xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "e1000_api.h"
37 
38 /**
39  *  e1000_init_mac_params - Initialize MAC function pointers
40  *  @hw: pointer to the HW structure
41  *
42  *  This function initializes the function pointers for the MAC
43  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
44  **/
45 s32 e1000_init_mac_params(struct e1000_hw *hw)
46 {
47 	s32 ret_val = E1000_SUCCESS;
48 
49 	if (hw->mac.ops.init_params) {
50 		ret_val = hw->mac.ops.init_params(hw);
51 		if (ret_val) {
52 			DEBUGOUT("MAC Initialization Error\n");
53 			goto out;
54 		}
55 	} else {
56 		DEBUGOUT("mac.init_mac_params was NULL\n");
57 		ret_val = -E1000_ERR_CONFIG;
58 	}
59 
60 out:
61 	return ret_val;
62 }
63 
64 /**
65  *  e1000_init_nvm_params - Initialize NVM function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  This function initializes the function pointers for the NVM
69  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
70  **/
71 s32 e1000_init_nvm_params(struct e1000_hw *hw)
72 {
73 	s32 ret_val = E1000_SUCCESS;
74 
75 	if (hw->nvm.ops.init_params) {
76 		ret_val = hw->nvm.ops.init_params(hw);
77 		if (ret_val) {
78 			DEBUGOUT("NVM Initialization Error\n");
79 			goto out;
80 		}
81 	} else {
82 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
83 		ret_val = -E1000_ERR_CONFIG;
84 	}
85 
86 out:
87 	return ret_val;
88 }
89 
90 /**
91  *  e1000_init_phy_params - Initialize PHY function pointers
92  *  @hw: pointer to the HW structure
93  *
94  *  This function initializes the function pointers for the PHY
95  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
96  **/
97 s32 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val =  -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_mbx_params - Initialize mailbox function pointers
118  *  @hw: pointer to the HW structure
119  *
120  *  This function initializes the function pointers for the PHY
121  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
122  **/
123 s32 e1000_init_mbx_params(struct e1000_hw *hw)
124 {
125 	s32 ret_val = E1000_SUCCESS;
126 
127 	if (hw->mbx.ops.init_params) {
128 		ret_val = hw->mbx.ops.init_params(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Mailbox Initialization Error\n");
131 			goto out;
132 		}
133 	} else {
134 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
135 		ret_val =  -E1000_ERR_CONFIG;
136 	}
137 
138 out:
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_set_mac_type - Sets MAC type
144  *  @hw: pointer to the HW structure
145  *
146  *  This function sets the mac type of the adapter based on the
147  *  device ID stored in the hw structure.
148  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
149  *  e1000_setup_init_funcs()).
150  **/
151 s32 e1000_set_mac_type(struct e1000_hw *hw)
152 {
153 	struct e1000_mac_info *mac = &hw->mac;
154 	s32 ret_val = E1000_SUCCESS;
155 
156 	DEBUGFUNC("e1000_set_mac_type");
157 
158 	switch (hw->device_id) {
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 	case E1000_DEV_ID_82543GC_FIBER:
163 	case E1000_DEV_ID_82543GC_COPPER:
164 		mac->type = e1000_82543;
165 		break;
166 	case E1000_DEV_ID_82544EI_COPPER:
167 	case E1000_DEV_ID_82544EI_FIBER:
168 	case E1000_DEV_ID_82544GC_COPPER:
169 	case E1000_DEV_ID_82544GC_LOM:
170 		mac->type = e1000_82544;
171 		break;
172 	case E1000_DEV_ID_82540EM:
173 	case E1000_DEV_ID_82540EM_LOM:
174 	case E1000_DEV_ID_82540EP:
175 	case E1000_DEV_ID_82540EP_LOM:
176 	case E1000_DEV_ID_82540EP_LP:
177 		mac->type = e1000_82540;
178 		break;
179 	case E1000_DEV_ID_82545EM_COPPER:
180 	case E1000_DEV_ID_82545EM_FIBER:
181 		mac->type = e1000_82545;
182 		break;
183 	case E1000_DEV_ID_82545GM_COPPER:
184 	case E1000_DEV_ID_82545GM_FIBER:
185 	case E1000_DEV_ID_82545GM_SERDES:
186 		mac->type = e1000_82545_rev_3;
187 		break;
188 	case E1000_DEV_ID_82546EB_COPPER:
189 	case E1000_DEV_ID_82546EB_FIBER:
190 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
191 		mac->type = e1000_82546;
192 		break;
193 	case E1000_DEV_ID_82546GB_COPPER:
194 	case E1000_DEV_ID_82546GB_FIBER:
195 	case E1000_DEV_ID_82546GB_SERDES:
196 	case E1000_DEV_ID_82546GB_PCIE:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
199 		mac->type = e1000_82546_rev_3;
200 		break;
201 	case E1000_DEV_ID_82541EI:
202 	case E1000_DEV_ID_82541EI_MOBILE:
203 	case E1000_DEV_ID_82541ER_LOM:
204 		mac->type = e1000_82541;
205 		break;
206 	case E1000_DEV_ID_82541ER:
207 	case E1000_DEV_ID_82541GI:
208 	case E1000_DEV_ID_82541GI_LF:
209 	case E1000_DEV_ID_82541GI_MOBILE:
210 		mac->type = e1000_82541_rev_2;
211 		break;
212 	case E1000_DEV_ID_82547EI:
213 	case E1000_DEV_ID_82547EI_MOBILE:
214 		mac->type = e1000_82547;
