1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2020, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "e1000_api.h" 37 38 /** 39 * e1000_init_mac_params - Initialize MAC function pointers 40 * @hw: pointer to the HW structure 41 * 42 * This function initializes the function pointers for the MAC 43 * set of functions. Called by drivers or by e1000_setup_init_funcs. 44 **/ 45 s32 e1000_init_mac_params(struct e1000_hw *hw) 46 { 47 s32 ret_val = E1000_SUCCESS; 48 49 if (hw->mac.ops.init_params) { 50 ret_val = hw->mac.ops.init_params(hw); 51 if (ret_val) { 52 DEBUGOUT("MAC Initialization Error\n"); 53 goto out; 54 } 55 } else { 56 DEBUGOUT("mac.init_mac_params was NULL\n"); 57 ret_val = -E1000_ERR_CONFIG; 58 } 59 60 out: 61 return ret_val; 62 } 63 64 /** 65 * e1000_init_nvm_params - Initialize NVM function pointers 66 * @hw: pointer to the HW structure 67 * 68 * This function initializes the function pointers for the NVM 69 * set of functions. Called by drivers or by e1000_setup_init_funcs. 70 **/ 71 s32 e1000_init_nvm_params(struct e1000_hw *hw) 72 { 73 s32 ret_val = E1000_SUCCESS; 74 75 if (hw->nvm.ops.init_params) { 76 ret_val = hw->nvm.ops.init_params(hw); 77 if (ret_val) { 78 DEBUGOUT("NVM Initialization Error\n"); 79 goto out; 80 } 81 } else { 82 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 83 ret_val = -E1000_ERR_CONFIG; 84 } 85 86 out: 87 return ret_val; 88 } 89 90 /** 91 * e1000_init_phy_params - Initialize PHY function pointers 92 * @hw: pointer to the HW structure 93 * 94 * This function initializes the function pointers for the PHY 95 * set of functions. Called by drivers or by e1000_setup_init_funcs. 96 **/ 97 s32 e1000_init_phy_params(struct e1000_hw *hw) 98 { 99 s32 ret_val = E1000_SUCCESS; 100 101 if (hw->phy.ops.init_params) { 102 ret_val = hw->phy.ops.init_params(hw); 103 if (ret_val) { 104 DEBUGOUT("PHY Initialization Error\n"); 105 goto out; 106 } 107 } else { 108 DEBUGOUT("phy.init_phy_params was NULL\n"); 109 ret_val = -E1000_ERR_CONFIG; 110 } 111 112 out: 113 return ret_val; 114 } 115 116 /** 117 * e1000_init_mbx_params - Initialize mailbox function pointers 118 * @hw: pointer to the HW structure 119 * 120 * This function initializes the function pointers for the PHY 121 * set of functions. Called by drivers or by e1000_setup_init_funcs. 122 **/ 123 s32 e1000_init_mbx_params(struct e1000_hw *hw) 124 { 125 s32 ret_val = E1000_SUCCESS; 126 127 if (hw->mbx.ops.init_params) { 128 ret_val = hw->mbx.ops.init_params(hw); 129 if (ret_val) { 130 DEBUGOUT("Mailbox Initialization Error\n"); 131 goto out; 132 } 133 } else { 134 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 135 ret_val = -E1000_ERR_CONFIG; 136 } 137 138 out: 139 return ret_val; 140 } 141 142 /** 143 * e1000_set_mac_type - Sets MAC type 144 * @hw: pointer to the HW structure 145 * 146 * This function sets the mac type of the adapter based on the 147 * device ID stored in the hw structure. 148 * MUST BE FIRST FUNCTION CALLED (explicitly or through 149 * e1000_setup_init_funcs()). 150 **/ 151 s32 e1000_set_mac_type(struct e1000_hw *hw) 152 { 153 struct e1000_mac_info *mac = &hw->mac; 154 s32 ret_val = E1000_SUCCESS; 155 156 DEBUGFUNC("e1000_set_mac_type"); 157 158 switch (hw->device_id) { 159 case E1000_DEV_ID_82542: 160 mac->type = e1000_82542; 161 break; 162 case E1000_DEV_ID_82543GC_FIBER: 163 case E1000_DEV_ID_82543GC_COPPER: 164 mac->type = e1000_82543; 165 break; 166 case E1000_DEV_ID_82544EI_COPPER: 167 case E1000_DEV_ID_82544EI_FIBER: 168 case E1000_DEV_ID_82544GC_COPPER: 169 case E1000_DEV_ID_82544GC_LOM: 170 mac->type = e1000_82544; 171 break; 172 case E1000_DEV_ID_82540EM: 173 case E1000_DEV_ID_82540EM_LOM: 174 case E1000_DEV_ID_82540EP: 175 case E1000_DEV_ID_82540EP_LOM: 176 case E1000_DEV_ID_82540EP_LP: 177 mac->type = e1000_82540; 178 break; 179 case E1000_DEV_ID_82545EM_COPPER: 180 case E1000_DEV_ID_82545EM_FIBER: 181 mac->type = e1000_82545; 182 break; 183 case E1000_DEV_ID_82545GM_COPPER: 184 case E1000_DEV_ID_82545GM_FIBER: 185 case E1000_DEV_ID_82545GM_SERDES: 186 mac->type = e1000_82545_rev_3; 187 break; 188 case E1000_DEV_ID_82546EB_COPPER: 189 case E1000_DEV_ID_82546EB_FIBER: 190 case E1000_DEV_ID_82546EB_QUAD_COPPER: 191 mac->type = e1000_82546; 192 break; 193 case E1000_DEV_ID_82546GB_COPPER: 194 case E1000_DEV_ID_82546GB_FIBER: 195 case E1000_DEV_ID_82546GB_SERDES: 196 case E1000_DEV_ID_82546GB_PCIE: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER: 198 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 199 mac->type = e1000_82546_rev_3; 200 break; 201 case E1000_DEV_ID_82541EI: 202 case E1000_DEV_ID_82541EI_MOBILE: 203 case E1000_DEV_ID_82541ER_LOM: 204 mac->type = e1000_82541; 205 break; 206 case E1000_DEV_ID_82541ER: 207 case E1000_DEV_ID_82541GI: 208 case E1000_DEV_ID_82541GI_LF: 209 case E1000_DEV_ID_82541GI_MOBILE: 210 mac->type = e1000_82541_rev_2; 211 break; 212 case E1000_DEV_ID_82547EI: 213 case E1000_DEV_ID_82547EI_MOBILE: 214 mac->type = e1000_82547; 215 break; 216 case E1000_DEV_ID_82547GI: 217 mac->type = e1000_82547_rev_2; 218 break; 219 case E1000_DEV_ID_82571EB_COPPER: 220 case E1000_DEV_ID_82571EB_FIBER: 221 case E1000_DEV_ID_82571EB_SERDES: 222 case E1000_DEV_ID_82571EB_SERDES_DUAL: 223 case E1000_DEV_ID_82571EB_SERDES_QUAD: 224 