xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 0f454b93f8502e85e8d2b26a383e40b5dc50cd27)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2009, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 
116 /**
117  *  e1000_set_mac_type - Sets MAC type
118  *  @hw: pointer to the HW structure
119  *
120  *  This function sets the mac type of the adapter based on the
121  *  device ID stored in the hw structure.
122  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
123  *  e1000_setup_init_funcs()).
124  **/
125 s32 e1000_set_mac_type(struct e1000_hw *hw)
126 {
127 	struct e1000_mac_info *mac = &hw->mac;
128 	s32 ret_val = E1000_SUCCESS;
129 
130 	DEBUGFUNC("e1000_set_mac_type");
131 
132 	switch (hw->device_id) {
133 	case E1000_DEV_ID_82542:
134 		mac->type = e1000_82542;
135 		break;
136 	case E1000_DEV_ID_82543GC_FIBER:
137 	case E1000_DEV_ID_82543GC_COPPER:
138 		mac->type = e1000_82543;
139 		break;
140 	case E1000_DEV_ID_82544EI_COPPER:
141 	case E1000_DEV_ID_82544EI_FIBER:
142 	case E1000_DEV_ID_82544GC_COPPER:
143 	case E1000_DEV_ID_82544GC_LOM:
144 		mac->type = e1000_82544;
145 		break;
146 	case E1000_DEV_ID_82540EM:
147 	case E1000_DEV_ID_82540EM_LOM:
148 	case E1000_DEV_ID_82540EP:
149 	case E1000_DEV_ID_82540EP_LOM:
150 	case E1000_DEV_ID_82540EP_LP:
151 		mac->type = e1000_82540;
152 		break;
153 	case E1000_DEV_ID_82545EM_COPPER:
154 	case E1000_DEV_ID_82545EM_FIBER:
155 		mac->type = e1000_82545;
156 		break;
157 	case E1000_DEV_ID_82545GM_COPPER:
158 	case E1000_DEV_ID_82545GM_FIBER:
159 	case E1000_DEV_ID_82545GM_SERDES:
160 		mac->type = e1000_82545_rev_3;
161 		break;
162 	case E1000_DEV_ID_82546EB_COPPER:
163 	case E1000_DEV_ID_82546EB_FIBER:
164 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
165 		mac->type = e1000_82546;
166 		break;
167 	case E1000_DEV_ID_82546GB_COPPER:
168 	case E1000_DEV_ID_82546GB_FIBER:
169 	case E1000_DEV_ID_82546GB_SERDES:
170 	case E1000_DEV_ID_82546GB_PCIE:
171 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
172 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
173 		mac->type = e1000_82546_rev_3;
174 		break;
175 	case E1000_DEV_ID_82541EI:
176 	case E1000_DEV_ID_82541EI_MOBILE:
177 	case E1000_DEV_ID_82541ER_LOM:
178 		mac->type = e1000_82541;
179 		break;
180 	case E1000_DEV_ID_82541ER:
181 	case E1000_DEV_ID_82541GI:
182 	case E1000_DEV_ID_82541GI_LF:
183 	case E1000_DEV_ID_82541GI_MOBILE:
184 		mac->type = e1000_82541_rev_2;
185 		break;
186 	case E1000_DEV_ID_82547EI:
187 	case E1000_DEV_ID_82547EI_MOBILE:
188 		mac->type = e1000_82547;
189 		break;
190 	case E1000_DEV_ID_82547GI:
191 		mac->type = e1000_82547_rev_2;
192 		break;
193 	case E1000_DEV_ID_82571EB_COPPER:
194 	case E1000_DEV_ID_82571EB_FIBER:
195 	case E1000_DEV_ID_82571EB_SERDES:
196 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
197 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
198 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
199 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
200 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
201 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
202 		mac->type = e1000_82571;
203 		break;
204 	case E1000_DEV_ID_82572EI:
205 	case E1000_DEV_ID_82572EI_COPPER:
206 	case E1000_DEV_ID_82572EI_FIBER:
207 	case E1000_DEV_ID_82572EI_SERDES:
208 		mac->type = e1000_82572;
209 		break;
210 	case E1000_DEV_ID_82573E:
211 	case E1000_DEV_ID_82573E_IAMT:
212 	case E1000_DEV_ID_82573L:
213 		mac->type = e1000_82573;
214 		break;
215 	case E1000_DEV_ID_82574L:
216 	case E1000_DEV_ID_82574LA:
217 		mac->type = e1000_82574;
218 		break;
219 	case E1000_DEV_ID_82583V:
220 		mac->type = e1000_82583;
221 		break;
222 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
223 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
224 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
