1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2015, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 /* 37 * 82575EB Gigabit Network Connection 38 * 82575EB Gigabit Backplane Connection 39 * 82575GB Gigabit Network Connection 40 * 82576 Gigabit Network Connection 41 * 82576 Quad Port Gigabit Mezzanine Adapter 42 * 82580 Gigabit Network Connection 43 * I350 Gigabit Network Connection 44 */ 45 46 #include "e1000_api.h" 47 #include "e1000_i210.h" 48 49 static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); 50 static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); 51 static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); 52 static void e1000_release_phy_82575(struct e1000_hw *hw); 53 static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); 54 static void e1000_release_nvm_82575(struct e1000_hw *hw); 55 static s32 e1000_check_for_link_82575(struct e1000_hw *hw); 56 static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); 57 static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); 58 static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, 59 u16 *duplex); 60 static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); 61 static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 62 u16 *data); 63 static s32 e1000_reset_hw_82575(struct e1000_hw *hw); 64 static s32 e1000_reset_hw_82580(struct e1000_hw *hw); 65 static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, 66 u32 offset, u16 *data); 67 static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, 68 u32 offset, u16 data); 69 static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, 70 bool active); 71 static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, 72 bool active); 73 static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, 74 bool active); 75 static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); 76 static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); 77 static s32 e1000_get_media_type_82575(struct e1000_hw *hw); 78 static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); 79 static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); 80 static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, 81 u32 offset, u16 data); 82 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); 83 static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); 84 static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, 85 u16 *speed, u16 *duplex); 86 static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); 87 static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); 88 static bool e1000_sgmii_active_82575(struct e1000_hw *hw); 89 static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); 90 static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); 91 static void e1000_config_collision_dist_82575(struct e1000_hw *hw); 92 static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); 93 static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); 94 static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); 95 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); 96 static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); 97 static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); 98 static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); 99 static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, 100 u16 offset); 101 static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, 102 u16 offset); 103 static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); 104 static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); 105 static void e1000_clear_vfta_i350(struct e1000_hw *hw); 106 107 static void e1000_i2c_start(struct e1000_hw *hw); 108 static void e1000_i2c_stop(struct e1000_hw *hw); 109 static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); 110 static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); 111 static s32 e1000_get_i2c_ack(struct e1000_hw *hw); 112 static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); 113 static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); 114 static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); 115 static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); 116 static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); 117 static bool e1000_get_i2c_data(u32 *i2cctl); 118 119 static const u16 e1000_82580_rxpbs_table[] = { 120 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; 121 #define E1000_82580_RXPBS_TABLE_SIZE \ 122 (sizeof(e1000_82580_rxpbs_table) / \ 123 sizeof(e1000_82580_rxpbs_table[0])) 124 125 126 /** 127 * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO 128 * @hw: pointer to the HW structure 129 * 130 * Called to determine if the I2C pins are being used for I2C or as an 131 * external MDIO interface since the two options are mutually exclusive. 132 **/ 133 static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) 134 { 135 u32 reg = 0; 136 bool ext_mdio = FALSE; 137 138 DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); 139 140 switch (hw->mac.type) { 141 case e1000_82575: 142 case e1000_82576: 143 reg = E1000_READ_REG(hw, E1000_MDIC); 144 ext_mdio = !!(reg & E1000_MDIC_DEST); 145 break; 146 case e1000_82580: 147 case e1000_i350: 148 case e1000_i354: 149 case e1000_i210: 150 case e1000_i211: 151 reg = E1000_READ_REG(hw, E1000_MDICNFG); 152 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); 153 break; 154 default: 155 break; 156 } 157 return ext_mdio; 158 } 159 160 /** 161 * e1000_init_phy_params_82575 - Init PHY func ptrs. 162 * @hw: pointer to the HW structure 163 **/ 164 static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) 165 { 166 struct e1000_phy_info *phy = &hw->phy; 167 s32 ret_val = E1000_SUCCESS; 168 u32 ctrl_ext; 169 170 DEBUGFUNC("e1000_init_phy_params_82575"); 171 172 phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; 173 phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; 174 175 if (hw->phy.media_type != e1000_media_type_copper) { 176 phy->type = e1000_phy_none; 177 goto out; 178 } 179 180 phy->ops.power_up = e1000_power_up_phy_copper; 181 phy->ops.power_down = e1000_power_down_phy_copper_82575; 182 183 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 184 phy->reset_delay_us = 100; 185 186 phy->ops.acquire = e1000_acquire_phy_82575; 187 phy->ops.check_reset_block = e1000_check_reset_block_generic; 188 phy->ops.commit = e1000_phy_sw_reset_generic; 189 phy->ops.get_cfg_done = e1000_get_cfg_done_82575; 190 phy->ops.release = e1000_release_phy_82575; 191 192 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 193 194 if (e1000_sgmii_active_82575(hw)) { 195 phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; 196 ctrl_ext |= E1000_CTRL_I2C_ENA; 197 } else { 198 phy->ops.reset = e1000_phy_hw_reset_generic; 199 ctrl_ext &= ~E1000_CTRL_I2C_ENA; 200 } 201 202 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 203 e1000_reset_mdicnfg_82580(hw); 204 205 if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { 206 phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; 207 phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; 208 } else { 209 switch (hw->mac.type) { 210 case e1000_82580: 211 case e1000_i350: 212 case e1000_i354: 213 phy->ops.read_reg = e1000_read_phy_reg_82580; 214 phy->ops.write_reg = e1000_write_phy_reg_82580; 215 break; 216 case e1000_i210: 217 case e1000_i211: 218 phy->ops.read_reg = e1000_read_phy_reg_gs40g; 219 phy->ops.write_reg = e1000_write_phy_reg_gs40g; 220 break; 221 default: 222 phy->ops.read_reg = e1000_read_phy_reg_igp; 223 phy->ops.write_reg = e1000_write_phy_reg_igp; 224 } 225 } 226 227 /* Set phy->phy_addr and phy->id. */ 228 ret_val = e1000_get_phy_id_82575(hw); 229 230 /* Verify phy id and set remaining function pointers */ 231 switch (phy->id) { 232 case M88E1543_E_PHY_ID: 233 case M88E1512_E_PHY_ID: 234 case I347AT4_E_PHY_ID: 235 case M88E1112_E_PHY_ID: 236 case M88E1340M_E_PHY_ID: 237 case M88E1111_I_PHY_ID: 238 phy->type = e1000_phy_m88; 239 phy->ops.check_polarity = e1000_check_polarity_m88; 240 phy->ops.get_info = e1000_get_phy_info_m88; 241 if (phy->id == I347AT4_E_PHY_ID || 242 phy->id == M88E1112_E_PHY_ID || 243 phy->id == M88E1340M_E_PHY_ID) 244 phy->ops.get_cable_length = 245 e1000_get_cable_length_m88_gen2; 246 else if (phy->id == M88E1543_E_PHY_ID || 247 phy->id == M88E1512_E_PHY_ID) 248 phy->ops.get_cable_length = 249 e1000_get_cable_length_m88_gen2; 250 else 251 phy->ops.get_cable_length = e1000_get_cable_length_m88; 252 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 253 /* Check if this PHY is confgured for media swap. */ 254 if (phy->id == M88E1112_E_PHY_ID) { 255 u16 data; 256 257 ret_val = phy->ops.write_reg(hw, 258 E1000_M88E1112_PAGE_ADDR, 259 2); 260 if (ret_val) 261 goto out; 262 263 ret_val = phy->ops.read_reg(hw, 264 E1000_M88E1112_MAC_CTRL_1, 265 &data); 266 if (ret_val) 267 goto out; 268 269 data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> 270 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; 271 if (data == E1000_M88E1112_AUTO_COPPER_SGMII || 272 data == E1000_M88E1112_AUTO_COPPER_BASEX) 273 hw->mac.ops.check_for_link = 274 e1000_check_for_link_media_swap; 275 } 276 if (phy->id == M88E1512_E_PHY_ID) { 277 ret_val = e1000_initialize_M88E1512_phy(hw); 278 if (ret_val) 279 goto out; 280 } 281 if (phy->id == M88E1543_E_PHY_ID) { 282 ret_val = e1000_initialize_M88E1543_phy(hw); 283 if (ret_val) 284 goto out; 285 } 286 break; 287 case IGP03E1000_E_PHY_ID: 288 case IGP04E1000_E_PHY_ID: 289 phy->type = e1000_phy_igp_3; 290 phy->ops.check_polarity = e1000_check_polarity_igp; 291 phy->ops.get_info = e1000_get_phy_info_igp; 292 phy->ops.get_cable_length = e1000_get_cable_length_igp_2; 293 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; 294 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; 295 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; 296 break; 297 case I82580_I_PHY_ID: 298 case I350_I_PHY_ID: 299 phy->type = e1000_phy_82580; 300 phy->ops.check_polarity = e1000_check_polarity_82577; 301 phy->ops.force_speed_duplex = 302 e1000_phy_force_speed_duplex_82577; 303 phy->ops.get_cable_length = e1000_get_cable_length_82577; 304 phy->ops.get_info = e1000_get_phy_info_82577; 305 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; 306 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; 