case E1000_DEV_ID_82571EB_QUAD_COPPER: 225 case E1000_DEV_ID_82571PT_QUAD_COPPER: 226 case E1000_DEV_ID_82571EB_QUAD_FIBER: 227 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 228 mac->type = e1000_82571; 229 break; 230 case E1000_DEV_ID_82572EI: 231 case E1000_DEV_ID_82572EI_COPPER: 232 case E1000_DEV_ID_82572EI_FIBER: 233 case E1000_DEV_ID_82572EI_SERDES: 234 mac->type = e1000_82572; 235 break; 236 case E1000_DEV_ID_82573E: 237 case E1000_DEV_ID_82573E_IAMT: 238 case E1000_DEV_ID_82573L: 239 mac->type = e1000_82573; 240 break; 241 case E1000_DEV_ID_82574L: 242 case E1000_DEV_ID_82574LA: 243 mac->type = e1000_82574; 244 break; 245 case E1000_DEV_ID_82583V: 246 mac->type = e1000_82583; 247 break; 248 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 249 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 250 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 251 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 252 mac->type = e1000_80003es2lan; 253 break; 254 case E1000_DEV_ID_ICH8_IFE: 255 case E1000_DEV_ID_ICH8_IFE_GT: 256 case E1000_DEV_ID_ICH8_IFE_G: 257 case E1000_DEV_ID_ICH8_IGP_M: 258 case E1000_DEV_ID_ICH8_IGP_M_AMT: 259 case E1000_DEV_ID_ICH8_IGP_AMT: 260 case E1000_DEV_ID_ICH8_IGP_C: 261 case E1000_DEV_ID_ICH8_82567V_3: 262 mac->type = e1000_ich8lan; 263 break; 264 case E1000_DEV_ID_ICH9_IFE: 265 case E1000_DEV_ID_ICH9_IFE_GT: 266 case E1000_DEV_ID_ICH9_IFE_G: 267 case E1000_DEV_ID_ICH9_IGP_M: 268 case E1000_DEV_ID_ICH9_IGP_M_AMT: 269 case E1000_DEV_ID_ICH9_IGP_M_V: 270 case E1000_DEV_ID_ICH9_IGP_AMT: 271 case E1000_DEV_ID_ICH9_BM: 272 case E1000_DEV_ID_ICH9_IGP_C: 273 case E1000_DEV_ID_ICH10_R_BM_LM: 274 case E1000_DEV_ID_ICH10_R_BM_LF: 275 case E1000_DEV_ID_ICH10_R_BM_V: 276 mac->type = e1000_ich9lan; 277 break; 278 case E1000_DEV_ID_ICH10_D_BM_LM: 279 case E1000_DEV_ID_ICH10_D_BM_LF: 280 case E1000_DEV_ID_ICH10_D_BM_V: 281 mac->type = e1000_ich10lan; 282 break; 283 case E1000_DEV_ID_PCH_D_HV_DM: 284 case E1000_DEV_ID_PCH_D_HV_DC: 285 case E1000_DEV_ID_PCH_M_HV_LM: 286 case E1000_DEV_ID_PCH_M_HV_LC: 287 mac->type = e1000_pchlan; 288 break; 289 case E1000_DEV_ID_PCH2_LV_LM: 290 case E1000_DEV_ID_PCH2_LV_V: 291 mac->type = e1000_pch2lan; 292 break; 293 case E1000_DEV_ID_PCH_LPT_I217_LM: 294 case E1000_DEV_ID_PCH_LPT_I217_V: 295 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 296 case E1000_DEV_ID_PCH_LPTLP_I218_V: 297 case E1000_DEV_ID_PCH_I218_LM2: 298 case E1000_DEV_ID_PCH_I218_V2: 299 case E1000_DEV_ID_PCH_I218_LM3: 300 case E1000_DEV_ID_PCH_I218_V3: 301 mac->type = e1000_pch_lpt; 302 break; 303 case E1000_DEV_ID_PCH_SPT_I219_LM: 304 case E1000_DEV_ID_PCH_SPT_I219_V: 305 case E1000_DEV_ID_PCH_SPT_I219_LM2: 306 case E1000_DEV_ID_PCH_SPT_I219_V2: 307 case E1000_DEV_ID_PCH_LBG_I219_LM3: 308 case E1000_DEV_ID_PCH_SPT_I219_LM4: 309 case E1000_DEV_ID_PCH_SPT_I219_V4: 310 case E1000_DEV_ID_PCH_SPT_I219_LM5: 311 case E1000_DEV_ID_PCH_SPT_I219_V5: 312 case E1000_DEV_ID_PCH_CMP_I219_LM12: 313 case E1000_DEV_ID_PCH_CMP_I219_V12: 314 mac->type = e1000_pch_spt; 315 break; 316 case E1000_DEV_ID_PCH_CNP_I219_LM6: 317 case E1000_DEV_ID_PCH_CNP_I219_V6: 318 case E1000_DEV_ID_PCH_CNP_I219_LM7: 319 case E1000_DEV_ID_PCH_CNP_I219_V7: 320 case E1000_DEV_ID_PCH_ICP_I219_LM8: 321 case E1000_DEV_ID_PCH_ICP_I219_V8: 322 case E1000_DEV_ID_PCH_ICP_I219_LM9: 323 case E1000_DEV_ID_PCH_ICP_I219_V9: 324 case E1000_DEV_ID_PCH_CMP_I219_LM10: 325 case E1000_DEV_ID_PCH_CMP_I219_V10: 326 case E1000_DEV_ID_PCH_CMP_I219_LM11: 327 case E1000_DEV_ID_PCH_CMP_I219_V11: 328 mac->type = e1000_pch_cnp; 329 break; 330 case E1000_DEV_ID_PCH_TGP_I219_LM13: 331 case E1000_DEV_ID_PCH_TGP_I219_V13: 332 case E1000_DEV_ID_PCH_TGP_I219_LM14: 333 case E1000_DEV_ID_PCH_TGP_I219_V14: 334 case E1000_DEV_ID_PCH_TGP_I219_LM15: 335 case E1000_DEV_ID_PCH_TGP_I219_V15: 336 mac->type = e1000_pch_tgp; 337 break; 338 case E1000_DEV_ID_PCH_ADL_I219_LM16: 339 case E1000_DEV_ID_PCH_ADL_I219_V16: 340 case E1000_DEV_ID_PCH_ADL_I219_LM17: 341 case E1000_DEV_ID_PCH_ADL_I219_V17: 342 mac->type = e1000_pch_adp; 343 break; 344 case E1000_DEV_ID_PCH_MTP_I219_LM18: 345 case E1000_DEV_ID_PCH_MTP_I219_V18: 346 case E1000_DEV_ID_PCH_MTP_I219_LM19: 347 case E1000_DEV_ID_PCH_MTP_I219_V19: 348 mac->type = e1000_pch_mtp; 349 break; 350 case E1000_DEV_ID_82575EB_COPPER: 351 case E1000_DEV_ID_82575EB_FIBER_SERDES: 352 case E1000_DEV_ID_82575GB_QUAD_COPPER: 353 mac->type = e1000_82575; 354 break; 355 case E1000_DEV_ID_82576: 356 case E1000_DEV_ID_82576_FIBER: 357 case E1000_DEV_ID_82576_SERDES: 358 case E1000_DEV_ID_82576_QUAD_COPPER: 359 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 360 case E1000_DEV_ID_82576_NS: 361 case E1000_DEV_ID_82576_NS_SERDES: 362 case E1000_DEV_ID_82576_SERDES_QUAD: 363 mac->type = e1000_82576; 364 break; 365 case E1000_DEV_ID_82580_COPPER: 366 case E1000_DEV_ID_82580_FIBER: 367 case E1000_DEV_ID_82580_SERDES: 368 case E1000_DEV_ID_82580_SGMII: 369 case E1000_DEV_ID_82580_COPPER_DUAL: 370 case E1000_DEV_ID_82580_QUAD_FIBER: 371 case E1000_DEV_ID_DH89XXCC_SGMII: 372 case E1000_DEV_ID_DH89XXCC_SERDES: 373 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 374 case E1000_DEV_ID_DH89XXCC_SFP: 375 mac->type = e1000_82580; 376 break; 377 case E1000_DEV_ID_I350_COPPER: 378 case E1000_DEV_ID_I350_FIBER: 