215 		break;
216 	case E1000_DEV_ID_82547GI:
217 		mac->type = e1000_82547_rev_2;
218 		break;
219 	case E1000_DEV_ID_82571EB_COPPER:
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82571EB_SERDES:
222 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
223 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
224 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
225 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
226 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
313 	case E1000_DEV_ID_PCH_CMP_I219_V12:
314 		mac->type = e1000_pch_spt;
315 		break;
316 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
317 	case E1000_DEV_ID_PCH_CNP_I219_V6:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
319 	case E1000_DEV_ID_PCH_CNP_I219_V7:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
321 	case E1000_DEV_ID_PCH_ICP_I219_V8:
322 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
323 	case E1000_DEV_ID_PCH_ICP_I219_V9:
324 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
325 	case E1000_DEV_ID_PCH_CMP_I219_V10:
326 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
327 	case E1000_DEV_ID_PCH_CMP_I219_V11:
328 		mac->type = e1000_pch_cnp;
329 		break;
330 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
331 	case E1000_DEV_ID_PCH_TGP_I219_V13:
332 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
333 	case E1000_DEV_ID_PCH_TGP_I219_V14:
334 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
335 	case E1000_DEV_ID_PCH_TGP_I219_V15:
336 		mac->type = e1000_pch_tgp;
337 		break;
338 	case E1000_DEV_ID_PCH_ADL_I219_LM16:
339 	case E1000_DEV_ID_PCH_ADL_I219_V16:
340 	case E1000_DEV_ID_PCH_ADL_I219_LM17:
341 	case E1000_DEV_ID_PCH_ADL_I219_V17:
342 		mac->type = e1000_pch_adp;
343 		break;
344 	case E1000_DEV_ID_PCH_MTP_I219_LM18:
345 	case E1000_DEV_ID_PCH_MTP_I219_V18:
346 	case E1000_DEV_ID_PCH_MTP_I219_LM19:
347 	case E1000_DEV_ID_PCH_MTP_I219_V19:
348 		mac->type = e1000_pch_mtp;
349 		break;
350 	case E1000_DEV_ID_82575EB_COPPER:
351 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
352 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
353 		mac->type = e1000_82575;
354 		break;
355 	case E1000_DEV_ID_82576:
356 	case E1000_DEV_ID_82576_FIBER:
357 	case E1000_DEV_ID_82576_SERDES:
358 	case E1000_DEV_ID_82576_QUAD_COPPER:
359 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
360 	case E1000_DEV_ID_82576_NS:
361 	case E1000_DEV_ID_82576_NS_SERDES:
362 	case E1000_DEV_ID_82576_SERDES_QUAD:
363 		mac->type = e1000_82576;
364 		break;
365 	case E1000_DEV_ID_82580_COPPER:
366 	case E1000_DEV_ID_82580_FIBER:
367 	case E1000_DEV_ID_82580_SERDES:
368 	case E1000_DEV_ID_82580_SGMII:
369 	case E1000_DEV_ID_82580_COPPER_DUAL:
370 	case E1000_DEV_ID_82580_QUAD_FIBER:
371 	case E1000_DEV_ID_DH89XXCC_SGMII:
372 	case E1000_DEV_ID_DH89XXCC_SERDES:
373 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
374 	case E1000_DEV_ID_DH89XXCC_SFP:
375 		mac->type = e1000_82580;
376 		break;
377 	case E1000_DEV_ID_I350_COPPER:
378 	case E1000_DEV_ID_I350_FIBER:
379 	case E1000_DEV_ID_I350_SERDES:
380 	case E1000_DEV_ID_I350_SGMII:
381 	case E1000_DEV_ID_I350_DA4:
382 		mac->type = e1000_i350;
383 		break;
384 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
385 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
386 	case E1000_DEV_ID_I210_SGMII_FLASHLESS:
387 	case E1000_DEV_ID_I210_COPPER:
388 	case E1000_DEV_ID_I210_COPPER_OEM1:
389 	case E1000_DEV_ID_I210_COPPER_IT:
390 	case E1000_DEV_ID_I210_FIBER:
391 	case E1000_DEV_ID_I210_SERDES:
392 	case E1000_DEV_ID_I210_SGMII:
393 		mac->type = e1000_i210;
394 		break;
395 	case E1000_DEV_ID_I211_COPPER:
396 		mac->type = e1000_i211;
397 		break;
398 	case E1000_DEV_ID_82576_VF:
399 	case E1000_DEV_ID_82576_VF_HV:
400 		mac->type = e1000_vfadapt;
401 		break;
402 	case E1000_DEV_ID_I350_VF:
403 	case E1000_DEV_ID_I350_VF_HV:
404 		mac->type = e1000_vfadapt_i350;
405 		break;
406 
407 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
408 	case E1000_DEV_ID_I354_SGMII:
409 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
410 		mac->type = e1000_i354;
411 		break;
412 	default:
413 		/* Should never have loaded on this device */
414 		ret_val = -E1000_ERR_MAC_INIT;
415 		break;
416 	}
417 
418 	return ret_val;
419 }
420 
421 /**
422  *  e1000_setup_init_funcs - Initializes function pointers
423  *  @hw: pointer to the HW structure
424  *  @init_device: true will initialize the rest of the function pointers
425  *		  getting the device ready for use.  false will only set
426  *		  MAC type and the function pointers for the other init
427  *		  functions.  Passing false will not generate any hardware
428  *		  reads or writes.
