1 /****************************************************************************** 2 3 Copyright (c) 2001-2009, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 116 /** 117 * e1000_set_mac_type - Sets MAC type 118 * @hw: pointer to the HW structure 119 * 120 * This function sets the mac type of the adapter based on the 121 * device ID stored in the hw structure. 122 * MUST BE FIRST FUNCTION CALLED (explicitly or through 123 * e1000_setup_init_funcs()). 124 **/ 125 s32 e1000_set_mac_type(struct e1000_hw *hw) 126 { 127 struct e1000_mac_info *mac = &hw->mac; 128 s32 ret_val = E1000_SUCCESS; 129 130 DEBUGFUNC("e1000_set_mac_type"); 131 132 switch (hw->device_id) { 133 case E1000_DEV_ID_82542: 134 mac->type = e1000_82542; 135 break; 136 case E1000_DEV_ID_82543GC_FIBER: 137 case E1000_DEV_ID_82543GC_COPPER: 138 mac->type = e1000_82543; 139 break; 140 case E1000_DEV_ID_82544EI_COPPER: 141 case E1000_DEV_ID_82544EI_FIBER: 142 case E1000_DEV_ID_82544GC_COPPER: 143 case E1000_DEV_ID_82544GC_LOM: 144 mac->type = e1000_82544; 145 break; 146 case E1000_DEV_ID_82540EM: 147 case E1000_DEV_ID_82540EM_LOM: 148 case E1000_DEV_ID_82540EP: 149 case E1000_DEV_ID_82540EP_LOM: 150 case E1000_DEV_ID_82540EP_LP: 151 mac->type = e1000_82540; 152 break; 153 case E1000_DEV_ID_82545EM_COPPER: 154 case E1000_DEV_ID_82545EM_FIBER: 155 mac->type = e1000_82545; 156 break; 157 case E1000_DEV_ID_82545GM_COPPER: 158 case E1000_DEV_ID_82545GM_FIBER: 159 case E1000_DEV_ID_82545GM_SERDES: 160 mac->type = e1000_82545_rev_3; 161 break; 162 case E1000_DEV_ID_82546EB_COPPER: 163 case E1000_DEV_ID_82546EB_FIBER: 164 case E1000_DEV_ID_82546EB_QUAD_COPPER: 165 mac->type = e1000_82546; 166 break; 167 case E1000_DEV_ID_82546GB_COPPER: 168 case E1000_DEV_ID_82546GB_FIBER: 169 case E1000_DEV_ID_82546GB_SERDES: 170 case E1000_DEV_ID_82546GB_PCIE: 171 case E1000_DEV_ID_82546GB_QUAD_COPPER: 172 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 173 mac->type = e1000_82546_rev_3; 174 break; 175 case E1000_DEV_ID_82541EI: 176 case E1000_DEV_ID_82541EI_MOBILE: 177 case E1000_DEV_ID_82541ER_LOM: 178 mac->type = e1000_82541; 179 break; 180 case E1000_DEV_ID_82541ER: 181 case E1000_DEV_ID_82541GI: 182 case E1000_DEV_ID_82541GI_LF: 183 case E1000_DEV_ID_82541GI_MOBILE: 184 mac->type = e1000_82541_rev_2; 185 break; 186 case E1000_DEV_ID_82547EI: 187 case E1000_DEV_ID_82547EI_MOBILE: 188 mac->type = e1000_82547; 189 break; 190 case E1000_DEV_ID_82547GI: 191 mac->type = e1000_82547_rev_2; 192 break; 193 case E1000_DEV_ID_82571EB_COPPER: 194 case E1000_DEV_ID_82571EB_FIBER: 195 case E1000_DEV_ID_82571EB_SERDES: 196 case E1000_DEV_ID_82571EB_SERDES_DUAL: 197 case E1000_DEV_ID_82571EB_SERDES_QUAD: 198 case E1000_DEV_ID_82571EB_QUAD_COPPER: 199 case E1000_DEV_ID_82571PT_QUAD_COPPER: 200 case E1000_DEV_ID_82571EB_QUAD_FIBER: 201 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 202 mac->type = e1000_82571; 203 break; 204 case E1000_DEV_ID_82572EI: 205 case E1000_DEV_ID_82572EI_COPPER: 206 case E1000_DEV_ID_82572EI_FIBER: 207 case E1000_DEV_ID_82572EI_SERDES: 208 mac->type = e1000_82572; 209 break; 210 case E1000_DEV_ID_82573E: 211 case E1000_DEV_ID_82573E_IAMT: 212 case E1000_DEV_ID_82573L: 213 mac->type = e1000_82573; 214 break; 215 case E1000_DEV_ID_82574L: 216 case E1000_DEV_ID_82574LA: 217 mac->type = e1000_82574; 218 break; 219 case E1000_DEV_ID_82583V: 220 mac->type = e1000_82583; 221 break; 222 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 223 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 224 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 225 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 226 mac->type = e1000_80003es2lan; 227 break; 228 case E1000_DEV_ID_ICH8_IFE: 229 case E1000_DEV_ID_ICH8_IFE_GT: 230 case E1000_DEV_ID_ICH8_IFE_G: 231 case E1000_DEV_ID_ICH8_IGP_M: 232 case E1000_DEV_ID_ICH8_IGP_M_AMT: 233 case E1000_DEV_ID_ICH8_IGP_AMT: 234 case E1000_DEV_ID_ICH8_IGP_C: 235 case E1000_DEV_ID_ICH8_82567V_3: 236 mac->type = e1000_ich8lan; 237 break; 238 case E1000_DEV_ID_ICH9_IFE: 239 case E1000_DEV_ID_ICH9_IFE_GT: 240 case E1000_DEV_ID_ICH9_IFE_G: 241 case E1000_DEV_ID_ICH9_IGP_M: 242 case E1000_DEV_ID_ICH9_IGP_M_AMT: 243 case E1000_DEV_ID_ICH9_IGP_M_V: 244 case E1000_DEV_ID_ICH9_IGP_AMT: 245 case E1000_DEV_ID_ICH9_BM: 246 case E1000_DEV_ID_ICH9_IGP_C: 247 case E1000_DEV_ID_ICH10_R_BM_LM: 