1000_update_adaptive(struct e1000_hw *hw)
850 {
851 	e1000_update_adaptive_generic(hw);
852 }
853 
854 /**
855  *  e1000_disable_pcie_master - Disable PCI-Express master access
856  *  @hw: pointer to the HW structure
857  *
858  *  Disables PCI-Express master access and verifies there are no pending
859  *  requests. Currently no func pointer exists and all implementations are
860  *  handled in the generic version of this function.
861  **/
862 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
863 {
864 	return e1000_disable_pcie_master_generic(hw);
865 }
866 
867 /**
868  *  e1000_config_collision_dist - Configure collision distance
869  *  @hw: pointer to the HW structure
870  *
871  *  Configures the collision distance to the default value and is used
872  *  during link setup.
873  **/
874 void e1000_config_collision_dist(struct e1000_hw *hw)
875 {
876 	if (hw->mac.ops.config_collision_dist)
877 		hw->mac.ops.config_collision_dist(hw);
878 }
879 
880 /**
881  *  e1000_rar_set - Sets a receive address register
882  *  @hw: pointer to the HW structure
883  *  @addr: address to set the RAR to
884  *  @index: the RAR to set
885  *
886  *  Sets a Receive Address Register (RAR) to the specified address.
887  **/
888 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
889 {
890 	if (hw->mac.ops.rar_set)
891 		return hw->mac.ops.rar_set(hw, addr, index);
892 
893 	return E1000_SUCCESS;
894 }
895 
896 /**
897  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
898  *  @hw: pointer to the HW structure
899  *
900  *  Ensures that the MDI/MDIX SW state is valid.
901  **/
902 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
903 {
904 	if (hw->mac.ops.validate_mdi_setting)
905 		return hw->mac.ops.validate_mdi_setting(hw);
906 
907 	return E1000_SUCCESS;
908 }
909 
910 /**
911  *  e1000_hash_mc_addr - Determines address location in multicast table
912  *  @hw: pointer to the HW structure
913  *  @mc_addr: Multicast address to hash.
914  *
915  *  This hashes an address to determine its location in the multicast
916  *  table. Currently no func pointer exists and all implementations
917  *  are handled in the generic version of this function.
918  **/
919 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
920 {
921 	return e1000_hash_mc_addr_generic(hw, mc_addr);
922 }
923 
924 /**
925  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
926  *  @hw: pointer to the HW structure
927  *
928  *  Enables packet filtering on transmit packets if manageability is enabled
929  *  and host interface is enabled.
930  *  Currently no func pointer exists and all implementations are handled in the
931  *  generic version of this function.
932  **/
933 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
934 {
935 	return e1000_enable_tx_pkt_filtering_generic(hw);
936 }
937 
938 /**
939  *  e1000_mng_host_if_write - Writes to the manageability host interface
940  *  @hw: pointer to the HW structure
941  *  @buffer: pointer to the host interface buffer
942  *  @length: size of the buffer
943  *  @offset: location in the buffer to write to
944  *  @sum: sum of the data (not checksum)
945  *
946  *  This function writes the buffer content at the offset given on the host if.
947  *  It also does alignment considerations to do the writes in most efficient
948  *  way.  Also fills up the sum of the buffer in *buffer parameter.
949  **/
950 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
951 			    u16 offset, u8 *sum)
952 {
953 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
954 }
955 
956 /**
957  *  e1000_mng_write_cmd_header - Writes manageability command header
958  *  @hw: pointer to the HW structure
959  *  @hdr: pointer to the host interface command header
960  *
961  *  Writes the command header after does the checksum calculation.
962  **/
963 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
964 			       struct e1000_host_mng_command_header *hdr)
965 {
966 	return e1000_mng_write_cmd_header_generic(hw, hdr);
967 }
968 
969 /**
970  *  e1000_mng_enable_host_if - Checks host interface is enabled
971  *  @hw: pointer to the HW structure
972  *
973  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
974  *
975  *  This function checks whether the HOST IF is enabled for command operation
976  *  and also checks whether the previous command is completed.  It busy waits
977  *  in case of previous command is not completed.
978  **/
979 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
980 {
981 	return e1000_mng_enable_host_if_generic(hw);
982 }
983 
984 /**
985  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
986  *  @hw: pointer to the HW structure
987  *  @itr: u32 indicating itr value
988  *
989  *  Set the OBFF timer based on the given interrupt rate.