429  *
430  *  This function must be called by a driver in order to use the rest
431  *  of the 'shared' code files. Called by drivers only.
432  **/
433 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
434 {
435 	s32 ret_val;
436 
437 	/* Can't do much good without knowing the MAC type. */
438 	ret_val = e1000_set_mac_type(hw);
439 	if (ret_val) {
440 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
441 		goto out;
442 	}
443 
444 	if (!hw->hw_addr) {
445 		DEBUGOUT("ERROR: Registers not mapped\n");
446 		ret_val = -E1000_ERR_CONFIG;
447 		goto out;
448 	}
449 
450 	/*
451 	 * Init function pointers to generic implementations. We do this first
452 	 * allowing a driver module to override it afterward.
453 	 */
454 	e1000_init_mac_ops_generic(hw);
455 	e1000_init_phy_ops_generic(hw);
456 	e1000_init_nvm_ops_generic(hw);
457 	e1000_init_mbx_ops_generic(hw);
458 
459 	/*
460 	 * Set up the init function pointers. These are functions within the
461 	 * adapter family file that sets up function pointers for the rest of
462 	 * the functions in that family.
463 	 */
464 	switch (hw->mac.type) {
465 	case e1000_82542:
466 		e1000_init_function_pointers_82542(hw);
467 		break;
468 	case e1000_82543:
469 	case e1000_82544:
470 		e1000_init_function_pointers_82543(hw);
471 		break;
472 	case e1000_82540:
473 	case e1000_82545:
474 	case e1000_82545_rev_3:
475 	case e1000_82546:
476 	case e1000_82546_rev_3:
477 		e1000_init_function_pointers_82540(hw);
478 		break;
479 	case e1000_82541:
480 	case e1000_82541_rev_2:
481 	case e1000_82547:
482 	case e1000_82547_rev_2:
483 		e1000_init_function_pointers_82541(hw);
484 		break;
485 	case e1000_82571:
486 	case e1000_82572:
487 	case e1000_82573:
488 	case e1000_82574:
489 	case e1000_82583:
490 		e1000_init_function_pointers_82571(hw);
491 		break;
492 	case e1000_80003es2lan:
493 		e1000_init_function_pointers_80003es2lan(hw);
494 		break;
495 	case e1000_ich8lan:
496 	case e1000_ich9lan:
497 	case e1000_ich10lan:
498 	case e1000_pchlan:
499 	case e1000_pch2lan:
500 	case e1000_pch_lpt:
501 	case e1000_pch_spt:
502 	case e1000_pch_cnp:
503 	case e1000_pch_tgp:
504 	case e1000_pch_adp:
505 	case e1000_pch_mtp:
506 		e1000_init_function_pointers_ich8lan(hw);
507 		break;
508 	case e1000_82575:
509 	case e1000_82576:
510 	case e1000_82580:
511 	case e1000_i350:
512 	case e1000_i354:
513 		e1000_init_function_pointers_82575(hw);
514 		break;
515 	case e1000_i210:
516 	case e1000_i211:
517 		e1000_init_function_pointers_i210(hw);
518 		break;
519 	case e1000_vfadapt:
520 		e1000_init_function_pointers_vf(hw);
521 		break;
522 	case e1000_vfadapt_i350:
523 		e1000_init_function_pointers_vf(hw);
524 		break;
525 	default:
526 		DEBUGOUT("Hardware not supported\n");
527 		ret_val = -E1000_ERR_CONFIG;
528 		break;
529 	}
530 
531 	/*
532 	 * Initialize the rest of the function pointers. These require some
533 	 * register reads/writes in some cases.
534 	 */
535 	if (!(ret_val) && init_device) {
536 		ret_val = e1000_init_mac_params(hw);
537 		if (ret_val)
538 			goto out;
539 
540 		ret_val = e1000_init_nvm_params(hw);
541 		if (ret_val)
542 			goto out;
543 
544 		ret_val = e1000_init_phy_params(hw);
545 		if (ret_val)
546 			goto out;
547 
548 		ret_val = e1000_init_mbx_params(hw);
549 		if (ret_val)
550 			goto out;
551 	}
552 
553 out:
554 	return ret_val;
555 }
556 
557 /**
558  *  e1000_get_bus_info - Obtain bus information for adapter
559  *  @hw: pointer to the HW structure
560  *
561  *  This will obtain information about the HW bus for which the
562  *  adapter is attached and stores it in the hw structure. This is a
563  *  function pointer entry point called by drivers.
564  **/
565 s32 e1000_get_bus_info(struct e1000_hw *hw)
566 {
567 	if (hw->mac.ops.get_bus_info)
568 		return hw->mac.ops.get_bus_info(hw);
569 
570 	return E1000_SUCCESS;
571 }
572 
573 /**
574  *  e1000_clear_vfta - Clear VLAN filter table
575  *  @hw: pointer to the HW structure
576  *
577  *  This clears the VLAN filter table on the adapter. This is a function
578  *  pointer entry point called by drivers.
579  **/
580 void e1000_clear_vfta(struct e1000_hw *hw)
581 {
582 	if (hw->mac.ops.clear_vfta)
583 		hw->mac.ops.clear_vfta(hw);
584 }
585 
586 /**
587  *  e1000_write_vfta - Write value to VLAN filter table
588  *  @hw: pointer to the HW structure
589  *  @offset: the 32-bit offset in which to write the value to.