379 case E1000_DEV_ID_I350_SERDES: 380 case E1000_DEV_ID_I350_SGMII: 381 case E1000_DEV_ID_I350_DA4: 382 mac->type = e1000_i350; 383 break; 384 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 385 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 386 case E1000_DEV_ID_I210_SGMII_FLASHLESS: 387 case E1000_DEV_ID_I210_COPPER: 388 case E1000_DEV_ID_I210_COPPER_OEM1: 389 case E1000_DEV_ID_I210_COPPER_IT: 390 case E1000_DEV_ID_I210_FIBER: 391 case E1000_DEV_ID_I210_SERDES: 392 case E1000_DEV_ID_I210_SGMII: 393 mac->type = e1000_i210; 394 break; 395 case E1000_DEV_ID_I211_COPPER: 396 mac->type = e1000_i211; 397 break; 398 case E1000_DEV_ID_82576_VF: 399 case E1000_DEV_ID_82576_VF_HV: 400 mac->type = e1000_vfadapt; 401 break; 402 case E1000_DEV_ID_I350_VF: 403 case E1000_DEV_ID_I350_VF_HV: 404 mac->type = e1000_vfadapt_i350; 405 break; 406 407 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 408 case E1000_DEV_ID_I354_SGMII: 409 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 410 mac->type = e1000_i354; 411 break; 412 default: 413 /* Should never have loaded on this device */ 414 ret_val = -E1000_ERR_MAC_INIT; 415 break; 416 } 417 418 return ret_val; 419 } 420 421 /** 422 * e1000_setup_init_funcs - Initializes function pointers 423 * @hw: pointer to the HW structure 424 * @init_device: TRUE will initialize the rest of the function pointers 425 * getting the device ready for use. FALSE will only set 426 * MAC type and the function pointers for the other init 427 * functions. Passing FALSE will not generate any hardware 428 * reads or writes. 429 * 430 * This function must be called by a driver in order to use the rest 431 * of the 'shared' code files. Called by drivers only. 432 **/ 433 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 434 { 435 s32 ret_val; 436 437 /* Can't do much good without knowing the MAC type. */ 438 ret_val = e1000_set_mac_type(hw); 439 if (ret_val) { 440 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 441 goto out; 442 } 443 444 if (!hw->hw_addr) { 445 DEBUGOUT("ERROR: Registers not mapped\n"); 446 ret_val = -E1000_ERR_CONFIG; 447 goto out; 448 } 449 450 /* 451 * Init function pointers to generic implementations. We do this first 452 * allowing a driver module to override it afterward. 453 */ 454 e1000_init_mac_ops_generic(hw); 455 e1000_init_phy_ops_generic(hw); 456 e1000_init_nvm_ops_generic(hw); 457 e1000_init_mbx_ops_generic(hw); 458 459 /* 460 * Set up the init function pointers. These are functions within the 461 * adapter family file that sets up function pointers for the rest of 462 * the functions in that family. 463 */ 464 switch (hw->mac.type) { 465 case e1000_82542: 466 e1000_init_function_pointers_82542(hw); 467 break; 468 case e1000_82543: 469 case e1000_82544: 470 e1000_init_function_pointers_82543(hw); 471 break; 472 case e1000_82540: 473 case e1000_82545: 474 case e1000_82545_rev_3: 475 case e1000_82546: 476 case e1000_82546_rev_3: 477 e1000_init_function_pointers_82540(hw); 478 break; 479 case e1000_82541: 480 case e1000_82541_rev_2: 481 case e1000_82547: 482 case e1000_82547_rev_2: 483 e1000_init_function_pointers_82541(hw); 484 break; 485 case e1000_82571: 486 case e1000_82572: 487 case e1000_82573: 488 case e1000_82574: 489 case e1000_82583: 490 e1000_init_function_pointers_82571(hw); 491 break; 492 case e1000_80003es2lan: 493 e1000_init_function_pointers_80003es2lan(hw); 494 break; 495 case e1000_ich8lan: 496 case e1000_ich9lan: 497 case e1000_ich10lan: 498 case e1000_pchlan: 499 case e1000_pch2lan: 500 case e1000_pch_lpt: 501 case e1000_pch_spt: 502 case e1000_pch_cnp: 503 case e1000_pch_tgp: 504 case e1000_pch_adp: 505 case e1000_pch_mtp: 506 e1000_init_function_pointers_ich8lan(hw); 507 break; 508 case e1000_82575: 509 case e1000_82576: 510 case e1000_82580: 511 case e1000_i350: 512 case e1000_i354: 513 e1000_init_function_pointers_82575(hw); 514 break; 515 case e1000_i210: 516 case e1000_i211: 517 e1000_init_function_pointers_i210(hw); 518 break; 519 case e1000_vfadapt: 520 e1000_init_function_pointers_vf(hw); 521 break; 522 case e1000_vfadapt_i350: 523 e1000_init_function_pointers_vf(hw); 524 break; 525 default: 526 DEBUGOUT("Hardware not supported\n"); 527 ret_val = -E1000_ERR_CONFIG; 528 break; 529 } 530 531 /* 532 * Initialize the rest of the function pointers. These require some 533 * register reads/writes in some cases. 534 */ 535 if (!(ret_val) && init_device) { 536 ret_val = e1000_init_mac_params(hw); 537 if (ret_val) 538 goto out; 539 540 ret_val = e1000_init_nvm_params(hw); 541 if (ret_val) 542 goto out; 543 544 ret_val = e1000_init_phy_params(hw); 545 if (ret_val) 546 goto out; 547 548 ret_val = e1000_init_mbx_params(hw); 549 if (ret_val) 550 goto out; 551 } 552 553 out: 554 return ret_val; 555 } 556 557 /** 558 * e1000_get_bus_info - Obtain bus information for adapter 559 * @hw: pointer to the HW structure 560 * 561 * This will obtain information about the HW bus for which the 562 * adapter is attached and stores it in the hw structure. This is a 563 * function pointer entry point called by drivers. 