1 /****************************************************************************** 2 3 Copyright (c) 2001-2008, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_set_mac_type - Sets MAC type 117 * @hw: pointer to the HW structure 118 * 119 * This function sets the mac type of the adapter based on the 120 * device ID stored in the hw structure. 121 * MUST BE FIRST FUNCTION CALLED (explicitly or through 122 * e1000_setup_init_funcs()). 123 **/ 124 s32 e1000_set_mac_type(struct e1000_hw *hw) 125 { 126 struct e1000_mac_info *mac = &hw->mac; 127 s32 ret_val = E1000_SUCCESS; 128 129 DEBUGFUNC("e1000_set_mac_type"); 130 131 switch (hw->device_id) { 132 case E1000_DEV_ID_82542: 133 mac->type = e1000_82542; 134 break; 135 case E1000_DEV_ID_82543GC_FIBER: 136 case E1000_DEV_ID_82543GC_COPPER: 137 mac->type = e1000_82543; 138 break; 139 case E1000_DEV_ID_82544EI_COPPER: 140 case E1000_DEV_ID_82544EI_FIBER: 141 case E1000_DEV_ID_82544GC_COPPER: 142 case E1000_DEV_ID_82544GC_LOM: 143 mac->type = e1000_82544; 144 break; 145 case E1000_DEV_ID_82540EM: 146 case E1000_DEV_ID_82540EM_LOM: 147 case E1000_DEV_ID_82540EP: 148 case E1000_DEV_ID_82540EP_LOM: 149 case E1000_DEV_ID_82540EP_LP: 150 mac->type = e1000_82540; 151 break; 152 case E1000_DEV_ID_82545EM_COPPER: 153 case E1000_DEV_ID_82545EM_FIBER: 154 mac->type = e1000_82545; 155 break; 156 case E1000_DEV_ID_82545GM_COPPER: 157 case E1000_DEV_ID_82545GM_FIBER: 158 case E1000_DEV_ID_82545GM_SERDES: 159 mac->type = e1000_82545_rev_3; 160 break; 161 case E1000_DEV_ID_82546EB_COPPER: 162 case E1000_DEV_ID_82546EB_FIBER: 163 case E1000_DEV_ID_82546EB_QUAD_COPPER: 164 mac->type = e1000_82546; 165 break; 166 case E1000_DEV_ID_82546GB_COPPER: 167 case E1000_DEV_ID_82546GB_FIBER: 168 case E1000_DEV_ID_82546GB_SERDES: 169 case E1000_DEV_ID_82546GB_PCIE: 170 case E1000_DEV_ID_82546GB_QUAD_COPPER: 171 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 172 mac->type = e1000_82546_rev_3; 173 break; 174 case E1000_DEV_ID_82541EI: 175 case E1000_DEV_ID_82541EI_MOBILE: 176 case E1000_DEV_ID_82541ER_LOM: 177 mac->type = e1000_82541; 178 break; 179 case E1000_DEV_ID_82541ER: 180 case E1000_DEV_ID_82541GI: 181 case E1000_DEV_ID_82541GI_LF: 182 case E1000_DEV_ID_82541GI_MOBILE: 183 mac->type = e1000_82541_rev_2; 184 break; 185 case E1000_DEV_ID_82547EI: 186 case E1000_DEV_ID_82547EI_MOBILE: 187 mac->type = e1000_82547; 188 break; 189 case E1000_DEV_ID_82547GI: 190 mac->type = e1000_82547_rev_2; 191 break; 192 case E1000_DEV_ID_82571EB_COPPER: 193 case E1000_DEV_ID_82571EB_FIBER: 194 case E1000_DEV_ID_82571EB_SERDES: 195 case E1000_DEV_ID_82571EB_SERDES_DUAL: 196 case E1000_DEV_ID_82571EB_SERDES_QUAD: 197 case E1000_DEV_ID_82571EB_QUAD_COPPER: 198 case E1000_DEV_ID_82571PT_QUAD_COPPER: 199 case E1000_DEV_ID_82571EB_QUAD_FIBER: 200 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 201 mac->type = e1000_82571; 202 break; 203 case E1000_DEV_ID_82572EI: 204 case E1000_DEV_ID_82572EI_COPPER: 205 case E1000_DEV_ID_82572EI_FIBER: 206 case E1000_DEV_ID_82572EI_SERDES: 207 mac->type = e1000_82572; 208 break; 209 case E1000_DEV_ID_82573E: 210 case E1000_DEV_ID_82573E_IAMT: 211 case E1000_DEV_ID_82573L: 212 mac->type = e1000_82573; 213 break; 214 case E1000_DEV_ID_82574L: 215 mac->type = e1000_82574; 216 break; 217 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 218 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 219 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 220 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 221 mac->type = e1000_80003es2lan; 222 break; 223 case E1000_DEV_ID_ICH8_IFE: 224 case E1000_DEV_ID_ICH8_IFE_GT: 225 case E1000_DEV_ID_ICH8_IFE_G: 226 case E1000_DEV_ID_ICH8_IGP_M: 227 case E1000_DEV_ID_ICH8_IGP_M_AMT: 228 case E1000_DEV_ID_ICH8_IGP_AMT: 229 case E1000_DEV_ID_ICH8_IGP_C: 230 mac->type = e1000_ich8lan; 231 break; 232 case E1000_DEV_ID_ICH9_IFE: 233 case E1000_DEV_ID_ICH9_IFE_GT: 234 case E1000_DEV_ID_ICH9_IFE_G: 235 case E1000_DEV_ID_ICH9_IGP_M: 236 case E1000_DEV_ID_ICH9_IGP_M_AMT: 237 case E1000_DEV_ID_ICH9_IGP_M_V: 238 case E1000_DEV_ID_ICH9_IGP_AMT: 239 case E1000_DEV_ID_ICH9_BM: 240 case E1000_DEV_ID_ICH9_IGP_C: 241 case E1000_DEV_ID_ICH10_R_BM_LM: 242 case E1000_DEV_ID_ICH10_R_BM_LF: 243 case