590  *  @value: the 32-bit value to write at location offset.
591  *
592  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
593  *  table. This is a function pointer entry point called by drivers.
594  **/
595 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
596 {
597 	if (hw->mac.ops.write_vfta)
598 		hw->mac.ops.write_vfta(hw, offset, value);
599 }
600 
601 /**
602  *  e1000_update_mc_addr_list - Update Multicast addresses
603  *  @hw: pointer to the HW structure
604  *  @mc_addr_list: array of multicast addresses to program
605  *  @mc_addr_count: number of multicast addresses to program
606  *
607  *  Updates the Multicast Table Array.
608  *  The caller must have a packed mc_addr_list of multicast addresses.
609  **/
610 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
611 			       u32 mc_addr_count)
612 {
613 	if (hw->mac.ops.update_mc_addr_list)
614 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
615 						mc_addr_count);
616 }
617 
618 /**
619  *  e1000_force_mac_fc - Force MAC flow control
620  *  @hw: pointer to the HW structure
621  *
622  *  Force the MAC's flow control settings. Currently no func pointer exists
623  *  and all implementations are handled in the generic version of this
624  *  function.
625  **/
626 s32 e1000_force_mac_fc(struct e1000_hw *hw)
627 {
628 	return e1000_force_mac_fc_generic(hw);
629 }
630 
631 /**
632  *  e1000_check_for_link - Check/Store link connection
633  *  @hw: pointer to the HW structure
634  *
635  *  This checks the link condition of the adapter and stores the
636  *  results in the hw->mac structure. This is a function pointer entry
637  *  point called by drivers.
638  **/
639 s32 e1000_check_for_link(struct e1000_hw *hw)
640 {
641 	if (hw->mac.ops.check_for_link)
642 		return hw->mac.ops.check_for_link(hw);
643 
644 	return -E1000_ERR_CONFIG;
645 }
646 
647 /**
648  *  e1000_check_mng_mode - Check management mode
649  *  @hw: pointer to the HW structure
650  *
651  *  This checks if the adapter has manageability enabled.
652  *  This is a function pointer entry point called by drivers.
653  **/
654 bool e1000_check_mng_mode(struct e1000_hw *hw)
655 {
656 	if (hw->mac.ops.check_mng_mode)
657 		return hw->mac.ops.check_mng_mode(hw);
658 
659 	return false;
660 }
661 
662 /**
663  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
664  *  @hw: pointer to the HW structure
665  *  @buffer: pointer to the host interface
666  *  @length: size of the buffer
667  *
668  *  Writes the DHCP information to the host interface.
669  **/
670 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
671 {
672 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
673 }
674 
675 /**
676  *  e1000_reset_hw - Reset hardware
677  *  @hw: pointer to the HW structure
678  *
679  *  This resets the hardware into a known state. This is a function pointer
680  *  entry point called by drivers.
681  **/
682 s32 e1000_reset_hw(struct e1000_hw *hw)
683 {
684 	if (hw->mac.ops.reset_hw)
685 		return hw->mac.ops.reset_hw(hw);
686 
687 	return -E1000_ERR_CONFIG;
688 }
689 
690 /**
691  *  e1000_init_hw - Initialize hardware
692  *  @hw: pointer to the HW structure
693  *
694  *  This inits the hardware readying it for operation. This is a function
695  *  pointer entry point called by drivers.
696  **/
697 s32 e1000_init_hw(struct e1000_hw *hw)
698 {
699 	if (hw->mac.ops.init_hw)
700 		return hw->mac.ops.init_hw(hw);
701 
702 	return -E1000_ERR_CONFIG;
703 }
704 
705 /**
706  *  e1000_setup_link - Configures link and flow control
707  *  @hw: pointer to the HW structure
708  *
709  *  This configures link and flow control settings for the adapter. This
710  *  is a function pointer entry point called by drivers. While modules can
711  *  also call this, they probably call their own version of this function.
712  **/
713 s32 e1000_setup_link(struct e1000_hw *hw)
714 {
715 	if (hw->mac.ops.setup_link)
716 		return hw->mac.ops.setup_link(hw);
717 
718 	return -E1000_ERR_CONFIG;
719 }
720 
721 /**
722  *  e1000_get_speed_and_duplex - Returns current speed and duplex
723  *  @hw: pointer to the HW structure
724  *  @speed: pointer to a 16-bit value to store the speed
725  *  @duplex: pointer to a 16-bit value to store the duplex.
726  *
727  *  This returns the speed and duplex of the adapter in the two 'out'
728  *  variables passed in. This is a function pointer entry point called
729  *  by drivers.
730  **/
731 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
732 {
733 	if (hw->mac.ops.get_link_up_info)
734 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
735 
736 	return -E1000_ERR_CONFIG;
737 }
738 
739 /**
740  *  e1000_setup_led - Configures SW controllable LED
741  *  @hw: pointer to the HW structure
742  *
743  *  This prepares the SW controllable LED for use and saves the current state
744  *  of the LED so it can be later restored. This is a function pointer entry
745  *  point called by drivers.
