1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 case E1000_DEV_ID_PCH_I218_LM2: 297 case E1000_DEV_ID_PCH_I218_V2: 298 case E1000_DEV_ID_PCH_I218_LM3: 299 case E1000_DEV_ID_PCH_I218_V3: 300 mac->type = e1000_pch_lpt; 301 break; 302 case E1000_DEV_ID_PCH_SPT_I219_LM: 303 case E1000_DEV_ID_PCH_SPT_I219_V: 304 case E1000_DEV_ID_PCH_SPT_I219_LM2: 305 case E1000_DEV_ID_PCH_SPT_I219_V2: 306 case E1000_DEV_ID_PCH_LBG_I219_LM3: 307 case E1000_DEV_ID_PCH_SPT_I219_LM4: 308 case E1000_DEV_ID_PCH_SPT_I219_V4: 309 case E1000_DEV_ID_PCH_SPT_I219_LM5: 310 case E1000_DEV_ID_PCH_SPT_I219_V5: 311 mac->type = e1000_pch_spt; 312 break; 313 case E1000_DEV_ID_82575EB_COPPER: 314 case E1000_DEV_ID_82575EB_FIBER_SERDES: 315 case E1000_DEV_ID_82575GB_QUAD_COPPER: 316 mac->type = e1000_82575; 317 break; 318 case E1000_DEV_ID_82576: 319 case E1000_DEV_ID_82576_FIBER: 320 case E1000_DEV_ID_82576_SERDES: 321 case E1000_DEV_ID_82576_QUAD_COPPER: 322 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 323 case E1000_DEV_ID_82576_NS: 324 case E1000_DEV_ID_82576_NS_SERDES: 325 case E1000_DEV_ID_82576_SERDES_QUAD: 326 mac->type = e1000_82576; 327 break; 328 case E1000_DEV_ID_82580_COPPER: 329 case E1000_DEV_ID_82580_FIBER: 330 case E1000_DEV_ID_82580_SERDES: 331 case E1000_DEV_ID_82580_SGMII: 332 case E1000_DEV_ID_82580_COPPER_DUAL: 333 case E1000_DEV_ID_82580_QUAD_FIBER: 334 case E1000_DEV_ID_DH89XXCC_SGMII: 335 case E1000_DEV_ID_DH89XXCC_SERDES: 336 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 337 case E1000_DEV_ID_DH89XXCC_SFP: 338 mac->type = e1000_82580; 339 break; 340 case E1000_DEV_ID_I350_COPPER: 341 case E1000_DEV_ID_I350_FIBER: 342 case E1000_DEV_ID_I350_SERDES: 343 case E1000_DEV_ID_I350_SGMII: 344 case E1000_DEV_ID_I350_DA4: 345 mac->type = e1000_i350; 346 break; 347 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 348 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 349 case E1000_DEV_ID_I210_COPPER: 350 case E1000_DEV_ID_I210_COPPER_OEM1: 351 case E1000_DEV_ID_I210_COPPER_IT: 352 case E1000_DEV_ID_I210_FIBER: 353 case E1000_DEV_ID_I210_SERDES: 354 case E1000_DEV_ID_I210_SGMII: 355 mac->type = e1000_i210; 356 break; 357 case E1000_DEV_ID_I211_COPPER: 358 mac->type = e1000_i211; 359 break; 360 case E1000_DEV_ID_82576_VF: 361 case E1000_DEV_ID_82576_VF_HV: 362 mac->type = e1000_vfadapt; 363 break; 364 case E1000_DEV_ID_I350_VF: 365 case E1000_DEV_ID_I350_VF_HV: 366 mac->type = e1000_vfadapt_i350; 367 break; 368 369 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 370 case E1000_DEV_ID_I354_SGMII: 371 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 372 mac->type = e1000_i354; 373 break; 374 default: 375 /* Should never have loaded on this device */ 376 ret_val = -E1000_ERR_MAC_INIT; 377 break; 378 } 379 380 return ret_val; 381 } 382 383 /** 384 * e1000_setup_init_funcs - Initializes function pointers 385 * @hw: pointer to the HW structure 386 * @init_device: TRUE will initialize the rest of the function pointers 387 * getting the device ready for use. FALSE will only set 388 * MAC type and the function pointers for the other init 389 * functions. Passing FALSE will not generate any hardware 390 * reads or writes. 391 * 392 * This function must be called by a driver in order to use the rest 393 * of the 'shared' code files. Called by drivers only. 394 **/ 395 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 396 { 397 s32 ret_val; 398 399 /* Can't do much good without knowing the MAC type. */ 400 ret_val = e1000_set_mac_type(hw); 401 if (ret_val) { 402 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 403 goto out; 404 } 405 406 if (!hw->hw_addr) { 407 DEBUGOUT("ERROR: Registers not mapped\n"); 408 ret_val = -E1000_ERR_CONFIG; 409 goto out; 410 } 411 412 /* 413 * Init function pointers to generic implementations. We do this first 414 * allowing a driver module to override it afterward. 415 */ 416 e1000_init_mac_ops_generic(hw); 417 e1000_init_phy_ops_generic(hw); 418 e1000_init_nvm_ops_generic(hw); 419 e1000_init_mbx_ops_generic(hw); 420 421 /* 422 * Set up the init function pointers. These are functions within the 423 * adapter family file that sets up function pointers for the rest of 424 * the functions in that family. 