xref: /freebsd/sys/dev/e1000/e1000_api.c (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "e1000_api.h"
37 
38 /**
39  *  e1000_init_mac_params - Initialize MAC function pointers
40  *  @hw: pointer to the HW structure
41  *
42  *  This function initializes the function pointers for the MAC
43  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
44  **/
45 s32 e1000_init_mac_params(struct e1000_hw *hw)
46 {
47 	s32 ret_val = E1000_SUCCESS;
48 
49 	if (hw->mac.ops.init_params) {
50 		ret_val = hw->mac.ops.init_params(hw);
51 		if (ret_val) {
52 			DEBUGOUT("MAC Initialization Error\n");
53 			goto out;
54 		}
55 	} else {
56 		DEBUGOUT("mac.init_mac_params was NULL\n");
57 		ret_val = -E1000_ERR_CONFIG;
58 	}
59 
60 out:
61 	return ret_val;
62 }
63 
64 /**
65  *  e1000_init_nvm_params - Initialize NVM function pointers
66  *  @hw: pointer to the HW structure
67  *
68  *  This function initializes the function pointers for the NVM
69  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
70  **/
71 s32 e1000_init_nvm_params(struct e1000_hw *hw)
72 {
73 	s32 ret_val = E1000_SUCCESS;
74 
75 	if (hw->nvm.ops.init_params) {
76 		ret_val = hw->nvm.ops.init_params(hw);
77 		if (ret_val) {
78 			DEBUGOUT("NVM Initialization Error\n");
79 			goto out;
80 		}
81 	} else {
82 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
83 		ret_val = -E1000_ERR_CONFIG;
84 	}
85 
86 out:
87 	return ret_val;
88 }
89 
90 /**
91  *  e1000_init_phy_params - Initialize PHY function pointers
92  *  @hw: pointer to the HW structure
93  *
94  *  This function initializes the function pointers for the PHY
95  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
96  **/
97 s32 e1000_init_phy_params(struct e1000_hw *hw)
98 {
99 	s32 ret_val = E1000_SUCCESS;
100 
101 	if (hw->phy.ops.init_params) {
102 		ret_val = hw->phy.ops.init_params(hw);
103 		if (ret_val) {
104 			DEBUGOUT("PHY Initialization Error\n");
105 			goto out;
106 		}
107 	} else {
108 		DEBUGOUT("phy.init_phy_params was NULL\n");
109 		ret_val =  -E1000_ERR_CONFIG;
110 	}
111 
112 out:
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_mbx_params - Initialize mailbox function pointers
118  *  @hw: pointer to the HW structure
119  *
120  *  This function initializes the function pointers for the PHY
121  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
122  **/
123 s32 e1000_init_mbx_params(struct e1000_hw *hw)
124 {
125 	s32 ret_val = E1000_SUCCESS;
126 
127 	if (hw->mbx.ops.init_params) {
128 		ret_val = hw->mbx.ops.init_params(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Mailbox Initialization Error\n");
131 			goto out;
132 		}
133 	} else {
134 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
135 		ret_val =  -E1000_ERR_CONFIG;
136 	}
137 
138 out:
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_set_mac_type - Sets MAC type
144  *  @hw: pointer to the HW structure
145  *
146  *  This function sets the mac type of the adapter based on the
147  *  device ID stored in the hw structure.
148  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
149  *  e1000_setup_init_funcs()).
150  **/
151 s32 e1000_set_mac_type(struct e1000_hw *hw)
152 {
153 	struct e1000_mac_info *mac = &hw->mac;
154 	s32 ret_val = E1000_SUCCESS;
155 
156 	DEBUGFUNC("e1000_set_mac_type");
157 
158 	switch (hw->device_id) {
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 	case E1000_DEV_ID_82543GC_FIBER:
163 	case E1000_DEV_ID_82543GC_COPPER:
164 		mac->type = e1000_82543;
165 		break;
166 	case E1000_DEV_ID_82544EI_COPPER:
167 	case E1000_DEV_ID_82544EI_FIBER:
168 	case E1000_DEV_ID_82544GC_COPPER:
169 	case E1000_DEV_ID_82544GC_LOM:
170 		mac->type = e1000_82544;
171 		break;
172 	case E1000_DEV_ID_82540EM:
173 	case E1000_DEV_ID_82540EM_LOM:
174 	case E1000_DEV_ID_82540EP:
175 	case E1000_DEV_ID_82540EP_LOM:
176 	case E1000_DEV_ID_82540EP_LP:
177 		mac->type = e1000_82540;
178 		break;
179 	case E1000_DEV_ID_82545EM_COPPER:
180 	case E1000_DEV_ID_82545EM_FIBER:
181 		mac->type = e1000_82545;
182 		break;
183 	case E1000_DEV_ID_82545GM_COPPER:
184 	case E1000_DEV_ID_82545GM_FIBER:
185 	case E1000_DEV_ID_82545GM_SERDES:
186 		mac->type = e1000_82545_rev_3;
187 		break;
188 	case E1000_DEV_ID_82546EB_COPPER:
189 	case E1000_DEV_ID_82546EB_FIBER:
190 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
191 		mac->type = e1000_82546;
192 		break;
193 	case E1000_DEV_ID_82546GB_COPPER:
194 	case E1000_DEV_ID_82546GB_FIBER:
195 	case E1000_DEV_ID_82546GB_SERDES:
196 	case E1000_DEV_ID_82546GB_PCIE:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
199 		mac->type = e1000_82546_rev_3;
200 		break;
201 	case E1000_DEV_ID_82541EI:
202 	case E1000_DEV_ID_82541EI_MOBILE:
203 	case E1000_DEV_ID_82541ER_LOM:
204 		mac->type = e1000_82541;
205 		break;