746  **/
747 s32 e1000_setup_led(struct e1000_hw *hw)
748 {
749 	if (hw->mac.ops.setup_led)
750 		return hw->mac.ops.setup_led(hw);
751 
752 	return E1000_SUCCESS;
753 }
754 
755 /**
756  *  e1000_cleanup_led - Restores SW controllable LED
757  *  @hw: pointer to the HW structure
758  *
759  *  This restores the SW controllable LED to the value saved off by
760  *  e1000_setup_led. This is a function pointer entry point called by drivers.
761  **/
762 s32 e1000_cleanup_led(struct e1000_hw *hw)
763 {
764 	if (hw->mac.ops.cleanup_led)
765 		return hw->mac.ops.cleanup_led(hw);
766 
767 	return E1000_SUCCESS;
768 }
769 
770 /**
771  *  e1000_blink_led - Blink SW controllable LED
772  *  @hw: pointer to the HW structure
773  *
774  *  This starts the adapter LED blinking. Request the LED to be setup first
775  *  and cleaned up after. This is a function pointer entry point called by
776  *  drivers.
777  **/
778 s32 e1000_blink_led(struct e1000_hw *hw)
779 {
780 	if (hw->mac.ops.blink_led)
781 		return hw->mac.ops.blink_led(hw);
782 
783 	return E1000_SUCCESS;
784 }
785 
786 /**
787  *  e1000_id_led_init - store LED configurations in SW
788  *  @hw: pointer to the HW structure
789  *
790  *  Initializes the LED config in SW. This is a function pointer entry point
791  *  called by drivers.
792  **/
793 s32 e1000_id_led_init(struct e1000_hw *hw)
794 {
795 	if (hw->mac.ops.id_led_init)
796 		return hw->mac.ops.id_led_init(hw);
797 
798 	return E1000_SUCCESS;
799 }
800 
801 /**
802  *  e1000_led_on - Turn on SW controllable LED
803  *  @hw: pointer to the HW structure
804  *
805  *  Turns the SW defined LED on. This is a function pointer entry point
806  *  called by drivers.
807  **/
808 s32 e1000_led_on(struct e1000_hw *hw)
809 {
810 	if (hw->mac.ops.led_on)
811 		return hw->mac.ops.led_on(hw);
812 
813 	return E1000_SUCCESS;
814 }
815 
816 /**
817  *  e1000_led_off - Turn off SW controllable LED
818  *  @hw: pointer to the HW structure
819  *
820  *  Turns the SW defined LED off. This is a function pointer entry point
821  *  called by drivers.
822  **/
823 s32 e1000_led_off(struct e1000_hw *hw)
824 {
825 	if (hw->mac.ops.led_off)
826 		return hw->mac.ops.led_off(hw);
827 
828 	return E1000_SUCCESS;
829 }
830 
831 /**
832  *  e1000_reset_adaptive - Reset adaptive IFS
833  *  @hw: pointer to the HW structure
834  *
835  *  Resets the adaptive IFS. Currently no func pointer exists and all
836  *  implementations are handled in the generic version of this function.
837  **/
838 void e1000_reset_adaptive(struct e1000_hw *hw)
839 {
840 	e1000_reset_adaptive_generic(hw);
841 }
842 
843 /**
844  *  e1000_update_adaptive - Update adaptive IFS
845  *  @hw: pointer to the HW structure
846  *
847  *  Updates adapter IFS. Currently no func pointer exists and all
848  *  implementations are handled in the generic version of this function.
849  **/
850 void e1000_update_adaptive(struct e1000_hw *hw)
851 {
852 	e1000_update_adaptive_generic(hw);
853 }
854 
855 /**
856  *  e1000_disable_pcie_master - Disable PCI-Express master access
857  *  @hw: pointer to the HW structure
858  *
859  *  Disables PCI-Express master access and verifies there are no pending
860  *  requests. Currently no func pointer exists and all implementations are
861  *  handled in the generic version of this function.
862  **/
863 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
864 {
865 	return e1000_disable_pcie_master_generic(hw);
866 }
867 
868 /**
869  *  e1000_config_collision_dist - Configure collision distance
870  *  @hw: pointer to the HW structure
871  *
872  *  Configures the collision distance to the default value and is used
873  *  during link setup.
874  **/
875 void e1000_config_collision_dist(struct e1000_hw *hw)
876 {
877 	if (hw->mac.ops.config_collision_dist)
878 		hw->mac.ops.config_collision_dist(hw);
879 }
880 
881 /**
882  *  e1000_rar_set - Sets a receive address register
883  *  @hw: pointer to the HW structure
884  *  @addr: address to set the RAR to
885  *  @index: the RAR to set
886  *
887  *  Sets a Receive Address Register (RAR) to the specified address.
888  **/
889 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
890 {
891 	if (hw->mac.ops.rar_set)
892 		return hw->mac.ops.rar_set(hw, addr, index);
893 
894 	return E1000_SUCCESS;
895 }
896 
897 /**
898  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
899  *  @hw: pointer to the HW structure
900  *
901  *  Ensures that the MDI/MDIX SW state is valid.
902  **/
903 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
904 {
905 	if (hw->mac.ops.validate_mdi_setting)
906 		return hw->mac.ops.validate_mdi_setting(hw);
907 
908 	return E1000_SUCCESS;
909 }
910 
911 /**
912  *  e1000_hash_mc_addr - Determines address location in multicast table
913  *  @hw: pointer to the HW structure
914  *  @mc_addr: Multicast address to hash.
915  *
916  *  This hashes an address to determine its location in the multicast
917  *  table. Currently no func pointer exists and all implementations
918  *  are handled in the generic version of this function.