E1000_DEV_ID_ICH10_R_BM_V: 244 mac->type = e1000_ich9lan; 245 break; 246 case E1000_DEV_ID_ICH10_D_BM_LM: 247 case E1000_DEV_ID_ICH10_D_BM_LF: 248 mac->type = e1000_ich10lan; 249 break; 250 case E1000_DEV_ID_82575EB_COPPER: 251 case E1000_DEV_ID_82575EB_FIBER_SERDES: 252 case E1000_DEV_ID_82575GB_QUAD_COPPER: 253 mac->type = e1000_82575; 254 break; 255 case E1000_DEV_ID_82576: 256 case E1000_DEV_ID_82576_FIBER: 257 case E1000_DEV_ID_82576_SERDES: 258 case E1000_DEV_ID_82576_QUAD_COPPER: 259 mac->type = e1000_82576; 260 break; 261 default: 262 /* Should never have loaded on this device */ 263 ret_val = -E1000_ERR_MAC_INIT; 264 break; 265 } 266 267 return ret_val; 268 } 269 270 /** 271 * e1000_setup_init_funcs - Initializes function pointers 272 * @hw: pointer to the HW structure 273 * @init_device: TRUE will initialize the rest of the function pointers 274 * getting the device ready for use. FALSE will only set 275 * MAC type and the function pointers for the other init 276 * functions. Passing FALSE will not generate any hardware 277 * reads or writes. 278 * 279 * This function must be called by a driver in order to use the rest 280 * of the 'shared' code files. Called by drivers only. 281 **/ 282 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 283 { 284 s32 ret_val; 285 286 /* Can't do much good without knowing the MAC type. */ 287 ret_val = e1000_set_mac_type(hw); 288 if (ret_val) { 289 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 290 goto out; 291 } 292 293 if (!hw->hw_addr) { 294 DEBUGOUT("ERROR: Registers not mapped\n"); 295 ret_val = -E1000_ERR_CONFIG; 296 goto out; 297 } 298 299 /* 300 * Init function pointers to generic implementations. We do this first 301 * allowing a driver module to override it afterward. 302 */ 303 e1000_init_mac_ops_generic(hw); 304 e1000_init_phy_ops_generic(hw); 305 e1000_init_nvm_ops_generic(hw); 306 307 /* 308 * Set up the init function pointers. These are functions within the 309 * adapter family file that sets up function pointers for the rest of 310 * the functions in that family. 311 */ 312 switch (hw->mac.type) { 313 case e1000_82542: 314 e1000_init_function_pointers_82542(hw); 315 break; 316 case e1000_82543: 317 case e1000_82544: 318 e1000_init_function_pointers_82543(hw); 319 break; 320 case e1000_82540: 321 case e1000_82545: 322 case e1000_82545_rev_3: 323 case e1000_82546: 324 case e1000_82546_rev_3: 325 e1000_init_function_pointers_82540(hw); 326 break; 327 case e1000_82541: 328 case e1000_82541_rev_2: 329 case e1000_82547: 330 case e1000_82547_rev_2: 331 e1000_init_function_pointers_82541(hw); 332 break; 333 case e1000_82571: 334 case e1000_82572: 335 case e1000_82573: 336 case e1000_82574: 337 e1000_init_function_pointers_82571(hw); 338 break; 339 case e1000_80003es2lan: 340 e1000_init_function_pointers_80003es2lan(hw); 341 break; 342 case e1000_ich8lan: 343 case e1000_ich9lan: 344 case e1000_ich10lan: 345 e1000_init_function_pointers_ich8lan(hw); 346 break; 347 case e1000_82575: 348 case e1000_82576: 349 e1000_init_function_pointers_82575(hw); 350 break; 351 default: 352 DEBUGOUT("Hardware not supported\n"); 353 ret_val = -E1000_ERR_CONFIG; 354 break; 355 } 356 357 /* 358 * Initialize the rest of the function pointers. These require some 359 * register reads/writes in some cases. 360 */ 361 if (!(ret_val) && init_device) { 362 ret_val = e1000_init_mac_params(hw); 363 if (ret_val) 364 goto out; 365 366 ret_val = e1000_init_nvm_params(hw); 367 if (ret_val) 368 goto out; 369 370 ret_val = e1000_init_phy_params(hw); 371 if (ret_val) 372 goto out; 373 374 } 375 376 out: 377 return ret_val; 378 } 379 380 /** 381 * e1000_get_bus_info - Obtain bus information for adapter 382 * @hw: pointer to the HW structure 383 * 384 * This will obtain information about the HW bus for which the 385 * adapter is attached and stores it in the hw structure. This is a 386 * function pointer entry point called by drivers. 387 **/ 388 s32 e1000_get_bus_info(struct e1000_hw *hw) 389 { 390 if (hw->mac.ops.get_bus_info) 391 return hw->mac.ops.get_bus_info(hw); 392 393 return E1000_SUCCESS; 394 } 395 396 /** 397 * e1000_clear_vfta - Clear VLAN filter table 398 * @hw: pointer to the HW structure 399 * 400 * This clears the VLAN filter table on the adapter. This is a function 401 * pointer entry point called by drivers. 