425 */ 426 switch (hw->mac.type) { 427 case e1000_82542: 428 e1000_init_function_pointers_82542(hw); 429 break; 430 case e1000_82543: 431 case e1000_82544: 432 e1000_init_function_pointers_82543(hw); 433 break; 434 case e1000_82540: 435 case e1000_82545: 436 case e1000_82545_rev_3: 437 case e1000_82546: 438 case e1000_82546_rev_3: 439 e1000_init_function_pointers_82540(hw); 440 break; 441 case e1000_82541: 442 case e1000_82541_rev_2: 443 case e1000_82547: 444 case e1000_82547_rev_2: 445 e1000_init_function_pointers_82541(hw); 446 break; 447 case e1000_82571: 448 case e1000_82572: 449 case e1000_82573: 450 case e1000_82574: 451 case e1000_82583: 452 e1000_init_function_pointers_82571(hw); 453 break; 454 case e1000_80003es2lan: 455 e1000_init_function_pointers_80003es2lan(hw); 456 break; 457 case e1000_ich8lan: 458 case e1000_ich9lan: 459 case e1000_ich10lan: 460 case e1000_pchlan: 461 case e1000_pch2lan: 462 case e1000_pch_lpt: 463 case e1000_pch_spt: 464 e1000_init_function_pointers_ich8lan(hw); 465 break; 466 case e1000_82575: 467 case e1000_82576: 468 case e1000_82580: 469 case e1000_i350: 470 case e1000_i354: 471 e1000_init_function_pointers_82575(hw); 472 break; 473 case e1000_i210: 474 case e1000_i211: 475 e1000_init_function_pointers_i210(hw); 476 break; 477 case e1000_vfadapt: 478 e1000_init_function_pointers_vf(hw); 479 break; 480 case e1000_vfadapt_i350: 481 e1000_init_function_pointers_vf(hw); 482 break; 483 default: 484 DEBUGOUT("Hardware not supported\n"); 485 ret_val = -E1000_ERR_CONFIG; 486 break; 487 } 488 489 /* 490 * Initialize the rest of the function pointers. These require some 491 * register reads/writes in some cases. 492 */ 493 if (!(ret_val) && init_device) { 494 ret_val = e1000_init_mac_params(hw); 495 if (ret_val) 496 goto out; 497 498 ret_val = e1000_init_nvm_params(hw); 499 if (ret_val) 500 goto out; 501 502 ret_val = e1000_init_phy_params(hw); 503 if (ret_val) 504 goto out; 505 506 ret_val = e1000_init_mbx_params(hw); 507 if (ret_val) 508 goto out; 509 } 510 511 out: 512 return ret_val; 513 } 514 515 /** 516 * e1000_get_bus_info - Obtain bus information for adapter 517 * @hw: pointer to the HW structure 518 * 519 * This will obtain information about the HW bus for which the 520 * adapter is attached and stores it in the hw structure. This is a 521 * function pointer entry point called by drivers. 522 **/ 523 s32 e1000_get_bus_info(struct e1000_hw *hw) 524 { 525 if (hw->mac.ops.get_bus_info) 526 return hw->mac.ops.get_bus_info(hw); 527 528 return E1000_SUCCESS; 529 } 530 531 /** 532 * e1000_clear_vfta - Clear VLAN filter table 533 * @hw: pointer to the HW structure 534 * 535 * This clears the VLAN filter table on the adapter. This is a function 536 * pointer entry point called by drivers. 537 **/ 538 void e1000_clear_vfta(struct e1000_hw *hw) 539 { 540 if (hw->mac.ops.clear_vfta) 541 hw->mac.ops.clear_vfta(hw); 542 } 543 544 /** 545 * e1000_write_vfta - Write value to VLAN filter table 546 * @hw: pointer to the HW structure 547 * @offset: the 32-bit offset in which to write the value to. 548 * @value: the 32-bit value to write at location offset. 549 * 550 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 551 * table. This is a function pointer entry point called by drivers. 552 **/ 553 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 554 { 555 if (hw->mac.ops.write_vfta) 556 hw->mac.ops.write_vfta(hw, offset, value); 557 } 558 559 /** 560 * e1000_update_mc_addr_list - Update Multicast addresses 561 * @hw: pointer to the HW structure 562 * @mc_addr_list: array of multicast addresses to program 563 * @mc_addr_count: number of multicast addresses to program 564 * 565 * Updates the Multicast Table Array. 566 * The caller must have a packed mc_addr_list of multicast addresses. 