225 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
226 		mac->type = e1000_80003es2lan;
227 		break;
228 	case E1000_DEV_ID_ICH8_IFE:
229 	case E1000_DEV_ID_ICH8_IFE_GT:
230 	case E1000_DEV_ID_ICH8_IFE_G:
231 	case E1000_DEV_ID_ICH8_IGP_M:
232 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
233 	case E1000_DEV_ID_ICH8_IGP_AMT:
234 	case E1000_DEV_ID_ICH8_IGP_C:
235 	case E1000_DEV_ID_ICH8_82567V_3:
236 		mac->type = e1000_ich8lan;
237 		break;
238 	case E1000_DEV_ID_ICH9_IFE:
239 	case E1000_DEV_ID_ICH9_IFE_GT:
240 	case E1000_DEV_ID_ICH9_IFE_G:
241 	case E1000_DEV_ID_ICH9_IGP_M:
242 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
243 	case E1000_DEV_ID_ICH9_IGP_M_V:
244 	case E1000_DEV_ID_ICH9_IGP_AMT:
245 	case E1000_DEV_ID_ICH9_BM:
246 	case E1000_DEV_ID_ICH9_IGP_C:
247 	case E1000_DEV_ID_ICH10_R_BM_LM:
248 	case E1000_DEV_ID_ICH10_R_BM_LF:
249 	case E1000_DEV_ID_ICH10_R_BM_V:
250 		mac->type = e1000_ich9lan;
251 		break;
252 	case E1000_DEV_ID_ICH10_D_BM_LM:
253 	case E1000_DEV_ID_ICH10_D_BM_LF:
254 		mac->type = e1000_ich10lan;
255 		break;
256 	case E1000_DEV_ID_PCH_D_HV_DM:
257 	case E1000_DEV_ID_PCH_D_HV_DC:
258 	case E1000_DEV_ID_PCH_M_HV_LM:
259 	case E1000_DEV_ID_PCH_M_HV_LC:
260 		mac->type = e1000_pchlan;
261 		break;
262 	case E1000_DEV_ID_82575EB_COPPER:
263 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
264 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
265 	case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
266 		mac->type = e1000_82575;
267 		break;
268 	case E1000_DEV_ID_82576:
269 	case E1000_DEV_ID_82576_FIBER:
270 	case E1000_DEV_ID_82576_SERDES:
271 	case E1000_DEV_ID_82576_QUAD_COPPER:
272 	case E1000_DEV_ID_82576_NS:
273 	case E1000_DEV_ID_82576_NS_SERDES:
274 	case E1000_DEV_ID_82576_SERDES_QUAD:
275 		mac->type = e1000_82576;
276 		break;
277 	case E1000_DEV_ID_82580_COPPER:
278 	case E1000_DEV_ID_82580_FIBER:
279 	case E1000_DEV_ID_82580_SERDES:
280 	case E1000_DEV_ID_82580_SGMII:
281 	case E1000_DEV_ID_82580_COPPER_DUAL:
282 		mac->type = e1000_82580;
283 		break;
284 	case E1000_DEV_ID_82580_ER:
285 	case E1000_DEV_ID_82580_ER_DUAL:
286 		mac->type = e1000_82580er;
287 		break;
288 	default:
289 		/* Should never have loaded on this device */
290 		ret_val = -E1000_ERR_MAC_INIT;
291 		break;
292 	}
293 
294 	return ret_val;
295 }
296 
297 /**
298  *  e1000_setup_init_funcs - Initializes function pointers
299  *  @hw: pointer to the HW structure
300  *  @init_device: TRUE will initialize the rest of the function pointers
301  *                 getting the device ready for use.  FALSE will only set
302  *                 MAC type and the function pointers for the other init
303  *                 functions.  Passing FALSE will not generate any hardware
304  *                 reads or writes.
305  *
306  *  This function must be called by a driver in order to use the rest
307  *  of the 'shared' code files. Called by drivers only.
308  **/
309 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
310 {
311 	s32 ret_val;
312 
313 	/* Can't do much good without knowing the MAC type. */
314 	ret_val = e1000_set_mac_type(hw);
315 	if (ret_val) {
316 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
317 		goto out;
318 	}
319 
320 	if (!hw->hw_addr) {
321 		DEBUGOUT("ERROR: Registers not mapped\n");
322 		ret_val = -E1000_ERR_CONFIG;
323 		goto out;
324 	}
325 
326 	/*
327 	 * Init function pointers to generic implementations. We do this first
328 	 * allowing a driver module to override it afterward.
329 	 */
330 	e1000_init_mac_ops_generic(hw);
331 	e1000_init_phy_ops_generic(hw);
332 	e1000_init_nvm_ops_generic(hw);
333 
334 	/*
335 	 * Set up the init function pointers. These are functions within the
336 	 * adapter family file that sets up function pointers for the rest of
337 	 * the functions in that family.