248 case E1000_DEV_ID_ICH10_R_BM_LF: 249 case E1000_DEV_ID_ICH10_R_BM_V: 250 mac->type = e1000_ich9lan; 251 break; 252 case E1000_DEV_ID_ICH10_D_BM_LM: 253 case E1000_DEV_ID_ICH10_D_BM_LF: 254 mac->type = e1000_ich10lan; 255 break; 256 case E1000_DEV_ID_PCH_D_HV_DM: 257 case E1000_DEV_ID_PCH_D_HV_DC: 258 case E1000_DEV_ID_PCH_M_HV_LM: 259 case E1000_DEV_ID_PCH_M_HV_LC: 260 mac->type = e1000_pchlan; 261 break; 262 case E1000_DEV_ID_82575EB_COPPER: 263 case E1000_DEV_ID_82575EB_FIBER_SERDES: 264 case E1000_DEV_ID_82575GB_QUAD_COPPER: 265 case E1000_DEV_ID_82575GB_QUAD_COPPER_PM: 266 mac->type = e1000_82575; 267 break; 268 case E1000_DEV_ID_82576: 269 case E1000_DEV_ID_82576_FIBER: 270 case E1000_DEV_ID_82576_SERDES: 271 case E1000_DEV_ID_82576_QUAD_COPPER: 272 case E1000_DEV_ID_82576_NS: 273 case E1000_DEV_ID_82576_NS_SERDES: 274 case E1000_DEV_ID_82576_SERDES_QUAD: 275 mac->type = e1000_82576; 276 break; 277 case E1000_DEV_ID_82580_COPPER: 278 case E1000_DEV_ID_82580_FIBER: 279 case E1000_DEV_ID_82580_SERDES: 280 case E1000_DEV_ID_82580_SGMII: 281 case E1000_DEV_ID_82580_COPPER_DUAL: 282 mac->type = e1000_82580; 283 break; 284 case E1000_DEV_ID_82580_ER: 285 case E1000_DEV_ID_82580_ER_DUAL: 286 mac->type = e1000_82580er; 287 break; 288 default: 289 /* Should never have loaded on this device */ 290 ret_val = -E1000_ERR_MAC_INIT; 291 break; 292 } 293 294 return ret_val; 295 } 296 297 /** 298 * e1000_setup_init_funcs - Initializes function pointers 299 * @hw: pointer to the HW structure 300 * @init_device: TRUE will initialize the rest of the function pointers 301 * getting the device ready for use. FALSE will only set 302 * MAC type and the function pointers for the other init 303 * functions. Passing FALSE will not generate any hardware 304 * reads or writes. 305 * 306 * This function must be called by a driver in order to use the rest 307 * of the 'shared' code files. Called by drivers only. 308 **/ 309 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 310 { 311 s32 ret_val; 312 313 /* Can't do much good without knowing the MAC type. */ 314 ret_val = e1000_set_mac_type(hw); 315 if (ret_val) { 316 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 317 goto out; 318 } 319 320 if (!hw->hw_addr) { 321 DEBUGOUT("ERROR: Registers not mapped\n"); 322 ret_val = -E1000_ERR_CONFIG; 323 goto out; 324 } 325 326 /* 327 * Init function pointers to generic implementations. We do this first 328 * allowing a driver module to override it afterward. 329 */ 330 e1000_init_mac_ops_generic(hw); 331 e1000_init_phy_ops_generic(hw); 332 e1000_init_nvm_ops_generic(hw); 333 334 /* 335 * Set up the init function pointers. These are functions within the 336 * adapter family file that sets up function pointers for the rest of 337 * the functions in that family. 338 */ 339 switch (hw->mac.type) { 340 case e1000_82542: 341 e1000_init_function_pointers_82542(hw); 342 break; 343 case e1000_82543: 344 case e1000_82544: 345 e1000_init_function_pointers_82543(hw); 346 break; 347 case e1000_82540: 348 case e1000_82545: 349 case e1000_82545_rev_3: 350 case e1000_82546: 351 case e1000_82546_rev_3: 352 e1000_init_function_pointers_82540(hw); 353 break; 354 case e1000_82541: 355 case e1000_82541_rev_2: 356 case e1000_82547: 357 case e1000_82547_rev_2: 358 e1000_init_function_pointers_82541(hw); 359 break; 360 case e1000_82571: 361 case e1000_82572: 362 case e1000_82573: 363 case e1000_82574: 364 case e1000_82583: 365 e1000_init_function_pointers_82571(hw); 366 break; 367 case e1000_80003es2lan: 368 e1000_init_function_pointers_80003es2lan(hw); 369 break; 370 case e1000_ich8lan: 371 case e1000_ich9lan: 372 case e1000_ich10lan: 373 case e1000_pchlan: 374 e1000_init_function_pointers_ich8lan(hw); 375 break; 376 case e1000_82575: 377 case e1000_82576: 378 case e1000_82580: 379 case e1000_82580er: 380 e1000_init_function_pointers_82575(hw); 381 break; 382 default: 383 DEBUGOUT("Hardware not supported\n"); 384 ret_val = -E1000_ERR_CONFIG; 385 break; 386 } 387 388 /* 389 * Initialize the rest of the function pointers. These require some 390 * register reads/writes in some cases. 391 */ 392 if (!