567 **/ 568 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 569 u32 mc_addr_count) 570 { 571 if (hw->mac.ops.update_mc_addr_list) 572 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 573 mc_addr_count); 574 } 575 576 /** 577 * e1000_force_mac_fc - Force MAC flow control 578 * @hw: pointer to the HW structure 579 * 580 * Force the MAC's flow control settings. Currently no func pointer exists 581 * and all implementations are handled in the generic version of this 582 * function. 583 **/ 584 s32 e1000_force_mac_fc(struct e1000_hw *hw) 585 { 586 return e1000_force_mac_fc_generic(hw); 587 } 588 589 /** 590 * e1000_check_for_link - Check/Store link connection 591 * @hw: pointer to the HW structure 592 * 593 * This checks the link condition of the adapter and stores the 594 * results in the hw->mac structure. This is a function pointer entry 595 * point called by drivers. 596 **/ 597 s32 e1000_check_for_link(struct e1000_hw *hw) 598 { 599 if (hw->mac.ops.check_for_link) 600 return hw->mac.ops.check_for_link(hw); 601 602 return -E1000_ERR_CONFIG; 603 } 604 605 /** 606 * e1000_check_mng_mode - Check management mode 607 * @hw: pointer to the HW structure 608 * 609 * This checks if the adapter has manageability enabled. 610 * This is a function pointer entry point called by drivers. 611 **/ 612 bool e1000_check_mng_mode(struct e1000_hw *hw) 613 { 614 if (hw->mac.ops.check_mng_mode) 615 return hw->mac.ops.check_mng_mode(hw); 616 617 return FALSE; 618 } 619 620 /** 621 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 622 * @hw: pointer to the HW structure 623 * @buffer: pointer to the host interface 624 * @length: size of the buffer 625 * 626 * Writes the DHCP information to the host interface. 627 **/ 628 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 629 { 630 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 631 } 632 633 /** 634 * e1000_reset_hw - Reset hardware 635 * @hw: pointer to the HW structure 636 * 637 * This resets the hardware into a known state. This is a function pointer 638 * entry point called by drivers. 639 **/ 640 s32 e1000_reset_hw(struct e1000_hw *hw) 641 { 642 if (hw->mac.ops.reset_hw) 643 return hw->mac.ops.reset_hw(hw); 644 645 return -E1000_ERR_CONFIG; 646 } 647 648 /** 649 * e1000_init_hw - Initialize hardware 650 * @hw: pointer to the HW structure 651 * 652 * This inits the hardware readying it for operation. This is a function 653 * pointer entry point called by drivers. 654 **/ 655 s32 e1000_init_hw(struct e1000_hw *hw) 656 { 657 if (hw->mac.ops.init_hw) 658 return hw->mac.ops.init_hw(hw); 659 660 return -E1000_ERR_CONFIG; 661 } 662 663 /** 664 * e1000_setup_link - Configures link and flow control 665 * @hw: pointer to the HW structure 666 * 667 * This configures link and flow control settings for the adapter. This 668 * is a function pointer entry point called by drivers. While modules can 669 * also call this, they probably call their own version of this function. 670 **/ 671 s32 e1000_setup_link(struct e1000_hw *hw) 672 { 673 if (hw->mac.ops.setup_link) 674 return hw->mac.ops.setup_link(hw); 675 676 return -E1000_ERR_CONFIG; 677 } 678 679 /** 680 * e1000_get_speed_and_duplex - Returns current speed and duplex 681 * @hw: pointer to the HW structure 682 * @speed: pointer to a 16-bit value to store the speed 683 * @duplex: pointer to a 16-bit value to store the duplex. 684 * 685 * This returns the speed and duplex of the adapter in the two 'out' 686 * variables passed in. This is a function pointer entry point called 687 * by drivers. 688 **/ 689 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 690 { 691 if (hw->mac.ops.get_link_up_info) 692 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 693 694 return -E1000_ERR_CONFIG; 695 } 696 697 /** 698 * e1000_setup_led - Configures SW controllable LED 699 * @hw: pointer to the HW structure 700 * 701 * This prepares the SW controllable LED for use and saves the current state 702 * of the LED so it can be later restored. This is a function pointer entry 703 * point called by drivers. 