338 	 */
339 	switch (hw->mac.type) {
340 	case e1000_82542:
341 		e1000_init_function_pointers_82542(hw);
342 		break;
343 	case e1000_82543:
344 	case e1000_82544:
345 		e1000_init_function_pointers_82543(hw);
346 		break;
347 	case e1000_82540:
348 	case e1000_82545:
349 	case e1000_82545_rev_3:
350 	case e1000_82546:
351 	case e1000_82546_rev_3:
352 		e1000_init_function_pointers_82540(hw);
353 		break;
354 	case e1000_82541:
355 	case e1000_82541_rev_2:
356 	case e1000_82547:
357 	case e1000_82547_rev_2:
358 		e1000_init_function_pointers_82541(hw);
359 		break;
360 	case e1000_82571:
361 	case e1000_82572:
362 	case e1000_82573:
363 	case e1000_82574:
364 	case e1000_82583:
365 		e1000_init_function_pointers_82571(hw);
366 		break;
367 	case e1000_80003es2lan:
368 		e1000_init_function_pointers_80003es2lan(hw);
369 		break;
370 	case e1000_ich8lan:
371 	case e1000_ich9lan:
372 	case e1000_ich10lan:
373 	case e1000_pchlan:
374 		e1000_init_function_pointers_ich8lan(hw);
375 		break;
376 	case e1000_82575:
377 	case e1000_82576:
378 	case e1000_82580:
379 	case e1000_82580er:
380 		e1000_init_function_pointers_82575(hw);
381 		break;
382 	default:
383 		DEBUGOUT("Hardware not supported\n");
384 		ret_val = -E1000_ERR_CONFIG;
385 		break;
386 	}
387 
388 	/*
389 	 * Initialize the rest of the function pointers. These require some
390 	 * register reads/writes in some cases.
391 	 */
392 	if (!(ret_val) && init_device) {
393 		ret_val = e1000_init_mac_params(hw);
394 		if (ret_val)
395 			goto out;
396 
397 		ret_val = e1000_init_nvm_params(hw);
398 		if (ret_val)
399 			goto out;
400 
401 		ret_val = e1000_init_phy_params(hw);
402 		if (ret_val)
403 			goto out;
404 	}
405 
406 out:
407 	return ret_val;
408 }
409 
410 /**
411  *  e1000_get_bus_info - Obtain bus information for adapter
412  *  @hw: pointer to the HW structure
413  *
414  *  This will obtain information about the HW bus for which the
415  *  adapter is attached and stores it in the hw structure. This is a
416  *  function pointer entry point called by drivers.
417  **/
418 s32 e1000_get_bus_info(struct e1000_hw *hw)
419 {
420 	if (hw->mac.ops.get_bus_info)
421 		return hw->mac.ops.get_bus_info(hw);
422 
423 	return E1000_SUCCESS;
424 }
425 
426 /**
427  *  e1000_clear_vfta - Clear VLAN filter table
428  *  @hw: pointer to the HW structure
429  *
430  *  This clears the VLAN filter table on the adapter. This is a function
431  *  pointer entry point called by drivers.
432  **/
433 void e1000_clear_vfta(struct e1000_hw *hw)
434 {
435 	if (hw->mac.ops.clear_vfta)
436 		hw->mac.ops.clear_vfta(hw);
437 }
438 
439 /**
440  *  e1000_write_vfta - Write value to VLAN filter table
441  *  @hw: pointer to the HW structure
442  *  @offset: the 32-bit offset in which to write the value to.
443  *  @value: the 32-bit value to write at location offset.
444  *
445  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
446  *  table. This is a function pointer entry point called by drivers.
447  **/
448 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
449 {
450 	if (hw->mac.ops.write_vfta)
451 		hw->mac.ops.write_vfta(hw, offset, value);
452 }
453 
454 /**
455  *  e1000_update_mc_addr_list - Update Multicast addresses
456  *  @hw: pointer to the HW structure
457  *  @mc_addr_list: array of multicast addresses to program
458  *  @mc_addr_count: number of multicast addresses to program
459  *
460  *  Updates the Multicast Table Array.
461  *  The caller must have a packed mc_addr_list of multicast addresses.
462  **/
463 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
464                                u32 mc_addr_count)
465 {
466 	if (hw->mac.ops.update_mc_addr_list)
467 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
468 		                                mc_addr_count);
469 }
470 
471 /**
472  *  e1000_force_mac_fc - Force MAC flow control
473  *  @hw: pointer to the HW structure
474  *
475  *  Force the MAC's flow control settings. Currently no func pointer exists
476  *  and all implementations are handled in the generic version of this
477  *  function.
478  **/
479 s32 e1000_force_mac_fc(struct e1000_hw *hw)
480 {
481 	return e1000_force_mac_fc_generic(hw);
482 }
483 
484 /**
485  *  e1000_check_for_link - Check/Store link connection
486  *  @hw: pointer to the HW structure
487  *
488  *  This checks the link condition of the adapter and stores the
489  *  results in the hw->mac structure. This is a function pointer entry
490  *  point called by drivers.