206 	case E1000_DEV_ID_82541ER:
207 	case E1000_DEV_ID_82541GI:
208 	case E1000_DEV_ID_82541GI_LF:
209 	case E1000_DEV_ID_82541GI_MOBILE:
210 		mac->type = e1000_82541_rev_2;
211 		break;
212 	case E1000_DEV_ID_82547EI:
213 	case E1000_DEV_ID_82547EI_MOBILE:
214 		mac->type = e1000_82547;
215 		break;
216 	case E1000_DEV_ID_82547GI:
217 		mac->type = e1000_82547_rev_2;
218 		break;
219 	case E1000_DEV_ID_82571EB_COPPER:
220 	case E1000_DEV_ID_82571EB_FIBER:
221 	case E1000_DEV_ID_82571EB_SERDES:
222 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
223 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
224 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
225 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
226 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
227 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
228 		mac->type = e1000_82571;
229 		break;
230 	case E1000_DEV_ID_82572EI:
231 	case E1000_DEV_ID_82572EI_COPPER:
232 	case E1000_DEV_ID_82572EI_FIBER:
233 	case E1000_DEV_ID_82572EI_SERDES:
234 		mac->type = e1000_82572;
235 		break;
236 	case E1000_DEV_ID_82573E:
237 	case E1000_DEV_ID_82573E_IAMT:
238 	case E1000_DEV_ID_82573L:
239 		mac->type = e1000_82573;
240 		break;
241 	case E1000_DEV_ID_82574L:
242 	case E1000_DEV_ID_82574LA:
243 		mac->type = e1000_82574;
244 		break;
245 	case E1000_DEV_ID_82583V:
246 		mac->type = e1000_82583;
247 		break;
248 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
252 		mac->type = e1000_80003es2lan;
253 		break;
254 	case E1000_DEV_ID_ICH8_IFE:
255 	case E1000_DEV_ID_ICH8_IFE_GT:
256 	case E1000_DEV_ID_ICH8_IFE_G:
257 	case E1000_DEV_ID_ICH8_IGP_M:
258 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_AMT:
260 	case E1000_DEV_ID_ICH8_IGP_C:
261 	case E1000_DEV_ID_ICH8_82567V_3:
262 		mac->type = e1000_ich8lan;
263 		break;
264 	case E1000_DEV_ID_ICH9_IFE:
265 	case E1000_DEV_ID_ICH9_IFE_GT:
266 	case E1000_DEV_ID_ICH9_IFE_G:
267 	case E1000_DEV_ID_ICH9_IGP_M:
268 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
269 	case E1000_DEV_ID_ICH9_IGP_M_V:
270 	case E1000_DEV_ID_ICH9_IGP_AMT:
271 	case E1000_DEV_ID_ICH9_BM:
272 	case E1000_DEV_ID_ICH9_IGP_C:
273 	case E1000_DEV_ID_ICH10_R_BM_LM:
274 	case E1000_DEV_ID_ICH10_R_BM_LF:
275 	case E1000_DEV_ID_ICH10_R_BM_V:
276 		mac->type = e1000_ich9lan;
277 		break;
278 	case E1000_DEV_ID_ICH10_D_BM_LM:
279 	case E1000_DEV_ID_ICH10_D_BM_LF:
280 	case E1000_DEV_ID_ICH10_D_BM_V:
281 		mac->type = e1000_ich10lan;
282 		break;
283 	case E1000_DEV_ID_PCH_D_HV_DM:
284 	case E1000_DEV_ID_PCH_D_HV_DC:
285 	case E1000_DEV_ID_PCH_M_HV_LM:
286 	case E1000_DEV_ID_PCH_M_HV_LC:
287 		mac->type = e1000_pchlan;
288 		break;
289 	case E1000_DEV_ID_PCH2_LV_LM:
290 	case E1000_DEV_ID_PCH2_LV_V:
291 		mac->type = e1000_pch2lan;
292 		break;
293 	case E1000_DEV_ID_PCH_LPT_I217_LM:
294 	case E1000_DEV_ID_PCH_LPT_I217_V:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
296 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
297 	case E1000_DEV_ID_PCH_I218_LM2:
298 	case E1000_DEV_ID_PCH_I218_V2:
299 	case E1000_DEV_ID_PCH_I218_LM3:
300 	case E1000_DEV_ID_PCH_I218_V3:
301 		mac->type = e1000_pch_lpt;
302 		break;
303 	case E1000_DEV_ID_PCH_SPT_I219_LM:
304 	case E1000_DEV_ID_PCH_SPT_I219_V:
305 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
306 	case E1000_DEV_ID_PCH_SPT_I219_V2:
307 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
308 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
309 	case E1000_DEV_ID_PCH_SPT_I219_V4:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
311 	case E1000_DEV_ID_PCH_SPT_I219_V5:
312 	case E1000_DEV_ID_PCH_CMP_I219_LM12:
313 	case E1000_DEV_ID_PCH_CMP_I219_V12:
314 		mac->type = e1000_pch_spt;
315 		break;
316 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
317 	case E1000_DEV_ID_PCH_CNP_I219_V6:
318 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
319 	case E1000_DEV_ID_PCH_CNP_I219_V7:
320 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
321 	case E1000_DEV_ID_PCH_ICP_I219_V8:
322 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
323 	case E1000_DEV_ID_PCH_ICP_I219_V9:
324 	case E1000_DEV_ID_PCH_CMP_I219_LM10:
325 	case E1000_DEV_ID_PCH_CMP_I219_V10:
326 	case E1000_DEV_ID_PCH_CMP_I219_LM11:
327 	case E1000_DEV_ID_PCH_CMP_I219_V11:
328 		mac->type = e1000_pch_cnp;
329 		break;
330 	case E1000_DEV_ID_PCH_TGP_I219_LM13:
331 	case E1000_DEV_ID_PCH_TGP_I219_V13:
332 	case E1000_DEV_ID_PCH_TGP_I219_LM14:
333 	case E1000_DEV_ID_PCH_TGP_I219_V14:
334 	case E1000_DEV_ID_PCH_TGP_I219_LM15:
335 	case E1000_DEV_ID_PCH_TGP_I219_V15:
336 	case E1000_DEV_ID_PCH_ADL_I219_LM16:
337 	case E1000_DEV_ID_PCH_ADL_I219_V16:
338 	case E1000_DEV_ID_PCH_RPL_I219_LM23:
339 	case E1000_DEV_ID_PCH_RPL_I219_V23:
340 		mac->type = e1000_pch_tgp;
341 		break;