704 **/ 705 s32 e1000_setup_led(struct e1000_hw *hw) 706 { 707 if (hw->mac.ops.setup_led) 708 return hw->mac.ops.setup_led(hw); 709 710 return E1000_SUCCESS; 711 } 712 713 /** 714 * e1000_cleanup_led - Restores SW controllable LED 715 * @hw: pointer to the HW structure 716 * 717 * This restores the SW controllable LED to the value saved off by 718 * e1000_setup_led. This is a function pointer entry point called by drivers. 719 **/ 720 s32 e1000_cleanup_led(struct e1000_hw *hw) 721 { 722 if (hw->mac.ops.cleanup_led) 723 return hw->mac.ops.cleanup_led(hw); 724 725 return E1000_SUCCESS; 726 } 727 728 /** 729 * e1000_blink_led - Blink SW controllable LED 730 * @hw: pointer to the HW structure 731 * 732 * This starts the adapter LED blinking. Request the LED to be setup first 733 * and cleaned up after. This is a function pointer entry point called by 734 * drivers. 735 **/ 736 s32 e1000_blink_led(struct e1000_hw *hw) 737 { 738 if (hw->mac.ops.blink_led) 739 return hw->mac.ops.blink_led(hw); 740 741 return E1000_SUCCESS; 742 } 743 744 /** 745 * e1000_id_led_init - store LED configurations in SW 746 * @hw: pointer to the HW structure 747 * 748 * Initializes the LED config in SW. This is a function pointer entry point 749 * called by drivers. 750 **/ 751 s32 e1000_id_led_init(struct e1000_hw *hw) 752 { 753 if (hw->mac.ops.id_led_init) 754 return hw->mac.ops.id_led_init(hw); 755 756 return E1000_SUCCESS; 757 } 758 759 /** 760 * e1000_led_on - Turn on SW controllable LED 761 * @hw: pointer to the HW structure 762 * 763 * Turns the SW defined LED on. This is a function pointer entry point 764 * called by drivers. 765 **/ 766 s32 e1000_led_on(struct e1000_hw *hw) 767 { 768 if (hw->mac.ops.led_on) 769 return hw->mac.ops.led_on(hw); 770 771 return E1000_SUCCESS; 772 } 773 774 /** 775 * e1000_led_off - Turn off SW controllable LED 776 * @hw: pointer to the HW structure 777 * 778 * Turns the SW defined LED off. This is a function pointer entry point 779 * called by drivers. 780 **/ 781 s32 e1000_led_off(struct e1000_hw *hw) 782 { 783 if (hw->mac.ops.led_off) 784 return hw->mac.ops.led_off(hw); 785 786 return E1000_SUCCESS; 787 } 788 789 /** 790 * e1000_reset_adaptive - Reset adaptive IFS 791 * @hw: pointer to the HW structure 792 * 793 * Resets the adaptive IFS. Currently no func pointer exists and all 794 * implementations are handled in the generic version of this function. 795 **/ 796 void e1000_reset_adaptive(struct e1000_hw *hw) 797 { 798 e1000_reset_adaptive_generic(hw); 799 } 800 801 /** 802 * e1000_update_adaptive - Update adaptive IFS 803 * @hw: pointer to the HW structure 804 * 805 * Updates adapter IFS. Currently no func pointer exists and all 806 * implementations are handled in the generic version of this function. 807 **/ 808 void e1000_update_adaptive(struct e1000_hw *hw) 809 { 810 e1000_update_adaptive_generic(hw); 811 } 812 813 /** 814 * e1000_disable_pcie_master - Disable PCI-Express master access 815 * @hw: pointer to the HW structure 816 * 817 * Disables PCI-Express master access and verifies there are no pending 818 * requests. Currently no func pointer exists and all implementations are 819 * handled in the generic version of this function. 820 **/ 821 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 822 { 823 return e1000_disable_pcie_master_generic(hw); 824 } 825 826 /** 827 * e1000_config_collision_dist - Configure collision distance 828 * @hw: pointer to the HW structure 829 * 830 * Configures the collision distance to the default value and is used 831 * during link setup. 832 **/ 833 void e1000_config_collision_dist(struct e1000_hw *hw) 834 { 835 if (hw->mac.ops.config_collision_dist) 836 hw->mac.ops.config_collision_dist(hw); 837 } 838 839 /** 840 * e1000_rar_set - Sets a receive address register 841 * @hw: pointer to the HW structure 842 * @addr: address to set the RAR to 843 * @index: the RAR to set 844 * 845 * Sets a Receive Address Register (RAR) to the specified address. 846 **/ 847 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 848 { 849 if (hw->mac.ops.rar_set) 850 return hw->mac.ops.rar_set(hw, addr, index); 851 852 return E1000_SUCCESS; 853 } 854 855 /** 856 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 857 * @hw: pointer to the HW structure 858 * 859 * Ensures that the MDI/MDIX SW state is valid. 