307 break; 308 case I210_I_PHY_ID: 309 phy->type = e1000_phy_i210; 310 phy->ops.check_polarity = e1000_check_polarity_m88; 311 phy->ops.get_info = e1000_get_phy_info_m88; 312 phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; 313 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; 314 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; 315 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 316 break; 317 default: 318 ret_val = -E1000_ERR_PHY; 319 goto out; 320 } 321 322 out: 323 return ret_val; 324 } 325 326 /** 327 * e1000_init_nvm_params_82575 - Init NVM func ptrs. 328 * @hw: pointer to the HW structure 329 **/ 330 s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) 331 { 332 struct e1000_nvm_info *nvm = &hw->nvm; 333 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 334 u16 size; 335 336 DEBUGFUNC("e1000_init_nvm_params_82575"); 337 338 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> 339 E1000_EECD_SIZE_EX_SHIFT); 340 /* 341 * Added to a constant, "size" becomes the left-shift value 342 * for setting word_size. 343 */ 344 size += NVM_WORD_SIZE_BASE_SHIFT; 345 346 /* Just in case size is out of range, cap it to the largest 347 * EEPROM size supported 348 */ 349 if (size > 15) 350 size = 15; 351 352 nvm->word_size = 1 << size; 353 if (hw->mac.type < e1000_i210) { 354 nvm->opcode_bits = 8; 355 nvm->delay_usec = 1; 356 357 switch (nvm->override) { 358 case e1000_nvm_override_spi_large: 359 nvm->page_size = 32; 360 nvm->address_bits = 16; 361 break; 362 case e1000_nvm_override_spi_small: 363 nvm->page_size = 8; 364 nvm->address_bits = 8; 365 break; 366 default: 367 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 368 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 369 16 : 8; 370 break; 371 } 372 if (nvm->word_size == (1 << 15)) 373 nvm->page_size = 128; 374 375 nvm->type = e1000_nvm_eeprom_spi; 376 } else { 377 nvm->type = e1000_nvm_flash_hw; 378 } 379 380 /* Function Pointers */ 381 nvm->ops.acquire = e1000_acquire_nvm_82575; 382 nvm->ops.release = e1000_release_nvm_82575; 383 if (nvm->word_size < (1 << 15)) 384 nvm->ops.read = e1000_read_nvm_eerd; 385 else 386 nvm->ops.read = e1000_read_nvm_spi; 387 388 nvm->ops.write = e1000_write_nvm_spi; 389 nvm->ops.validate = e1000_validate_nvm_checksum_generic; 390 nvm->ops.update = e1000_update_nvm_checksum_generic; 391 nvm->ops.valid_led_default = e1000_valid_led_default_82575; 392 393 /* override generic family function pointers for specific descendants */ 394 switch (hw->mac.type) { 395 case e1000_82580: 396 nvm->ops.validate = e1000_validate_nvm_checksum_82580; 397 nvm->ops.update = e1000_update_nvm_checksum_82580; 398 break; 399 case e1000_i350: 400 case e1000_i354: 401 nvm->ops.validate = e1000_validate_nvm_checksum_i350; 402 nvm->ops.update = e1000_update_nvm_checksum_i350; 403 break; 404 default: 405 break; 406 } 407 408 return E1000_SUCCESS; 409 } 410 411 /** 412 * e1000_init_mac_params_82575 - Init MAC func ptrs. 413 * @hw: pointer to the HW structure 414 **/ 415 static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) 416 { 417 struct e1000_mac_info *mac = &hw->mac; 418 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 419 420 DEBUGFUNC("e1000_init_mac_params_82575"); 421 422 /* Derives media type */ 423 e1000_get_media_type_82575(hw); 424 /* Set mta register count */ 425 mac->mta_reg_count = 128; 426 /* Set uta register count */ 427 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; 428 /* Set rar entry count */ 429 mac->rar_entry_count = E1000_RAR_ENTRIES_82575; 430 if (mac->type == e1000_82576) 431 mac->rar_entry_count = E1000_RAR_ENTRIES_82576; 432 if (mac->type == e1000_82580) 433 mac->rar_entry_count = E1000_RAR_ENTRIES_82580; 434 if (mac->type == e1000_i350 || mac->type == e1000_i354) 435 mac->rar_entry_count = E1000_RAR_ENTRIES_I350; 436 437 /* Enable EEE default settings for EEE supported devices */ 438 if (mac->type >= e1000_i350) 439 dev_spec->eee_disable = FALSE; 440 441 /* Allow a single clear of the SW semaphore on I210 and newer */ 442 if (mac->type >= e1000_i210) 443 dev_spec->clear_semaphore_once = TRUE; 444 445 /* Set if part includes ASF firmware */ 446 mac->asf_firmware_present = TRUE; 447 /* FWSM register */ 448 mac->has_fwsm = TRUE; 449 /* ARC supported; valid only if manageability features are enabled. */ 450 mac->arc_subsystem_valid = 451 !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); 452 453 /* Function pointers */ 454 455 /* bus type/speed/width */ 456 mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; 457 /* reset */ 458 if (mac->type >= e1000_82580) 459 mac->ops.reset_hw = e1000_reset_hw_82580; 460 else 461 mac->ops.reset_hw = e1000_reset_hw_82575; 462 /* hw initialization */ 463 if ((mac->type == e1000_i210) || (mac->type == e1000_i211)) 464 mac->ops.init_hw = e1000_init_hw_i210; 465 else 466 mac->ops.init_hw = e1000_init_hw_82575; 467 /* link setup */ 468 mac->ops.setup_link = e1000_setup_link_generic; 469 /* physical interface link setup */ 470 mac->ops.setup_physical_interface = 471 (hw->phy.media_type == e1000_media_type_copper) 472 ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; 473 /* physical interface shutdown */ 474 mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; 475 /* physical interface power up */ 476 mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; 477 /* check for link */ 478 mac->ops.check_for_link = e1000_check_for_link_82575; 479 /* read mac address */ 480 mac->ops.read_mac_addr = e1000_read_mac_addr_82575; 481 /* configure collision distance */ 482 mac->ops.config_collision_dist = e1000_config_collision_dist_82575; 483 /* multicast address update */ 484 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; 485 if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { 486 /* writing VFTA */ 487 mac->ops.write_vfta = e1000_write_vfta_i350; 488 /* clearing VFTA */ 489 mac->ops.clear_vfta = e1000_clear_vfta_i350; 490 } else { 491 /* writing VFTA */ 492 mac->ops.write_vfta = e1000_write_vfta_generic; 493 /* clearing VFTA */ 494 mac->ops.clear_vfta = e1000_clear_vfta_generic; 495 } 496 if (hw->mac.type >= e1000_82580) 497 mac->ops.validate_mdi_setting = 498 e1000_validate_mdi_setting_crossover_generic; 499 /* ID LED init */ 500 mac->ops.id_led_init = e1000_id_led_init_generic; 501 /* blink LED */ 502 mac->ops.blink_led = e1000_blink_led_generic; 503 /* setup LED */ 504 mac->ops.setup_led = e1000_setup_led_generic; 505 /* cleanup LED */ 506 mac->ops.cleanup_led = e1000_cleanup_led_generic; 507 /* turn on/off LED */ 508 mac->ops.led_on = e1000_led_on_generic; 509 mac->ops.led_off = e1000_led_off_generic; 510 /* clear hardware counters */ 511 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; 512 /* link info */ 513 mac->ops.get_link_up_info = e1000_get_link_up_info_82575; 514 /* acquire SW_FW sync */ 515 mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; 516 mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; 517 if (mac->type >= e1000_i210) { 518 mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; 519 mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; 520 } 521 522 /* set lan id for port to determine which phy lock to use */ 523 hw->mac.ops.set_lan_id(hw); 524 525 return E1000_SUCCESS; 526 } 527 528 /** 529 * e1000_init_function_pointers_82575 - Init func ptrs. 530 * @hw: pointer to the HW structure 531 * 532 * Called to initialize all function pointers and parameters. 533 **/ 534 void e1000_init_function_pointers_82575(struct e1000_hw *hw) 535 { 536 DEBUGFUNC("e1000_init_function_pointers_82575"); 537 538 hw->mac.ops.init_params = e1000_init_mac_params_82575; 539 hw->nvm.ops.init_params = e1000_init_nvm_params_82575; 540 hw->phy.ops.init_params = e1000_init_phy_params_82575; 541 hw->mbx.ops.init_params = e1000_init_mbx_params_pf; 542 } 543 544 /** 545 * e1000_acquire_phy_82575 - Acquire rights to access PHY 546 * @hw: pointer to the HW structure 547 * 548 * Acquire access rights to the correct PHY. 549 **/ 550 static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) 551 { 552 u16 mask = E1000_SWFW_PHY0_SM; 553 554 DEBUGFUNC("e1000_acquire_phy_82575"); 555 556 if (hw->bus.func == E1000_FUNC_1) 557 mask = E1000_SWFW_PHY1_SM; 558 else if (hw->bus.func == E1000_FUNC_2) 559 mask = E1000_SWFW_PHY2_SM; 560 else if (hw->bus.func == E1000_FUNC_3) 561 mask = E1000_SWFW_PHY3_SM; 562 563 return hw->mac.ops.acquire_swfw_sync(hw, mask); 564 } 565 566 /** 567 * e1000_release_phy_82575 - Release rights to access PHY 568 * @hw: pointer to the HW structure 569 * 570 * A wrapper to release access rights to the correct PHY. 571 **/ 572 static void e1000_release_phy_82575(struct e1000_hw *hw) 573 { 574 u16 mask = E1000_SWFW_PHY0_SM; 575 576 DEBUGFUNC("e1000_release_phy_82575"); 577 578 if (hw->bus.func == E1000_FUNC_1) 579 mask = E1000_SWFW_PHY1_SM; 580 else if (hw->bus.func == E1000_FUNC_2) 581 mask = E1000_SWFW_PHY2_SM; 582 else if (hw->bus.func == E1000_FUNC_3) 583 mask = E1000_SWFW_PHY3_SM; 584 585 hw->mac.ops.release_swfw_sync(hw, mask); 586 } 587 588 /** 589 * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii 590 * @hw: pointer to the HW structure 591 * @offset: register offset to be read 592 * @data: pointer to the read data 593 * 594 * Reads the PHY register at offset using the serial gigabit media independent 595 * interface and stores the retrieved information in data. 596 **/ 597 static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 598 u16 *data) 599 { 600 s32 ret_val = -E1000_ERR_PARAM; 601 602 DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); 603 604 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 605 DEBUGOUT1("PHY Address %u is out of range\n", offset); 606 goto out; 607 } 608 609 ret_val = hw->phy.ops.acquire(hw); 610 if (ret_val) 611 goto out; 612 613 ret_val = e1000_read_phy_reg_i2c(hw, offset, data); 614 615 hw->phy.ops.release(hw); 616 617 out: 618 return ret_val; 619 } 620 621 /** 622 * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii 623 * @hw: pointer to the HW structure 624 * @offset: register offset to write to 625 * @data: data to write at register offset 626 * 627 * Writes the data to PHY register at the offset using the serial gigabit 628 * media independent interface. 