491  **/
492 s32 e1000_check_for_link(struct e1000_hw *hw)
493 {
494 	if (hw->mac.ops.check_for_link)
495 		return hw->mac.ops.check_for_link(hw);
496 
497 	return -E1000_ERR_CONFIG;
498 }
499 
500 /**
501  *  e1000_check_mng_mode - Check management mode
502  *  @hw: pointer to the HW structure
503  *
504  *  This checks if the adapter has manageability enabled.
505  *  This is a function pointer entry point called by drivers.
506  **/
507 bool e1000_check_mng_mode(struct e1000_hw *hw)
508 {
509 	if (hw->mac.ops.check_mng_mode)
510 		return hw->mac.ops.check_mng_mode(hw);
511 
512 	return FALSE;
513 }
514 
515 /**
516  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
517  *  @hw: pointer to the HW structure
518  *  @buffer: pointer to the host interface
519  *  @length: size of the buffer
520  *
521  *  Writes the DHCP information to the host interface.
522  **/
523 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
524 {
525 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
526 }
527 
528 /**
529  *  e1000_reset_hw - Reset hardware
530  *  @hw: pointer to the HW structure
531  *
532  *  This resets the hardware into a known state. This is a function pointer
533  *  entry point called by drivers.
534  **/
535 s32 e1000_reset_hw(struct e1000_hw *hw)
536 {
537 	if (hw->mac.ops.reset_hw)
538 		return hw->mac.ops.reset_hw(hw);
539 
540 	return -E1000_ERR_CONFIG;
541 }
542 
543 /**
544  *  e1000_init_hw - Initialize hardware
545  *  @hw: pointer to the HW structure
546  *
547  *  This inits the hardware readying it for operation. This is a function
548  *  pointer entry point called by drivers.
549  **/
550 s32 e1000_init_hw(struct e1000_hw *hw)
551 {
552 	if (hw->mac.ops.init_hw)
553 		return hw->mac.ops.init_hw(hw);
554 
555 	return -E1000_ERR_CONFIG;
556 }
557 
558 /**
559  *  e1000_setup_link - Configures link and flow control
560  *  @hw: pointer to the HW structure
561  *
562  *  This configures link and flow control settings for the adapter. This
563  *  is a function pointer entry point called by drivers. While modules can
564  *  also call this, they probably call their own version of this function.
565  **/
566 s32 e1000_setup_link(struct e1000_hw *hw)
567 {
568 	if (hw->mac.ops.setup_link)
569 		return hw->mac.ops.setup_link(hw);
570 
571 	return -E1000_ERR_CONFIG;
572 }
573 
574 /**
575  *  e1000_get_speed_and_duplex - Returns current speed and duplex
576  *  @hw: pointer to the HW structure
577  *  @speed: pointer to a 16-bit value to store the speed
578  *  @duplex: pointer to a 16-bit value to store the duplex.
579  *
580  *  This returns the speed and duplex of the adapter in the two 'out'
581  *  variables passed in. This is a function pointer entry point called
582  *  by drivers.
583  **/
584 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
585 {
586 	if (hw->mac.ops.get_link_up_info)
587 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
588 
589 	return -E1000_ERR_CONFIG;
590 }
591 
592 /**
593  *  e1000_setup_led - Configures SW controllable LED
594  *  @hw: pointer to the HW structure
595  *
596  *  This prepares the SW controllable LED for use and saves the current state
597  *  of the LED so it can be later restored. This is a function pointer entry
598  *  point called by drivers.
599  **/
600 s32 e1000_setup_led(struct e1000_hw *hw)
601 {
602 	if (hw->mac.ops.setup_led)
603 		return hw->mac.ops.setup_led(hw);
604 
605 	return E1000_SUCCESS;
606 }
607 
608 /**
609  *  e1000_cleanup_led - Restores SW controllable LED
610  *  @hw: pointer to the HW structure
611  *
612  *  This restores the SW controllable LED to the value saved off by
613  *  e1000_setup_led. This is a function pointer entry point called by drivers.
614  **/
615 s32 e1000_cleanup_led(struct e1000_hw *hw)
616 {
617 	if (hw->mac.ops.cleanup_led)
618 		return hw->mac.ops.cleanup_led(hw);
619 
620 	return E1000_SUCCESS;
621 }
622 
623 /**
624  *  e1000_blink_led - Blink SW controllable LED
625  *  @hw: pointer to the HW structure
626  *
627  *  This starts the adapter LED blinking. Request the LED to be setup first
628  *  and cleaned up after. This is a function pointer entry point called by
629  *  drivers.
630  **/
631 s32 e1000_blink_led(struct e1000_hw *hw)
632 {
633 	if (hw->mac.ops.blink_led)
634 		return hw->mac.ops.blink_led(hw);
635 
636 	return E1000_SUCCESS;
637 }
638 
639 /**
640  *  e1000_id_led_init - store LED configurations in SW
641  *  @hw: pointer to the HW structure
642  *
643  *  Initializes the LED config in SW. This is a function pointer entry point
644  *  called by drivers.