860 **/ 861 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 862 { 863 if (hw->mac.ops.validate_mdi_setting) 864 return hw->mac.ops.validate_mdi_setting(hw); 865 866 return E1000_SUCCESS; 867 } 868 869 /** 870 * e1000_hash_mc_addr - Determines address location in multicast table 871 * @hw: pointer to the HW structure 872 * @mc_addr: Multicast address to hash. 873 * 874 * This hashes an address to determine its location in the multicast 875 * table. Currently no func pointer exists and all implementations 876 * are handled in the generic version of this function. 877 **/ 878 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 879 { 880 return e1000_hash_mc_addr_generic(hw, mc_addr); 881 } 882 883 /** 884 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 885 * @hw: pointer to the HW structure 886 * 887 * Enables packet filtering on transmit packets if manageability is enabled 888 * and host interface is enabled. 889 * Currently no func pointer exists and all implementations are handled in the 890 * generic version of this function. 891 **/ 892 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 893 { 894 return e1000_enable_tx_pkt_filtering_generic(hw); 895 } 896 897 /** 898 * e1000_mng_host_if_write - Writes to the manageability host interface 899 * @hw: pointer to the HW structure 900 * @buffer: pointer to the host interface buffer 901 * @length: size of the buffer 902 * @offset: location in the buffer to write to 903 * @sum: sum of the data (not checksum) 904 * 905 * This function writes the buffer content at the offset given on the host if. 906 * It also does alignment considerations to do the writes in most efficient 907 * way. Also fills up the sum of the buffer in *buffer parameter. 908 **/ 909 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 910 u16 offset, u8 *sum) 911 { 912 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 913 } 914 915 /** 916 * e1000_mng_write_cmd_header - Writes manageability command header 917 * @hw: pointer to the HW structure 918 * @hdr: pointer to the host interface command header 919 * 920 * Writes the command header after does the checksum calculation. 921 **/ 922 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 923 struct e1000_host_mng_command_header *hdr) 924 { 925 return e1000_mng_write_cmd_header_generic(hw, hdr); 926 } 927 928 /** 929 * e1000_mng_enable_host_if - Checks host interface is enabled 930 * @hw: pointer to the HW structure 931 * 932 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 933 * 934 * This function checks whether the HOST IF is enabled for command operation 935 * and also checks whether the previous command is completed. It busy waits 936 * in case of previous command is not completed. 937 **/ 938 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 939 { 940 return e1000_mng_enable_host_if_generic(hw); 941 } 942 943 /** 944 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 945 * @hw: pointer to the HW structure 946 * @itr: u32 indicating itr value 947 * 948 * Set the OBFF timer based on the given interrupt rate. 949 **/ 950 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 951 { 952 if (hw->mac.ops.set_obff_timer) 953 return hw->mac.ops.set_obff_timer(hw, itr); 954 955 return E1000_SUCCESS; 956 } 957 958 /** 959 * e1000_check_reset_block - Verifies PHY can be reset 960 * @hw: pointer to the HW structure 961 * 962 * Checks if the PHY is in a state that can be reset or if manageability 963 * has it tied up. This is a function pointer entry point called by drivers. 964 **/ 965 s32 e1000_check_reset_block(struct e1000_hw *hw) 966 { 967 if (hw->phy.ops.check_reset_block) 968 return hw->phy.ops.check_reset_block(hw); 969 970 return E1000_SUCCESS; 971 } 972 973 /** 974 * e1000_read_phy_reg - Reads PHY register 975 * @hw: pointer to the HW structure 976 * @offset: the register to read 977 * @data: the buffer to store the 16-bit read. 978 * 979 * Reads the PHY register and returns the value in data. 980 * This is a function pointer entry point called by drivers. 