402 **/ 403 void e1000_clear_vfta(struct e1000_hw *hw) 404 { 405 if (hw->mac.ops.clear_vfta) 406 hw->mac.ops.clear_vfta(hw); 407 } 408 409 /** 410 * e1000_write_vfta - Write value to VLAN filter table 411 * @hw: pointer to the HW structure 412 * @offset: the 32-bit offset in which to write the value to. 413 * @value: the 32-bit value to write at location offset. 414 * 415 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 416 * table. This is a function pointer entry point called by drivers. 417 **/ 418 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 419 { 420 if (hw->mac.ops.write_vfta) 421 hw->mac.ops.write_vfta(hw, offset, value); 422 } 423 424 /** 425 * e1000_update_mc_addr_list - Update Multicast addresses 426 * @hw: pointer to the HW structure 427 * @mc_addr_list: array of multicast addresses to program 428 * @mc_addr_count: number of multicast addresses to program 429 * @rar_used_count: the first RAR register free to program 430 * @rar_count: total number of supported Receive Address Registers 431 * 432 * Updates the Receive Address Registers and Multicast Table Array. 433 * The caller must have a packed mc_addr_list of multicast addresses. 434 * The parameter rar_count will usually be hw->mac.rar_entry_count 435 * unless there are workarounds that change this. Currently no func pointer 436 * exists and all implementations are handled in the generic version of this 437 * function. 438 **/ 439 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 440 u32 mc_addr_count, u32 rar_used_count, 441 u32 rar_count) 442 { 443 if (hw->mac.ops.update_mc_addr_list) 444 hw->mac.ops.update_mc_addr_list(hw, 445 mc_addr_list, 446 mc_addr_count, 447 rar_used_count, 448 rar_count); 449 } 450 451 /** 452 * e1000_force_mac_fc - Force MAC flow control 453 * @hw: pointer to the HW structure 454 * 455 * Force the MAC's flow control settings. Currently no func pointer exists 456 * and all implementations are handled in the generic version of this 457 * function. 458 **/ 459 s32 e1000_force_mac_fc(struct e1000_hw *hw) 460 { 461 return e1000_force_mac_fc_generic(hw); 462 } 463 464 /** 465 * e1000_check_for_link - Check/Store link connection 466 * @hw: pointer to the HW structure 467 * 468 * This checks the link condition of the adapter and stores the 469 * results in the hw->mac structure. This is a function pointer entry 470 * point called by drivers. 471 **/ 472 s32 e1000_check_for_link(struct e1000_hw *hw) 473 { 474 if (hw->mac.ops.check_for_link) 475 return hw->mac.ops.check_for_link(hw); 476 477 return -E1000_ERR_CONFIG; 478 } 479 480 /** 481 * e1000_check_mng_mode - Check management mode 482 * @hw: pointer to the HW structure 483 * 484 * This checks if the adapter has manageability enabled. 485 * This is a function pointer entry point called by drivers. 486 **/ 487 bool e1000_check_mng_mode(struct e1000_hw *hw) 488 { 489 if (hw->mac.ops.check_mng_mode) 490 return hw->mac.ops.check_mng_mode(hw); 491 492 return FALSE; 493 } 494 495 /** 496 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 497 * @hw: pointer to the HW structure 498 * @buffer: pointer to the host interface 499 * @length: size of the buffer 500 * 501 * Writes the DHCP information to the host interface. 502 **/ 503 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 504 { 505 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 506 } 507 508 /** 509 * e1000_reset_hw - Reset hardware 510 * @hw: pointer to the HW structure 511 * 512 * This resets the hardware into a known state. This is a function pointer 513 * entry point called by drivers. 514 **/ 515 s32 e1000_reset_hw(struct e1000_hw *hw) 516 { 517 if (hw->mac.ops.reset_hw) 518 return hw->mac.ops.reset_hw(hw); 519 520 return -E1000_ERR_CONFIG; 521 } 522 523 /** 524 * e1000_init_hw - Initialize hardware 525 * @hw: pointer to the HW structure 526 * 527 * This inits the hardware readying it for operation. This is a function 528 * pointer entry point called by drivers. 