629 **/ 630 static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 631 u16 data) 632 { 633 s32 ret_val = -E1000_ERR_PARAM; 634 635 DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); 636 637 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 638 DEBUGOUT1("PHY Address %d is out of range\n", offset); 639 goto out; 640 } 641 642 ret_val = hw->phy.ops.acquire(hw); 643 if (ret_val) 644 goto out; 645 646 ret_val = e1000_write_phy_reg_i2c(hw, offset, data); 647 648 hw->phy.ops.release(hw); 649 650 out: 651 return ret_val; 652 } 653 654 /** 655 * e1000_get_phy_id_82575 - Retrieve PHY addr and id 656 * @hw: pointer to the HW structure 657 * 658 * Retrieves the PHY address and ID for both PHY's which do and do not use 659 * sgmi interface. 660 **/ 661 static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) 662 { 663 struct e1000_phy_info *phy = &hw->phy; 664 s32 ret_val = E1000_SUCCESS; 665 u16 phy_id; 666 u32 ctrl_ext; 667 u32 mdic; 668 669 DEBUGFUNC("e1000_get_phy_id_82575"); 670 671 /* some i354 devices need an extra read for phy id */ 672 if (hw->mac.type == e1000_i354) 673 e1000_get_phy_id(hw); 674 675 /* 676 * For SGMII PHYs, we try the list of possible addresses until 677 * we find one that works. For non-SGMII PHYs 678 * (e.g. integrated copper PHYs), an address of 1 should 679 * work. The result of this function should mean phy->phy_addr 680 * and phy->id are set correctly. 681 */ 682 if (!e1000_sgmii_active_82575(hw)) { 683 phy->addr = 1; 684 ret_val = e1000_get_phy_id(hw); 685 goto out; 686 } 687 688 if (e1000_sgmii_uses_mdio_82575(hw)) { 689 switch (hw->mac.type) { 690 case e1000_82575: 691 case e1000_82576: 692 mdic = E1000_READ_REG(hw, E1000_MDIC); 693 mdic &= E1000_MDIC_PHY_MASK; 694 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; 695 break; 696 case e1000_82580: 697 case e1000_i350: 698 case e1000_i354: 699 case e1000_i210: 700 case e1000_i211: 701 mdic = E1000_READ_REG(hw, E1000_MDICNFG); 702 mdic &= E1000_MDICNFG_PHY_MASK; 703 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; 704 break; 705 default: 706 ret_val = -E1000_ERR_PHY; 707 goto out; 708 break; 709 } 710 ret_val = e1000_get_phy_id(hw); 711 goto out; 712 } 713 714 /* Power on sgmii phy if it is disabled */ 715 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 716 E1000_WRITE_REG(hw, E1000_CTRL_EXT, 717 ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); 718 E1000_WRITE_FLUSH(hw); 719 msec_delay(300); 720 721 /* 722 * The address field in the I2CCMD register is 3 bits and 0 is invalid. 723 * Therefore, we need to test 1-7 724 */ 725 for (phy->addr = 1; phy->addr < 8; phy->addr++) { 726 ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); 727 if (ret_val == E1000_SUCCESS) { 728 DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", 729 phy_id, phy->addr); 730 /* 731 * At the time of this writing, The M88 part is 732 * the only supported SGMII PHY product. 733 */ 734 if (phy_id == M88_VENDOR) 735 break; 736 } else { 737 DEBUGOUT1("PHY address %u was unreadable\n", 738 phy->addr); 739 } 740 } 741 742 /* A valid PHY type couldn't be found. */ 743 if (phy->addr == 8) { 744 phy->addr = 0; 745 ret_val = -E1000_ERR_PHY; 746 } else { 747 ret_val = e1000_get_phy_id(hw); 748 } 749 750 /* restore previous sfp cage power state */ 751 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 752 753 out: 754 return ret_val; 755 } 756 757 /** 758 * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset 759 * @hw: pointer to the HW structure 760 * 761 * Resets the PHY using the serial gigabit media independent interface. 762 **/ 763 static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) 764 { 765 s32 ret_val = E1000_SUCCESS; 766 struct e1000_phy_info *phy = &hw->phy; 767 768 DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); 769 770 /* 771 * This isn't a TRUE "hard" reset, but is the only reset 772 * available to us at this time. 773 */ 774 775 DEBUGOUT("Soft resetting SGMII attached PHY...\n"); 776 777 if (!(hw->phy.ops.write_reg)) 778 goto out; 779 780 /* 781 * SFP documentation requires the following to configure the SPF module 782 * to work on SGMII. No further documentation is given. 783 */ 784 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); 785 if (ret_val) 786 goto out; 787 788 ret_val = hw->phy.ops.commit(hw); 789 if (ret_val) 790 goto out; 791 792 if (phy->id == M88E1512_E_PHY_ID) 793 ret_val = e1000_initialize_M88E1512_phy(hw); 794 out: 795 return ret_val; 796 } 797 798 /** 799 * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state 800 * @hw: pointer to the HW structure 801 * @active: TRUE to enable LPLU, FALSE to disable 802 * 803 * Sets the LPLU D0 state according to the active flag. When 804 * activating LPLU this function also disables smart speed 805 * and vice versa. LPLU will not be activated unless the 806 * device autonegotiation advertisement meets standards of 807 * either 10 or 10/100 or 10/100/1000 at all duplexes. 808 * This is a function pointer entry point only called by 809 * PHY setup routines. 810 **/ 811 static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) 812 { 813 struct e1000_phy_info *phy = &hw->phy; 814 s32 ret_val = E1000_SUCCESS; 815 u16 data; 816 817 DEBUGFUNC("e1000_set_d0_lplu_state_82575"); 818 819 if (!(hw->phy.ops.read_reg)) 820 goto out; 821 822 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 823 if (ret_val) 824 goto out; 825 826 if (active) { 827 data |= IGP02E1000_PM_D0_LPLU; 828 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 829 data); 830 if (ret_val) 831 goto out; 832 833 /* When LPLU is enabled, we should disable SmartSpeed */ 834 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 835 &data); 836 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 837 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 838 data); 839 if (ret_val) 840 goto out; 841 } else { 842 data &= ~IGP02E1000_PM_D0_LPLU; 843 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 844 data); 845 /* 846 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 847 * during Dx states where the power conservation is most 848 * important. During driver activity we should enable 849 * SmartSpeed, so performance is maintained. 850 */ 851 if (phy->smart_speed == e1000_smart_speed_on) { 852 ret_val = phy->ops.read_reg(hw, 853 IGP01E1000_PHY_PORT_CONFIG, 854 &data); 855 if (ret_val) 856 goto out; 857 858 data |= IGP01E1000_PSCFR_SMART_SPEED; 859 ret_val = phy->ops.write_reg(hw, 860 IGP01E1000_PHY_PORT_CONFIG, 861 data); 862 if (ret_val) 863 goto out; 864 } else if (phy->smart_speed == e1000_smart_speed_off) { 865 ret_val = phy->ops.read_reg(hw, 866 IGP01E1000_PHY_PORT_CONFIG, 867 &data); 868 if (ret_val) 869 goto out; 870 871 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 872 ret_val = phy->ops.write_reg(hw, 873 IGP01E1000_PHY_PORT_CONFIG, 874 data); 875 if (ret_val) 876 goto out; 877 } 878 } 879 880 out: 881 return ret_val; 882 } 883 884 /** 885 * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state 886 * @hw: pointer to the HW structure 887 * @active: TRUE to enable LPLU, FALSE to disable 888 * 889 * Sets the LPLU D0 state according to the active flag. When 890 * activating LPLU this function also disables smart speed 891 * and vice versa. LPLU will not be activated unless the 892 * device autonegotiation advertisement meets standards of 893 * either 10 or 10/100 or 10/100/1000 at all duplexes. 894 * This is a function pointer entry point only called by 895 * PHY setup routines. 896 **/ 897 static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) 898 { 899 struct e1000_phy_info *phy = &hw->phy; 900 u32 data; 901 902 DEBUGFUNC("e1000_set_d0_lplu_state_82580"); 903 904 data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); 905 906 if (active) { 907 data |= E1000_82580_PM_D0_LPLU; 908 909 /* When LPLU is enabled, we should disable SmartSpeed */ 910 data &= ~E1000_82580_PM_SPD; 911 } else { 912 data &= ~E1000_82580_PM_D0_LPLU; 913 914 /* 915 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 916 * during Dx states where the power conservation is most 917 * important. During driver activity we should enable 918 * SmartSpeed, so performance is maintained. 919 */ 920 if (phy->smart_speed == e1000_smart_speed_on) 921 data |= E1000_82580_PM_SPD; 922 else if (phy->smart_speed == e1000_smart_speed_off) 923 data &= ~E1000_82580_PM_SPD; 924 } 925 926 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); 927 return E1000_SUCCESS; 928 } 929 930 /** 931 * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 932 * @hw: pointer to the HW structure 933 * @active: boolean used to enable/disable lplu 934 * 935 * Success returns 0, Failure returns 1 936 * 937 * The low power link up (lplu) state is set to the power management level D3 938 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 939 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 940 * is used during Dx states where the power conservation is most important. 941 * During driver activity, SmartSpeed should be enabled so performance is 942 * maintained. 943 **/ 944 s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) 945 { 946 struct e1000_phy_info *phy = &hw->phy; 947 u32 data; 948 949 DEBUGFUNC("e1000_set_d3_lplu_state_82580"); 950 951 data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); 952 953 if (!active) { 954 data &= ~E1000_82580_PM_D3_LPLU; 955 /* 956 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 957 * during Dx states where the power conservation is most 958 * important. During driver activity we should enable 959 * SmartSpeed, so performance is maintained. 960 */ 961 if (phy->smart_speed == e1000_smart_speed_on) 962 data |= E1000_82580_PM_SPD; 963 else if (phy->smart_speed == e1000_smart_speed_off) 964 data &= ~E1000_82580_PM_SPD; 965 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 966 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 967 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 968 data |= E1000_82580_PM_D3_LPLU; 969 /* When LPLU is enabled, we should disable SmartSpeed */ 970 data &= ~E1000_82580_PM_SPD; 971 } 972 973 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); 974 return E1000_SUCCESS; 975 } 976 977 /** 978 * e1000_acquire_nvm_82575 - Request for access to EEPROM 979 * @hw: pointer to the HW structure 980 * 981 * Acquire the necessary semaphores for exclusive access to the EEPROM. 