564 **/ 565 s32 e1000_get_bus_info(struct e1000_hw *hw) 566 { 567 if (hw->mac.ops.get_bus_info) 568 return hw->mac.ops.get_bus_info(hw); 569 570 return E1000_SUCCESS; 571 } 572 573 /** 574 * e1000_clear_vfta - Clear VLAN filter table 575 * @hw: pointer to the HW structure 576 * 577 * This clears the VLAN filter table on the adapter. This is a function 578 * pointer entry point called by drivers. 579 **/ 580 void e1000_clear_vfta(struct e1000_hw *hw) 581 { 582 if (hw->mac.ops.clear_vfta) 583 hw->mac.ops.clear_vfta(hw); 584 } 585 586 /** 587 * e1000_write_vfta - Write value to VLAN filter table 588 * @hw: pointer to the HW structure 589 * @offset: the 32-bit offset in which to write the value to. 590 * @value: the 32-bit value to write at location offset. 591 * 592 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 593 * table. This is a function pointer entry point called by drivers. 594 **/ 595 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 596 { 597 if (hw->mac.ops.write_vfta) 598 hw->mac.ops.write_vfta(hw, offset, value); 599 } 600 601 /** 602 * e1000_update_mc_addr_list - Update Multicast addresses 603 * @hw: pointer to the HW structure 604 * @mc_addr_list: array of multicast addresses to program 605 * @mc_addr_count: number of multicast addresses to program 606 * 607 * Updates the Multicast Table Array. 608 * The caller must have a packed mc_addr_list of multicast addresses. 609 **/ 610 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 611 u32 mc_addr_count) 612 { 613 if (hw->mac.ops.update_mc_addr_list) 614 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 615 mc_addr_count); 616 } 617 618 /** 619 * e1000_force_mac_fc - Force MAC flow control 620 * @hw: pointer to the HW structure 621 * 622 * Force the MAC's flow control settings. Currently no func pointer exists 623 * and all implementations are handled in the generic version of this 624 * function. 625 **/ 626 s32 e1000_force_mac_fc(struct e1000_hw *hw) 627 { 628 return e1000_force_mac_fc_generic(hw); 629 } 630 631 /** 632 * e1000_check_for_link - Check/Store link connection 633 * @hw: pointer to the HW structure 634 * 635 * This checks the link condition of the adapter and stores the 636 * results in the hw->mac structure. This is a function pointer entry 637 * point called by drivers. 638 **/ 639 s32 e1000_check_for_link(struct e1000_hw *hw) 640 { 641 if (hw->mac.ops.check_for_link) 642 return hw->mac.ops.check_for_link(hw); 643 644 return -E1000_ERR_CONFIG; 645 } 646 647 /** 648 * e1000_check_mng_mode - Check management mode 649 * @hw: pointer to the HW structure 650 * 651 * This checks if the adapter has manageability enabled. 652 * This is a function pointer entry point called by drivers. 653 **/ 654 bool e1000_check_mng_mode(struct e1000_hw *hw) 655 { 656 if (hw->mac.ops.check_mng_mode) 657 return hw->mac.ops.check_mng_mode(hw); 658 659 return FALSE; 660 } 661 662 /** 663 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 664 * @hw: pointer to the HW structure 665 * @buffer: pointer to the host interface 666 * @length: size of the buffer 667 * 668 * Writes the DHCP information to the host interface. 669 **/ 670 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 671 { 672 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 673 } 674 675 /** 676 * e1000_reset_hw - Reset hardware 677 * @hw: pointer to the HW structure 678 * 679 * This resets the hardware into a known state. This is a function pointer 680 * entry point called by drivers. 681 **/ 682 s32 e1000_reset_hw(struct e1000_hw *hw) 683 { 684 if (hw->mac.ops.reset_hw) 685 return hw->mac.ops.reset_hw(hw); 686 687 return -E1000_ERR_CONFIG; 688 } 689 690 /** 691 * e1000_init_hw - Initialize hardware 692 * @hw: pointer to the HW structure 693 * 694 * This inits the hardware readying it for operation. This is a function 695 * pointer entry point called by drivers. 696 **/ 697 s32 e1000_init_hw(struct e1000_hw *hw) 698 { 699 if (hw->mac.ops.init_hw) 700 return hw->mac.ops.init_hw(hw); 701 702 return -E1000_ERR_CONFIG; 703 } 704 705 /** 706 * e1000_setup_link - Configures link and flow control 707 * @hw: pointer to the HW structure 708 * 709 * This configures link and flow control settings for the adapter. This 710 * is a function pointer entry point called by drivers. While modules can 711 * also call this, they probably call their own version of this function. 712 **/ 713 s32 e1000_setup_link(struct e1000_hw *hw) 714 { 715 if (hw->mac.ops.setup_link) 716 return hw->mac.ops.setup_link(hw); 717 718 return -E1000_ERR_CONFIG; 719 } 720 721 /** 722 * e1000_get_speed_and_duplex - Returns current speed and duplex 723 * @hw: pointer to the HW structure 724 * @speed: pointer to a 16-bit value to store the speed 725 * @duplex: pointer to a 16-bit value to store the duplex. 726 * 727 * This returns the speed and duplex of the adapter in the two 'out' 728 * variables passed in. This is a function pointer entry point called 729 * by drivers. 730 **/ 731 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 732 { 733 if (hw->mac.ops.get_link_up_info) 734 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 735 736 return -E1000_ERR_CONFIG; 737 } 738 739 /** 740 * e1000_setup_led - Configures SW controllable LED 741 * @hw: pointer to the HW structure 742 * 743 * This prepares the SW controllable LED for use and saves the current state 744 * of the LED so it can be later restored. This is a function pointer entry 745 * point called by drivers. 