990  **/
991 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
992 {
993 	if (hw->mac.ops.set_obff_timer)
994 		return hw->mac.ops.set_obff_timer(hw, itr);
995 
996 	return E1000_SUCCESS;
997 }
998 
999 /**
1000  *  e1000_check_reset_block - Verifies PHY can be reset
1001  *  @hw: pointer to the HW structure
1002  *
1003  *  Checks if the PHY is in a state that can be reset or if manageability
1004  *  has it tied up. This is a function pointer entry point called by drivers.
1005  **/
1006 s32 e1000_check_reset_block(struct e1000_hw *hw)
1007 {
1008 	if (hw->phy.ops.check_reset_block)
1009 		return hw->phy.ops.check_reset_block(hw);
1010 
1011 	return E1000_SUCCESS;
1012 }
1013 
1014 /**
1015  *  e1000_read_phy_reg - Reads PHY register
1016  *  @hw: pointer to the HW structure
1017  *  @offset: the register to read
1018  *  @data: the buffer to store the 16-bit read.
1019  *
1020  *  Reads the PHY register and returns the value in data.
1021  *  This is a function pointer entry point called by drivers.
1022  **/
1023 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1024 {
1025 	if (hw->phy.ops.read_reg)
1026 		return hw->phy.ops.read_reg(hw, offset, data);
1027 
1028 	return E1000_SUCCESS;
1029 }
1030 
1031 /**
1032  *  e1000_write_phy_reg - Writes PHY register
1033  *  @hw: pointer to the HW structure
1034  *  @offset: the register to write
1035  *  @data: the value to write.
1036  *
1037  *  Writes the PHY register at offset with the value in data.
1038  *  This is a function pointer entry point called by drivers.
1039  **/
1040 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1041 {
1042 	if (hw->phy.ops.write_reg)
1043 		return hw->phy.ops.write_reg(hw, offset, data);
1044 
1045 	return E1000_SUCCESS;
1046 }
1047 
1048 /**
1049  *  e1000_release_phy - Generic release PHY
1050  *  @hw: pointer to the HW structure
1051  *
1052  *  Return if silicon family does not require a semaphore when accessing the
1053  *  PHY.
1054  **/
1055 void e1000_release_phy(struct e1000_hw *hw)
1056 {
1057 	if (hw->phy.ops.release)
1058 		hw->phy.ops.release(hw);
1059 }
1060 
1061 /**
1062  *  e1000_acquire_phy - Generic acquire PHY
1063  *  @hw: pointer to the HW structure
1064  *
1065  *  Return success if silicon family does not require a semaphore when
1066  *  accessing the PHY.
1067  **/
1068 s32 e1000_acquire_phy(struct e1000_hw *hw)
1069 {
1070 	if (hw->phy.ops.acquire)
1071 		return hw->phy.ops.acquire(hw);
1072 
1073 	return E1000_SUCCESS;
1074 }
1075 
1076 /**
1077  *  e1000_cfg_on_link_up - Configure PHY upon link up
1078  *  @hw: pointer to the HW structure
1079  **/
1080 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1081 {
1082 	if (hw->phy.ops.cfg_on_link_up)
1083 		return hw->phy.ops.cfg_on_link_up(hw);
1084 
1085 	return E1000_SUCCESS;
1086 }
1087 
1088 /**
1089  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1090  *  @hw: pointer to the HW structure
1091  *  @offset: the register to read
1092  *  @data: the location to store the 16-bit value read.
1093  *
1094  *  Reads a register out of the Kumeran interface. Currently no func pointer
1095  *  exists and all implementations are handled in the generic version of
1096  *  this function.
1097  **/
1098 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1099 {
1100 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1101 }
1102 
1103 /**
1104  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1105  *  @hw: pointer to the HW structure
1106  *  @offset: the register to write
1107  *  @data: the value to write.
1108  *
1109  *  Writes a register to the Kumeran interface. Currently no func pointer
1110  *  exists and all implementations are handled in the generic version of
1111  *  this function.
1112  **/
1113 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1114 {
1115 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1116 }
1117 
1118 /**
1119  *  e1000_get_cable_length - Retrieves cable length estimation
1120  *  @hw: pointer to the HW structure
1121  *
1122  *  This function estimates the cable length and stores them in
1123  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1124  *  entry point called by drivers.