982 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 983 * Return successful if access grant bit set, else clear the request for 984 * EEPROM access and return -E1000_ERR_NVM (-1). 985 **/ 986 static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) 987 { 988 s32 ret_val = E1000_SUCCESS; 989 990 DEBUGFUNC("e1000_acquire_nvm_82575"); 991 992 ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); 993 if (ret_val) 994 goto out; 995 996 /* 997 * Check if there is some access 998 * error this access may hook on 999 */ 1000 if (hw->mac.type == e1000_i350) { 1001 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 1002 if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | 1003 E1000_EECD_TIMEOUT)) { 1004 /* Clear all access error flags */ 1005 E1000_WRITE_REG(hw, E1000_EECD, eecd | 1006 E1000_EECD_ERROR_CLR); 1007 DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); 1008 } 1009 } 1010 1011 if (hw->mac.type == e1000_82580) { 1012 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 1013 if (eecd & E1000_EECD_BLOCKED) { 1014 /* Clear access error flag */ 1015 E1000_WRITE_REG(hw, E1000_EECD, eecd | 1016 E1000_EECD_BLOCKED); 1017 DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); 1018 } 1019 } 1020 1021 ret_val = e1000_acquire_nvm_generic(hw); 1022 if (ret_val) 1023 e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); 1024 1025 out: 1026 return ret_val; 1027 } 1028 1029 /** 1030 * e1000_release_nvm_82575 - Release exclusive access to EEPROM 1031 * @hw: pointer to the HW structure 1032 * 1033 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 1034 * then release the semaphores acquired. 1035 **/ 1036 static void e1000_release_nvm_82575(struct e1000_hw *hw) 1037 { 1038 DEBUGFUNC("e1000_release_nvm_82575"); 1039 1040 e1000_release_nvm_generic(hw); 1041 1042 e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); 1043 } 1044 1045 /** 1046 * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore 1047 * @hw: pointer to the HW structure 1048 * @mask: specifies which semaphore to acquire 1049 * 1050 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 1051 * will also specify which port we're acquiring the lock for. 1052 **/ 1053 static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1054 { 1055 u32 swfw_sync; 1056 u32 swmask = mask; 1057 u32 fwmask = mask << 16; 1058 s32 ret_val = E1000_SUCCESS; 1059 s32 i = 0, timeout = 200; 1060 1061 DEBUGFUNC("e1000_acquire_swfw_sync_82575"); 1062 1063 while (i < timeout) { 1064 if (e1000_get_hw_semaphore_generic(hw)) { 1065 ret_val = -E1000_ERR_SWFW_SYNC; 1066 goto out; 1067 } 1068 1069 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); 1070 if (!(swfw_sync & (fwmask | swmask))) 1071 break; 1072 1073 /* 1074 * Firmware currently using resource (fwmask) 1075 * or other software thread using resource (swmask) 1076 */ 1077 e1000_put_hw_semaphore_generic(hw); 1078 msec_delay_irq(5); 1079 i++; 1080 } 1081 1082 if (i == timeout) { 1083 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); 1084 ret_val = -E1000_ERR_SWFW_SYNC; 1085 goto out; 1086 } 1087 1088 swfw_sync |= swmask; 1089 E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); 1090 1091 e1000_put_hw_semaphore_generic(hw); 1092 1093 out: 1094 return ret_val; 1095 } 1096 1097 /** 1098 * e1000_release_swfw_sync_82575 - Release SW/FW semaphore 1099 * @hw: pointer to the HW structure 1100 * @mask: specifies which semaphore to acquire 1101 * 1102 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 1103 * will also specify which port we're releasing the lock for. 1104 **/ 1105 static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1106 { 1107 u32 swfw_sync; 1108 1109 DEBUGFUNC("e1000_release_swfw_sync_82575"); 1110 1111 while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) 1112 ; /* Empty */ 1113 1114 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); 1115 swfw_sync &= ~mask; 1116 E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); 1117 1118 e1000_put_hw_semaphore_generic(hw); 1119 } 1120 1121 /** 1122 * e1000_get_cfg_done_82575 - Read config done bit 1123 * @hw: pointer to the HW structure 1124 * 1125 * Read the management control register for the config done bit for 1126 * completion status. NOTE: silicon which is EEPROM-less will fail trying 1127 * to read the config done bit, so an error is *ONLY* logged and returns 1128 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon 1129 * would not be able to be reset or change link. 1130 **/ 1131 static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) 1132 { 1133 s32 timeout = PHY_CFG_TIMEOUT; 1134 u32 mask = E1000_NVM_CFG_DONE_PORT_0; 1135 1136 DEBUGFUNC("e1000_get_cfg_done_82575"); 1137 1138 if (hw->bus.func == E1000_FUNC_1) 1139 mask = E1000_NVM_CFG_DONE_PORT_1; 1140 else if (hw->bus.func == E1000_FUNC_2) 1141 mask = E1000_NVM_CFG_DONE_PORT_2; 1142 else if (hw->bus.func == E1000_FUNC_3) 1143 mask = E1000_NVM_CFG_DONE_PORT_3; 1144 while (timeout) { 1145 if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) 1146 break; 1147 msec_delay(1); 1148 timeout--; 1149 } 1150 if (!timeout) 1151 DEBUGOUT("MNG configuration cycle has not completed.\n"); 1152 1153 /* If EEPROM is not marked present, init the PHY manually */ 1154 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && 1155 (hw->phy.type == e1000_phy_igp_3)) 1156 e1000_phy_init_script_igp3(hw); 1157 1158 return E1000_SUCCESS; 1159 } 1160 1161 /** 1162 * e1000_get_link_up_info_82575 - Get link speed/duplex info 1163 * @hw: pointer to the HW structure 1164 * @speed: stores the current speed 1165 * @duplex: stores the current duplex 1166 * 1167 * This is a wrapper function, if using the serial gigabit media independent 1168 * interface, use PCS to retrieve the link speed and duplex information. 1169 * Otherwise, use the generic function to get the link speed and duplex info. 1170 **/ 1171 static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, 1172 u16 *duplex) 1173 { 1174 s32 ret_val; 1175 1176 DEBUGFUNC("e1000_get_link_up_info_82575"); 1177 1178 if (hw->phy.media_type != e1000_media_type_copper) 1179 ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, 1180 duplex); 1181 else 1182 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, 1183 duplex); 1184 1185 return ret_val; 1186 } 1187 1188 /** 1189 * e1000_check_for_link_82575 - Check for link 1190 * @hw: pointer to the HW structure 1191 * 1192 * If sgmii is enabled, then use the pcs register to determine link, otherwise 1193 * use the generic interface for determining link. 1194 **/ 1195 static s32 e1000_check_for_link_82575(struct e1000_hw *hw) 1196 { 1197 s32 ret_val; 1198 u16 speed, duplex; 1199 1200 DEBUGFUNC("e1000_check_for_link_82575"); 1201 1202 if (hw->phy.media_type != e1000_media_type_copper) { 1203 ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, 1204 &duplex); 1205 /* 1206 * Use this flag to determine if link needs to be checked or 1207 * not. If we have link clear the flag so that we do not 1208 * continue to check for link. 1209 */ 1210 hw->mac.get_link_status = !hw->mac.serdes_has_link; 1211 1212 /* 1213 * Configure Flow Control now that Auto-Neg has completed. 1214 * First, we need to restore the desired flow control 1215 * settings because we may have had to re-autoneg with a 1216 * different link partner. 1217 */ 1218 ret_val = e1000_config_fc_after_link_up_generic(hw); 1219 if (ret_val) 1220 DEBUGOUT("Error configuring flow control\n"); 1221 } else { 1222 ret_val = e1000_check_for_copper_link_generic(hw); 1223 } 1224 1225 return ret_val; 1226 } 1227 1228 /** 1229 * e1000_check_for_link_media_swap - Check which M88E1112 interface linked 1230 * @hw: pointer to the HW structure 1231 * 1232 * Poll the M88E1112 interfaces to see which interface achieved link. 1233 */ 1234 static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) 1235 { 1236 struct e1000_phy_info *phy = &hw->phy; 1237 s32 ret_val; 1238 u16 data; 1239 u8 port = 0; 1240 1241 DEBUGFUNC("e1000_check_for_link_media_swap"); 1242 1243 /* Check for copper. */ 1244 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 1245 if (ret_val) 1246 return ret_val; 1247 1248 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); 1249 if (ret_val) 1250 return ret_val; 1251 1252 if (data & E1000_M88E1112_STATUS_LINK) 1253 port = E1000_MEDIA_PORT_COPPER; 1254 1255 /* Check for other. */ 1256 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); 1257 if (ret_val) 1258 return ret_val; 1259 1260 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); 1261 if (ret_val) 1262 return ret_val; 1263 1264 if (data & E1000_M88E1112_STATUS_LINK) 1265 port = E1000_MEDIA_PORT_OTHER; 1266 1267 /* Determine if a swap needs to happen. */ 1268 if (port && (hw->dev_spec._82575.media_port != port)) { 1269 hw->dev_spec._82575.media_port = port; 1270 hw->dev_spec._82575.media_changed = TRUE; 1271 } 1272 1273 if (port == E1000_MEDIA_PORT_COPPER) { 1274 /* reset page to 0 */ 1275 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 1276 if (ret_val) 1277 return ret_val; 1278 e1000_check_for_link_82575(hw); 1279 } else { 1280 e1000_check_for_link_82575(hw); 1281 /* reset page to 0 */ 1282 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 1283 if (ret_val) 1284 return ret_val; 1285 } 1286 1287 return E1000_SUCCESS; 1288 } 1289 1290 /** 1291 * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown 1292 * @hw: pointer to the HW structure 1293 **/ 1294 static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) 1295 { 1296 u32 reg; 1297 1298 DEBUGFUNC("e1000_power_up_serdes_link_82575"); 1299 1300 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1301 !e1000_sgmii_active_82575(hw)) 1302 return; 1303 1304 /* Enable PCS to turn on link */ 1305 reg = E1000_READ_REG(hw, E1000_PCS_CFG0); 1306 reg |= E1000_PCS_CFG_PCS_EN; 1307 E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); 1308 1309 /* Power up the laser */ 1310 reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1311 reg &= ~E1000_CTRL_EXT_SDP3_DATA; 1312 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); 1313 1314 /* flush the write to verify completion */ 1315 E1000_WRITE_FLUSH(hw); 1316 msec_delay(1); 1317 } 1318 1319 /** 1320 * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex 1321 * @hw: pointer to the HW structure 1322 * @speed: stores the current speed 1323 * @duplex: stores the current duplex 1324 * 1325 * Using the physical coding sub-layer (PCS), retrieve the current speed and 1326 * duplex, then store the values in the pointers provided. 