529 **/ 530 s32 e1000_init_hw(struct e1000_hw *hw) 531 { 532 if (hw->mac.ops.init_hw) 533 return hw->mac.ops.init_hw(hw); 534 535 return -E1000_ERR_CONFIG; 536 } 537 538 /** 539 * e1000_setup_link - Configures link and flow control 540 * @hw: pointer to the HW structure 541 * 542 * This configures link and flow control settings for the adapter. This 543 * is a function pointer entry point called by drivers. While modules can 544 * also call this, they probably call their own version of this function. 545 **/ 546 s32 e1000_setup_link(struct e1000_hw *hw) 547 { 548 if (hw->mac.ops.setup_link) 549 return hw->mac.ops.setup_link(hw); 550 551 return -E1000_ERR_CONFIG; 552 } 553 554 /** 555 * e1000_get_speed_and_duplex - Returns current speed and duplex 556 * @hw: pointer to the HW structure 557 * @speed: pointer to a 16-bit value to store the speed 558 * @duplex: pointer to a 16-bit value to store the duplex. 559 * 560 * This returns the speed and duplex of the adapter in the two 'out' 561 * variables passed in. This is a function pointer entry point called 562 * by drivers. 563 **/ 564 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 565 { 566 if (hw->mac.ops.get_link_up_info) 567 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 568 569 return -E1000_ERR_CONFIG; 570 } 571 572 /** 573 * e1000_setup_led - Configures SW controllable LED 574 * @hw: pointer to the HW structure 575 * 576 * This prepares the SW controllable LED for use and saves the current state 577 * of the LED so it can be later restored. This is a function pointer entry 578 * point called by drivers. 579 **/ 580 s32 e1000_setup_led(struct e1000_hw *hw) 581 { 582 if (hw->mac.ops.setup_led) 583 return hw->mac.ops.setup_led(hw); 584 585 return E1000_SUCCESS; 586 } 587 588 /** 589 * e1000_cleanup_led - Restores SW controllable LED 590 * @hw: pointer to the HW structure 591 * 592 * This restores the SW controllable LED to the value saved off by 593 * e1000_setup_led. This is a function pointer entry point called by drivers. 594 **/ 595 s32 e1000_cleanup_led(struct e1000_hw *hw) 596 { 597 if (hw->mac.ops.cleanup_led) 598 return hw->mac.ops.cleanup_led(hw); 599 600 return E1000_SUCCESS; 601 } 602 603 /** 604 * e1000_blink_led - Blink SW controllable LED 605 * @hw: pointer to the HW structure 606 * 607 * This starts the adapter LED blinking. Request the LED to be setup first 608 * and cleaned up after. This is a function pointer entry point called by 609 * drivers. 610 **/ 611 s32 e1000_blink_led(struct e1000_hw *hw) 612 { 613 if (hw->mac.ops.blink_led) 614 return hw->mac.ops.blink_led(hw); 615 616 return E1000_SUCCESS; 617 } 618 619 /** 620 * e1000_led_on - Turn on SW controllable LED 621 * @hw: pointer to the HW structure 622 * 623 * Turns the SW defined LED on. This is a function pointer entry point 624 * called by drivers. 625 **/ 626 s32 e1000_led_on(struct e1000_hw *hw) 627 { 628 if (hw->mac.ops.led_on) 629 return hw->mac.ops.led_on(hw); 630 631 return E1000_SUCCESS; 632 } 633 634 /** 635 * e1000_led_off - Turn off SW controllable LED 636 * @hw: pointer to the HW structure 637 * 638 * Turns the SW defined LED off. This is a function pointer entry point 639 * called by drivers. 640 **/ 641 s32 e1000_led_off(struct e1000_hw *hw) 642 { 643 if (hw->mac.ops.led_off) 644 return hw->mac.ops.led_off(hw); 645 646 return E1000_SUCCESS; 647 } 648 649 /** 650 * e1000_reset_adaptive - Reset adaptive IFS 651 * @hw: pointer to the HW structure 652 * 653 * Resets the adaptive IFS. Currently no func pointer exists and all 654 * implementations are handled in the generic version of this function. 655 **/ 656 void e1000_reset_adaptive(struct e1000_hw *hw) 657 { 658 e1000_reset_adaptive_generic(hw); 659 } 660 661 /** 662 * e1000_update_adaptive - Update adaptive IFS 663 * @hw: pointer to the HW structure 664 * 665 * Updates adapter IFS. Currently no func pointer exists and all 666 * implementations are handled in the generic version of this function. 667 **/ 668 void e1000_update_adaptive(struct e1000_hw *hw) 669 { 670 e1000_update_adaptive_generic(hw); 671 } 672 673 /** 674 * e1000_disable_pcie_master - Disable PCI-Express master access 675 * @hw: pointer to the HW structure 676 * 677 * Disables PCI-Express master access and verifies there are no pending 678 * requests. Currently no func pointer exists and all implementations are 679 * handled in the generic version of this function. 