919  **/
920 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
921 {
922 	return e1000_hash_mc_addr_generic(hw, mc_addr);
923 }
924 
925 /**
926  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
927  *  @hw: pointer to the HW structure
928  *
929  *  Enables packet filtering on transmit packets if manageability is enabled
930  *  and host interface is enabled.
931  *  Currently no func pointer exists and all implementations are handled in the
932  *  generic version of this function.
933  **/
934 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
935 {
936 	return e1000_enable_tx_pkt_filtering_generic(hw);
937 }
938 
939 /**
940  *  e1000_mng_host_if_write - Writes to the manageability host interface
941  *  @hw: pointer to the HW structure
942  *  @buffer: pointer to the host interface buffer
943  *  @length: size of the buffer
944  *  @offset: location in the buffer to write to
945  *  @sum: sum of the data (not checksum)
946  *
947  *  This function writes the buffer content at the offset given on the host if.
948  *  It also does alignment considerations to do the writes in most efficient
949  *  way.  Also fills up the sum of the buffer in *buffer parameter.
950  **/
951 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
952 			    u16 offset, u8 *sum)
953 {
954 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
955 }
956 
957 /**
958  *  e1000_mng_write_cmd_header - Writes manageability command header
959  *  @hw: pointer to the HW structure
960  *  @hdr: pointer to the host interface command header
961  *
962  *  Writes the command header after does the checksum calculation.
963  **/
964 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
965 			       struct e1000_host_mng_command_header *hdr)
966 {
967 	return e1000_mng_write_cmd_header_generic(hw, hdr);
968 }
969 
970 /**
971  *  e1000_mng_enable_host_if - Checks host interface is enabled
972  *  @hw: pointer to the HW structure
973  *
974  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
975  *
976  *  This function checks whether the HOST IF is enabled for command operation
977  *  and also checks whether the previous command is completed.  It busy waits
978  *  in case of previous command is not completed.
979  **/
980 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
981 {
982 	return e1000_mng_enable_host_if_generic(hw);
983 }
984 
985 /**
986  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
987  *  @hw: pointer to the HW structure
988  *  @itr: u32 indicating itr value
989  *
990  *  Set the OBFF timer based on the given interrupt rate.
991  **/
992 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
993 {
994 	if (hw->mac.ops.set_obff_timer)
995 		return hw->mac.ops.set_obff_timer(hw, itr);
996 
997 	return E1000_SUCCESS;
998 }
999 
1000 /**
1001  *  e1000_check_reset_block - Verifies PHY can be reset
1002  *  @hw: pointer to the HW structure
1003  *
1004  *  Checks if the PHY is in a state that can be reset or if manageability
1005  *  has it tied up. This is a function pointer entry point called by drivers.
1006  **/
1007 s32 e1000_check_reset_block(struct e1000_hw *hw)
1008 {
1009 	if (hw->phy.ops.check_reset_block)
1010 		return hw->phy.ops.check_reset_block(hw);
1011 
1012 	return E1000_SUCCESS;
1013 }
1014 
1015 /**
1016  *  e1000_read_phy_reg - Reads PHY register
1017  *  @hw: pointer to the HW structure
1018  *  @offset: the register to read
1019  *  @data: the buffer to store the 16-bit read.
1020  *
1021  *  Reads the PHY register and returns the value in data.
1022  *  This is a function pointer entry point called by drivers.
1023  **/
1024 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1025 {
1026 	if (hw->phy.ops.read_reg)
1027 		return hw->phy.ops.read_reg(hw, offset, data);
1028 
1029 	return E1000_SUCCESS;
1030 }
1031 
1032 /**
1033  *  e1000_write_phy_reg - Writes PHY register
1034  *  @hw: pointer to the HW structure
1035  *  @offset: the register to write
1036  *  @data: the value to write.
1037  *
1038  *  Writes the PHY register at offset with the value in data.
1039  *  This is a function pointer entry point called by drivers.
1040  **/
1041 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1042 {
1043 	if (hw->phy.ops.write_reg)
1044 		return hw->phy.ops.write_reg(hw, offset, data);
1045 
1046 	return E1000_SUCCESS;
1047 }
1048 
1049 /**
1050  *  e1000_release_phy - Generic release PHY
1051  *  @hw: pointer to the HW structure
1052  *
1053  *  Return if silicon family does not require a semaphore when accessing the
1054  *  PHY.
1055  **/
1056 void e1000_release_phy(struct e1000_hw *hw)
1057 {
1058 	if (hw->phy.ops.release)
1059 		hw->phy.ops.release(hw);
1060 }
1061 
1062 /**
1063  *  e1000_acquire_phy - Generic acquire PHY
1064  *  @hw: pointer to the HW structure
1065  *
1066  *  Return success if silicon family does not require a semaphore when
1067  *  accessing the PHY.
1068  **/
1069 s32 e1000_acquire_phy(struct e1000_hw *hw)
1070 {
1071 	if (hw->phy.ops.acquire)
1072 		return hw->phy.ops.acquire(hw);
1073 
1074 	return E1000_SUCCESS;
1075 }
1076 
1077 /**
1078  *  e1000_cfg_on_link_up - Configure PHY upon link up
1079  *  @hw: pointer to the HW structure
1080  **/
1081 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1082 {
1083 	if (hw->phy.ops.cfg_on_link_up)
1084 		return hw->phy.ops.cfg_on_link_up(hw);
1085 
1086 	return E1000_SUCCESS;
1087 }
1088 
1089 /**
1090  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1091  *  @hw: pointer to the HW structure
1092  *  @offset: the register to read
1093  *  @data: the location to store the 16-bit value read.