342 	case E1000_DEV_ID_PCH_ADL_I219_LM17:
343 	case E1000_DEV_ID_PCH_ADL_I219_V17:
344 	case E1000_DEV_ID_PCH_RPL_I219_LM22:
345 	case E1000_DEV_ID_PCH_RPL_I219_V22:
346 		mac->type = e1000_pch_adp;
347 		break;
348 	case E1000_DEV_ID_PCH_MTP_I219_LM18:
349 	case E1000_DEV_ID_PCH_MTP_I219_V18:
350 	case E1000_DEV_ID_PCH_MTP_I219_LM19:
351 	case E1000_DEV_ID_PCH_MTP_I219_V19:
352 	case E1000_DEV_ID_PCH_LNL_I219_LM20:
353 	case E1000_DEV_ID_PCH_LNL_I219_V20:
354 	case E1000_DEV_ID_PCH_LNL_I219_LM21:
355 	case E1000_DEV_ID_PCH_LNL_I219_V21:
356 		mac->type = e1000_pch_mtp;
357 		break;
358 	case E1000_DEV_ID_PCH_ARL_I219_LM24:
359 	case E1000_DEV_ID_PCH_ARL_I219_V24:
360 	case E1000_DEV_ID_PCH_PTP_I219_LM25:
361 	case E1000_DEV_ID_PCH_PTP_I219_V25:
362 	case E1000_DEV_ID_PCH_PTP_I219_LM26:
363 	case E1000_DEV_ID_PCH_PTP_I219_V26:
364 	case E1000_DEV_ID_PCH_PTP_I219_LM27:
365 	case E1000_DEV_ID_PCH_PTP_I219_V27:
366 		mac->type = e1000_pch_ptp;
367 		break;
368 	case E1000_DEV_ID_82575EB_COPPER:
369 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
370 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
371 		mac->type = e1000_82575;
372 		break;
373 	case E1000_DEV_ID_82576:
374 	case E1000_DEV_ID_82576_FIBER:
375 	case E1000_DEV_ID_82576_SERDES:
376 	case E1000_DEV_ID_82576_QUAD_COPPER:
377 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
378 	case E1000_DEV_ID_82576_NS:
379 	case E1000_DEV_ID_82576_NS_SERDES:
380 	case E1000_DEV_ID_82576_SERDES_QUAD:
381 		mac->type = e1000_82576;
382 		break;
383 	case E1000_DEV_ID_82580_COPPER:
384 	case E1000_DEV_ID_82580_FIBER:
385 	case E1000_DEV_ID_82580_SERDES:
386 	case E1000_DEV_ID_82580_SGMII:
387 	case E1000_DEV_ID_82580_COPPER_DUAL:
388 	case E1000_DEV_ID_82580_QUAD_FIBER:
389 	case E1000_DEV_ID_DH89XXCC_SGMII:
390 	case E1000_DEV_ID_DH89XXCC_SERDES:
391 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
392 	case E1000_DEV_ID_DH89XXCC_SFP:
393 		mac->type = e1000_82580;
394 		break;
395 	case E1000_DEV_ID_I350_COPPER:
396 	case E1000_DEV_ID_I350_FIBER:
397 	case E1000_DEV_ID_I350_SERDES:
398 	case E1000_DEV_ID_I350_SGMII:
399 	case E1000_DEV_ID_I350_DA4:
400 		mac->type = e1000_i350;
401 		break;
402 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
403 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
404 	case E1000_DEV_ID_I210_SGMII_FLASHLESS:
405 	case E1000_DEV_ID_I210_COPPER:
406 	case E1000_DEV_ID_I210_COPPER_OEM1:
407 	case E1000_DEV_ID_I210_COPPER_IT:
408 	case E1000_DEV_ID_I210_FIBER:
409 	case E1000_DEV_ID_I210_SERDES:
410 	case E1000_DEV_ID_I210_SGMII:
411 		mac->type = e1000_i210;
412 		break;
413 	case E1000_DEV_ID_I211_COPPER:
414 		mac->type = e1000_i211;
415 		break;
416 	case E1000_DEV_ID_82576_VF:
417 	case E1000_DEV_ID_82576_VF_HV:
418 		mac->type = e1000_vfadapt;
419 		break;
420 	case E1000_DEV_ID_I350_VF:
421 	case E1000_DEV_ID_I350_VF_HV:
422 		mac->type = e1000_vfadapt_i350;
423 		break;
424 
425 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
426 	case E1000_DEV_ID_I354_SGMII:
427 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
428 		mac->type = e1000_i354;
429 		break;
430 	default:
431 		/* Should never have loaded on this device */
432 		ret_val = -E1000_ERR_MAC_INIT;
433 		break;
434 	}
435 
436 	return ret_val;
437 }
438 
439 /**
440  *  e1000_setup_init_funcs - Initializes function pointers
441  *  @hw: pointer to the HW structure
442  *  @init_device: true will initialize the rest of the function pointers
443  *		  getting the device ready for use.  false will only set
444  *		  MAC type and the function pointers for the other init
445  *		  functions.  Passing false will not generate any hardware
446  *		  reads or writes.
447  *
448  *  This function must be called by a driver in order to use the rest
449  *  of the 'shared' code files. Called by drivers only.
450  **/
451 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
452 {
453 	s32 ret_val;
454 
455 	/* Can't do much good without knowing the MAC type. */
456 	ret_val = e1000_set_mac_type(hw);
457 	if (ret_val) {
458 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
459 		goto out;
460 	}
461 
462 	if (!hw->hw_addr) {
463 		DEBUGOUT("ERROR: Registers not mapped\n");
464 		ret_val = -E1000_ERR_CONFIG;
465 		goto out;
466 	}
467 
468 	/*
469 	 * Init function pointers to generic implementations. We do this first
470 	 * allowing a driver module to override it afterward.
471 	 */
472 	e1000_init_mac_ops_generic(hw);
473 	e1000_init_phy_ops_generic(hw);
474 	e1000_init_nvm_ops_generic(hw);
475 	e1000_init_mbx_ops_generic(hw);
476 
477 	/*
478 	 * Set up the init function pointers. These are functions within the
479 	 * adapter family file that sets up function pointers for the rest of
480 	 * the functions in that family.