645  **/
646 s32 e1000_id_led_init(struct e1000_hw *hw)
647 {
648 	if (hw->mac.ops.id_led_init)
649 		return hw->mac.ops.id_led_init(hw);
650 
651 	return E1000_SUCCESS;
652 }
653 
654 /**
655  *  e1000_led_on - Turn on SW controllable LED
656  *  @hw: pointer to the HW structure
657  *
658  *  Turns the SW defined LED on. This is a function pointer entry point
659  *  called by drivers.
660  **/
661 s32 e1000_led_on(struct e1000_hw *hw)
662 {
663 	if (hw->mac.ops.led_on)
664 		return hw->mac.ops.led_on(hw);
665 
666 	return E1000_SUCCESS;
667 }
668 
669 /**
670  *  e1000_led_off - Turn off SW controllable LED
671  *  @hw: pointer to the HW structure
672  *
673  *  Turns the SW defined LED off. This is a function pointer entry point
674  *  called by drivers.
675  **/
676 s32 e1000_led_off(struct e1000_hw *hw)
677 {
678 	if (hw->mac.ops.led_off)
679 		return hw->mac.ops.led_off(hw);
680 
681 	return E1000_SUCCESS;
682 }
683 
684 /**
685  *  e1000_reset_adaptive - Reset adaptive IFS
686  *  @hw: pointer to the HW structure
687  *
688  *  Resets the adaptive IFS. Currently no func pointer exists and all
689  *  implementations are handled in the generic version of this function.
690  **/
691 void e1000_reset_adaptive(struct e1000_hw *hw)
692 {
693 	e1000_reset_adaptive_generic(hw);
694 }
695 
696 /**
697  *  e1000_update_adaptive - Update adaptive IFS
698  *  @hw: pointer to the HW structure
699  *
700  *  Updates adapter IFS. Currently no func pointer exists and all
701  *  implementations are handled in the generic version of this function.
702  **/
703 void e1000_update_adaptive(struct e1000_hw *hw)
704 {
705 	e1000_update_adaptive_generic(hw);
706 }
707 
708 /**
709  *  e1000_disable_pcie_master - Disable PCI-Express master access
710  *  @hw: pointer to the HW structure
711  *
712  *  Disables PCI-Express master access and verifies there are no pending
713  *  requests. Currently no func pointer exists and all implementations are
714  *  handled in the generic version of this function.
715  **/
716 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
717 {
718 	return e1000_disable_pcie_master_generic(hw);
719 }
720 
721 /**
722  *  e1000_config_collision_dist - Configure collision distance
723  *  @hw: pointer to the HW structure
724  *
725  *  Configures the collision distance to the default value and is used
726  *  during link setup.
727  **/
728 void e1000_config_collision_dist(struct e1000_hw *hw)
729 {
730 	if (hw->mac.ops.config_collision_dist)
731 		hw->mac.ops.config_collision_dist(hw);
732 }
733 
734 /**
735  *  e1000_rar_set - Sets a receive address register
736  *  @hw: pointer to the HW structure
737  *  @addr: address to set the RAR to
738  *  @index: the RAR to set
739  *
740  *  Sets a Receive Address Register (RAR) to the specified address.
741  **/
742 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
743 {
744 	if (hw->mac.ops.rar_set)
745 		hw->mac.ops.rar_set(hw, addr, index);
746 }
747 
748 /**
749  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
750  *  @hw: pointer to the HW structure
751  *
752  *  Ensures that the MDI/MDIX SW state is valid.
753  **/
754 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
755 {
756 	if (hw->mac.ops.validate_mdi_setting)
757 		return hw->mac.ops.validate_mdi_setting(hw);
758 
759 	return E1000_SUCCESS;
760 }
761 
762 /**
763  *  e1000_mta_set - Sets multicast table bit
764  *  @hw: pointer to the HW structure
765  *  @hash_value: Multicast hash value.
766  *
767  *  This sets the bit in the multicast table corresponding to the
768  *  hash value.  This is a function pointer entry point called by drivers.
769  **/
770 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
771 {
772 	if (hw->mac.ops.mta_set)
773 		hw->mac.ops.mta_set(hw, hash_value);
774 }
775 
776 /**
777  *  e1000_hash_mc_addr - Determines address location in multicast table
778  *  @hw: pointer to the HW structure
779  *  @mc_addr: Multicast address to hash.
780  *
781  *  This hashes an address to determine its location in the multicast
782  *  table. Currently no func pointer exists and all implementations
783  *  are handled in the generic version of this function.
784  **/
785 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
786 {
787 	return e1000_hash_mc_addr_generic(hw, mc_addr);
788 }
789 
790 /**
791  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
792  *  @hw: pointer to the HW structure
793  *
794  *  Enables packet filtering on transmit packets if manageability is enabled
795  *  and host interface is enabled.
796  *  Currently no func pointer exists and all implementations are handled in the
797  *  generic version of this function.