1327 **/ 1328 static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, 1329 u16 *speed, u16 *duplex) 1330 { 1331 struct e1000_mac_info *mac = &hw->mac; 1332 u32 pcs; 1333 u32 status; 1334 1335 DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); 1336 1337 /* 1338 * Read the PCS Status register for link state. For non-copper mode, 1339 * the status register is not accurate. The PCS status register is 1340 * used instead. 1341 */ 1342 pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); 1343 1344 /* 1345 * The link up bit determines when link is up on autoneg. 1346 */ 1347 if (pcs & E1000_PCS_LSTS_LINK_OK) { 1348 mac->serdes_has_link = TRUE; 1349 1350 /* Detect and store PCS speed */ 1351 if (pcs & E1000_PCS_LSTS_SPEED_1000) 1352 *speed = SPEED_1000; 1353 else if (pcs & E1000_PCS_LSTS_SPEED_100) 1354 *speed = SPEED_100; 1355 else 1356 *speed = SPEED_10; 1357 1358 /* Detect and store PCS duplex */ 1359 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) 1360 *duplex = FULL_DUPLEX; 1361 else 1362 *duplex = HALF_DUPLEX; 1363 1364 /* Check if it is an I354 2.5Gb backplane connection. */ 1365 if (mac->type == e1000_i354) { 1366 status = E1000_READ_REG(hw, E1000_STATUS); 1367 if ((status & E1000_STATUS_2P5_SKU) && 1368 !(status & E1000_STATUS_2P5_SKU_OVER)) { 1369 *speed = SPEED_2500; 1370 *duplex = FULL_DUPLEX; 1371 DEBUGOUT("2500 Mbs, "); 1372 DEBUGOUT("Full Duplex\n"); 1373 } 1374 } 1375 1376 } else { 1377 mac->serdes_has_link = FALSE; 1378 *speed = 0; 1379 *duplex = 0; 1380 } 1381 1382 return E1000_SUCCESS; 1383 } 1384 1385 /** 1386 * e1000_shutdown_serdes_link_82575 - Remove link during power down 1387 * @hw: pointer to the HW structure 1388 * 1389 * In the case of serdes shut down sfp and PCS on driver unload 1390 * when management pass thru is not enabled. 1391 **/ 1392 void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) 1393 { 1394 u32 reg; 1395 1396 DEBUGFUNC("e1000_shutdown_serdes_link_82575"); 1397 1398 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1399 !e1000_sgmii_active_82575(hw)) 1400 return; 1401 1402 if (!e1000_enable_mng_pass_thru(hw)) { 1403 /* Disable PCS to turn off link */ 1404 reg = E1000_READ_REG(hw, E1000_PCS_CFG0); 1405 reg &= ~E1000_PCS_CFG_PCS_EN; 1406 E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); 1407 1408 /* shutdown the laser */ 1409 reg = E1000_READ_REG(hw, E1000_CTRL_EXT); 1410 reg |= E1000_CTRL_EXT_SDP3_DATA; 1411 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); 1412 1413 /* flush the write to verify completion */ 1414 E1000_WRITE_FLUSH(hw); 1415 msec_delay(1); 1416 } 1417 1418 return; 1419 } 1420 1421 /** 1422 * e1000_reset_hw_82575 - Reset hardware 1423 * @hw: pointer to the HW structure 1424 * 1425 * This resets the hardware into a known state. 1426 **/ 1427 static s32 e1000_reset_hw_82575(struct e1000_hw *hw) 1428 { 1429 u32 ctrl; 1430 s32 ret_val; 1431 1432 DEBUGFUNC("e1000_reset_hw_82575"); 1433 1434 /* 1435 * Prevent the PCI-E bus from sticking if there is no TLP connection 1436 * on the last TLP read/write transaction when MAC is reset. 1437 */ 1438 ret_val = e1000_disable_pcie_master_generic(hw); 1439 if (ret_val) 1440 DEBUGOUT("PCI-E Master disable polling has failed.\n"); 1441 1442 /* set the completion timeout for interface */ 1443 ret_val = e1000_set_pcie_completion_timeout(hw); 1444 if (ret_val) 1445 DEBUGOUT("PCI-E Set completion timeout has failed.\n"); 1446 1447 DEBUGOUT("Masking off all interrupts\n"); 1448 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 1449 1450 E1000_WRITE_REG(hw, E1000_RCTL, 0); 1451 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); 1452 E1000_WRITE_FLUSH(hw); 1453 1454 msec_delay(10); 1455 1456 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1457 1458 DEBUGOUT("Issuing a global reset to MAC\n"); 1459 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); 1460 1461 ret_val = e1000_get_auto_rd_done_generic(hw); 1462 if (ret_val) { 1463 /* 1464 * When auto config read does not complete, do not 1465 * return with an error. This can happen in situations 1466 * where there is no eeprom and prevents getting link. 1467 */ 1468 DEBUGOUT("Auto Read Done did not complete\n"); 1469 } 1470 1471 /* If EEPROM is not present, run manual init scripts */ 1472 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) 1473 e1000_reset_init_script_82575(hw); 1474 1475 /* Clear any pending interrupt events. */ 1476 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 1477 E1000_READ_REG(hw, E1000_ICR); 1478 1479 /* Install any alternate MAC address into RAR0 */ 1480 ret_val = e1000_check_alt_mac_addr_generic(hw); 1481 1482 return ret_val; 1483 } 1484 1485 /** 1486 * e1000_init_hw_82575 - Initialize hardware 1487 * @hw: pointer to the HW structure 1488 * 1489 * This inits the hardware readying it for operation. 1490 **/ 1491 s32 e1000_init_hw_82575(struct e1000_hw *hw) 1492 { 1493 struct e1000_mac_info *mac = &hw->mac; 1494 s32 ret_val; 1495 u16 i, rar_count = mac->rar_entry_count; 1496 1497 DEBUGFUNC("e1000_init_hw_82575"); 1498 1499 /* Initialize identification LED */ 1500 ret_val = mac->ops.id_led_init(hw); 1501 if (ret_val) { 1502 DEBUGOUT("Error initializing identification LED\n"); 1503 /* This is not fatal and we should not stop init due to this */ 1504 } 1505 1506 /* Disabling VLAN filtering */ 1507 DEBUGOUT("Initializing the IEEE VLAN\n"); 1508 mac->ops.clear_vfta(hw); 1509 1510 /* Setup the receive address */ 1511 e1000_init_rx_addrs_generic(hw, rar_count); 1512 1513 /* Zero out the Multicast HASH table */ 1514 DEBUGOUT("Zeroing the MTA\n"); 1515 for (i = 0; i < mac->mta_reg_count; i++) 1516 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 1517 1518 /* Zero out the Unicast HASH table */ 1519 DEBUGOUT("Zeroing the UTA\n"); 1520 for (i = 0; i < mac->uta_reg_count; i++) 1521 E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); 1522 1523 /* Setup link and flow control */ 1524 ret_val = mac->ops.setup_link(hw); 1525 1526 /* Set the default MTU size */ 1527 hw->dev_spec._82575.mtu = 1500; 1528 1529 /* 1530 * Clear all of the statistics registers (clear on read). It is 1531 * important that we do this after we have tried to establish link 1532 * because the symbol error count will increment wildly if there 1533 * is no link. 1534 */ 1535 e1000_clear_hw_cntrs_82575(hw); 1536 1537 return ret_val; 1538 } 1539 1540 /** 1541 * e1000_setup_copper_link_82575 - Configure copper link settings 1542 * @hw: pointer to the HW structure 1543 * 1544 * Configures the link for auto-neg or forced speed and duplex. Then we check 1545 * for link, once link is established calls to configure collision distance 1546 * and flow control are called. 1547 **/ 1548 static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) 1549 { 1550 u32 ctrl; 1551 s32 ret_val; 1552 u32 phpm_reg; 1553 1554 DEBUGFUNC("e1000_setup_copper_link_82575"); 1555 1556 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1557 ctrl |= E1000_CTRL_SLU; 1558 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1559 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1560 1561 /* Clear Go Link Disconnect bit on supported devices */ 1562 switch (hw->mac.type) { 1563 case e1000_82580: 1564 case e1000_i350: 1565 case e1000_i210: 1566 case e1000_i211: 1567 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); 1568 phpm_reg &= ~E1000_82580_PM_GO_LINKD; 1569 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); 1570 break; 1571 default: 1572 break; 1573 } 1574 1575 ret_val = e1000_setup_serdes_link_82575(hw); 1576 if (ret_val) 1577 goto out; 1578 1579 if (e1000_sgmii_active_82575(hw)) { 1580 /* allow time for SFP cage time to power up phy */ 1581 msec_delay(300); 1582 1583 ret_val = hw->phy.ops.reset(hw); 1584 if (ret_val) { 1585 DEBUGOUT("Error resetting the PHY.\n"); 1586 goto out; 1587 } 1588 } 1589 switch (hw->phy.type) { 1590 case e1000_phy_i210: 1591 case e1000_phy_m88: 1592 switch (hw->phy.id) { 1593 case I347AT4_E_PHY_ID: 1594 case M88E1112_E_PHY_ID: 1595 case M88E1340M_E_PHY_ID: 1596 case M88E1543_E_PHY_ID: 1597 case M88E1512_E_PHY_ID: 1598 case I210_I_PHY_ID: 1599 ret_val = e1000_copper_link_setup_m88_gen2(hw); 1600 break; 1601 default: 1602 ret_val = e1000_copper_link_setup_m88(hw); 1603 break; 1604 } 1605 break; 1606 case e1000_phy_igp_3: 1607 ret_val = e1000_copper_link_setup_igp(hw); 1608 break; 1609 case e1000_phy_82580: 1610 ret_val = e1000_copper_link_setup_82577(hw); 1611 break; 1612 default: 1613 ret_val = -E1000_ERR_PHY; 1614 break; 1615 } 1616 1617 if (ret_val) 1618 goto out; 1619 1620 ret_val = e1000_setup_copper_link_generic(hw); 1621 out: 1622 return ret_val; 1623 } 1624 1625 /** 1626 * e1000_setup_serdes_link_82575 - Setup link for serdes 1627 * @hw: pointer to the HW structure 1628 * 1629 * Configure the physical coding sub-layer (PCS) link. The PCS link is 1630 * used on copper connections where the serialized gigabit media independent 1631 * interface (sgmii), or serdes fiber is being used. Configures the link 1632 * for auto-negotiation or forces speed/duplex. 1633 **/ 1634 static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) 1635 { 1636 u32 ctrl_ext, ctrl_reg, reg, anadv_reg; 1637 bool pcs_autoneg; 1638 s32 ret_val = E1000_SUCCESS; 1639 u16 data; 1640 1641 DEBUGFUNC("e1000_setup_serdes_link_82575"); 1642 1643 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1644 !e1000_sgmii_active_82575(hw)) 1645 return ret_val; 1646 1647 /* 1648 * On the 82575, SerDes loopback mode persists until it is 1649 * explicitly turned off or a power cycle is performed. A read to 1650 * the register does not indicate its status. Therefore, we ensure 1651 * loopback mode is disabled during initialization. 