(ret_val) && init_device) { 393 ret_val = e1000_init_mac_params(hw); 394 if (ret_val) 395 goto out; 396 397 ret_val = e1000_init_nvm_params(hw); 398 if (ret_val) 399 goto out; 400 401 ret_val = e1000_init_phy_params(hw); 402 if (ret_val) 403 goto out; 404 } 405 406 out: 407 return ret_val; 408 } 409 410 /** 411 * e1000_get_bus_info - Obtain bus information for adapter 412 * @hw: pointer to the HW structure 413 * 414 * This will obtain information about the HW bus for which the 415 * adapter is attached and stores it in the hw structure. This is a 416 * function pointer entry point called by drivers. 417 **/ 418 s32 e1000_get_bus_info(struct e1000_hw *hw) 419 { 420 if (hw->mac.ops.get_bus_info) 421 return hw->mac.ops.get_bus_info(hw); 422 423 return E1000_SUCCESS; 424 } 425 426 /** 427 * e1000_clear_vfta - Clear VLAN filter table 428 * @hw: pointer to the HW structure 429 * 430 * This clears the VLAN filter table on the adapter. This is a function 431 * pointer entry point called by drivers. 432 **/ 433 void e1000_clear_vfta(struct e1000_hw *hw) 434 { 435 if (hw->mac.ops.clear_vfta) 436 hw->mac.ops.clear_vfta(hw); 437 } 438 439 /** 440 * e1000_write_vfta - Write value to VLAN filter table 441 * @hw: pointer to the HW structure 442 * @offset: the 32-bit offset in which to write the value to. 443 * @value: the 32-bit value to write at location offset. 444 * 445 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 446 * table. This is a function pointer entry point called by drivers. 447 **/ 448 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 449 { 450 if (hw->mac.ops.write_vfta) 451 hw->mac.ops.write_vfta(hw, offset, value); 452 } 453 454 /** 455 * e1000_update_mc_addr_list - Update Multicast addresses 456 * @hw: pointer to the HW structure 457 * @mc_addr_list: array of multicast addresses to program 458 * @mc_addr_count: number of multicast addresses to program 459 * 460 * Updates the Multicast Table Array. 461 * The caller must have a packed mc_addr_list of multicast addresses. 462 **/ 463 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 464 u32 mc_addr_count) 465 { 466 if (hw->mac.ops.update_mc_addr_list) 467 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 468 mc_addr_count); 469 } 470 471 /** 472 * e1000_force_mac_fc - Force MAC flow control 473 * @hw: pointer to the HW structure 474 * 475 * Force the MAC's flow control settings. Currently no func pointer exists 476 * and all implementations are handled in the generic version of this 477 * function. 478 **/ 479 s32 e1000_force_mac_fc(struct e1000_hw *hw) 480 { 481 return e1000_force_mac_fc_generic(hw); 482 } 483 484 /** 485 * e1000_check_for_link - Check/Store link connection 486 * @hw: pointer to the HW structure 487 * 488 * This checks the link condition of the adapter and stores the 489 * results in the hw->mac structure. This is a function pointer entry 490 * point called by drivers. 491 **/ 492 s32 e1000_check_for_link(struct e1000_hw *hw) 493 { 494 if (hw->mac.ops.check_for_link) 495 return hw->mac.ops.check_for_link(hw); 496 497 return -E1000_ERR_CONFIG; 498 } 499 500 /** 501 * e1000_check_mng_mode - Check management mode 502 * @hw: pointer to the HW structure 503 * 504 * This checks if the adapter has manageability enabled. 505 * This is a function pointer entry point called by drivers. 506 **/ 507 bool e1000_check_mng_mode(struct e1000_hw *hw) 508 { 509 if (hw->mac.ops.check_mng_mode) 510 return hw->mac.ops.check_mng_mode(hw); 511 512 return FALSE; 513 } 514 515 /** 516 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 517 * @hw: pointer to the HW structure 518 * @buffer: pointer to the host interface 519 * @length: size of the buffer 520 * 521 * Writes the DHCP information to the host interface. 522 **/ 523 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 524 { 525 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 526 } 527 528 /** 529 * e1000_reset_hw - Reset hardware 530 * @hw: pointer to the HW structure 531 * 532 * This resets the hardware into a known state. This is a function pointer 533 * entry point called by drivers. 534 **/ 535 s32 e1000_reset_hw(struct e1000_hw *hw) 536 { 537 if (hw->mac.ops.reset_hw) 538 return hw->mac.ops.reset_hw(hw); 539 540 return -E1000_ERR_CONFIG; 541 } 542 543 /** 544 * e1000_init_hw - Initialize hardware 545 * @hw: pointer to the HW structure 546 * 547 * This inits the hardware readying it for operation. This is a function 548 * pointer entry point called by drivers. 