680 **/ 681 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 682 { 683 return e1000_disable_pcie_master_generic(hw); 684 } 685 686 /** 687 * e1000_config_collision_dist - Configure collision distance 688 * @hw: pointer to the HW structure 689 * 690 * Configures the collision distance to the default value and is used 691 * during link setup. 692 **/ 693 void e1000_config_collision_dist(struct e1000_hw *hw) 694 { 695 if (hw->mac.ops.config_collision_dist) 696 hw->mac.ops.config_collision_dist(hw); 697 } 698 699 /** 700 * e1000_rar_set - Sets a receive address register 701 * @hw: pointer to the HW structure 702 * @addr: address to set the RAR to 703 * @index: the RAR to set 704 * 705 * Sets a Receive Address Register (RAR) to the specified address. 706 **/ 707 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 708 { 709 if (hw->mac.ops.rar_set) 710 hw->mac.ops.rar_set(hw, addr, index); 711 } 712 713 /** 714 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 715 * @hw: pointer to the HW structure 716 * 717 * Ensures that the MDI/MDIX SW state is valid. 718 **/ 719 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 720 { 721 if (hw->mac.ops.validate_mdi_setting) 722 return hw->mac.ops.validate_mdi_setting(hw); 723 724 return E1000_SUCCESS; 725 } 726 727 /** 728 * e1000_mta_set - Sets multicast table bit 729 * @hw: pointer to the HW structure 730 * @hash_value: Multicast hash value. 731 * 732 * This sets the bit in the multicast table corresponding to the 733 * hash value. This is a function pointer entry point called by drivers. 734 **/ 735 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) 736 { 737 if (hw->mac.ops.mta_set) 738 hw->mac.ops.mta_set(hw, hash_value); 739 } 740 741 /** 742 * e1000_hash_mc_addr - Determines address location in multicast table 743 * @hw: pointer to the HW structure 744 * @mc_addr: Multicast address to hash. 745 * 746 * This hashes an address to determine its location in the multicast 747 * table. Currently no func pointer exists and all implementations 748 * are handled in the generic version of this function. 749 **/ 750 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 751 { 752 return e1000_hash_mc_addr_generic(hw, mc_addr); 753 } 754 755 /** 756 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 757 * @hw: pointer to the HW structure 758 * 759 * Enables packet filtering on transmit packets if manageability is enabled 760 * and host interface is enabled. 761 * Currently no func pointer exists and all implementations are handled in the 762 * generic version of this function. 763 **/ 764 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 765 { 766 return e1000_enable_tx_pkt_filtering_generic(hw); 767 } 768 769 /** 770 * e1000_mng_host_if_write - Writes to the manageability host interface 771 * @hw: pointer to the HW structure 772 * @buffer: pointer to the host interface buffer 773 * @length: size of the buffer 774 * @offset: location in the buffer to write to 775 * @sum: sum of the data (not checksum) 776 * 777 * This function writes the buffer content at the offset given on the host if. 778 * It also does alignment considerations to do the writes in most efficient 779 * way. Also fills up the sum of the buffer in *buffer parameter. 780 **/ 781 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 782 u16 offset, u8 *sum) 783 { 784 if (hw->mac.ops.mng_host_if_write) 785 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 786 offset, sum); 787 788 return E1000_NOT_IMPLEMENTED; 789 } 790 791 /** 792 * e1000_mng_write_cmd_header - Writes manageability command header 793 * @hw: pointer to the HW structure 794 * @hdr: pointer to the host interface command header 795 * 796 * Writes the command header after does the checksum calculation. 797 **/ 798 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 799 struct e1000_host_mng_command_header *hdr) 800 { 801 if (hw->mac.ops.mng_write_cmd_header) 802 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 803 804 return E1000_NOT_IMPLEMENTED; 805 } 806 807 /** 808 * e1000_mng_enable_host_if - Checks host interface is enabled 809 * @hw: pointer to the HW structure 810 * 811 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 812 * 813 * This function checks whether the HOST IF is enabled for command operation 814 * and also checks whether the previous command is completed. It busy waits 815 * in case of previous command is not completed. 