1652 */ 1653 E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1654 1655 /* power on the sfp cage if present */ 1656 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 1657 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 1658 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 1659 1660 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); 1661 ctrl_reg |= E1000_CTRL_SLU; 1662 1663 /* set both sw defined pins on 82575/82576*/ 1664 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) 1665 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; 1666 1667 reg = E1000_READ_REG(hw, E1000_PCS_LCTL); 1668 1669 /* default pcs_autoneg to the same setting as mac autoneg */ 1670 pcs_autoneg = hw->mac.autoneg; 1671 1672 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 1673 case E1000_CTRL_EXT_LINK_MODE_SGMII: 1674 /* sgmii mode lets the phy handle forcing speed/duplex */ 1675 pcs_autoneg = TRUE; 1676 /* autoneg time out should be disabled for SGMII mode */ 1677 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); 1678 break; 1679 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 1680 /* disable PCS autoneg and support parallel detect only */ 1681 pcs_autoneg = FALSE; 1682 /* FALLTHROUGH */ 1683 default: 1684 if (hw->mac.type == e1000_82575 || 1685 hw->mac.type == e1000_82576) { 1686 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); 1687 if (ret_val) { 1688 DEBUGOUT("NVM Read Error\n"); 1689 return ret_val; 1690 } 1691 1692 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) 1693 pcs_autoneg = FALSE; 1694 } 1695 1696 /* 1697 * non-SGMII modes only supports a speed of 1000/Full for the 1698 * link so it is best to just force the MAC and let the pcs 1699 * link either autoneg or be forced to 1000/Full 1700 */ 1701 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | 1702 E1000_CTRL_FD | E1000_CTRL_FRCDPX; 1703 1704 /* set speed of 1000/Full if speed/duplex is forced */ 1705 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; 1706 break; 1707 } 1708 1709 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); 1710 1711 /* 1712 * New SerDes mode allows for forcing speed or autonegotiating speed 1713 * at 1gb. Autoneg should be default set by most drivers. This is the 1714 * mode that will be compatible with older link partners and switches. 1715 * However, both are supported by the hardware and some drivers/tools. 1716 */ 1717 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | 1718 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); 1719 1720 if (pcs_autoneg) { 1721 /* Set PCS register for autoneg */ 1722 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ 1723 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ 1724 1725 /* Disable force flow control for autoneg */ 1726 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; 1727 1728 /* Configure flow control advertisement for autoneg */ 1729 anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); 1730 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); 1731 1732 switch (hw->fc.requested_mode) { 1733 case e1000_fc_full: 1734 case e1000_fc_rx_pause: 1735 anadv_reg |= E1000_TXCW_ASM_DIR; 1736 anadv_reg |= E1000_TXCW_PAUSE; 1737 break; 1738 case e1000_fc_tx_pause: 1739 anadv_reg |= E1000_TXCW_ASM_DIR; 1740 break; 1741 default: 1742 break; 1743 } 1744 1745 E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); 1746 1747 DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); 1748 } else { 1749 /* Set PCS register for forced link */ 1750 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ 1751 1752 /* Force flow control for forced link */ 1753 reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1754 1755 DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); 1756 } 1757 1758 E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); 1759 1760 if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) 1761 e1000_force_mac_fc_generic(hw); 1762 1763 return ret_val; 1764 } 1765 1766 /** 1767 * e1000_get_media_type_82575 - derives current media type. 1768 * @hw: pointer to the HW structure 1769 * 1770 * The media type is chosen reflecting few settings. 1771 * The following are taken into account: 1772 * - link mode set in the current port Init Control Word #3 1773 * - current link mode settings in CSR register 1774 * - MDIO vs. I2C PHY control interface chosen 1775 * - SFP module media type 1776 **/ 1777 static s32 e1000_get_media_type_82575(struct e1000_hw *hw) 1778 { 1779 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1780 s32 ret_val = E1000_SUCCESS; 1781 u32 ctrl_ext = 0; 1782 u32 link_mode = 0; 1783 1784 /* Set internal phy as default */ 1785 dev_spec->sgmii_active = FALSE; 1786 dev_spec->module_plugged = FALSE; 1787 1788 /* Get CSR setting */ 1789 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 1790 1791 /* extract link mode setting */ 1792 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; 1793 1794 switch (link_mode) { 1795 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 1796 hw->phy.media_type = e1000_media_type_internal_serdes; 1797 break; 1798 case E1000_CTRL_EXT_LINK_MODE_GMII: 1799 hw->phy.media_type = e1000_media_type_copper; 1800 break; 1801 case E1000_CTRL_EXT_LINK_MODE_SGMII: 1802 /* Get phy control interface type set (MDIO vs. I2C)*/ 1803 if (e1000_sgmii_uses_mdio_82575(hw)) { 1804 hw->phy.media_type = e1000_media_type_copper; 1805 dev_spec->sgmii_active = TRUE; 1806 break; 1807 } 1808 /* fall through for I2C based SGMII */ 1809 /* FALLTHROUGH */ 1810 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: 1811 /* read media type from SFP EEPROM */ 1812 ret_val = e1000_set_sfp_media_type_82575(hw); 1813 if ((ret_val != E1000_SUCCESS) || 1814 (hw->phy.media_type == e1000_media_type_unknown)) { 1815 /* 1816 * If media type was not identified then return media 1817 * type defined by the CTRL_EXT settings. 1818 */ 1819 hw->phy.media_type = e1000_media_type_internal_serdes; 1820 1821 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { 1822 hw->phy.media_type = e1000_media_type_copper; 1823 dev_spec->sgmii_active = TRUE; 1824 } 1825 1826 break; 1827 } 1828 1829 /* do not change link mode for 100BaseFX */ 1830 if (dev_spec->eth_flags.e100_base_fx) 1831 break; 1832 1833 /* change current link mode setting */ 1834 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; 1835 1836 if (hw->phy.media_type == e1000_media_type_copper) 1837 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; 1838 else 1839 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1840 1841 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 1842 1843 break; 1844 } 1845 1846 return ret_val; 1847 } 1848 1849 /** 1850 * e1000_set_sfp_media_type_82575 - derives SFP module media type. 1851 * @hw: pointer to the HW structure 1852 * 1853 * The media type is chosen based on SFP module. 1854 * compatibility flags retrieved from SFP ID EEPROM. 1855 **/ 1856 static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) 1857 { 1858 s32 ret_val = E1000_ERR_CONFIG; 1859 u32 ctrl_ext = 0; 1860 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1861 struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; 1862 u8 tranceiver_type = 0; 1863 s32 timeout = 3; 1864 1865 /* Turn I2C interface ON and power on sfp cage */ 1866 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 1867 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 1868 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); 1869 1870 E1000_WRITE_FLUSH(hw); 1871 1872 /* Read SFP module data */ 1873 while (timeout) { 1874 ret_val = e1000_read_sfp_data_byte(hw, 1875 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), 1876 &tranceiver_type); 1877 if (ret_val == E1000_SUCCESS) 1878 break; 1879 msec_delay(100); 1880 timeout--; 1881 } 1882 if (ret_val != E1000_SUCCESS) 1883 goto out; 1884 1885 ret_val = e1000_read_sfp_data_byte(hw, 1886 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), 1887 (u8 *)eth_flags); 1888 if (ret_val != E1000_SUCCESS) 1889 goto out; 1890 1891 /* Check if there is some SFP module plugged and powered */ 1892 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || 1893 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { 1894 dev_spec->module_plugged = TRUE; 1895 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { 1896 hw->phy.media_type = e1000_media_type_internal_serdes; 1897 } else if (eth_flags->e100_base_fx) { 1898 dev_spec->sgmii_active = TRUE; 1899 hw->phy.media_type = e1000_media_type_internal_serdes; 1900 } else if (eth_flags->e1000_base_t) { 1901 dev_spec->sgmii_active = TRUE; 1902 hw->phy.media_type = e1000_media_type_copper; 1903 } else { 1904 hw->phy.media_type = e1000_media_type_unknown; 1905 DEBUGOUT("PHY module has not been recognized\n"); 1906 goto out; 1907 } 1908 } else { 1909 hw->phy.media_type = e1000_media_type_unknown; 1910 } 1911 ret_val = E1000_SUCCESS; 1912 out: 1913 /* Restore I2C interface setting */ 1914 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 1915 return ret_val; 1916 } 1917 1918 /** 1919 * e1000_valid_led_default_82575 - Verify a valid default LED config 1920 * @hw: pointer to the HW structure 1921 * @data: pointer to the NVM (EEPROM) 1922 * 1923 * Read the EEPROM for the current default LED configuration. If the 1924 * LED configuration is not valid, set to a valid LED configuration. 1925 **/ 1926 static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) 1927 { 1928 s32 ret_val; 1929 1930 DEBUGFUNC("e1000_valid_led_default_82575"); 1931 1932 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); 1933 if (ret_val) { 1934 DEBUGOUT("NVM Read Error\n"); 1935 goto out; 1936 } 1937 1938 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { 1939 switch (hw->phy.media_type) { 1940 case e1000_media_type_internal_serdes: 1941 *data = ID_LED_DEFAULT_82575_SERDES; 1942 break; 1943 case e1000_media_type_copper: 1944 default: 1945 *data = ID_LED_DEFAULT; 1946 break; 1947 } 1948 } 1949 out: 1950 return ret_val; 1951 } 1952 1953 /** 1954 * e1000_sgmii_active_82575 - Return sgmii state 1955 * @hw: pointer to the HW structure 1956 * 1957 * 82575 silicon has a serialized gigabit media independent interface (sgmii) 1958 * which can be enabled for use in the embedded applications. Simply 1959 * return the current state of the sgmii interface. 1960 **/ 1961 static bool e1000_sgmii_active_82575(struct e1000_hw *hw) 1962 { 1963 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1964 return dev_spec->sgmii_active; 1965 } 1966 1967 /** 1968 * e1000_reset_init_script_82575 - Inits HW defaults after reset 1969 * @hw: pointer to the HW structure 1970 * 1971 * Inits recommended HW defaults after a reset when there is no EEPROM 1972 * detected. This is only for the 82575. 