481 	 */
482 	switch (hw->mac.type) {
483 	case e1000_82542:
484 		e1000_init_function_pointers_82542(hw);
485 		break;
486 	case e1000_82543:
487 	case e1000_82544:
488 		e1000_init_function_pointers_82543(hw);
489 		break;
490 	case e1000_82540:
491 	case e1000_82545:
492 	case e1000_82545_rev_3:
493 	case e1000_82546:
494 	case e1000_82546_rev_3:
495 		e1000_init_function_pointers_82540(hw);
496 		break;
497 	case e1000_82541:
498 	case e1000_82541_rev_2:
499 	case e1000_82547:
500 	case e1000_82547_rev_2:
501 		e1000_init_function_pointers_82541(hw);
502 		break;
503 	case e1000_82571:
504 	case e1000_82572:
505 	case e1000_82573:
506 	case e1000_82574:
507 	case e1000_82583:
508 		e1000_init_function_pointers_82571(hw);
509 		break;
510 	case e1000_80003es2lan:
511 		e1000_init_function_pointers_80003es2lan(hw);
512 		break;
513 	case e1000_ich8lan:
514 	case e1000_ich9lan:
515 	case e1000_ich10lan:
516 	case e1000_pchlan:
517 	case e1000_pch2lan:
518 	case e1000_pch_lpt:
519 	case e1000_pch_spt:
520 	case e1000_pch_cnp:
521 	case e1000_pch_tgp:
522 	case e1000_pch_adp:
523 	case e1000_pch_mtp:
524 	case e1000_pch_ptp:
525 		e1000_init_function_pointers_ich8lan(hw);
526 		break;
527 	case e1000_82575:
528 	case e1000_82576:
529 	case e1000_82580:
530 	case e1000_i350:
531 	case e1000_i354:
532 		e1000_init_function_pointers_82575(hw);
533 		break;
534 	case e1000_i210:
535 	case e1000_i211:
536 		e1000_init_function_pointers_i210(hw);
537 		break;
538 	case e1000_vfadapt:
539 		e1000_init_function_pointers_vf(hw);
540 		break;
541 	case e1000_vfadapt_i350:
542 		e1000_init_function_pointers_vf(hw);
543 		break;
544 	default:
545 		DEBUGOUT("Hardware not supported\n");
546 		ret_val = -E1000_ERR_CONFIG;
547 		break;
548 	}
549 
550 	/*
551 	 * Initialize the rest of the function pointers. These require some
552 	 * register reads/writes in some cases.
553 	 */
554 	if (!(ret_val) && init_device) {
555 		ret_val = e1000_init_mac_params(hw);
556 		if (ret_val)
557 			goto out;
558 
559 		ret_val = e1000_init_nvm_params(hw);
560 		if (ret_val)
561 			goto out;
562 
563 		ret_val = e1000_init_phy_params(hw);
564 		if (ret_val)
565 			goto out;
566 
567 		ret_val = e1000_init_mbx_params(hw);
568 		if (ret_val)
569 			goto out;
570 	}
571 
572 out:
573 	return ret_val;
574 }
575 
576 /**
577  *  e1000_get_bus_info - Obtain bus information for adapter
578  *  @hw: pointer to the HW structure
579  *
580  *  This will obtain information about the HW bus for which the
581  *  adapter is attached and stores it in the hw structure. This is a
582  *  function pointer entry point called by drivers.
583  **/
584 s32 e1000_get_bus_info(struct e1000_hw *hw)
585 {
586 	if (hw->mac.ops.get_bus_info)
587 		return hw->mac.ops.get_bus_info(hw);
588 
589 	return E1000_SUCCESS;
590 }
591 
592 /**
593  *  e1000_clear_vfta - Clear VLAN filter table
594  *  @hw: pointer to the HW structure
595  *
596  *  This clears the VLAN filter table on the adapter. This is a function
597  *  pointer entry point called by drivers.
598  **/
599 void e1000_clear_vfta(struct e1000_hw *hw)
600 {
601 	if (hw->mac.ops.clear_vfta)
602 		hw->mac.ops.clear_vfta(hw);
603 }
604 
605 /**
606  *  e1000_write_vfta - Write value to VLAN filter table
607  *  @hw: pointer to the HW structure
608  *  @offset: the 32-bit offset in which to write the value to.
609  *  @value: the 32-bit value to write at location offset.
610  *
611  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
612  *  table. This is a function pointer entry point called by drivers.
613  **/
614 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
615 {
616 	if (hw->mac.ops.write_vfta)
617 		hw->mac.ops.write_vfta(hw, offset, value);
618 }
619 
620 /**
621  *  e1000_update_mc_addr_list - Update Multicast addresses
622  *  @hw: pointer to the HW structure
623  *  @mc_addr_list: array of multicast addresses to program
624  *  @mc_addr_count: number of multicast addresses to program
625  *
626  *  Updates the Multicast Table Array.
627  *  The caller must have a packed mc_addr_list of multicast addresses.
628  **/
629 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
630 			       u32 mc_addr_count)
631 {
632 	if (hw->mac.ops.update_mc_addr_list)
633 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
634 						mc_addr_count);
635 }
636 
637 /**
638  *  e1000_force_mac_fc - Force MAC flow control
639  *  @hw: pointer to the HW structure
640  *
641  *  Force the MAC's flow control settings. Currently no func pointer exists
642  *  and all implementations are handled in the generic version of this
643  *  function.
644  **/
645 s32 e1000_force_mac_fc(struct e1000_hw *hw)
646 {
647 	return e1000_force_mac_fc_generic(hw);
648 }
649 
650 /**
651  *  e1000_check_for_link - Check/Store link connection
652  *  @hw: pointer to the HW structure
653  *
654  *  This checks the link condition of the adapter and stores the
655  *  results in the hw->mac structure. This is a function pointer entry
656  *  point called by drivers.
657  **/
658 s32 e1000_check_for_link(struct e1000_hw *hw)
659 {
660 	if (hw->mac.ops.check_for_link)
661 		return hw->mac.ops.check_for_link(hw);
662 
663 	return -E1000_ERR_CONFIG;
664 }
665 
666 /**
667  *  e1000_check_mng_mode - Check management mode
668  *  @hw: pointer to the HW structure
669  *
670  *  This checks if the adapter has manageability enabled.