981 **/ 982 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 983 { 984 if (hw->phy.ops.read_reg) 985 return hw->phy.ops.read_reg(hw, offset, data); 986 987 return E1000_SUCCESS; 988 } 989 990 /** 991 * e1000_write_phy_reg - Writes PHY register 992 * @hw: pointer to the HW structure 993 * @offset: the register to write 994 * @data: the value to write. 995 * 996 * Writes the PHY register at offset with the value in data. 997 * This is a function pointer entry point called by drivers. 998 **/ 999 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1000 { 1001 if (hw->phy.ops.write_reg) 1002 return hw->phy.ops.write_reg(hw, offset, data); 1003 1004 return E1000_SUCCESS; 1005 } 1006 1007 /** 1008 * e1000_release_phy - Generic release PHY 1009 * @hw: pointer to the HW structure 1010 * 1011 * Return if silicon family does not require a semaphore when accessing the 1012 * PHY. 1013 **/ 1014 void e1000_release_phy(struct e1000_hw *hw) 1015 { 1016 if (hw->phy.ops.release) 1017 hw->phy.ops.release(hw); 1018 } 1019 1020 /** 1021 * e1000_acquire_phy - Generic acquire PHY 1022 * @hw: pointer to the HW structure 1023 * 1024 * Return success if silicon family does not require a semaphore when 1025 * accessing the PHY. 1026 **/ 1027 s32 e1000_acquire_phy(struct e1000_hw *hw) 1028 { 1029 if (hw->phy.ops.acquire) 1030 return hw->phy.ops.acquire(hw); 1031 1032 return E1000_SUCCESS; 1033 } 1034 1035 /** 1036 * e1000_cfg_on_link_up - Configure PHY upon link up 1037 * @hw: pointer to the HW structure 1038 **/ 1039 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1040 { 1041 if (hw->phy.ops.cfg_on_link_up) 1042 return hw->phy.ops.cfg_on_link_up(hw); 1043 1044 return E1000_SUCCESS; 1045 } 1046 1047 /** 1048 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1049 * @hw: pointer to the HW structure 1050 * @offset: the register to read 1051 * @data: the location to store the 16-bit value read. 1052 * 1053 * Reads a register out of the Kumeran interface. Currently no func pointer 1054 * exists and all implementations are handled in the generic version of 1055 * this function. 1056 **/ 1057 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1058 { 1059 return e1000_read_kmrn_reg_generic(hw, offset, data); 1060 } 1061 1062 /** 1063 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1064 * @hw: pointer to the HW structure 1065 * @offset: the register to write 1066 * @data: the value to write. 1067 * 1068 * Writes a register to the Kumeran interface. Currently no func pointer 1069 * exists and all implementations are handled in the generic version of 1070 * this function. 1071 **/ 1072 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1073 { 1074 return e1000_write_kmrn_reg_generic(hw, offset, data); 1075 } 1076 1077 /** 1078 * e1000_get_cable_length - Retrieves cable length estimation 1079 * @hw: pointer to the HW structure 1080 * 1081 * This function estimates the cable length and stores them in 1082 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1083 * entry point called by drivers. 1084 **/ 1085 s32 e1000_get_cable_length(struct e1000_hw *hw) 1086 { 1087 if (hw->phy.ops.get_cable_length) 1088 return hw->phy.ops.get_cable_length(hw); 1089 1090 return E1000_SUCCESS; 1091 } 1092 1093 /** 1094 * e1000_get_phy_info - Retrieves PHY information from registers 1095 * @hw: pointer to the HW structure 1096 * 1097 * This function gets some information from various PHY registers and 1098 * populates hw->phy values with it. This is a function pointer entry 1099 * point called by drivers. 1100 **/ 1101 s32 e1000_get_phy_info(struct e1000_hw *hw) 1102 { 1103 if (hw->phy.ops.get_info) 1104 return hw->phy.ops.get_info(hw); 1105 1106 return E1000_SUCCESS; 1107 } 1108 1109 /** 1110 * e1000_phy_hw_reset - Hard PHY reset 1111 * @hw: pointer to the HW structure 1112 * 1113 * Performs a hard PHY reset. This is a function pointer entry point called 1114 * by drivers. 