746 **/ 747 s32 e1000_setup_led(struct e1000_hw *hw) 748 { 749 if (hw->mac.ops.setup_led) 750 return hw->mac.ops.setup_led(hw); 751 752 return E1000_SUCCESS; 753 } 754 755 /** 756 * e1000_cleanup_led - Restores SW controllable LED 757 * @hw: pointer to the HW structure 758 * 759 * This restores the SW controllable LED to the value saved off by 760 * e1000_setup_led. This is a function pointer entry point called by drivers. 761 **/ 762 s32 e1000_cleanup_led(struct e1000_hw *hw) 763 { 764 if (hw->mac.ops.cleanup_led) 765 return hw->mac.ops.cleanup_led(hw); 766 767 return E1000_SUCCESS; 768 } 769 770 /** 771 * e1000_blink_led - Blink SW controllable LED 772 * @hw: pointer to the HW structure 773 * 774 * This starts the adapter LED blinking. Request the LED to be setup first 775 * and cleaned up after. This is a function pointer entry point called by 776 * drivers. 777 **/ 778 s32 e1000_blink_led(struct e1000_hw *hw) 779 { 780 if (hw->mac.ops.blink_led) 781 return hw->mac.ops.blink_led(hw); 782 783 return E1000_SUCCESS; 784 } 785 786 /** 787 * e1000_id_led_init - store LED configurations in SW 788 * @hw: pointer to the HW structure 789 * 790 * Initializes the LED config in SW. This is a function pointer entry point 791 * called by drivers. 792 **/ 793 s32 e1000_id_led_init(struct e1000_hw *hw) 794 { 795 if (hw->mac.ops.id_led_init) 796 return hw->mac.ops.id_led_init(hw); 797 798 return E1000_SUCCESS; 799 } 800 801 /** 802 * e1000_led_on - Turn on SW controllable LED 803 * @hw: pointer to the HW structure 804 * 805 * Turns the SW defined LED on. This is a function pointer entry point 806 * called by drivers. 807 **/ 808 s32 e1000_led_on(struct e1000_hw *hw) 809 { 810 if (hw->mac.ops.led_on) 811 return hw->mac.ops.led_on(hw); 812 813 return E1000_SUCCESS; 814 } 815 816 /** 817 * e1000_led_off - Turn off SW controllable LED 818 * @hw: pointer to the HW structure 819 * 820 * Turns the SW defined LED off. This is a function pointer entry point 821 * called by drivers. 822 **/ 823 s32 e1000_led_off(struct e1000_hw *hw) 824 { 825 if (hw->mac.ops.led_off) 826 return hw->mac.ops.led_off(hw); 827 828 return E1000_SUCCESS; 829 } 830 831 /** 832 * e1000_reset_adaptive - Reset adaptive IFS 833 * @hw: pointer to the HW structure 834 * 835 * Resets the adaptive IFS. Currently no func pointer exists and all 836 * implementations are handled in the generic version of this function. 837 **/ 838 void e1000_reset_adaptive(struct e1000_hw *hw) 839 { 840 e1000_reset_adaptive_generic(hw); 841 } 842 843 /** 844 * e1000_update_adaptive - Update adaptive IFS 845 * @hw: pointer to the HW structure 846 * 847 * Updates adapter IFS. Currently no func pointer exists and all 848 * implementations are handled in the generic version of this function. 849 **/ 850 void e1000_update_adaptive(struct e1000_hw *hw) 851 { 852 e1000_update_adaptive_generic(hw); 853 } 854 855 /** 856 * e1000_disable_pcie_master - Disable PCI-Express master access 857 * @hw: pointer to the HW structure 858 * 859 * Disables PCI-Express master access and verifies there are no pending 860 * requests. Currently no func pointer exists and all implementations are 861 * handled in the generic version of this function. 862 **/ 863 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 864 { 865 return e1000_disable_pcie_master_generic(hw); 866 } 867 868 /** 869 * e1000_config_collision_dist - Configure collision distance 870 * @hw: pointer to the HW structure 871 * 872 * Configures the collision distance to the default value and is used 873 * during link setup. 874 **/ 875 void e1000_config_collision_dist(struct e1000_hw *hw) 876 { 877 if (hw->mac.ops.config_collision_dist) 878 hw->mac.ops.config_collision_dist(hw); 879 } 880 881 /** 882 * e1000_rar_set - Sets a receive address register 883 * @hw: pointer to the HW structure 884 * @addr: address to set the RAR to 885 * @index: the RAR to set 886 * 887 * Sets a Receive Address Register (RAR) to the specified address. 888 **/ 889 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 890 { 891 if (hw->mac.ops.rar_set) 892 return hw->mac.ops.rar_set(hw, addr, index); 893 894 return E1000_SUCCESS; 895 } 896 897 /** 898 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 899 * @hw: pointer to the HW structure 900 * 901 * Ensures that the MDI/MDIX SW state is valid. 902 **/ 903 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 904 { 905 if (hw->mac.ops.validate_mdi_setting) 906 return hw->mac.ops.validate_mdi_setting(hw); 907 908 return E1000_SUCCESS; 909 } 910 911 /** 912 * e1000_hash_mc_addr - Determines address location in multicast table 913 * @hw: pointer to the HW structure 914 * @mc_addr: Multicast address to hash. 915 * 916 * This hashes an address to determine its location in the multicast 917 * table. Currently no func pointer exists and all implementations 918 * are handled in the generic version of this function. 919 **/ 920 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 921 { 922 return e1000_hash_mc_addr_generic(hw, mc_addr); 923 } 924 925 /** 926 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 927 * @hw: pointer to the HW structure 928 * 929 * Enables packet filtering on transmit packets if manageability is enabled 930 * and host interface is enabled. 