1973 **/ 1974 static s32 e1000_reset_init_script_82575(struct e1000_hw *hw) 1975 { 1976 DEBUGFUNC("e1000_reset_init_script_82575"); 1977 1978 if (hw->mac.type == e1000_82575) { 1979 DEBUGOUT("Running reset init script for 82575\n"); 1980 /* SerDes configuration via SERDESCTRL */ 1981 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); 1982 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); 1983 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); 1984 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); 1985 1986 /* CCM configuration via CCMCTL register */ 1987 e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); 1988 e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); 1989 1990 /* PCIe lanes configuration */ 1991 e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); 1992 e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); 1993 e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); 1994 e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); 1995 1996 /* PCIe PLL Configuration */ 1997 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); 1998 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); 1999 e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); 2000 } 2001 2002 return E1000_SUCCESS; 2003 } 2004 2005 /** 2006 * e1000_read_mac_addr_82575 - Read device MAC address 2007 * @hw: pointer to the HW structure 2008 **/ 2009 static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) 2010 { 2011 s32 ret_val; 2012 2013 DEBUGFUNC("e1000_read_mac_addr_82575"); 2014 2015 /* 2016 * If there's an alternate MAC address place it in RAR0 2017 * so that it will override the Si installed default perm 2018 * address. 2019 */ 2020 ret_val = e1000_check_alt_mac_addr_generic(hw); 2021 if (ret_val) 2022 goto out; 2023 2024 ret_val = e1000_read_mac_addr_generic(hw); 2025 2026 out: 2027 return ret_val; 2028 } 2029 2030 /** 2031 * e1000_config_collision_dist_82575 - Configure collision distance 2032 * @hw: pointer to the HW structure 2033 * 2034 * Configures the collision distance to the default value and is used 2035 * during link setup. 2036 **/ 2037 static void e1000_config_collision_dist_82575(struct e1000_hw *hw) 2038 { 2039 u32 tctl_ext; 2040 2041 DEBUGFUNC("e1000_config_collision_dist_82575"); 2042 2043 tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); 2044 2045 tctl_ext &= ~E1000_TCTL_EXT_COLD; 2046 tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; 2047 2048 E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); 2049 E1000_WRITE_FLUSH(hw); 2050 } 2051 2052 /** 2053 * e1000_power_down_phy_copper_82575 - Remove link during PHY power down 2054 * @hw: pointer to the HW structure 2055 * 2056 * In the case of a PHY power down to save power, or to turn off link during a 2057 * driver unload, or wake on lan is not enabled, remove the link. 2058 **/ 2059 static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) 2060 { 2061 struct e1000_phy_info *phy = &hw->phy; 2062 2063 if (!(phy->ops.check_reset_block)) 2064 return; 2065 2066 /* If the management interface is not enabled, then power down */ 2067 if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) 2068 e1000_power_down_phy_copper(hw); 2069 2070 return; 2071 } 2072 2073 /** 2074 * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters 2075 * @hw: pointer to the HW structure 2076 * 2077 * Clears the hardware counters by reading the counter registers. 2078 **/ 2079 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) 2080 { 2081 DEBUGFUNC("e1000_clear_hw_cntrs_82575"); 2082 2083 e1000_clear_hw_cntrs_base_generic(hw); 2084 2085 E1000_READ_REG(hw, E1000_PRC64); 2086 E1000_READ_REG(hw, E1000_PRC127); 2087 E1000_READ_REG(hw, E1000_PRC255); 2088 E1000_READ_REG(hw, E1000_PRC511); 2089 E1000_READ_REG(hw, E1000_PRC1023); 2090 E1000_READ_REG(hw, E1000_PRC1522); 2091 E1000_READ_REG(hw, E1000_PTC64); 2092 E1000_READ_REG(hw, E1000_PTC127); 2093 E1000_READ_REG(hw, E1000_PTC255); 2094 E1000_READ_REG(hw, E1000_PTC511); 2095 E1000_READ_REG(hw, E1000_PTC1023); 2096 E1000_READ_REG(hw, E1000_PTC1522); 2097 2098 E1000_READ_REG(hw, E1000_ALGNERRC); 2099 E1000_READ_REG(hw, E1000_RXERRC); 2100 E1000_READ_REG(hw, E1000_TNCRS); 2101 E1000_READ_REG(hw, E1000_CEXTERR); 2102 E1000_READ_REG(hw, E1000_TSCTC); 2103 E1000_READ_REG(hw, E1000_TSCTFC); 2104 2105 E1000_READ_REG(hw, E1000_MGTPRC); 2106 E1000_READ_REG(hw, E1000_MGTPDC); 2107 E1000_READ_REG(hw, E1000_MGTPTC); 2108 2109 E1000_READ_REG(hw, E1000_IAC); 2110 E1000_READ_REG(hw, E1000_ICRXOC); 2111 2112 E1000_READ_REG(hw, E1000_ICRXPTC); 2113 E1000_READ_REG(hw, E1000_ICRXATC); 2114 E1000_READ_REG(hw, E1000_ICTXPTC); 2115 E1000_READ_REG(hw, E1000_ICTXATC); 2116 E1000_READ_REG(hw, E1000_ICTXQEC); 2117 E1000_READ_REG(hw, E1000_ICTXQMTC); 2118 E1000_READ_REG(hw, E1000_ICRXDMTC); 2119 2120 E1000_READ_REG(hw, E1000_CBTMPC); 2121 E1000_READ_REG(hw, E1000_HTDPMC); 2122 E1000_READ_REG(hw, E1000_CBRMPC); 2123 E1000_READ_REG(hw, E1000_RPTHC); 2124 E1000_READ_REG(hw, E1000_HGPTC); 2125 E1000_READ_REG(hw, E1000_HTCBDPC); 2126 E1000_READ_REG(hw, E1000_HGORCL); 2127 E1000_READ_REG(hw, E1000_HGORCH); 2128 E1000_READ_REG(hw, E1000_HGOTCL); 2129 E1000_READ_REG(hw, E1000_HGOTCH); 2130 E1000_READ_REG(hw, E1000_LENERRS); 2131 2132 /* This register should not be read in copper configurations */ 2133 if ((hw->phy.media_type == e1000_media_type_internal_serdes) || 2134 e1000_sgmii_active_82575(hw)) 2135 E1000_READ_REG(hw, E1000_SCVPC); 2136 } 2137 2138 /** 2139 * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable 2140 * @hw: pointer to the HW structure 2141 * 2142 * After Rx enable, if manageability is enabled then there is likely some 2143 * bad data at the start of the fifo and possibly in the DMA fifo. This 2144 * function clears the fifos and flushes any packets that came in as rx was 2145 * being enabled. 2146 **/ 2147 void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) 2148 { 2149 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; 2150 int i, ms_wait; 2151 2152 DEBUGFUNC("e1000_rx_fifo_flush_82575"); 2153 2154 /* disable IPv6 options as per hardware errata */ 2155 rfctl = E1000_READ_REG(hw, E1000_RFCTL); 2156 rfctl |= E1000_RFCTL_IPV6_EX_DIS; 2157 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 2158 2159 if (hw->mac.type != e1000_82575 || 2160 !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) 2161 return; 2162 2163 /* Disable all Rx queues */ 2164 for (i = 0; i < 4; i++) { 2165 rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); 2166 E1000_WRITE_REG(hw, E1000_RXDCTL(i), 2167 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); 2168 } 2169 /* Poll all queues to verify they have shut down */ 2170 for (ms_wait = 0; ms_wait < 10; ms_wait++) { 2171 msec_delay(1); 2172 rx_enabled = 0; 2173 for (i = 0; i < 4; i++) 2174 rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); 2175 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) 2176 break; 2177 } 2178 2179 if (ms_wait == 10) 2180 DEBUGOUT("Queue disable timed out after 10ms\n"); 2181 2182 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all 2183 * incoming packets are rejected. Set enable and wait 2ms so that 2184 * any packet that was coming in as RCTL.EN was set is flushed 2185 */ 2186 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); 2187 2188 rlpml = E1000_READ_REG(hw, E1000_RLPML); 2189 E1000_WRITE_REG(hw, E1000_RLPML, 0); 2190 2191 rctl = E1000_READ_REG(hw, E1000_RCTL); 2192 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); 2193 temp_rctl |= E1000_RCTL_LPE; 2194 2195 E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); 2196 E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); 2197 E1000_WRITE_FLUSH(hw); 2198 msec_delay(2); 2199 2200 /* Enable Rx queues that were previously enabled and restore our 2201 * previous state 2202 */ 2203 for (i = 0; i < 4; i++) 2204 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); 2205 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 2206 E1000_WRITE_FLUSH(hw); 2207 2208 E1000_WRITE_REG(hw, E1000_RLPML, rlpml); 2209 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); 2210 2211 /* Flush receive errors generated by workaround */ 2212 E1000_READ_REG(hw, E1000_ROC); 2213 E1000_READ_REG(hw, E1000_RNBC); 2214 E1000_READ_REG(hw, E1000_MPC); 2215 } 2216 2217 /** 2218 * e1000_set_pcie_completion_timeout - set pci-e completion timeout 2219 * @hw: pointer to the HW structure 2220 * 2221 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, 2222 * however the hardware default for these parts is 500us to 1ms which is less 2223 * than the 10ms recommended by the pci-e spec. To address this we need to 2224 * increase the value to either 10ms to 200ms for capability version 1 config, 2225 * or 16ms to 55ms for version 2. 2226 **/ 2227 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) 2228 { 2229 u32 gcr = E1000_READ_REG(hw, E1000_GCR); 2230 s32 ret_val = E1000_SUCCESS; 2231 u16 pcie_devctl2; 2232 2233 /* only take action if timeout value is defaulted to 0 */ 2234 if (gcr & E1000_GCR_CMPL_TMOUT_MASK) 2235 goto out; 2236 2237 /* 2238 * if capababilities version is type 1 we can write the 2239 * timeout of 10ms to 200ms through the GCR register 2240 */ 2241 if (!(gcr & E1000_GCR_CAP_VER2)) { 2242 gcr |= E1000_GCR_CMPL_TMOUT_10ms; 2243 goto out; 2244 } 2245 2246 /* 2247 * for version 2 capabilities we need to write the config space 2248 * directly in order to set the completion timeout value for 2249 * 16ms to 55ms 2250 */ 2251 ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 2252 &pcie_devctl2); 2253 if (ret_val) 2254 goto out; 2255 2256 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; 2257 2258 ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 2259 &pcie_devctl2); 2260 out: 2261 /* disable completion timeout resend */ 2262 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; 2263 2264 E1000_WRITE_REG(hw, E1000_GCR, gcr); 2265 return ret_val; 2266 } 2267 2268 /** 2269 * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing 2270 * @hw: pointer to the hardware struct 2271 * @enable: state to enter, either enabled or disabled 2272 * @pf: Physical Function pool - do not set anti-spoofing for the PF 2273 * 2274 * enables/disables L2 switch anti-spoofing functionality. 