671  *  This is a function pointer entry point called by drivers.
672  **/
673 bool e1000_check_mng_mode(struct e1000_hw *hw)
674 {
675 	if (hw->mac.ops.check_mng_mode)
676 		return hw->mac.ops.check_mng_mode(hw);
677 
678 	return false;
679 }
680 
681 /**
682  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
683  *  @hw: pointer to the HW structure
684  *  @buffer: pointer to the host interface
685  *  @length: size of the buffer
686  *
687  *  Writes the DHCP information to the host interface.
688  **/
689 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
690 {
691 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
692 }
693 
694 /**
695  *  e1000_reset_hw - Reset hardware
696  *  @hw: pointer to the HW structure
697  *
698  *  This resets the hardware into a known state. This is a function pointer
699  *  entry point called by drivers.
700  **/
701 s32 e1000_reset_hw(struct e1000_hw *hw)
702 {
703 	if (hw->mac.ops.reset_hw)
704 		return hw->mac.ops.reset_hw(hw);
705 
706 	return -E1000_ERR_CONFIG;
707 }
708 
709 /**
710  *  e1000_init_hw - Initialize hardware
711  *  @hw: pointer to the HW structure
712  *
713  *  This inits the hardware readying it for operation. This is a function
714  *  pointer entry point called by drivers.
715  **/
716 s32 e1000_init_hw(struct e1000_hw *hw)
717 {
718 	if (hw->mac.ops.init_hw)
719 		return hw->mac.ops.init_hw(hw);
720 
721 	return -E1000_ERR_CONFIG;
722 }
723 
724 /**
725  *  e1000_setup_link - Configures link and flow control
726  *  @hw: pointer to the HW structure
727  *
728  *  This configures link and flow control settings for the adapter. This
729  *  is a function pointer entry point called by drivers. While modules can
730  *  also call this, they probably call their own version of this function.
731  **/
732 s32 e1000_setup_link(struct e1000_hw *hw)
733 {
734 	if (hw->mac.ops.setup_link)
735 		return hw->mac.ops.setup_link(hw);
736 
737 	return -E1000_ERR_CONFIG;
738 }
739 
740 /**
741  *  e1000_get_speed_and_duplex - Returns current speed and duplex
742  *  @hw: pointer to the HW structure
743  *  @speed: pointer to a 16-bit value to store the speed
744  *  @duplex: pointer to a 16-bit value to store the duplex.
745  *
746  *  This returns the speed and duplex of the adapter in the two 'out'
747  *  variables passed in. This is a function pointer entry point called
748  *  by drivers.
749  **/
750 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
751 {
752 	if (hw->mac.ops.get_link_up_info)
753 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
754 
755 	return -E1000_ERR_CONFIG;
756 }
757 
758 /**
759  *  e1000_setup_led - Configures SW controllable LED
760  *  @hw: pointer to the HW structure
761  *
762  *  This prepares the SW controllable LED for use and saves the current state
763  *  of the LED so it can be later restored. This is a function pointer entry
764  *  point called by drivers.
765  **/
766 s32 e1000_setup_led(struct e1000_hw *hw)
767 {
768 	if (hw->mac.ops.setup_led)
769 		return hw->mac.ops.setup_led(hw);
770 
771 	return E1000_SUCCESS;
772 }
773 
774 /**
775  *  e1000_cleanup_led - Restores SW controllable LED
776  *  @hw: pointer to the HW structure
777  *
778  *  This restores the SW controllable LED to the value saved off by
779  *  e1000_setup_led. This is a function pointer entry point called by drivers.
780  **/
781 s32 e1000_cleanup_led(struct e1000_hw *hw)
782 {
783 	if (hw->mac.ops.cleanup_led)
784 		return hw->mac.ops.cleanup_led(hw);
785 
786 	return E1000_SUCCESS;
787 }
788 
789 /**
790  *  e1000_blink_led - Blink SW controllable LED
791  *  @hw: pointer to the HW structure
792  *
793  *  This starts the adapter LED blinking. Request the LED to be setup first
794  *  and cleaned up after. This is a function pointer entry point called by
795  *  drivers.
796  **/
797 s32 e1000_blink_led(struct e1000_hw *hw)
798 {
799 	if (hw->mac.ops.blink_led)
800 		return hw->mac.ops.blink_led(hw);
801 
802 	return E1000_SUCCESS;
803 }
804 
805 /**
806  *  e1000_id_led_init - store LED configurations in SW
807  *  @hw: pointer to the HW structure
808  *
809  *  Initializes the LED config in SW. This is a function pointer entry point
810  *  called by drivers.
811  **/
812 s32 e1000_id_led_init(struct e1000_hw *hw)
813 {
814 	if (hw->mac.ops.id_led_init)
815 		return hw->mac.ops.id_led_init(hw);
816 
817 	return E1000_SUCCESS;
818 }
819 
820 /**
821  *  e1000_led_on - Turn on SW controllable LED
822  *  @hw: pointer to the HW structure
823  *
824  *  Turns the SW defined LED on. This is a function pointer entry point
825  *  called by drivers.
826  **/
827 s32 e1000_led_on(struct e1000_hw *hw)
828 {
829 	if (hw->mac.ops.led_on)
830 		return hw->mac.ops.led_on(hw);
831 
832 	return E1000_SUCCESS;
833 }
834 
835 /**
836  *  e1000_led_off - Turn off SW controllable LED
837  *  @hw: pointer to the HW structure
838  *
839  *  Turns the SW defined LED off. This is a function pointer entry point
840  *  called by drivers.
841  **/
842 s32 e1000_led_off(struct e1000_hw *hw)
843 {
844 	if (hw->mac.ops.led_off)
845 		return hw->mac.ops.led_off(hw);
846 
847 	return E1000_SUCCESS;
848 }
849 
850 /**
851  *  e1000_reset_adaptive - Reset adaptive IFS
852  *  @hw: pointer to the HW structure
853  *
854  *  Resets the adaptive IFS. Currently no func pointer exists and all
855  *  implementations are handled in the generic version of this function.