549 **/ 550 s32 e1000_init_hw(struct e1000_hw *hw) 551 { 552 if (hw->mac.ops.init_hw) 553 return hw->mac.ops.init_hw(hw); 554 555 return -E1000_ERR_CONFIG; 556 } 557 558 /** 559 * e1000_setup_link - Configures link and flow control 560 * @hw: pointer to the HW structure 561 * 562 * This configures link and flow control settings for the adapter. This 563 * is a function pointer entry point called by drivers. While modules can 564 * also call this, they probably call their own version of this function. 565 **/ 566 s32 e1000_setup_link(struct e1000_hw *hw) 567 { 568 if (hw->mac.ops.setup_link) 569 return hw->mac.ops.setup_link(hw); 570 571 return -E1000_ERR_CONFIG; 572 } 573 574 /** 575 * e1000_get_speed_and_duplex - Returns current speed and duplex 576 * @hw: pointer to the HW structure 577 * @speed: pointer to a 16-bit value to store the speed 578 * @duplex: pointer to a 16-bit value to store the duplex. 579 * 580 * This returns the speed and duplex of the adapter in the two 'out' 581 * variables passed in. This is a function pointer entry point called 582 * by drivers. 583 **/ 584 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 585 { 586 if (hw->mac.ops.get_link_up_info) 587 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 588 589 return -E1000_ERR_CONFIG; 590 } 591 592 /** 593 * e1000_setup_led - Configures SW controllable LED 594 * @hw: pointer to the HW structure 595 * 596 * This prepares the SW controllable LED for use and saves the current state 597 * of the LED so it can be later restored. This is a function pointer entry 598 * point called by drivers. 599 **/ 600 s32 e1000_setup_led(struct e1000_hw *hw) 601 { 602 if (hw->mac.ops.setup_led) 603 return hw->mac.ops.setup_led(hw); 604 605 return E1000_SUCCESS; 606 } 607 608 /** 609 * e1000_cleanup_led - Restores SW controllable LED 610 * @hw: pointer to the HW structure 611 * 612 * This restores the SW controllable LED to the value saved off by 613 * e1000_setup_led. This is a function pointer entry point called by drivers. 614 **/ 615 s32 e1000_cleanup_led(struct e1000_hw *hw) 616 { 617 if (hw->mac.ops.cleanup_led) 618 return hw->mac.ops.cleanup_led(hw); 619 620 return E1000_SUCCESS; 621 } 622 623 /** 624 * e1000_blink_led - Blink SW controllable LED 625 * @hw: pointer to the HW structure 626 * 627 * This starts the adapter LED blinking. Request the LED to be setup first 628 * and cleaned up after. This is a function pointer entry point called by 629 * drivers. 630 **/ 631 s32 e1000_blink_led(struct e1000_hw *hw) 632 { 633 if (hw->mac.ops.blink_led) 634 return hw->mac.ops.blink_led(hw); 635 636 return E1000_SUCCESS; 637 } 638 639 /** 640 * e1000_id_led_init - store LED configurations in SW 641 * @hw: pointer to the HW structure 642 * 643 * Initializes the LED config in SW. This is a function pointer entry point 644 * called by drivers. 645 **/ 646 s32 e1000_id_led_init(struct e1000_hw *hw) 647 { 648 if (hw->mac.ops.id_led_init) 649 return hw->mac.ops.id_led_init(hw); 650 651 return E1000_SUCCESS; 652 } 653 654 /** 655 * e1000_led_on - Turn on SW controllable LED 656 * @hw: pointer to the HW structure 657 * 658 * Turns the SW defined LED on. This is a function pointer entry point 659 * called by drivers. 660 **/ 661 s32 e1000_led_on(struct e1000_hw *hw) 662 { 663 if (hw->mac.ops.led_on) 664 return hw->mac.ops.led_on(hw); 665 666 return E1000_SUCCESS; 667 } 668 669 /** 670 * e1000_led_off - Turn off SW controllable LED 671 * @hw: pointer to the HW structure 672 * 673 * Turns the SW defined LED off. This is a function pointer entry point 674 * called by drivers. 675 **/ 676 s32 e1000_led_off(struct e1000_hw *hw) 677 { 678 if (hw->mac.ops.led_off) 679 return hw->mac.ops.led_off(hw); 680 681 return E1000_SUCCESS; 682 } 683 684 /** 685 * e1000_reset_adaptive - Reset adaptive IFS 686 * @hw: pointer to the HW structure 687 * 688 * Resets the adaptive IFS. Currently no func pointer exists and all 689 * implementations are handled in the generic version of this function. 690 **/ 691 void e1000_reset_adaptive(struct e1000_hw *hw) 692 { 693 e1000_reset_adaptive_generic(hw); 694 } 695 696 /** 697 * e1000_update_adaptive - Update adaptive IFS 698 * @hw: pointer to the HW structure 699 * 700 * Updates adapter IFS. Currently no func pointer exists and all 701 * implementations are handled in the generic version of this function. 