1115 **/ 1116 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1117 { 1118 if (hw->phy.ops.reset) 1119 return hw->phy.ops.reset(hw); 1120 1121 return E1000_SUCCESS; 1122 } 1123 1124 /** 1125 * e1000_phy_commit - Soft PHY reset 1126 * @hw: pointer to the HW structure 1127 * 1128 * Performs a soft PHY reset on those that apply. This is a function pointer 1129 * entry point called by drivers. 1130 **/ 1131 s32 e1000_phy_commit(struct e1000_hw *hw) 1132 { 1133 if (hw->phy.ops.commit) 1134 return hw->phy.ops.commit(hw); 1135 1136 return E1000_SUCCESS; 1137 } 1138 1139 /** 1140 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1141 * @hw: pointer to the HW structure 1142 * @active: boolean used to enable/disable lplu 1143 * 1144 * Success returns 0, Failure returns 1 1145 * 1146 * The low power link up (lplu) state is set to the power management level D0 1147 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1148 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1149 * is used during Dx states where the power conservation is most important. 1150 * During driver activity, SmartSpeed should be enabled so performance is 1151 * maintained. This is a function pointer entry point called by drivers. 1152 **/ 1153 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1154 { 1155 if (hw->phy.ops.set_d0_lplu_state) 1156 return hw->phy.ops.set_d0_lplu_state(hw, active); 1157 1158 return E1000_SUCCESS; 1159 } 1160 1161 /** 1162 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1163 * @hw: pointer to the HW structure 1164 * @active: boolean used to enable/disable lplu 1165 * 1166 * Success returns 0, Failure returns 1 1167 * 1168 * The low power link up (lplu) state is set to the power management level D3 1169 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1170 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1171 * is used during Dx states where the power conservation is most important. 1172 * During driver activity, SmartSpeed should be enabled so performance is 1173 * maintained. This is a function pointer entry point called by drivers. 1174 **/ 1175 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1176 { 1177 if (hw->phy.ops.set_d3_lplu_state) 1178 return hw->phy.ops.set_d3_lplu_state(hw, active); 1179 1180 return E1000_SUCCESS; 1181 } 1182 1183 /** 1184 * e1000_read_mac_addr - Reads MAC address 1185 * @hw: pointer to the HW structure 1186 * 1187 * Reads the MAC address out of the adapter and stores it in the HW structure. 1188 * Currently no func pointer exists and all implementations are handled in the 1189 * generic version of this function. 1190 **/ 1191 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1192 { 1193 if (hw->mac.ops.read_mac_addr) 1194 return hw->mac.ops.read_mac_addr(hw); 1195 1196 return e1000_read_mac_addr_generic(hw); 1197 } 1198 1199 /** 1200 * e1000_read_pba_string - Read device part number string 1201 * @hw: pointer to the HW structure 1202 * @pba_num: pointer to device part number 1203 * @pba_num_size: size of part number buffer 1204 * 1205 * Reads the product board assembly (PBA) number from the EEPROM and stores 1206 * the value in pba_num. 1207 * Currently no func pointer exists and all implementations are handled in the 1208 * generic version of this function. 1209 **/ 1210 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1211 { 1212 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1213 } 1214 1215 /** 1216 * e1000_read_pba_length - Read device part number string length 1217 * @hw: pointer to the HW structure 1218 * @pba_num_size: size of part number buffer 1219 * 1220 * Reads the product board assembly (PBA) number length from the EEPROM and 1221 * stores the value in pba_num. 1222 * Currently no func pointer exists and all implementations are handled in the 1223 * generic version of this function. 1224 **/ 1225 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1226 { 1227 return e1000_read_pba_length_generic(hw, pba_num_size); 1228 } 1229 1230 /** 1231 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1232 * @hw: pointer to the HW structure 1233 * 1234 * Validates the NVM checksum is correct. This is a function pointer entry 1235 * point called by drivers. 