816 **/ 817 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 818 { 819 if (hw->mac.ops.mng_enable_host_if) 820 return hw->mac.ops.mng_enable_host_if(hw); 821 822 return E1000_NOT_IMPLEMENTED; 823 } 824 825 /** 826 * e1000_wait_autoneg - Waits for autonegotiation completion 827 * @hw: pointer to the HW structure 828 * 829 * Waits for autoneg to complete. Currently no func pointer exists and all 830 * implementations are handled in the generic version of this function. 831 **/ 832 s32 e1000_wait_autoneg(struct e1000_hw *hw) 833 { 834 if (hw->mac.ops.wait_autoneg) 835 return hw->mac.ops.wait_autoneg(hw); 836 837 return E1000_SUCCESS; 838 } 839 840 /** 841 * e1000_check_reset_block - Verifies PHY can be reset 842 * @hw: pointer to the HW structure 843 * 844 * Checks if the PHY is in a state that can be reset or if manageability 845 * has it tied up. This is a function pointer entry point called by drivers. 846 **/ 847 s32 e1000_check_reset_block(struct e1000_hw *hw) 848 { 849 if (hw->phy.ops.check_reset_block) 850 return hw->phy.ops.check_reset_block(hw); 851 852 return E1000_SUCCESS; 853 } 854 855 /** 856 * e1000_read_phy_reg - Reads PHY register 857 * @hw: pointer to the HW structure 858 * @offset: the register to read 859 * @data: the buffer to store the 16-bit read. 860 * 861 * Reads the PHY register and returns the value in data. 862 * This is a function pointer entry point called by drivers. 863 **/ 864 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 865 { 866 if (hw->phy.ops.read_reg) 867 return hw->phy.ops.read_reg(hw, offset, data); 868 869 return E1000_SUCCESS; 870 } 871 872 /** 873 * e1000_write_phy_reg - Writes PHY register 874 * @hw: pointer to the HW structure 875 * @offset: the register to write 876 * @data: the value to write. 877 * 878 * Writes the PHY register at offset with the value in data. 879 * This is a function pointer entry point called by drivers. 880 **/ 881 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 882 { 883 if (hw->phy.ops.write_reg) 884 return hw->phy.ops.write_reg(hw, offset, data); 885 886 return E1000_SUCCESS; 887 } 888 889 /** 890 * e1000_release_phy - Generic release PHY 891 * @hw: pointer to the HW structure 892 * 893 * Return if silicon family does not require a semaphore when accessing the 894 * PHY. 895 **/ 896 void e1000_release_phy(struct e1000_hw *hw) 897 { 898 if (hw->phy.ops.release) 899 hw->phy.ops.release(hw); 900 } 901 902 /** 903 * e1000_acquire_phy - Generic acquire PHY 904 * @hw: pointer to the HW structure 905 * 906 * Return success if silicon family does not require a semaphore when 907 * accessing the PHY. 908 **/ 909 s32 e1000_acquire_phy(struct e1000_hw *hw) 910 { 911 if (hw->phy.ops.acquire) 912 return hw->phy.ops.acquire(hw); 913 914 return E1000_SUCCESS; 915 } 916 917 /** 918 * e1000_cfg_on_link_up - Configure PHY upon link up 919 * @hw: pointer to the HW structure 920 **/ 921 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 922 { 923 if (hw->phy.ops.cfg_on_link_up) 924 return hw->phy.ops.cfg_on_link_up(hw); 925 926 return E1000_SUCCESS; 927 } 928 929 /** 930 * e1000_read_kmrn_reg - Reads register using Kumeran interface 931 * @hw: pointer to the HW structure 932 * @offset: the register to read 933 * @data: the location to store the 16-bit value read. 934 * 935 * Reads a register out of the Kumeran interface. Currently no func pointer 936 * exists and all implementations are handled in the generic version of 937 * this function. 938 **/ 939 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 940 { 941 return e1000_read_kmrn_reg_generic(hw, offset, data); 942 } 943 944 /** 945 * e1000_write_kmrn_reg - Writes register using Kumeran interface 946 * @hw: pointer to the HW structure 947 * @offset: the register to write 948 * @data: the value to write. 949 * 950 * Writes a register to the Kumeran interface. Currently no func pointer 951 * exists and all implementations are handled in the generic version of 952 * this function. 