702 **/ 703 void e1000_update_adaptive(struct e1000_hw *hw) 704 { 705 e1000_update_adaptive_generic(hw); 706 } 707 708 /** 709 * e1000_disable_pcie_master - Disable PCI-Express master access 710 * @hw: pointer to the HW structure 711 * 712 * Disables PCI-Express master access and verifies there are no pending 713 * requests. Currently no func pointer exists and all implementations are 714 * handled in the generic version of this function. 715 **/ 716 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 717 { 718 return e1000_disable_pcie_master_generic(hw); 719 } 720 721 /** 722 * e1000_config_collision_dist - Configure collision distance 723 * @hw: pointer to the HW structure 724 * 725 * Configures the collision distance to the default value and is used 726 * during link setup. 727 **/ 728 void e1000_config_collision_dist(struct e1000_hw *hw) 729 { 730 if (hw->mac.ops.config_collision_dist) 731 hw->mac.ops.config_collision_dist(hw); 732 } 733 734 /** 735 * e1000_rar_set - Sets a receive address register 736 * @hw: pointer to the HW structure 737 * @addr: address to set the RAR to 738 * @index: the RAR to set 739 * 740 * Sets a Receive Address Register (RAR) to the specified address. 741 **/ 742 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 743 { 744 if (hw->mac.ops.rar_set) 745 hw->mac.ops.rar_set(hw, addr, index); 746 } 747 748 /** 749 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 750 * @hw: pointer to the HW structure 751 * 752 * Ensures that the MDI/MDIX SW state is valid. 753 **/ 754 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 755 { 756 if (hw->mac.ops.validate_mdi_setting) 757 return hw->mac.ops.validate_mdi_setting(hw); 758 759 return E1000_SUCCESS; 760 } 761 762 /** 763 * e1000_mta_set - Sets multicast table bit 764 * @hw: pointer to the HW structure 765 * @hash_value: Multicast hash value. 766 * 767 * This sets the bit in the multicast table corresponding to the 768 * hash value. This is a function pointer entry point called by drivers. 769 **/ 770 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) 771 { 772 if (hw->mac.ops.mta_set) 773 hw->mac.ops.mta_set(hw, hash_value); 774 } 775 776 /** 777 * e1000_hash_mc_addr - Determines address location in multicast table 778 * @hw: pointer to the HW structure 779 * @mc_addr: Multicast address to hash. 780 * 781 * This hashes an address to determine its location in the multicast 782 * table. Currently no func pointer exists and all implementations 783 * are handled in the generic version of this function. 784 **/ 785 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 786 { 787 return e1000_hash_mc_addr_generic(hw, mc_addr); 788 } 789 790 /** 791 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 792 * @hw: pointer to the HW structure 793 * 794 * Enables packet filtering on transmit packets if manageability is enabled 795 * and host interface is enabled. 796 * Currently no func pointer exists and all implementations are handled in the 797 * generic version of this function. 798 **/ 799 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 800 { 801 return e1000_enable_tx_pkt_filtering_generic(hw); 802 } 803 804 /** 805 * e1000_mng_host_if_write - Writes to the manageability host interface 806 * @hw: pointer to the HW structure 807 * @buffer: pointer to the host interface buffer 808 * @length: size of the buffer 809 * @offset: location in the buffer to write to 810 * @sum: sum of the data (not checksum) 811 * 812 * This function writes the buffer content at the offset given on the host if. 813 * It also does alignment considerations to do the writes in most efficient 814 * way. Also fills up the sum of the buffer in *buffer parameter. 815 **/ 816 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 817 u16 offset, u8 *sum) 818 { 819 if (hw->mac.ops.mng_host_if_write) 820 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 821 offset, sum); 822 823 return E1000_NOT_IMPLEMENTED; 824 } 825 826 /** 827 * e1000_mng_write_cmd_header - Writes manageability command header 828 * @hw: pointer to the HW structure 829 * @hdr: pointer to the host interface command header 830 * 831 * Writes the command header after does the checksum calculation. 