931 * Currently no func pointer exists and all implementations are handled in the 932 * generic version of this function. 933 **/ 934 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 935 { 936 return e1000_enable_tx_pkt_filtering_generic(hw); 937 } 938 939 /** 940 * e1000_mng_host_if_write - Writes to the manageability host interface 941 * @hw: pointer to the HW structure 942 * @buffer: pointer to the host interface buffer 943 * @length: size of the buffer 944 * @offset: location in the buffer to write to 945 * @sum: sum of the data (not checksum) 946 * 947 * This function writes the buffer content at the offset given on the host if. 948 * It also does alignment considerations to do the writes in most efficient 949 * way. Also fills up the sum of the buffer in *buffer parameter. 950 **/ 951 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 952 u16 offset, u8 *sum) 953 { 954 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 955 } 956 957 /** 958 * e1000_mng_write_cmd_header - Writes manageability command header 959 * @hw: pointer to the HW structure 960 * @hdr: pointer to the host interface command header 961 * 962 * Writes the command header after does the checksum calculation. 963 **/ 964 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 965 struct e1000_host_mng_command_header *hdr) 966 { 967 return e1000_mng_write_cmd_header_generic(hw, hdr); 968 } 969 970 /** 971 * e1000_mng_enable_host_if - Checks host interface is enabled 972 * @hw: pointer to the HW structure 973 * 974 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 975 * 976 * This function checks whether the HOST IF is enabled for command operation 977 * and also checks whether the previous command is completed. It busy waits 978 * in case of previous command is not completed. 979 **/ 980 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 981 { 982 return e1000_mng_enable_host_if_generic(hw); 983 } 984 985 /** 986 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 987 * @hw: pointer to the HW structure 988 * @itr: u32 indicating itr value 989 * 990 * Set the OBFF timer based on the given interrupt rate. 991 **/ 992 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 993 { 994 if (hw->mac.ops.set_obff_timer) 995 return hw->mac.ops.set_obff_timer(hw, itr); 996 997 return E1000_SUCCESS; 998 } 999 1000 /** 1001 * e1000_check_reset_block - Verifies PHY can be reset 1002 * @hw: pointer to the HW structure 1003 * 1004 * Checks if the PHY is in a state that can be reset or if manageability 1005 * has it tied up. This is a function pointer entry point called by drivers. 1006 **/ 1007 s32 e1000_check_reset_block(struct e1000_hw *hw) 1008 { 1009 if (hw->phy.ops.check_reset_block) 1010 return hw->phy.ops.check_reset_block(hw); 1011 1012 return E1000_SUCCESS; 1013 } 1014 1015 /** 1016 * e1000_read_phy_reg - Reads PHY register 1017 * @hw: pointer to the HW structure 1018 * @offset: the register to read 1019 * @data: the buffer to store the 16-bit read. 1020 * 1021 * Reads the PHY register and returns the value in data. 1022 * This is a function pointer entry point called by drivers. 1023 **/ 1024 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1025 { 1026 if (hw->phy.ops.read_reg) 1027 return hw->phy.ops.read_reg(hw, offset, data); 1028 1029 return E1000_SUCCESS; 1030 } 1031 1032 /** 1033 * e1000_write_phy_reg - Writes PHY register 1034 * @hw: pointer to the HW structure 1035 * @offset: the register to write 1036 * @data: the value to write. 1037 * 1038 * Writes the PHY register at offset with the value in data. 1039 * This is a function pointer entry point called by drivers. 1040 **/ 1041 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1042 { 1043 if (hw->phy.ops.write_reg) 1044 return hw->phy.ops.write_reg(hw, offset, data); 1045 1046 return E1000_SUCCESS; 1047 } 1048 1049 /** 1050 * e1000_release_phy - Generic release PHY 1051 * @hw: pointer to the HW structure 1052 * 1053 * Return if silicon family does not require a semaphore when accessing the 1054 * PHY. 1055 **/ 1056 void e1000_release_phy(struct e1000_hw *hw) 1057 { 1058 if (hw->phy.ops.release) 1059 hw->phy.ops.release(hw); 1060 } 1061 1062 /** 1063 * e1000_acquire_phy - Generic acquire PHY 1064 * @hw: pointer to the HW structure 1065 * 1066 * Return success if silicon family does not require a semaphore when 1067 * accessing the PHY. 1068 **/ 1069 s32 e1000_acquire_phy(struct e1000_hw *hw) 1070 { 1071 if (hw->phy.ops.acquire) 1072 return hw->phy.ops.acquire(hw); 1073 1074 return E1000_SUCCESS; 1075 } 1076 1077 /** 1078 * e1000_cfg_on_link_up - Configure PHY upon link up 1079 * @hw: pointer to the HW structure 1080 **/ 1081 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1082 { 1083 if (hw->phy.ops.cfg_on_link_up) 1084 return hw->phy.ops.cfg_on_link_up(hw); 1085 1086 return E1000_SUCCESS; 1087 } 1088 1089 /** 1090 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1091 * @hw: pointer to the HW structure 1092 * @offset: the register to read 1093 * @data: the location to store the 16-bit value read. 1094 * 1095 * Reads a register out of the Kumeran interface. Currently no func pointer 1096 * exists and all implementations are handled in the generic version of 1097 * this function. 