798  **/
799 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
800 {
801 	return e1000_enable_tx_pkt_filtering_generic(hw);
802 }
803 
804 /**
805  *  e1000_mng_host_if_write - Writes to the manageability host interface
806  *  @hw: pointer to the HW structure
807  *  @buffer: pointer to the host interface buffer
808  *  @length: size of the buffer
809  *  @offset: location in the buffer to write to
810  *  @sum: sum of the data (not checksum)
811  *
812  *  This function writes the buffer content at the offset given on the host if.
813  *  It also does alignment considerations to do the writes in most efficient
814  *  way.  Also fills up the sum of the buffer in *buffer parameter.
815  **/
816 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
817                             u16 offset, u8 *sum)
818 {
819 	if (hw->mac.ops.mng_host_if_write)
820 		return hw->mac.ops.mng_host_if_write(hw, buffer, length,
821 		                                     offset, sum);
822 
823 	return E1000_NOT_IMPLEMENTED;
824 }
825 
826 /**
827  *  e1000_mng_write_cmd_header - Writes manageability command header
828  *  @hw: pointer to the HW structure
829  *  @hdr: pointer to the host interface command header
830  *
831  *  Writes the command header after does the checksum calculation.
832  **/
833 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
834                                struct e1000_host_mng_command_header *hdr)
835 {
836 	if (hw->mac.ops.mng_write_cmd_header)
837 		return hw->mac.ops.mng_write_cmd_header(hw, hdr);
838 
839 	return E1000_NOT_IMPLEMENTED;
840 }
841 
842 /**
843  *  e1000_mng_enable_host_if - Checks host interface is enabled
844  *  @hw: pointer to the HW structure
845  *
846  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
847  *
848  *  This function checks whether the HOST IF is enabled for command operation
849  *  and also checks whether the previous command is completed.  It busy waits
850  *  in case of previous command is not completed.
851  **/
852 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
853 {
854 	if (hw->mac.ops.mng_enable_host_if)
855 		return hw->mac.ops.mng_enable_host_if(hw);
856 
857 	return E1000_NOT_IMPLEMENTED;
858 }
859 
860 /**
861  *  e1000_wait_autoneg - Waits for autonegotiation completion
862  *  @hw: pointer to the HW structure
863  *
864  *  Waits for autoneg to complete. Currently no func pointer exists and all
865  *  implementations are handled in the generic version of this function.
866  **/
867 s32 e1000_wait_autoneg(struct e1000_hw *hw)
868 {
869 	if (hw->mac.ops.wait_autoneg)
870 		return hw->mac.ops.wait_autoneg(hw);
871 
872 	return E1000_SUCCESS;
873 }
874 
875 /**
876  *  e1000_check_reset_block - Verifies PHY can be reset
877  *  @hw: pointer to the HW structure
878  *
879  *  Checks if the PHY is in a state that can be reset or if manageability
880  *  has it tied up. This is a function pointer entry point called by drivers.
881  **/
882 s32 e1000_check_reset_block(struct e1000_hw *hw)
883 {
884 	if (hw->phy.ops.check_reset_block)
885 		return hw->phy.ops.check_reset_block(hw);
886 
887 	return E1000_SUCCESS;
888 }
889 
890 /**
891  *  e1000_read_phy_reg - Reads PHY register
892  *  @hw: pointer to the HW structure
893  *  @offset: the register to read
894  *  @data: the buffer to store the 16-bit read.
895  *
896  *  Reads the PHY register and returns the value in data.
897  *  This is a function pointer entry point called by drivers.
898  **/
899 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
900 {
901 	if (hw->phy.ops.read_reg)
902 		return hw->phy.ops.read_reg(hw, offset, data);
903 
904 	return E1000_SUCCESS;
905 }
906 
907 /**
908  *  e1000_write_phy_reg - Writes PHY register
909  *  @hw: pointer to the HW structure
910  *  @offset: the register to write
911  *  @data: the value to write.
912  *
913  *  Writes the PHY register at offset with the value in data.
914  *  This is a function pointer entry point called by drivers.
915  **/
916 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
917 {
918 	if (hw->phy.ops.write_reg)
919 		return hw->phy.ops.write_reg(hw, offset, data);
920 
921 	return E1000_SUCCESS;
922 }
923 
924 /**
925  *  e1000_release_phy - Generic release PHY
926  *  @hw: pointer to the HW structure
927  *
928  *  Return if silicon family does not require a semaphore when accessing the
929  *  PHY.
930  **/
931 void e1000_release_phy(struct e1000_hw *hw)
932 {
933 	if (hw->phy.ops.release)
934 		hw->phy.ops.release(hw);
935 }
936 
937 /**
938  *  e1000_acquire_phy - Generic acquire PHY
939  *  @hw: pointer to the HW structure
940  *
941  *  Return success if silicon family does not require a semaphore when
942  *  accessing the PHY.