832 **/ 833 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 834 struct e1000_host_mng_command_header *hdr) 835 { 836 if (hw->mac.ops.mng_write_cmd_header) 837 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 838 839 return E1000_NOT_IMPLEMENTED; 840 } 841 842 /** 843 * e1000_mng_enable_host_if - Checks host interface is enabled 844 * @hw: pointer to the HW structure 845 * 846 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 847 * 848 * This function checks whether the HOST IF is enabled for command operation 849 * and also checks whether the previous command is completed. It busy waits 850 * in case of previous command is not completed. 851 **/ 852 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 853 { 854 if (hw->mac.ops.mng_enable_host_if) 855 return hw->mac.ops.mng_enable_host_if(hw); 856 857 return E1000_NOT_IMPLEMENTED; 858 } 859 860 /** 861 * e1000_wait_autoneg - Waits for autonegotiation completion 862 * @hw: pointer to the HW structure 863 * 864 * Waits for autoneg to complete. Currently no func pointer exists and all 865 * implementations are handled in the generic version of this function. 866 **/ 867 s32 e1000_wait_autoneg(struct e1000_hw *hw) 868 { 869 if (hw->mac.ops.wait_autoneg) 870 return hw->mac.ops.wait_autoneg(hw); 871 872 return E1000_SUCCESS; 873 } 874 875 /** 876 * e1000_check_reset_block - Verifies PHY can be reset 877 * @hw: pointer to the HW structure 878 * 879 * Checks if the PHY is in a state that can be reset or if manageability 880 * has it tied up. This is a function pointer entry point called by drivers. 881 **/ 882 s32 e1000_check_reset_block(struct e1000_hw *hw) 883 { 884 if (hw->phy.ops.check_reset_block) 885 return hw->phy.ops.check_reset_block(hw); 886 887 return E1000_SUCCESS; 888 } 889 890 /** 891 * e1000_read_phy_reg - Reads PHY register 892 * @hw: pointer to the HW structure 893 * @offset: the register to read 894 * @data: the buffer to store the 16-bit read. 895 * 896 * Reads the PHY register and returns the value in data. 897 * This is a function pointer entry point called by drivers. 898 **/ 899 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 900 { 901 if (hw->phy.ops.read_reg) 902 return hw->phy.ops.read_reg(hw, offset, data); 903 904 return E1000_SUCCESS; 905 } 906 907 /** 908 * e1000_write_phy_reg - Writes PHY register 909 * @hw: pointer to the HW structure 910 * @offset: the register to write 911 * @data: the value to write. 912 * 913 * Writes the PHY register at offset with the value in data. 914 * This is a function pointer entry point called by drivers. 915 **/ 916 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 917 { 918 if (hw->phy.ops.write_reg) 919 return hw->phy.ops.write_reg(hw, offset, data); 920 921 return E1000_SUCCESS; 922 } 923 924 /** 925 * e1000_release_phy - Generic release PHY 926 * @hw: pointer to the HW structure 927 * 928 * Return if silicon family does not require a semaphore when accessing the 929 * PHY. 930 **/ 931 void e1000_release_phy(struct e1000_hw *hw) 932 { 933 if (hw->phy.ops.release) 934 hw->phy.ops.release(hw); 935 } 936 937 /** 938 * e1000_acquire_phy - Generic acquire PHY 939 * @hw: pointer to the HW structure 940 * 941 * Return success if silicon family does not require a semaphore when 942 * accessing the PHY. 943 **/ 944 s32 e1000_acquire_phy(struct e1000_hw *hw) 945 { 946 if (hw->phy.ops.acquire) 947 return hw->phy.ops.acquire(hw); 948 949 return E1000_SUCCESS; 950 } 951 952 /** 953 * e1000_cfg_on_link_up - Configure PHY upon link up 954 * @hw: pointer to the HW structure 955 **/ 956 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 957 { 958 if (hw->phy.ops.cfg_on_link_up) 959 return hw->phy.ops.cfg_on_link_up(hw); 960 961 return E1000_SUCCESS; 962 } 963 964 /** 965 * e1000_read_kmrn_reg - Reads register using Kumeran interface 966 * @hw: pointer to the HW structure 967 * @offset: the register to read 968 * @data: the location to store the 16-bit value read. 969 * 970 * Reads a register out of the Kumeran interface. Currently no func pointer 971 * exists and all implementations are handled in the generic version of 972 * this function. 973 **/ 974 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 975 { 976 return e1000_read_kmrn_reg_generic(hw, offset, data); 977 } 978 979 /** 980 * e1000_write_kmrn_reg - Writes register using Kumeran interface 981 * @hw: pointer to the HW structure 982 * @offset: the register to write 983 * @data: the value to write. 984 * 985 * Writes a register to the Kumeran interface. Currently no func pointer 986 * exists and all implementations are handled in the generic version of 987 * this function. 