856  **/
857 void e1000_reset_adaptive(struct e1000_hw *hw)
858 {
859 	e1000_reset_adaptive_generic(hw);
860 }
861 
862 /**
863  *  e1000_update_adaptive - Update adaptive IFS
864  *  @hw: pointer to the HW structure
865  *
866  *  Updates adapter IFS. Currently no func pointer exists and all
867  *  implementations are handled in the generic version of this function.
868  **/
869 void e1000_update_adaptive(struct e1000_hw *hw)
870 {
871 	e1000_update_adaptive_generic(hw);
872 }
873 
874 /**
875  *  e1000_disable_pcie_master - Disable PCI-Express master access
876  *  @hw: pointer to the HW structure
877  *
878  *  Disables PCI-Express master access and verifies there are no pending
879  *  requests. Currently no func pointer exists and all implementations are
880  *  handled in the generic version of this function.
881  **/
882 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
883 {
884 	return e1000_disable_pcie_master_generic(hw);
885 }
886 
887 /**
888  *  e1000_config_collision_dist - Configure collision distance
889  *  @hw: pointer to the HW structure
890  *
891  *  Configures the collision distance to the default value and is used
892  *  during link setup.
893  **/
894 void e1000_config_collision_dist(struct e1000_hw *hw)
895 {
896 	if (hw->mac.ops.config_collision_dist)
897 		hw->mac.ops.config_collision_dist(hw);
898 }
899 
900 /**
901  *  e1000_rar_set - Sets a receive address register
902  *  @hw: pointer to the HW structure
903  *  @addr: address to set the RAR to
904  *  @index: the RAR to set
905  *
906  *  Sets a Receive Address Register (RAR) to the specified address.
907  **/
908 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
909 {
910 	if (hw->mac.ops.rar_set)
911 		return hw->mac.ops.rar_set(hw, addr, index);
912 
913 	return E1000_SUCCESS;
914 }
915 
916 /**
917  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
918  *  @hw: pointer to the HW structure
919  *
920  *  Ensures that the MDI/MDIX SW state is valid.
921  **/
922 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
923 {
924 	if (hw->mac.ops.validate_mdi_setting)
925 		return hw->mac.ops.validate_mdi_setting(hw);
926 
927 	return E1000_SUCCESS;
928 }
929 
930 /**
931  *  e1000_hash_mc_addr - Determines address location in multicast table
932  *  @hw: pointer to the HW structure
933  *  @mc_addr: Multicast address to hash.
934  *
935  *  This hashes an address to determine its location in the multicast
936  *  table. Currently no func pointer exists and all implementations
937  *  are handled in the generic version of this function.
938  **/
939 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
940 {
941 	return e1000_hash_mc_addr_generic(hw, mc_addr);
942 }
943 
944 /**
945  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
946  *  @hw: pointer to the HW structure
947  *
948  *  Enables packet filtering on transmit packets if manageability is enabled
949  *  and host interface is enabled.
950  *  Currently no func pointer exists and all implementations are handled in the
951  *  generic version of this function.
952  **/
953 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
954 {
955 	return e1000_enable_tx_pkt_filtering_generic(hw);
956 }
957 
958 /**
959  *  e1000_mng_host_if_write - Writes to the manageability host interface
960  *  @hw: pointer to the HW structure
961  *  @buffer: pointer to the host interface buffer
962  *  @length: size of the buffer
963  *  @offset: location in the buffer to write to
964  *  @sum: sum of the data (not checksum)
965  *
966  *  This function writes the buffer content at the offset given on the host if.
967  *  It also does alignment considerations to do the writes in most efficient
968  *  way.  Also fills up the sum of the buffer in *buffer parameter.
969  **/
970 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
971 			    u16 offset, u8 *sum)
972 {
973 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
974 }
975 
976 /**
977  *  e1000_mng_write_cmd_header - Writes manageability command header
978  *  @hw: pointer to the HW structure
979  *  @hdr: pointer to the host interface command header
980  *
981  *  Writes the command header after does the checksum calculation.
982  **/
983 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
984 			       struct e1000_host_mng_command_header *hdr)
985 {
986 	return e1000_mng_write_cmd_header_generic(hw, hdr);
987 }
988 
989 /**
990  *  e1000_mng_enable_host_if - Checks host interface is enabled
991  *  @hw: pointer to the HW structure
992  *
993  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
994  *
995  *  This function checks whether the HOST IF is enabled for command operation
996  *  and also checks whether the previous command is completed.  It busy waits
997  *  in case of previous command is not completed.
998  **/
999 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
1000 {
1001 	return e1000_mng_enable_host_if_generic(hw);
1002 }
1003 
1004 /**
1005  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
1006  *  @hw: pointer to the HW structure
1007  *  @itr: u32 indicating itr value
1008  *
1009  *  Set the OBFF timer based on the given interrupt rate.
1010  **/
1011 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
1012 {
1013 	if (hw->mac.ops.set_obff_timer)
1014 		return hw->mac.ops.set_obff_timer(hw, itr);
1015 
1016 	return E1000_SUCCESS;
1017 }
1018 
1019 /**
1020  *  e1000_check_reset_block - Verifies PHY can be reset
1021  *  @hw: pointer to the HW structure
1022  *
1023  *  Checks if the PHY is in a state that can be reset or if manageability
1024  *  has it tied up. This is a function pointer entry point called by drivers.
1025  **/
1026 s32 e1000_check_reset_block(struct e1000_hw *hw)
1027 {
1028 	if (hw->phy.ops.check_reset_block)
1029 		return hw->phy.ops.check_reset_block(hw);
1030 
1031 	return E1000_SUCCESS;
1032 }
1033 
1034 /**
1035  *  e1000_read_phy_reg - Reads PHY register
1036  *  @hw: pointer to the HW structure
1037  *  @offset: the register to read
1038  *  @data: the buffer to store the 16-bit read.
1039  *
1040  *  Reads the PHY register and returns the value in data.
1041  *  This is a function pointer entry point called by drivers.
1042  **/
1043 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1044 {
1045 	if (hw->phy.ops.read_reg)
1046 		return hw->phy.ops.read_reg(hw, offset, data);
1047 
1048 	return E1000_SUCCESS;
1049 }
1050 
1051 /**
1052  *  e1000_write_phy_reg - Writes PHY register
1053  *  @hw: pointer to the HW structure
1054  *  @offset: the register to write
1055  *  @data: the value to write.