1094  *
1095  *  Reads a register out of the Kumeran interface. Currently no func pointer
1096  *  exists and all implementations are handled in the generic version of
1097  *  this function.
1098  **/
1099 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1100 {
1101 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1102 }
1103 
1104 /**
1105  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1106  *  @hw: pointer to the HW structure
1107  *  @offset: the register to write
1108  *  @data: the value to write.
1109  *
1110  *  Writes a register to the Kumeran interface. Currently no func pointer
1111  *  exists and all implementations are handled in the generic version of
1112  *  this function.
1113  **/
1114 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1115 {
1116 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1117 }
1118 
1119 /**
1120  *  e1000_get_cable_length - Retrieves cable length estimation
1121  *  @hw: pointer to the HW structure
1122  *
1123  *  This function estimates the cable length and stores them in
1124  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1125  *  entry point called by drivers.
1126  **/
1127 s32 e1000_get_cable_length(struct e1000_hw *hw)
1128 {
1129 	if (hw->phy.ops.get_cable_length)
1130 		return hw->phy.ops.get_cable_length(hw);
1131 
1132 	return E1000_SUCCESS;
1133 }
1134 
1135 /**
1136  *  e1000_get_phy_info - Retrieves PHY information from registers
1137  *  @hw: pointer to the HW structure
1138  *
1139  *  This function gets some information from various PHY registers and
1140  *  populates hw->phy values with it. This is a function pointer entry
1141  *  point called by drivers.
1142  **/
1143 s32 e1000_get_phy_info(struct e1000_hw *hw)
1144 {
1145 	if (hw->phy.ops.get_info)
1146 		return hw->phy.ops.get_info(hw);
1147 
1148 	return E1000_SUCCESS;
1149 }
1150 
1151 /**
1152  *  e1000_phy_hw_reset - Hard PHY reset
1153  *  @hw: pointer to the HW structure
1154  *
1155  *  Performs a hard PHY reset. This is a function pointer entry point called
1156  *  by drivers.
1157  **/
1158 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1159 {
1160 	if (hw->phy.ops.reset)
1161 		return hw->phy.ops.reset(hw);
1162 
1163 	return E1000_SUCCESS;
1164 }
1165 
1166 /**
1167  *  e1000_phy_commit - Soft PHY reset
1168  *  @hw: pointer to the HW structure
1169  *
1170  *  Performs a soft PHY reset on those that apply. This is a function pointer
1171  *  entry point called by drivers.
1172  **/
1173 s32 e1000_phy_commit(struct e1000_hw *hw)
1174 {
1175 	if (hw->phy.ops.commit)
1176 		return hw->phy.ops.commit(hw);
1177 
1178 	return E1000_SUCCESS;
1179 }
1180 
1181 /**
1182  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1183  *  @hw: pointer to the HW structure
1184  *  @active: boolean used to enable/disable lplu
1185  *
1186  *  Success returns 0, Failure returns 1
1187  *
1188  *  The low power link up (lplu) state is set to the power management level D0
1189  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1190  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1191  *  is used during Dx states where the power conservation is most important.
1192  *  During driver activity, SmartSpeed should be enabled so performance is
1193  *  maintained.  This is a function pointer entry point called by drivers.
1194  **/
1195 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1196 {
1197 	if (hw->phy.ops.set_d0_lplu_state)
1198 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1199 
1200 	return E1000_SUCCESS;
1201 }
1202 
1203 /**
1204  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1205  *  @hw: pointer to the HW structure
1206  *  @active: boolean used to enable/disable lplu
1207  *
1208  *  Success returns 0, Failure returns 1
1209  *
1210  *  The low power link up (lplu) state is set to the power management level D3
1211  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1212  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1213  *  is used during Dx states where the power conservation is most important.
1214  *  During driver activity, SmartSpeed should be enabled so performance is
1215  *  maintained.  This is a function pointer entry point called by drivers.
1216  **/
1217 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1218 {
1219 	if (hw->phy.ops.set_d3_lplu_state)
1220 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1221 
1222 	return E1000_SUCCESS;
1223 }
1224 
1225 /**
1226  *  e1000_read_mac_addr - Reads MAC address
1227  *  @hw: pointer to the HW structure
1228  *
1229  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1230  *  Currently no func pointer exists and all implementations are handled in the
1231  *  generic version of this function.
1232  **/
1233 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1234 {
1235 	if (hw->mac.ops.read_mac_addr)
1236 		return hw->mac.ops.read_mac_addr(hw);
1237 
1238 	return e1000_read_mac_addr_generic(hw);
1239 }
1240 
1241 /**
1242  *  e1000_read_pba_string - Read device part number string
1243  *  @hw: pointer to the HW structure
1244  *  @pba_num: pointer to device part number
1245  *  @pba_num_size: size of part number buffer
1246  *
1247  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1248  *  the value in pba_num.
1249  *  Currently no func pointer exists and all implementations are handled in the
1250  *  generic version of this function.