1098 **/ 1099 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1100 { 1101 return e1000_read_kmrn_reg_generic(hw, offset, data); 1102 } 1103 1104 /** 1105 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1106 * @hw: pointer to the HW structure 1107 * @offset: the register to write 1108 * @data: the value to write. 1109 * 1110 * Writes a register to the Kumeran interface. Currently no func pointer 1111 * exists and all implementations are handled in the generic version of 1112 * this function. 1113 **/ 1114 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1115 { 1116 return e1000_write_kmrn_reg_generic(hw, offset, data); 1117 } 1118 1119 /** 1120 * e1000_get_cable_length - Retrieves cable length estimation 1121 * @hw: pointer to the HW structure 1122 * 1123 * This function estimates the cable length and stores them in 1124 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1125 * entry point called by drivers. 1126 **/ 1127 s32 e1000_get_cable_length(struct e1000_hw *hw) 1128 { 1129 if (hw->phy.ops.get_cable_length) 1130 return hw->phy.ops.get_cable_length(hw); 1131 1132 return E1000_SUCCESS; 1133 } 1134 1135 /** 1136 * e1000_get_phy_info - Retrieves PHY information from registers 1137 * @hw: pointer to the HW structure 1138 * 1139 * This function gets some information from various PHY registers and 1140 * populates hw->phy values with it. This is a function pointer entry 1141 * point called by drivers. 1142 **/ 1143 s32 e1000_get_phy_info(struct e1000_hw *hw) 1144 { 1145 if (hw->phy.ops.get_info) 1146 return hw->phy.ops.get_info(hw); 1147 1148 return E1000_SUCCESS; 1149 } 1150 1151 /** 1152 * e1000_phy_hw_reset - Hard PHY reset 1153 * @hw: pointer to the HW structure 1154 * 1155 * Performs a hard PHY reset. This is a function pointer entry point called 1156 * by drivers. 1157 **/ 1158 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1159 { 1160 if (hw->phy.ops.reset) 1161 return hw->phy.ops.reset(hw); 1162 1163 return E1000_SUCCESS; 1164 } 1165 1166 /** 1167 * e1000_phy_commit - Soft PHY reset 1168 * @hw: pointer to the HW structure 1169 * 1170 * Performs a soft PHY reset on those that apply. This is a function pointer 1171 * entry point called by drivers. 1172 **/ 1173 s32 e1000_phy_commit(struct e1000_hw *hw) 1174 { 1175 if (hw->phy.ops.commit) 1176 return hw->phy.ops.commit(hw); 1177 1178 return E1000_SUCCESS; 1179 } 1180 1181 /** 1182 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1183 * @hw: pointer to the HW structure 1184 * @active: boolean used to enable/disable lplu 1185 * 1186 * Success returns 0, Failure returns 1 1187 * 1188 * The low power link up (lplu) state is set to the power management level D0 1189 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1190 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1191 * is used during Dx states where the power conservation is most important. 1192 * During driver activity, SmartSpeed should be enabled so performance is 1193 * maintained. This is a function pointer entry point called by drivers. 1194 **/ 1195 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1196 { 1197 if (hw->phy.ops.set_d0_lplu_state) 1198 return hw->phy.ops.set_d0_lplu_state(hw, active); 1199 1200 return E1000_SUCCESS; 1201 } 1202 1203 /** 1204 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1205 * @hw: pointer to the HW structure 1206 * @active: boolean used to enable/disable lplu 1207 * 1208 * Success returns 0, Failure returns 1 1209 * 1210 * The low power link up (lplu) state is set to the power management level D3 1211 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1212 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1213 * is used during Dx states where the power conservation is most important. 1214 * During driver activity, SmartSpeed should be enabled so performance is 1215 * maintained. This is a function pointer entry point called by drivers. 1216 **/ 1217 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1218 { 1219 if (hw->phy.ops.set_d3_lplu_state) 1220 return hw->phy.ops.set_d3_lplu_state(hw, active); 1221 1222 return E1000_SUCCESS; 1223 } 1224 1225 /** 1226 * e1000_read_mac_addr - Reads MAC address 1227 * @hw: pointer to the HW structure 1228 * 1229 * Reads the MAC address out of the adapter and stores it in the HW structure. 1230 * Currently no func pointer exists and all implementations are handled in the 1231 * generic version of this function. 1232 **/ 1233 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1234 { 1235 if (hw->mac.ops.read_mac_addr) 1236 return hw->mac.ops.read_mac_addr(hw); 1237 1238 return e1000_read_mac_addr_generic(hw); 1239 } 1240 1241 /** 1242 * e1000_read_pba_string - Read device part number string 1243 * @hw: pointer to the HW structure 1244 * @pba_num: pointer to device part number 1245 * @pba_num_size: size of part number buffer 1246 * 1247 * Reads the product board assembly (PBA) number from the EEPROM and stores 1248 * the value in pba_num. 1249 * Currently no func pointer exists and all implementations are handled in the 1250 * generic version of this function. 