1056  *
1057  *  Writes the PHY register at offset with the value in data.
1058  *  This is a function pointer entry point called by drivers.
1059  **/
1060 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1061 {
1062 	if (hw->phy.ops.write_reg)
1063 		return hw->phy.ops.write_reg(hw, offset, data);
1064 
1065 	return E1000_SUCCESS;
1066 }
1067 
1068 /**
1069  *  e1000_release_phy - Generic release PHY
1070  *  @hw: pointer to the HW structure
1071  *
1072  *  Return if silicon family does not require a semaphore when accessing the
1073  *  PHY.
1074  **/
1075 void e1000_release_phy(struct e1000_hw *hw)
1076 {
1077 	if (hw->phy.ops.release)
1078 		hw->phy.ops.release(hw);
1079 }
1080 
1081 /**
1082  *  e1000_acquire_phy - Generic acquire PHY
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  Return success if silicon family does not require a semaphore when
1086  *  accessing the PHY.
1087  **/
1088 s32 e1000_acquire_phy(struct e1000_hw *hw)
1089 {
1090 	if (hw->phy.ops.acquire)
1091 		return hw->phy.ops.acquire(hw);
1092 
1093 	return E1000_SUCCESS;
1094 }
1095 
1096 /**
1097  *  e1000_cfg_on_link_up - Configure PHY upon link up
1098  *  @hw: pointer to the HW structure
1099  **/
1100 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1101 {
1102 	if (hw->phy.ops.cfg_on_link_up)
1103 		return hw->phy.ops.cfg_on_link_up(hw);
1104 
1105 	return E1000_SUCCESS;
1106 }
1107 
1108 /**
1109  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1110  *  @hw: pointer to the HW structure
1111  *  @offset: the register to read
1112  *  @data: the location to store the 16-bit value read.
1113  *
1114  *  Reads a register out of the Kumeran interface. Currently no func pointer
1115  *  exists and all implementations are handled in the generic version of
1116  *  this function.
1117  **/
1118 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1119 {
1120 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1121 }
1122 
1123 /**
1124  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1125  *  @hw: pointer to the HW structure
1126  *  @offset: the register to write
1127  *  @data: the value to write.
1128  *
1129  *  Writes a register to the Kumeran interface. Currently no func pointer
1130  *  exists and all implementations are handled in the generic version of
1131  *  this function.
1132  **/
1133 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1134 {
1135 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1136 }
1137 
1138 /**
1139  *  e1000_get_cable_length - Retrieves cable length estimation
1140  *  @hw: pointer to the HW structure
1141  *
1142  *  This function estimates the cable length and stores them in
1143  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1144  *  entry point called by drivers.
1145  **/
1146 s32 e1000_get_cable_length(struct e1000_hw *hw)
1147 {
1148 	if (hw->phy.ops.get_cable_length)
1149 		return hw->phy.ops.get_cable_length(hw);
1150 
1151 	return E1000_SUCCESS;
1152 }
1153 
1154 /**
1155  *  e1000_get_phy_info - Retrieves PHY information from registers
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  This function gets some information from various PHY registers and
1159  *  populates hw->phy values with it. This is a function pointer entry
1160  *  point called by drivers.
1161  **/
1162 s32 e1000_get_phy_info(struct e1000_hw *hw)
1163 {
1164 	if (hw->phy.ops.get_info)
1165 		return hw->phy.ops.get_info(hw);
1166 
1167 	return E1000_SUCCESS;
1168 }
1169 
1170 /**
1171  *  e1000_phy_hw_reset - Hard PHY reset
1172  *  @hw: pointer to the HW structure
1173  *
1174  *  Performs a hard PHY reset. This is a function pointer entry point called
1175  *  by drivers.
1176  **/
1177 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1178 {
1179 	if (hw->phy.ops.reset)
1180 		return hw->phy.ops.reset(hw);
1181 
1182 	return E1000_SUCCESS;
1183 }
1184 
1185 /**
1186  *  e1000_phy_commit - Soft PHY reset
1187  *  @hw: pointer to the HW structure
1188  *
1189  *  Performs a soft PHY reset on those that apply. This is a function pointer
1190  *  entry point called by drivers.
1191  **/
1192 s32 e1000_phy_commit(struct e1000_hw *hw)
1193 {
1194 	if (hw->phy.ops.commit)
1195 		return hw->phy.ops.commit(hw);
1196 
1197 	return E1000_SUCCESS;
1198 }
1199 
1200 /**
1201  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1202  *  @hw: pointer to the HW structure
1203  *  @active: boolean used to enable/disable lplu
1204  *
1205  *  Success returns 0, Failure returns 1
1206  *
1207  *  The low power link up (lplu) state is set to the power management level D0
1208  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
1209  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1210  *  is used during Dx states where the power conservation is most important.
1211  *  During driver activity, SmartSpeed should be enabled so performance is
1212  *  maintained.  This is a function pointer entry point called by drivers.
1213  **/
1214 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1215 {
1216 	if (hw->phy.ops.set_d0_lplu_state)
1217 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1218 
1219 	return E1000_SUCCESS;
1220 }
1221 
1222 /**
1223  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1224  *  @hw: pointer to the HW structure
1225  *  @active: boolean used to enable/disable lplu
1226  *
1227  *  Success returns 0, Failure returns 1
1228  *
1229  *  The low power link up (lplu) state is set to the power management level D3
1230  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1231  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1232  *  is used during Dx states where the power conservation is most important.
1233  *  During driver activity, SmartSpeed should be enabled so performance is
1234  *  maintained.  This is a function pointer entry point called by drivers.
1235  **/
1236 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1237 {
1238 	if (hw->phy.ops.set_d3_lplu_state)
1239 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1240 
1241 	return E1000_SUCCESS;
1242 }
1243 
1244 /**
1245  *  e1000_read_mac_addr - Reads MAC address
1246  *  @hw: pointer to the HW structure
1247  *
1248  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1249  *  Currently no func pointer exists and all implementations are handled in the
1250  *  generic version of this function.