1251  **/
1252 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1253 {
1254 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1255 }
1256 
1257 /**
1258  *  e1000_read_pba_length - Read device part number string length
1259  *  @hw: pointer to the HW structure
1260  *  @pba_num_size: size of part number buffer
1261  *
1262  *  Reads the product board assembly (PBA) number length from the EEPROM and
1263  *  stores the value in pba_num.
1264  *  Currently no func pointer exists and all implementations are handled in the
1265  *  generic version of this function.
1266  **/
1267 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1268 {
1269 	return e1000_read_pba_length_generic(hw, pba_num_size);
1270 }
1271 
1272 /**
1273  *  e1000_read_pba_num - Read device part number
1274  *  @hw: pointer to the HW structure
1275  *  @pba_num: pointer to device part number
1276  *
1277  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1278  *  the value in pba_num.
1279  *  Currently no func pointer exists and all implementations are handled in the
1280  *  generic version of this function.
1281  **/
1282 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1283 {
1284 	return e1000_read_pba_num_generic(hw, pba_num);
1285 }
1286 
1287 /**
1288  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1289  *  @hw: pointer to the HW structure
1290  *
1291  *  Validates the NVM checksum is correct. This is a function pointer entry
1292  *  point called by drivers.
1293  **/
1294 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1295 {
1296 	if (hw->nvm.ops.validate)
1297 		return hw->nvm.ops.validate(hw);
1298 
1299 	return -E1000_ERR_CONFIG;
1300 }
1301 
1302 /**
1303  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1304  *  @hw: pointer to the HW structure
1305  *
1306  *  Updates the NVM checksum. Currently no func pointer exists and all
1307  *  implementations are handled in the generic version of this function.
1308  **/
1309 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1310 {
1311 	if (hw->nvm.ops.update)
1312 		return hw->nvm.ops.update(hw);
1313 
1314 	return -E1000_ERR_CONFIG;
1315 }
1316 
1317 /**
1318  *  e1000_reload_nvm - Reloads EEPROM
1319  *  @hw: pointer to the HW structure
1320  *
1321  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1322  *  extended control register.
1323  **/
1324 void e1000_reload_nvm(struct e1000_hw *hw)
1325 {
1326 	if (hw->nvm.ops.reload)
1327 		hw->nvm.ops.reload(hw);
1328 }
1329 
1330 /**
1331  *  e1000_read_nvm - Reads NVM (EEPROM)
1332  *  @hw: pointer to the HW structure
1333  *  @offset: the word offset to read
1334  *  @words: number of 16-bit words to read
1335  *  @data: pointer to the properly sized buffer for the data.
1336  *
1337  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1338  *  pointer entry point called by drivers.
1339  **/
1340 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1341 {
1342 	if (hw->nvm.ops.read)
1343 		return hw->nvm.ops.read(hw, offset, words, data);
1344 
1345 	return -E1000_ERR_CONFIG;
1346 }
1347 
1348 /**
1349  *  e1000_write_nvm - Writes to NVM (EEPROM)
1350  *  @hw: pointer to the HW structure
1351  *  @offset: the word offset to read
1352  *  @words: number of 16-bit words to write
1353  *  @data: pointer to the properly sized buffer for the data.
1354  *
1355  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1356  *  pointer entry point called by drivers.
1357  **/
1358 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1359 {
1360 	if (hw->nvm.ops.write)
1361 		return hw->nvm.ops.write(hw, offset, words, data);
1362 
1363 	return E1000_SUCCESS;
1364 }
1365 
1366 /**
1367  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1368  *  @hw: pointer to the HW structure
1369  *  @reg: 32bit register offset
1370  *  @offset: the register to write
1371  *  @data: the value to write.
1372  *
1373  *  Writes the PHY register at offset with the value in data.
1374  *  This is a function pointer entry point called by drivers.
1375  **/
1376 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1377 			      u8 data)
1378 {
1379 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1380 }
1381 
1382 /**
1383  * e1000_power_up_phy - Restores link in case of PHY power down
1384  * @hw: pointer to the HW structure
1385  *
1386  * The phy may be powered down to save power, to turn off link when the
1387  * driver is unloaded, or wake on lan is not enabled (among others).
1388  **/
1389 void e1000_power_up_phy(struct e1000_hw *hw)
1390 {
1391 	if (hw->phy.ops.power_up)
1392 		hw->phy.ops.power_up(hw);
1393 
1394 	e1000_setup_link(hw);
1395 }
1396 
1397 /**
1398  * e1000_power_down_phy - Power down PHY
1399  * @hw: pointer to the HW structure
1400  *
1401  * The phy may be powered down to save power, to turn off link when the
1402  * driver is unloaded, or wake on lan is not enabled (among others).
1403  **/
1404 void e1000_power_down_phy(struct e1000_hw *hw)
1405 {
1406 	if (hw->phy.ops.power_down)
1407 		hw->phy.ops.power_down(hw);
1408 }
1409 
1410 /**
1411  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1412  *  @hw: pointer to the HW structure
1413  *
1414  *  Power on the optics and PCS.
1415  **/
1416 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1417 {
1418 	if (hw->mac.ops.power_up_serdes)
1419 		hw->mac.ops.power_up_serdes(hw);
1420 }
1421 
1422 /**
1423  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1424  *  @hw: pointer to the HW structure
1425  *
1426  *  Shutdown the optics and PCS on driver unload.
1427  **/
1428 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1429 {
1430 	if (hw->mac.ops.shutdown_serdes)
1431 		hw->mac.ops.shutdown_serdes(hw);
1432 }
1433 
1434