953 **/ 954 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 955 { 956 return e1000_write_kmrn_reg_generic(hw, offset, data); 957 } 958 959 /** 960 * e1000_get_cable_length - Retrieves cable length estimation 961 * @hw: pointer to the HW structure 962 * 963 * This function estimates the cable length and stores them in 964 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 965 * entry point called by drivers. 966 **/ 967 s32 e1000_get_cable_length(struct e1000_hw *hw) 968 { 969 if (hw->phy.ops.get_cable_length) 970 return hw->phy.ops.get_cable_length(hw); 971 972 return E1000_SUCCESS; 973 } 974 975 /** 976 * e1000_get_phy_info - Retrieves PHY information from registers 977 * @hw: pointer to the HW structure 978 * 979 * This function gets some information from various PHY registers and 980 * populates hw->phy values with it. This is a function pointer entry 981 * point called by drivers. 982 **/ 983 s32 e1000_get_phy_info(struct e1000_hw *hw) 984 { 985 if (hw->phy.ops.get_info) 986 return hw->phy.ops.get_info(hw); 987 988 return E1000_SUCCESS; 989 } 990 991 /** 992 * e1000_phy_hw_reset - Hard PHY reset 993 * @hw: pointer to the HW structure 994 * 995 * Performs a hard PHY reset. This is a function pointer entry point called 996 * by drivers. 997 **/ 998 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 999 { 1000 if (hw->phy.ops.reset) 1001 return hw->phy.ops.reset(hw); 1002 1003 return E1000_SUCCESS; 1004 } 1005 1006 /** 1007 * e1000_phy_commit - Soft PHY reset 1008 * @hw: pointer to the HW structure 1009 * 1010 * Performs a soft PHY reset on those that apply. This is a function pointer 1011 * entry point called by drivers. 1012 **/ 1013 s32 e1000_phy_commit(struct e1000_hw *hw) 1014 { 1015 if (hw->phy.ops.commit) 1016 return hw->phy.ops.commit(hw); 1017 1018 return E1000_SUCCESS; 1019 } 1020 1021 /** 1022 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1023 * @hw: pointer to the HW structure 1024 * @active: boolean used to enable/disable lplu 1025 * 1026 * Success returns 0, Failure returns 1 1027 * 1028 * The low power link up (lplu) state is set to the power management level D0 1029 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1030 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1031 * is used during Dx states where the power conservation is most important. 1032 * During driver activity, SmartSpeed should be enabled so performance is 1033 * maintained. This is a function pointer entry point called by drivers. 1034 **/ 1035 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1036 { 1037 if (hw->phy.ops.set_d0_lplu_state) 1038 return hw->phy.ops.set_d0_lplu_state(hw, active); 1039 1040 return E1000_SUCCESS; 1041 } 1042 1043 /** 1044 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1045 * @hw: pointer to the HW structure 1046 * @active: boolean used to enable/disable lplu 1047 * 1048 * Success returns 0, Failure returns 1 1049 * 1050 * The low power link up (lplu) state is set to the power management level D3 1051 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1052 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1053 * is used during Dx states where the power conservation is most important. 1054 * During driver activity, SmartSpeed should be enabled so performance is 1055 * maintained. This is a function pointer entry point called by drivers. 1056 **/ 1057 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1058 { 1059 if (hw->phy.ops.set_d3_lplu_state) 1060 return hw->phy.ops.set_d3_lplu_state(hw, active); 1061 1062 return E1000_SUCCESS; 1063 } 1064 1065 /** 1066 * e1000_read_mac_addr - Reads MAC address 1067 * @hw: pointer to the HW structure 1068 * 1069 * Reads the MAC address out of the adapter and stores it in the HW structure. 1070 * Currently no func pointer exists and all implementations are handled in the 1071 * generic version of this function. 1072 **/ 1073 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1074 { 1075 if (hw->mac.ops.read_mac_addr) 1076 return hw->mac.ops.read_mac_addr(hw); 1077 1078 return e1000_read_mac_addr_generic(hw); 1079 } 1080 1081 /** 1082 * e1000_read_pba_num - Read device part number 1083 * @hw: pointer to the HW structure 1084 * @pba_num: pointer to device part number 1085 * 1086 * Reads the product board assembly (PBA) number from the EEPROM and stores 1087 * the value in pba_num. 1088 * Currently no func pointer exists and all implementations are handled in the 1089 * generic version of this function. 