1251  **/
1252 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1253 {
1254 	if (hw->mac.ops.read_mac_addr)
1255 		return hw->mac.ops.read_mac_addr(hw);
1256 
1257 	return e1000_read_mac_addr_generic(hw);
1258 }
1259 
1260 /**
1261  *  e1000_read_pba_string - Read device part number string
1262  *  @hw: pointer to the HW structure
1263  *  @pba_num: pointer to device part number
1264  *  @pba_num_size: size of part number buffer
1265  *
1266  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1267  *  the value in pba_num.
1268  *  Currently no func pointer exists and all implementations are handled in the
1269  *  generic version of this function.
1270  **/
1271 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1272 {
1273 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1274 }
1275 
1276 /**
1277  *  e1000_read_pba_length - Read device part number string length
1278  *  @hw: pointer to the HW structure
1279  *  @pba_num_size: size of part number buffer
1280  *
1281  *  Reads the product board assembly (PBA) number length from the EEPROM and
1282  *  stores the value in pba_num.
1283  *  Currently no func pointer exists and all implementations are handled in the
1284  *  generic version of this function.
1285  **/
1286 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1287 {
1288 	return e1000_read_pba_length_generic(hw, pba_num_size);
1289 }
1290 
1291 /**
1292  *  e1000_read_pba_num - Read device part number
1293  *  @hw: pointer to the HW structure
1294  *  @pba_num: pointer to device part number
1295  *
1296  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1297  *  the value in pba_num.
1298  *  Currently no func pointer exists and all implementations are handled in the
1299  *  generic version of this function.
1300  **/
1301 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1302 {
1303 	return e1000_read_pba_num_generic(hw, pba_num);
1304 }
1305 
1306 /**
1307  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1308  *  @hw: pointer to the HW structure
1309  *
1310  *  Validates the NVM checksum is correct. This is a function pointer entry
1311  *  point called by drivers.
1312  **/
1313 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1314 {
1315 	if (hw->nvm.ops.validate)
1316 		return hw->nvm.ops.validate(hw);
1317 
1318 	return -E1000_ERR_CONFIG;
1319 }
1320 
1321 /**
1322  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1323  *  @hw: pointer to the HW structure
1324  *
1325  *  Updates the NVM checksum. Currently no func pointer exists and all
1326  *  implementations are handled in the generic version of this function.
1327  **/
1328 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1329 {
1330 	if (hw->nvm.ops.update)
1331 		return hw->nvm.ops.update(hw);
1332 
1333 	return -E1000_ERR_CONFIG;
1334 }
1335 
1336 /**
1337  *  e1000_reload_nvm - Reloads EEPROM
1338  *  @hw: pointer to the HW structure
1339  *
1340  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1341  *  extended control register.
1342  **/
1343 void e1000_reload_nvm(struct e1000_hw *hw)
1344 {
1345 	if (hw->nvm.ops.reload)
1346 		hw->nvm.ops.reload(hw);
1347 }
1348 
1349 /**
1350  *  e1000_read_nvm - Reads NVM (EEPROM)
1351  *  @hw: pointer to the HW structure
1352  *  @offset: the word offset to read
1353  *  @words: number of 16-bit words to read
1354  *  @data: pointer to the properly sized buffer for the data.
1355  *
1356  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1357  *  pointer entry point called by drivers.
1358  **/
1359 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1360 {
1361 	if (hw->nvm.ops.read)
1362 		return hw->nvm.ops.read(hw, offset, words, data);
1363 
1364 	return -E1000_ERR_CONFIG;
1365 }
1366 
1367 /**
1368  *  e1000_write_nvm - Writes to NVM (EEPROM)
1369  *  @hw: pointer to the HW structure
1370  *  @offset: the word offset to read
1371  *  @words: number of 16-bit words to write
1372  *  @data: pointer to the properly sized buffer for the data.
1373  *
1374  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1375  *  pointer entry point called by drivers.
1376  **/
1377 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1378 {
1379 	if (hw->nvm.ops.write)
1380 		return hw->nvm.ops.write(hw, offset, words, data);
1381 
1382 	return E1000_SUCCESS;
1383 }
1384 
1385 /**
1386  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1387  *  @hw: pointer to the HW structure
1388  *  @reg: 32bit register offset
1389  *  @offset: the register to write
1390  *  @data: the value to write.
1391  *
1392  *  Writes the PHY register at offset with the value in data.
1393  *  This is a function pointer entry point called by drivers.
1394  **/
1395 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1396 			      u8 data)
1397 {
1398 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1399 }
1400 
1401 /**
1402  * e1000_power_up_phy - Restores link in case of PHY power down
1403  * @hw: pointer to the HW structure
1404  *
1405  * The phy may be powered down to save power, to turn off link when the
1406  * driver is unloaded, or wake on lan is not enabled (among others).
1407  **/
1408 void e1000_power_up_phy(struct e1000_hw *hw)
1409 {
1410 	if (hw->phy.ops.power_up)
1411 		hw->phy.ops.power_up(hw);
1412 
1413 	e1000_setup_link(hw);
1414 }
1415 
1416 /**
1417  * e1000_power_down_phy - Power down PHY
1418  * @hw: pointer to the HW structure
1419  *
1420  * The phy may be powered down to save power, to turn off link when the
1421  * driver is unloaded, or wake on lan is not enabled (among others).
1422  **/
1423 void e1000_power_down_phy(struct e1000_hw *hw)
1424 {
1425 	if (hw->phy.ops.power_down)
1426 		hw->phy.ops.power_down(hw);
1427 }
1428 
1429 /**
1430  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1431  *  @hw: pointer to the HW structure
1432  *
1433  *  Power on the optics and PCS.
1434  **/
1435 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1436 {
1437 	if (hw->mac.ops.power_up_serdes)
1438 		hw->mac.ops.power_up_serdes(hw);
1439 }
1440 
1441 /**
1442  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1443  *  @hw: pointer to the HW structure
1444  *
1445  *  Shutdown the optics and PCS on driver unload.
1446  **/
1447 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1448 {
1449 	if (hw->mac.ops.shutdown_serdes)
1450 		hw->mac.ops.shutdown_serdes(hw);
1451 }
1452 
1453