943  **/
944 s32 e1000_acquire_phy(struct e1000_hw *hw)
945 {
946 	if (hw->phy.ops.acquire)
947 		return hw->phy.ops.acquire(hw);
948 
949 	return E1000_SUCCESS;
950 }
951 
952 /**
953  *  e1000_cfg_on_link_up - Configure PHY upon link up
954  *  @hw: pointer to the HW structure
955  **/
956 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
957 {
958 	if (hw->phy.ops.cfg_on_link_up)
959 		return hw->phy.ops.cfg_on_link_up(hw);
960 
961 	return E1000_SUCCESS;
962 }
963 
964 /**
965  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
966  *  @hw: pointer to the HW structure
967  *  @offset: the register to read
968  *  @data: the location to store the 16-bit value read.
969  *
970  *  Reads a register out of the Kumeran interface. Currently no func pointer
971  *  exists and all implementations are handled in the generic version of
972  *  this function.
973  **/
974 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
975 {
976 	return e1000_read_kmrn_reg_generic(hw, offset, data);
977 }
978 
979 /**
980  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
981  *  @hw: pointer to the HW structure
982  *  @offset: the register to write
983  *  @data: the value to write.
984  *
985  *  Writes a register to the Kumeran interface. Currently no func pointer
986  *  exists and all implementations are handled in the generic version of
987  *  this function.
988  **/
989 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
990 {
991 	return e1000_write_kmrn_reg_generic(hw, offset, data);
992 }
993 
994 /**
995  *  e1000_get_cable_length - Retrieves cable length estimation
996  *  @hw: pointer to the HW structure
997  *
998  *  This function estimates the cable length and stores them in
999  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1000  *  entry point called by drivers.
1001  **/
1002 s32 e1000_get_cable_length(struct e1000_hw *hw)
1003 {
1004 	if (hw->phy.ops.get_cable_length)
1005 		return hw->phy.ops.get_cable_length(hw);
1006 
1007 	return E1000_SUCCESS;
1008 }
1009 
1010 /**
1011  *  e1000_get_phy_info - Retrieves PHY information from registers
1012  *  @hw: pointer to the HW structure
1013  *
1014  *  This function gets some information from various PHY registers and
1015  *  populates hw->phy values with it. This is a function pointer entry
1016  *  point called by drivers.
1017  **/
1018 s32 e1000_get_phy_info(struct e1000_hw *hw)
1019 {
1020 	if (hw->phy.ops.get_info)
1021 		return hw->phy.ops.get_info(hw);
1022 
1023 	return E1000_SUCCESS;
1024 }
1025 
1026 /**
1027  *  e1000_phy_hw_reset - Hard PHY reset
1028  *  @hw: pointer to the HW structure
1029  *
1030  *  Performs a hard PHY reset. This is a function pointer entry point called
1031  *  by drivers.
1032  **/
1033 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1034 {
1035 	if (hw->phy.ops.reset)
1036 		return hw->phy.ops.reset(hw);
1037 
1038 	return E1000_SUCCESS;
1039 }
1040 
1041 /**
1042  *  e1000_phy_commit - Soft PHY reset
1043  *  @hw: pointer to the HW structure
1044  *
1045  *  Performs a soft PHY reset on those that apply. This is a function pointer
1046  *  entry point called by drivers.
1047  **/
1048 s32 e1000_phy_commit(struct e1000_hw *hw)
1049 {
1050 	if (hw->phy.ops.commit)
1051 		return hw->phy.ops.commit(hw);
1052 
1053 	return E1000_SUCCESS;
1054 }
1055 
1056 /**
1057  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1058  *  @hw: pointer to the HW structure
1059  *  @active: boolean used to enable/disable lplu
1060  *
1061  *  Success returns 0, Failure returns 1
1062  *
1063  *  The low power link up (lplu) state is set to the power management level D0
1064  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1065  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1066  *  is used during Dx states where the power conservation is most important.
1067  *  During driver activity, SmartSpeed should be enabled so performance is
1068  *  maintained.  This is a function pointer entry point called by drivers.
1069  **/
1070 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1071 {
1072 	if (hw->phy.ops.set_d0_lplu_state)
1073 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1074 
1075 	return E1000_SUCCESS;
1076 }
1077 
1078 /**
1079  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1080  *  @hw: pointer to the HW structure
1081  *  @active: boolean used to enable/disable lplu
1082  *
1083  *  Success returns 0, Failure returns 1
1084  *
1085  *  The low power link up (lplu) state is set to the power management level D3
1086  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1087  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1088  *  is used during Dx states where the power conservation is most important.
1089  *  During driver activity, SmartSpeed should be enabled so performance is
1090  *  maintained.  This is a function pointer entry point called by drivers.
1091  **/
1092 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1093 {
1094 	if (hw->phy.ops.set_d3_lplu_state)
1095 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1096 
1097 	return E1000_SUCCESS;
1098 }
1099 
1100 /**
1101  *  e1000_read_mac_addr - Reads MAC address
1102  *  @hw: pointer to the HW structure
1103  *
1104  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1105  *  Currently no func pointer exists and all implementations are handled in the
1106  *  generic version of this function.