988 **/ 989 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 990 { 991 return e1000_write_kmrn_reg_generic(hw, offset, data); 992 } 993 994 /** 995 * e1000_get_cable_length - Retrieves cable length estimation 996 * @hw: pointer to the HW structure 997 * 998 * This function estimates the cable length and stores them in 999 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1000 * entry point called by drivers. 1001 **/ 1002 s32 e1000_get_cable_length(struct e1000_hw *hw) 1003 { 1004 if (hw->phy.ops.get_cable_length) 1005 return hw->phy.ops.get_cable_length(hw); 1006 1007 return E1000_SUCCESS; 1008 } 1009 1010 /** 1011 * e1000_get_phy_info - Retrieves PHY information from registers 1012 * @hw: pointer to the HW structure 1013 * 1014 * This function gets some information from various PHY registers and 1015 * populates hw->phy values with it. This is a function pointer entry 1016 * point called by drivers. 1017 **/ 1018 s32 e1000_get_phy_info(struct e1000_hw *hw) 1019 { 1020 if (hw->phy.ops.get_info) 1021 return hw->phy.ops.get_info(hw); 1022 1023 return E1000_SUCCESS; 1024 } 1025 1026 /** 1027 * e1000_phy_hw_reset - Hard PHY reset 1028 * @hw: pointer to the HW structure 1029 * 1030 * Performs a hard PHY reset. This is a function pointer entry point called 1031 * by drivers. 1032 **/ 1033 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1034 { 1035 if (hw->phy.ops.reset) 1036 return hw->phy.ops.reset(hw); 1037 1038 return E1000_SUCCESS; 1039 } 1040 1041 /** 1042 * e1000_phy_commit - Soft PHY reset 1043 * @hw: pointer to the HW structure 1044 * 1045 * Performs a soft PHY reset on those that apply. This is a function pointer 1046 * entry point called by drivers. 1047 **/ 1048 s32 e1000_phy_commit(struct e1000_hw *hw) 1049 { 1050 if (hw->phy.ops.commit) 1051 return hw->phy.ops.commit(hw); 1052 1053 return E1000_SUCCESS; 1054 } 1055 1056 /** 1057 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1058 * @hw: pointer to the HW structure 1059 * @active: boolean used to enable/disable lplu 1060 * 1061 * Success returns 0, Failure returns 1 1062 * 1063 * The low power link up (lplu) state is set to the power management level D0 1064 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1065 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1066 * is used during Dx states where the power conservation is most important. 1067 * During driver activity, SmartSpeed should be enabled so performance is 1068 * maintained. This is a function pointer entry point called by drivers. 1069 **/ 1070 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1071 { 1072 if (hw->phy.ops.set_d0_lplu_state) 1073 return hw->phy.ops.set_d0_lplu_state(hw, active); 1074 1075 return E1000_SUCCESS; 1076 } 1077 1078 /** 1079 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1080 * @hw: pointer to the HW structure 1081 * @active: boolean used to enable/disable lplu 1082 * 1083 * Success returns 0, Failure returns 1 1084 * 1085 * The low power link up (lplu) state is set to the power management level D3 1086 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1087 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1088 * is used during Dx states where the power conservation is most important. 1089 * During driver activity, SmartSpeed should be enabled so performance is 1090 * maintained. This is a function pointer entry point called by drivers. 1091 **/ 1092 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1093 { 1094 if (hw->phy.ops.set_d3_lplu_state) 1095 return hw->phy.ops.set_d3_lplu_state(hw, active); 1096 1097 return E1000_SUCCESS; 1098 } 1099 1100 /** 1101 * e1000_read_mac_addr - Reads MAC address 1102 * @hw: pointer to the HW structure 1103 * 1104 * Reads the MAC address out of the adapter and stores it in the HW structure. 1105 * Currently no func pointer exists and all implementations are handled in the 1106 * generic version of this function. 1107 **/ 1108 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1109 { 1110 if (hw->mac.ops.read_mac_addr) 1111 return hw->mac.ops.read_mac_addr(hw); 1112 1113 return e1000_read_mac_addr_generic(hw); 1114 } 1115 1116 /** 1117 * e1000_read_pba_num - Read device part number 1118 * @hw: pointer to the HW structure 1119 * @pba_num: pointer to device part number 1120 * 1121 * Reads the product board assembly (PBA) number from the EEPROM and stores 1122 * the value in pba_num. 1123 * Currently no func pointer exists and all implementations are handled in the 1124 * generic version of this function. 