1125  **/
1126 s32 e1000_get_cable_length(struct e1000_hw *hw)
1127 {
1128 	if (hw->phy.ops.get_cable_length)
1129 		return hw->phy.ops.get_cable_length(hw);
1130 
1131 	return E1000_SUCCESS;
1132 }
1133 
1134 /**
1135  *  e1000_get_phy_info - Retrieves PHY information from registers
1136  *  @hw: pointer to the HW structure
1137  *
1138  *  This function gets some information from various PHY registers and
1139  *  populates hw->phy values with it. This is a function pointer entry
1140  *  point called by drivers.
1141  **/
1142 s32 e1000_get_phy_info(struct e1000_hw *hw)
1143 {
1144 	if (hw->phy.ops.get_info)
1145 		return hw->phy.ops.get_info(hw);
1146 
1147 	return E1000_SUCCESS;
1148 }
1149 
1150 /**
1151  *  e1000_phy_hw_reset - Hard PHY reset
1152  *  @hw: pointer to the HW structure
1153  *
1154  *  Performs a hard PHY reset. This is a function pointer entry point called
1155  *  by drivers.
1156  **/
1157 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1158 {
1159 	if (hw->phy.ops.reset)
1160 		return hw->phy.ops.reset(hw);
1161 
1162 	return E1000_SUCCESS;
1163 }
1164 
1165 /**
1166  *  e1000_phy_commit - Soft PHY reset
1167  *  @hw: pointer to the HW structure
1168  *
1169  *  Performs a soft PHY reset on those that apply. This is a function pointer
1170  *  entry point called by drivers.
1171  **/
1172 s32 e1000_phy_commit(struct e1000_hw *hw)
1173 {
1174 	if (hw->phy.ops.commit)
1175 		return hw->phy.ops.commit(hw);
1176 
1177 	return E1000_SUCCESS;
1178 }
1179 
1180 /**
1181  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1182  *  @hw: pointer to the HW structure
1183  *  @active: boolean used to enable/disable lplu
1184  *
1185  *  Success returns 0, Failure returns 1
1186  *
1187  *  The low power link up (lplu) state is set to the power management level D0
1188  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1189  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1190  *  is used during Dx states where the power conservation is most important.
1191  *  During driver activity, SmartSpeed should be enabled so performance is
1192  *  maintained.  This is a function pointer entry point called by drivers.
1193  **/
1194 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1195 {
1196 	if (hw->phy.ops.set_d0_lplu_state)
1197 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1198 
1199 	return E1000_SUCCESS;
1200 }
1201 
1202 /**
1203  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1204  *  @hw: pointer to the HW structure
1205  *  @active: boolean used to enable/disable lplu
1206  *
1207  *  Success returns 0, Failure returns 1
1208  *
1209  *  The low power link up (lplu) state is set to the power management level D3
1210  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1211  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1212  *  is used during Dx states where the power conservation is most important.
1213  *  During driver activity, SmartSpeed should be enabled so performance is
1214  *  maintained.  This is a function pointer entry point called by drivers.
1215  **/
1216 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1217 {
1218 	if (hw->phy.ops.set_d3_lplu_state)
1219 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1220 
1221 	return E1000_SUCCESS;
1222 }
1223 
1224 /**
1225  *  e1000_read_mac_addr - Reads MAC address
1226  *  @hw: pointer to the HW structure
1227  *
1228  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1229  *  Currently no func pointer exists and all implementations are handled in the
1230  *  generic version of this function.
1231  **/
1232 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1233 {
1234 	if (hw->mac.ops.read_mac_addr)
1235 		return hw->mac.ops.read_mac_addr(hw);
1236 
1237 	return e1000_read_mac_addr_generic(hw);
1238 }
1239 
1240 /**
1241  *  e1000_read_pba_string - Read device part number string
1242  *  @hw: pointer to the HW structure
1243  *  @pba_num: pointer to device part number
1244  *  @pba_num_size: size of part number buffer
1245  *
1246  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1247  *  the value in pba_num.
1248  *  Currently no func pointer exists and all implementations are handled in the
1249  *  generic version of this function.
1250  **/
1251 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1252 {
1253 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1254 }
1255 
1256 /**
1257  *  e1000_read_pba_length - Read device part number string length
1258  *  @hw: pointer to the HW structure
1259  *  @pba_num_size: size of part number buffer
1260  *
1261  *  Reads the product board assembly (PBA) number length from the EEPROM and
1262  *  stores the value in pba_num.
1263  *  Currently no func pointer exists and all implementations are handled in the
1264  *  generic version of this function.