1107  **/
1108 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1109 {
1110 	if (hw->mac.ops.read_mac_addr)
1111 		return hw->mac.ops.read_mac_addr(hw);
1112 
1113 	return e1000_read_mac_addr_generic(hw);
1114 }
1115 
1116 /**
1117  *  e1000_read_pba_num - Read device part number
1118  *  @hw: pointer to the HW structure
1119  *  @pba_num: pointer to device part number
1120  *
1121  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1122  *  the value in pba_num.
1123  *  Currently no func pointer exists and all implementations are handled in the
1124  *  generic version of this function.
1125  **/
1126 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1127 {
1128 	return e1000_read_pba_num_generic(hw, pba_num);
1129 }
1130 
1131 /**
1132  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1133  *  @hw: pointer to the HW structure
1134  *
1135  *  Validates the NVM checksum is correct. This is a function pointer entry
1136  *  point called by drivers.
1137  **/
1138 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1139 {
1140 	if (hw->nvm.ops.validate)
1141 		return hw->nvm.ops.validate(hw);
1142 
1143 	return -E1000_ERR_CONFIG;
1144 }
1145 
1146 /**
1147  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Updates the NVM checksum. Currently no func pointer exists and all
1151  *  implementations are handled in the generic version of this function.
1152  **/
1153 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1154 {
1155 	if (hw->nvm.ops.update)
1156 		return hw->nvm.ops.update(hw);
1157 
1158 	return -E1000_ERR_CONFIG;
1159 }
1160 
1161 /**
1162  *  e1000_reload_nvm - Reloads EEPROM
1163  *  @hw: pointer to the HW structure
1164  *
1165  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1166  *  extended control register.
1167  **/
1168 void e1000_reload_nvm(struct e1000_hw *hw)
1169 {
1170 	if (hw->nvm.ops.reload)
1171 		hw->nvm.ops.reload(hw);
1172 }
1173 
1174 /**
1175  *  e1000_read_nvm - Reads NVM (EEPROM)
1176  *  @hw: pointer to the HW structure
1177  *  @offset: the word offset to read
1178  *  @words: number of 16-bit words to read
1179  *  @data: pointer to the properly sized buffer for the data.
1180  *
1181  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1182  *  pointer entry point called by drivers.
1183  **/
1184 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1185 {
1186 	if (hw->nvm.ops.read)
1187 		return hw->nvm.ops.read(hw, offset, words, data);
1188 
1189 	return -E1000_ERR_CONFIG;
1190 }
1191 
1192 /**
1193  *  e1000_write_nvm - Writes to NVM (EEPROM)
1194  *  @hw: pointer to the HW structure
1195  *  @offset: the word offset to read
1196  *  @words: number of 16-bit words to write
1197  *  @data: pointer to the properly sized buffer for the data.
1198  *
1199  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1200  *  pointer entry point called by drivers.
1201  **/
1202 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1203 {
1204 	if (hw->nvm.ops.write)
1205 		return hw->nvm.ops.write(hw, offset, words, data);
1206 
1207 	return E1000_SUCCESS;
1208 }
1209 
1210 /**
1211  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1212  *  @hw: pointer to the HW structure
1213  *  @reg: 32bit register offset
1214  *  @offset: the register to write
1215  *  @data: the value to write.
1216  *
1217  *  Writes the PHY register at offset with the value in data.
1218  *  This is a function pointer entry point called by drivers.
1219  **/
1220 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1221                               u8 data)
1222 {
1223 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1224 }
1225 
1226 /**
1227  * e1000_power_up_phy - Restores link in case of PHY power down
1228  * @hw: pointer to the HW structure
1229  *
1230  * The phy may be powered down to save power, to turn off link when the
1231  * driver is unloaded, or wake on lan is not enabled (among others).
1232  **/
1233 void e1000_power_up_phy(struct e1000_hw *hw)
1234 {
1235 	if (hw->phy.ops.power_up)
1236 		hw->phy.ops.power_up(hw);
1237 
1238 	e1000_setup_link(hw);
1239 }
1240 
1241 /**
1242  * e1000_power_down_phy - Power down PHY
1243  * @hw: pointer to the HW structure
1244  *
1245  * The phy may be powered down to save power, to turn off link when the
1246  * driver is unloaded, or wake on lan is not enabled (among others).
1247  **/
1248 void e1000_power_down_phy(struct e1000_hw *hw)
1249 {
1250 	if (hw->phy.ops.power_down)
1251 		hw->phy.ops.power_down(hw);
1252 }
1253 
1254 /**
1255  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1256  *  @hw: pointer to the HW structure
1257  *
1258  *  Shutdown the optics and PCS on driver unload.
1259  **/
1260 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1261 {
1262 	if (hw->mac.ops.shutdown_serdes)
1263 		hw->mac.ops.shutdown_serdes(hw);
1264 }
1265 
1266