1125 **/ 1126 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1127 { 1128 return e1000_read_pba_num_generic(hw, pba_num); 1129 } 1130 1131 /** 1132 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1133 * @hw: pointer to the HW structure 1134 * 1135 * Validates the NVM checksum is correct. This is a function pointer entry 1136 * point called by drivers. 1137 **/ 1138 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1139 { 1140 if (hw->nvm.ops.validate) 1141 return hw->nvm.ops.validate(hw); 1142 1143 return -E1000_ERR_CONFIG; 1144 } 1145 1146 /** 1147 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1148 * @hw: pointer to the HW structure 1149 * 1150 * Updates the NVM checksum. Currently no func pointer exists and all 1151 * implementations are handled in the generic version of this function. 1152 **/ 1153 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1154 { 1155 if (hw->nvm.ops.update) 1156 return hw->nvm.ops.update(hw); 1157 1158 return -E1000_ERR_CONFIG; 1159 } 1160 1161 /** 1162 * e1000_reload_nvm - Reloads EEPROM 1163 * @hw: pointer to the HW structure 1164 * 1165 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1166 * extended control register. 1167 **/ 1168 void e1000_reload_nvm(struct e1000_hw *hw) 1169 { 1170 if (hw->nvm.ops.reload) 1171 hw->nvm.ops.reload(hw); 1172 } 1173 1174 /** 1175 * e1000_read_nvm - Reads NVM (EEPROM) 1176 * @hw: pointer to the HW structure 1177 * @offset: the word offset to read 1178 * @words: number of 16-bit words to read 1179 * @data: pointer to the properly sized buffer for the data. 1180 * 1181 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1182 * pointer entry point called by drivers. 1183 **/ 1184 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1185 { 1186 if (hw->nvm.ops.read) 1187 return hw->nvm.ops.read(hw, offset, words, data); 1188 1189 return -E1000_ERR_CONFIG; 1190 } 1191 1192 /** 1193 * e1000_write_nvm - Writes to NVM (EEPROM) 1194 * @hw: pointer to the HW structure 1195 * @offset: the word offset to read 1196 * @words: number of 16-bit words to write 1197 * @data: pointer to the properly sized buffer for the data. 1198 * 1199 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1200 * pointer entry point called by drivers. 1201 **/ 1202 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1203 { 1204 if (hw->nvm.ops.write) 1205 return hw->nvm.ops.write(hw, offset, words, data); 1206 1207 return E1000_SUCCESS; 1208 } 1209 1210 /** 1211 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1212 * @hw: pointer to the HW structure 1213 * @reg: 32bit register offset 1214 * @offset: the register to write 1215 * @data: the value to write. 1216 * 1217 * Writes the PHY register at offset with the value in data. 1218 * This is a function pointer entry point called by drivers. 1219 **/ 1220 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1221 u8 data) 1222 { 1223 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1224 } 1225 1226 /** 1227 * e1000_power_up_phy - Restores link in case of PHY power down 1228 * @hw: pointer to the HW structure 1229 * 1230 * The phy may be powered down to save power, to turn off link when the 1231 * driver is unloaded, or wake on lan is not enabled (among others). 1232 **/ 1233 void e1000_power_up_phy(struct e1000_hw *hw) 1234 { 1235 if (hw->phy.ops.power_up) 1236 hw->phy.ops.power_up(hw); 1237 1238 e1000_setup_link(hw); 1239 } 1240 1241 /** 1242 * e1000_power_down_phy - Power down PHY 1243 * @hw: pointer to the HW structure 1244 * 1245 * The phy may be powered down to save power, to turn off link when the 1246 * driver is unloaded, or wake on lan is not enabled (among others). 1247 **/ 1248 void e1000_power_down_phy(struct e1000_hw *hw) 1249 { 1250 if (hw->phy.ops.power_down) 1251 hw->phy.ops.power_down(hw); 1252 } 1253 1254 /** 1255 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1256 * @hw: pointer to the HW structure 1257 * 1258 * Shutdown the optics and PCS on driver unload. 1259 **/ 1260 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1261 { 1262 if (hw->mac.ops.shutdown_serdes) 1263 hw->mac.ops.shutdown_serdes(hw); 1264 } 1265 1266