1090 **/ 1091 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1092 { 1093 return e1000_read_pba_num_generic(hw, pba_num); 1094 } 1095 1096 /** 1097 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1098 * @hw: pointer to the HW structure 1099 * 1100 * Validates the NVM checksum is correct. This is a function pointer entry 1101 * point called by drivers. 1102 **/ 1103 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1104 { 1105 if (hw->nvm.ops.validate) 1106 return hw->nvm.ops.validate(hw); 1107 1108 return -E1000_ERR_CONFIG; 1109 } 1110 1111 /** 1112 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1113 * @hw: pointer to the HW structure 1114 * 1115 * Updates the NVM checksum. Currently no func pointer exists and all 1116 * implementations are handled in the generic version of this function. 1117 **/ 1118 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1119 { 1120 if (hw->nvm.ops.update) 1121 return hw->nvm.ops.update(hw); 1122 1123 return -E1000_ERR_CONFIG; 1124 } 1125 1126 /** 1127 * e1000_reload_nvm - Reloads EEPROM 1128 * @hw: pointer to the HW structure 1129 * 1130 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1131 * extended control register. 1132 **/ 1133 void e1000_reload_nvm(struct e1000_hw *hw) 1134 { 1135 if (hw->nvm.ops.reload) 1136 hw->nvm.ops.reload(hw); 1137 } 1138 1139 /** 1140 * e1000_read_nvm - Reads NVM (EEPROM) 1141 * @hw: pointer to the HW structure 1142 * @offset: the word offset to read 1143 * @words: number of 16-bit words to read 1144 * @data: pointer to the properly sized buffer for the data. 1145 * 1146 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1147 * pointer entry point called by drivers. 1148 **/ 1149 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1150 { 1151 if (hw->nvm.ops.read) 1152 return hw->nvm.ops.read(hw, offset, words, data); 1153 1154 return -E1000_ERR_CONFIG; 1155 } 1156 1157 /** 1158 * e1000_write_nvm - Writes to NVM (EEPROM) 1159 * @hw: pointer to the HW structure 1160 * @offset: the word offset to read 1161 * @words: number of 16-bit words to write 1162 * @data: pointer to the properly sized buffer for the data. 1163 * 1164 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1165 * pointer entry point called by drivers. 1166 **/ 1167 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1168 { 1169 if (hw->nvm.ops.write) 1170 return hw->nvm.ops.write(hw, offset, words, data); 1171 1172 return E1000_SUCCESS; 1173 } 1174 1175 /** 1176 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1177 * @hw: pointer to the HW structure 1178 * @reg: 32bit register offset 1179 * @offset: the register to write 1180 * @data: the value to write. 1181 * 1182 * Writes the PHY register at offset with the value in data. 1183 * This is a function pointer entry point called by drivers. 1184 **/ 1185 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1186 u8 data) 1187 { 1188 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1189 } 1190 1191 /** 1192 * e1000_power_up_phy - Restores link in case of PHY power down 1193 * @hw: pointer to the HW structure 1194 * 1195 * The phy may be powered down to save power, to turn off link when the 1196 * driver is unloaded, or wake on lan is not enabled (among others). 1197 **/ 1198 void e1000_power_up_phy(struct e1000_hw *hw) 1199 { 1200 if (hw->phy.ops.power_up) 1201 hw->phy.ops.power_up(hw); 1202 1203 e1000_setup_link(hw); 1204 } 1205 1206 /** 1207 * e1000_power_down_phy - Power down PHY 1208 * @hw: pointer to the HW structure 1209 * 1210 * The phy may be powered down to save power, to turn off link when the 1211 * driver is unloaded, or wake on lan is not enabled (among others). 1212 **/ 1213 void e1000_power_down_phy(struct e1000_hw *hw) 1214 { 1215 if (hw->phy.ops.power_down) 1216 hw->phy.ops.power_down(hw); 1217 } 1218 1219 /** 1220 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1221 * @hw: pointer to the HW structure 1222 * 1223 * Shutdown the optics and PCS on driver unload. 1224 **/ 1225 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1226 { 1227 if (hw->mac.ops.shutdown_serdes) 1228 hw->mac.ops.shutdown_serdes(hw); 1229 } 1230 1231