1251 **/ 1252 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1253 { 1254 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1255 } 1256 1257 /** 1258 * e1000_read_pba_length - Read device part number string length 1259 * @hw: pointer to the HW structure 1260 * @pba_num_size: size of part number buffer 1261 * 1262 * Reads the product board assembly (PBA) number length from the EEPROM and 1263 * stores the value in pba_num. 1264 * Currently no func pointer exists and all implementations are handled in the 1265 * generic version of this function. 1266 **/ 1267 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1268 { 1269 return e1000_read_pba_length_generic(hw, pba_num_size); 1270 } 1271 1272 /** 1273 * e1000_read_pba_num - Read device part number 1274 * @hw: pointer to the HW structure 1275 * @pba_num: pointer to device part number 1276 * 1277 * Reads the product board assembly (PBA) number from the EEPROM and stores 1278 * the value in pba_num. 1279 * Currently no func pointer exists and all implementations are handled in the 1280 * generic version of this function. 1281 **/ 1282 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1283 { 1284 return e1000_read_pba_num_generic(hw, pba_num); 1285 } 1286 1287 /** 1288 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1289 * @hw: pointer to the HW structure 1290 * 1291 * Validates the NVM checksum is correct. This is a function pointer entry 1292 * point called by drivers. 1293 **/ 1294 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1295 { 1296 if (hw->nvm.ops.validate) 1297 return hw->nvm.ops.validate(hw); 1298 1299 return -E1000_ERR_CONFIG; 1300 } 1301 1302 /** 1303 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1304 * @hw: pointer to the HW structure 1305 * 1306 * Updates the NVM checksum. Currently no func pointer exists and all 1307 * implementations are handled in the generic version of this function. 1308 **/ 1309 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1310 { 1311 if (hw->nvm.ops.update) 1312 return hw->nvm.ops.update(hw); 1313 1314 return -E1000_ERR_CONFIG; 1315 } 1316 1317 /** 1318 * e1000_reload_nvm - Reloads EEPROM 1319 * @hw: pointer to the HW structure 1320 * 1321 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1322 * extended control register. 1323 **/ 1324 void e1000_reload_nvm(struct e1000_hw *hw) 1325 { 1326 if (hw->nvm.ops.reload) 1327 hw->nvm.ops.reload(hw); 1328 } 1329 1330 /** 1331 * e1000_read_nvm - Reads NVM (EEPROM) 1332 * @hw: pointer to the HW structure 1333 * @offset: the word offset to read 1334 * @words: number of 16-bit words to read 1335 * @data: pointer to the properly sized buffer for the data. 1336 * 1337 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1338 * pointer entry point called by drivers. 1339 **/ 1340 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1341 { 1342 if (hw->nvm.ops.read) 1343 return hw->nvm.ops.read(hw, offset, words, data); 1344 1345 return -E1000_ERR_CONFIG; 1346 } 1347 1348 /** 1349 * e1000_write_nvm - Writes to NVM (EEPROM) 1350 * @hw: pointer to the HW structure 1351 * @offset: the word offset to read 1352 * @words: number of 16-bit words to write 1353 * @data: pointer to the properly sized buffer for the data. 1354 * 1355 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1356 * pointer entry point called by drivers. 1357 **/ 1358 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1359 { 1360 if (hw->nvm.ops.write) 1361 return hw->nvm.ops.write(hw, offset, words, data); 1362 1363 return E1000_SUCCESS; 1364 } 1365 1366 /** 1367 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1368 * @hw: pointer to the HW structure 1369 * @reg: 32bit register offset 1370 * @offset: the register to write 1371 * @data: the value to write. 1372 * 1373 * Writes the PHY register at offset with the value in data. 1374 * This is a function pointer entry point called by drivers. 1375 **/ 1376 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1377 u8 data) 1378 { 1379 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1380 } 1381 1382 /** 1383 * e1000_power_up_phy - Restores link in case of PHY power down 1384 * @hw: pointer to the HW structure 1385 * 1386 * The phy may be powered down to save power, to turn off link when the 1387 * driver is unloaded, or wake on lan is not enabled (among others). 1388 **/ 1389 void e1000_power_up_phy(struct e1000_hw *hw) 1390 { 1391 if (hw->phy.ops.power_up) 1392 hw->phy.ops.power_up(hw); 1393 1394 e1000_setup_link(hw); 1395 } 1396 1397 /** 1398 * e1000_power_down_phy - Power down PHY 1399 * @hw: pointer to the HW structure 1400 * 1401 * The phy may be powered down to save power, to turn off link when the 1402 * driver is unloaded, or wake on lan is not enabled (among others). 1403 **/ 1404 void e1000_power_down_phy(struct e1000_hw *hw) 1405 { 1406 if (hw->phy.ops.power_down) 1407 hw->phy.ops.power_down(hw); 1408 } 1409 1410 /** 1411 * e1000_power_up_fiber_serdes_link - Power up serdes link 1412 * @hw: pointer to the HW structure 1413 * 1414 * Power on the optics and PCS. 1415 **/ 1416 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1417 { 1418 if (hw->mac.ops.power_up_serdes) 1419 hw->mac.ops.power_up_serdes(hw); 1420 } 1421 1422 /** 1423 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1424 * @hw: pointer to the HW structure 1425 * 1426 * Shutdown the optics and PCS on driver unload. 1427 **/ 1428 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1429 { 1430 if (hw->mac.ops.shutdown_serdes) 1431 hw->mac.ops.shutdown_serdes(hw); 1432 } 1433 1434