1236 **/ 1237 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1238 { 1239 if (hw->nvm.ops.validate) 1240 return hw->nvm.ops.validate(hw); 1241 1242 return -E1000_ERR_CONFIG; 1243 } 1244 1245 /** 1246 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1247 * @hw: pointer to the HW structure 1248 * 1249 * Updates the NVM checksum. Currently no func pointer exists and all 1250 * implementations are handled in the generic version of this function. 1251 **/ 1252 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1253 { 1254 if (hw->nvm.ops.update) 1255 return hw->nvm.ops.update(hw); 1256 1257 return -E1000_ERR_CONFIG; 1258 } 1259 1260 /** 1261 * e1000_reload_nvm - Reloads EEPROM 1262 * @hw: pointer to the HW structure 1263 * 1264 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1265 * extended control register. 1266 **/ 1267 void e1000_reload_nvm(struct e1000_hw *hw) 1268 { 1269 if (hw->nvm.ops.reload) 1270 hw->nvm.ops.reload(hw); 1271 } 1272 1273 /** 1274 * e1000_read_nvm - Reads NVM (EEPROM) 1275 * @hw: pointer to the HW structure 1276 * @offset: the word offset to read 1277 * @words: number of 16-bit words to read 1278 * @data: pointer to the properly sized buffer for the data. 1279 * 1280 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1281 * pointer entry point called by drivers. 1282 **/ 1283 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1284 { 1285 if (hw->nvm.ops.read) 1286 return hw->nvm.ops.read(hw, offset, words, data); 1287 1288 return -E1000_ERR_CONFIG; 1289 } 1290 1291 /** 1292 * e1000_write_nvm - Writes to NVM (EEPROM) 1293 * @hw: pointer to the HW structure 1294 * @offset: the word offset to read 1295 * @words: number of 16-bit words to write 1296 * @data: pointer to the properly sized buffer for the data. 1297 * 1298 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1299 * pointer entry point called by drivers. 1300 **/ 1301 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1302 { 1303 if (hw->nvm.ops.write) 1304 return hw->nvm.ops.write(hw, offset, words, data); 1305 1306 return E1000_SUCCESS; 1307 } 1308 1309 /** 1310 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1311 * @hw: pointer to the HW structure 1312 * @reg: 32bit register offset 1313 * @offset: the register to write 1314 * @data: the value to write. 1315 * 1316 * Writes the PHY register at offset with the value in data. 1317 * This is a function pointer entry point called by drivers. 1318 **/ 1319 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1320 u8 data) 1321 { 1322 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1323 } 1324 1325 /** 1326 * e1000_power_up_phy - Restores link in case of PHY power down 1327 * @hw: pointer to the HW structure 1328 * 1329 * The phy may be powered down to save power, to turn off link when the 1330 * driver is unloaded, or wake on lan is not enabled (among others). 1331 **/ 1332 void e1000_power_up_phy(struct e1000_hw *hw) 1333 { 1334 if (hw->phy.ops.power_up) 1335 hw->phy.ops.power_up(hw); 1336 1337 e1000_setup_link(hw); 1338 } 1339 1340 /** 1341 * e1000_power_down_phy - Power down PHY 1342 * @hw: pointer to the HW structure 1343 * 1344 * The phy may be powered down to save power, to turn off link when the 1345 * driver is unloaded, or wake on lan is not enabled (among others). 1346 **/ 1347 void e1000_power_down_phy(struct e1000_hw *hw) 1348 { 1349 if (hw->phy.ops.power_down) 1350 hw->phy.ops.power_down(hw); 1351 } 1352 1353 /** 1354 * e1000_power_up_fiber_serdes_link - Power up serdes link 1355 * @hw: pointer to the HW structure 1356 * 1357 * Power on the optics and PCS. 1358 **/ 1359 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1360 { 1361 if (hw->mac.ops.power_up_serdes) 1362 hw->mac.ops.power_up_serdes(hw); 1363 } 1364 1365 /** 1366 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1367 * @hw: pointer to the HW structure 1368 * 1369 * Shutdown the optics and PCS on driver unload. 1370 **/ 1371 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1372 { 1373 if (hw->mac.ops.shutdown_serdes) 1374 hw->mac.ops.shutdown_serdes(hw); 1375 } 1376 1377