1265  **/
1266 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1267 {
1268 	return e1000_read_pba_length_generic(hw, pba_num_size);
1269 }
1270 
1271 /**
1272  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  Validates the NVM checksum is correct. This is a function pointer entry
1276  *  point called by drivers.
1277  **/
1278 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1279 {
1280 	if (hw->nvm.ops.validate)
1281 		return hw->nvm.ops.validate(hw);
1282 
1283 	return -E1000_ERR_CONFIG;
1284 }
1285 
1286 /**
1287  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1288  *  @hw: pointer to the HW structure
1289  *
1290  *  Updates the NVM checksum. Currently no func pointer exists and all
1291  *  implementations are handled in the generic version of this function.
1292  **/
1293 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1294 {
1295 	if (hw->nvm.ops.update)
1296 		return hw->nvm.ops.update(hw);
1297 
1298 	return -E1000_ERR_CONFIG;
1299 }
1300 
1301 /**
1302  *  e1000_reload_nvm - Reloads EEPROM
1303  *  @hw: pointer to the HW structure
1304  *
1305  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1306  *  extended control register.
1307  **/
1308 void e1000_reload_nvm(struct e1000_hw *hw)
1309 {
1310 	if (hw->nvm.ops.reload)
1311 		hw->nvm.ops.reload(hw);
1312 }
1313 
1314 /**
1315  *  e1000_read_nvm - Reads NVM (EEPROM)
1316  *  @hw: pointer to the HW structure
1317  *  @offset: the word offset to read
1318  *  @words: number of 16-bit words to read
1319  *  @data: pointer to the properly sized buffer for the data.
1320  *
1321  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1322  *  pointer entry point called by drivers.
1323  **/
1324 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1325 {
1326 	if (hw->nvm.ops.read)
1327 		return hw->nvm.ops.read(hw, offset, words, data);
1328 
1329 	return -E1000_ERR_CONFIG;
1330 }
1331 
1332 /**
1333  *  e1000_write_nvm - Writes to NVM (EEPROM)
1334  *  @hw: pointer to the HW structure
1335  *  @offset: the word offset to read
1336  *  @words: number of 16-bit words to write
1337  *  @data: pointer to the properly sized buffer for the data.
1338  *
1339  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1340  *  pointer entry point called by drivers.
1341  **/
1342 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1343 {
1344 	if (hw->nvm.ops.write)
1345 		return hw->nvm.ops.write(hw, offset, words, data);
1346 
1347 	return E1000_SUCCESS;
1348 }
1349 
1350 /**
1351  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1352  *  @hw: pointer to the HW structure
1353  *  @reg: 32bit register offset
1354  *  @offset: the register to write
1355  *  @data: the value to write.
1356  *
1357  *  Writes the PHY register at offset with the value in data.
1358  *  This is a function pointer entry point called by drivers.
1359  **/
1360 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1361 			      u8 data)
1362 {
1363 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1364 }
1365 
1366 /**
1367  * e1000_power_up_phy - Restores link in case of PHY power down
1368  * @hw: pointer to the HW structure
1369  *
1370  * The phy may be powered down to save power, to turn off link when the
1371  * driver is unloaded, or wake on lan is not enabled (among others).
1372  **/
1373 void e1000_power_up_phy(struct e1000_hw *hw)
1374 {
1375 	if (hw->phy.ops.power_up)
1376 		hw->phy.ops.power_up(hw);
1377 
1378 	e1000_setup_link(hw);
1379 }
1380 
1381 /**
1382  * e1000_power_down_phy - Power down PHY
1383  * @hw: pointer to the HW structure
1384  *
1385  * The phy may be powered down to save power, to turn off link when the
1386  * driver is unloaded, or wake on lan is not enabled (among others).
1387  **/
1388 void e1000_power_down_phy(struct e1000_hw *hw)
1389 {
1390 	if (hw->phy.ops.power_down)
1391 		hw->phy.ops.power_down(hw);
1392 }
1393 
1394 /**
1395  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  Power on the optics and PCS.
1399  **/
1400 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1401 {
1402 	if (hw->mac.ops.power_up_serdes)
1403 		hw->mac.ops.power_up_serdes(hw);
1404 }
1405 
1406 /**
1407  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1408  *  @hw: pointer to the HW structure
1409  *
1410  *  Shutdown the optics and PCS on driver unload.
1411  **/
1412 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1413 {
1414 	if (hw->mac.ops.shutdown_serdes)
1415 		hw->mac.ops.shutdown_serdes(hw);
1416 }
1417 
1418