2275 **/ 2276 void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) 2277 { 2278 u32 reg_val, reg_offset; 2279 2280 switch (hw->mac.type) { 2281 case e1000_82576: 2282 reg_offset = E1000_DTXSWC; 2283 break; 2284 case e1000_i350: 2285 case e1000_i354: 2286 reg_offset = E1000_TXSWC; 2287 break; 2288 default: 2289 return; 2290 } 2291 2292 reg_val = E1000_READ_REG(hw, reg_offset); 2293 if (enable) { 2294 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | 2295 E1000_DTXSWC_VLAN_SPOOF_MASK); 2296 /* The PF can spoof - it has to in order to 2297 * support emulation mode NICs 2298 */ 2299 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); 2300 } else { 2301 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | 2302 E1000_DTXSWC_VLAN_SPOOF_MASK); 2303 } 2304 E1000_WRITE_REG(hw, reg_offset, reg_val); 2305 } 2306 2307 /** 2308 * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback 2309 * @hw: pointer to the hardware struct 2310 * @enable: state to enter, either enabled or disabled 2311 * 2312 * enables/disables L2 switch loopback functionality. 2313 **/ 2314 void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) 2315 { 2316 u32 dtxswc; 2317 2318 switch (hw->mac.type) { 2319 case e1000_82576: 2320 dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); 2321 if (enable) 2322 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2323 else 2324 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2325 E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); 2326 break; 2327 case e1000_i350: 2328 case e1000_i354: 2329 dtxswc = E1000_READ_REG(hw, E1000_TXSWC); 2330 if (enable) 2331 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2332 else 2333 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2334 E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); 2335 break; 2336 default: 2337 /* Currently no other hardware supports loopback */ 2338 break; 2339 } 2340 2341 2342 } 2343 2344 /** 2345 * e1000_vmdq_set_replication_pf - enable or disable vmdq replication 2346 * @hw: pointer to the hardware struct 2347 * @enable: state to enter, either enabled or disabled 2348 * 2349 * enables/disables replication of packets across multiple pools. 2350 **/ 2351 void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) 2352 { 2353 u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); 2354 2355 if (enable) 2356 vt_ctl |= E1000_VT_CTL_VM_REPL_EN; 2357 else 2358 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; 2359 2360 E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); 2361 } 2362 2363 /** 2364 * e1000_read_phy_reg_82580 - Read 82580 MDI control register 2365 * @hw: pointer to the HW structure 2366 * @offset: register offset to be read 2367 * @data: pointer to the read data 2368 * 2369 * Reads the MDI control register in the PHY at offset and stores the 2370 * information read to data. 2371 **/ 2372 static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) 2373 { 2374 s32 ret_val; 2375 2376 DEBUGFUNC("e1000_read_phy_reg_82580"); 2377 2378 ret_val = hw->phy.ops.acquire(hw); 2379 if (ret_val) 2380 goto out; 2381 2382 ret_val = e1000_read_phy_reg_mdic(hw, offset, data); 2383 2384 hw->phy.ops.release(hw); 2385 2386 out: 2387 return ret_val; 2388 } 2389 2390 /** 2391 * e1000_write_phy_reg_82580 - Write 82580 MDI control register 2392 * @hw: pointer to the HW structure 2393 * @offset: register offset to write to 2394 * @data: data to write to register at offset 2395 * 2396 * Writes data to MDI control register in the PHY at offset. 2397 **/ 2398 static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) 2399 { 2400 s32 ret_val; 2401 2402 DEBUGFUNC("e1000_write_phy_reg_82580"); 2403 2404 ret_val = hw->phy.ops.acquire(hw); 2405 if (ret_val) 2406 goto out; 2407 2408 ret_val = e1000_write_phy_reg_mdic(hw, offset, data); 2409 2410 hw->phy.ops.release(hw); 2411 2412 out: 2413 return ret_val; 2414 } 2415 2416 /** 2417 * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits 2418 * @hw: pointer to the HW structure 2419 * 2420 * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on 2421 * the values found in the EEPROM. This addresses an issue in which these 2422 * bits are not restored from EEPROM after reset. 2423 **/ 2424 static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) 2425 { 2426 s32 ret_val = E1000_SUCCESS; 2427 u32 mdicnfg; 2428 u16 nvm_data = 0; 2429 2430 DEBUGFUNC("e1000_reset_mdicnfg_82580"); 2431 2432 if (hw->mac.type != e1000_82580) 2433 goto out; 2434 if (!e1000_sgmii_active_82575(hw)) 2435 goto out; 2436 2437 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2438 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2439 &nvm_data); 2440 if (ret_val) { 2441 DEBUGOUT("NVM Read Error\n"); 2442 goto out; 2443 } 2444 2445 mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); 2446 if (nvm_data & NVM_WORD24_EXT_MDIO) 2447 mdicnfg |= E1000_MDICNFG_EXT_MDIO; 2448 if (nvm_data & NVM_WORD24_COM_MDIO) 2449 mdicnfg |= E1000_MDICNFG_COM_MDIO; 2450 E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); 2451 out: 2452 return ret_val; 2453 } 2454 2455 /** 2456 * e1000_reset_hw_82580 - Reset hardware 2457 * @hw: pointer to the HW structure 2458 * 2459 * This resets function or entire device (all ports, etc.) 2460 * to a known state. 2461 **/ 2462 static s32 e1000_reset_hw_82580(struct e1000_hw *hw) 2463 { 2464 s32 ret_val = E1000_SUCCESS; 2465 /* BH SW mailbox bit in SW_FW_SYNC */ 2466 u16 swmbsw_mask = E1000_SW_SYNCH_MB; 2467 u32 ctrl; 2468 bool global_device_reset = hw->dev_spec._82575.global_device_reset; 2469 2470 DEBUGFUNC("e1000_reset_hw_82580"); 2471 2472 hw->dev_spec._82575.global_device_reset = FALSE; 2473 2474 /* 82580 does not reliably do global_device_reset due to hw errata */ 2475 if (hw->mac.type == e1000_82580) 2476 global_device_reset = FALSE; 2477 2478 /* Get current control state. */ 2479 ctrl = E1000_READ_REG(hw, E1000_CTRL); 2480 2481 /* 2482 * Prevent the PCI-E bus from sticking if there is no TLP connection 2483 * on the last TLP read/write transaction when MAC is reset. 2484 */ 2485 ret_val = e1000_disable_pcie_master_generic(hw); 2486 if (ret_val) 2487 DEBUGOUT("PCI-E Master disable polling has failed.\n"); 2488 2489 DEBUGOUT("Masking off all interrupts\n"); 2490 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 2491 E1000_WRITE_REG(hw, E1000_RCTL, 0); 2492 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); 2493 E1000_WRITE_FLUSH(hw); 2494 2495 msec_delay(10); 2496 2497 /* Determine whether or not a global dev reset is requested */ 2498 if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, 2499 swmbsw_mask)) 2500 global_device_reset = FALSE; 2501 2502 if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & 2503 E1000_STAT_DEV_RST_SET)) 2504 ctrl |= E1000_CTRL_DEV_RST; 2505 else 2506 ctrl |= E1000_CTRL_RST; 2507 2508 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 2509 2510 switch (hw->device_id) { 2511 case E1000_DEV_ID_DH89XXCC_SGMII: 2512 break; 2513 default: 2514 E1000_WRITE_FLUSH(hw); 2515 break; 2516 } 2517 2518 /* Add delay to insure DEV_RST or RST has time to complete */ 2519 msec_delay(5); 2520 2521 ret_val = e1000_get_auto_rd_done_generic(hw); 2522 if (ret_val) { 2523 /* 2524 * When auto config read does not complete, do not 2525 * return with an error. This can happen in situations 2526 * where there is no eeprom and prevents getting link. 2527 */ 2528 DEBUGOUT("Auto Read Done did not complete\n"); 2529 } 2530 2531 /* clear global device reset status bit */ 2532 E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); 2533 2534 /* Clear any pending interrupt events. */ 2535 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 2536 E1000_READ_REG(hw, E1000_ICR); 2537 2538 ret_val = e1000_reset_mdicnfg_82580(hw); 2539 if (ret_val) 2540 DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); 2541 2542 /* Install any alternate MAC address into RAR0 */ 2543 ret_val = e1000_check_alt_mac_addr_generic(hw); 2544 2545 /* Release semaphore */ 2546 if (global_device_reset) 2547 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); 2548 2549 return ret_val; 2550 } 2551 2552 /** 2553 * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size 2554 * @data: data received by reading RXPBS register 2555 * 2556 * The 82580 uses a table based approach for packet buffer allocation sizes. 2557 * This function converts the retrieved value into the correct table value 2558 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 2559 * 0x0 36 72 144 1 2 4 8 16 2560 * 0x8 35 70 140 rsv rsv rsv rsv rsv 2561 */ 2562 u16 e1000_rxpbs_adjust_82580(u32 data) 2563 { 2564 u16 ret_val = 0; 2565 2566 if (data < E1000_82580_RXPBS_TABLE_SIZE) 2567 ret_val = e1000_82580_rxpbs_table[data]; 2568 2569 return ret_val; 2570 } 2571 2572 /** 2573 * e1000_validate_nvm_checksum_with_offset - Validate EEPROM 2574 * checksum 2575 * @hw: pointer to the HW structure 2576 * @offset: offset in words of the checksum protected region 2577 * 2578 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2579 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2580 **/ 2581 s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) 2582 { 2583 s32 ret_val = E1000_SUCCESS; 2584 u16 checksum = 0; 2585 u16 i, nvm_data; 2586 2587 DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); 2588 2589 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { 2590 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2591 if (ret_val) { 2592 DEBUGOUT("NVM Read Error\n"); 2593 goto out; 2594 } 2595 checksum += nvm_data; 2596 } 2597 2598 if (checksum != (u16) NVM_SUM) { 2599 DEBUGOUT("NVM Checksum Invalid\n"); 2600 ret_val = -E1000_ERR_NVM; 2601 goto out; 2602 } 2603 2604 out: 2605 return ret_val; 2606 } 2607 2608 /** 2609 * e1000_update_nvm_checksum_with_offset - Update EEPROM 2610 * checksum 2611 * @hw: pointer to the HW structure 2612 * @offset: offset in words of the checksum protected region 2613 * 2614 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2615 * up to the checksum. Then calculates the EEPROM checksum and writes the 2616 * value to the EEPROM. 2617 **/ 2618 s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) 2619 { 2620 s32 ret_val; 2621 u16 checksum = 0; 2622 u16 i, nvm_data; 2623 2624 DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); 2625 2626 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { 2627 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2628 if (ret_val) { 2629 DEBUGOUT("NVM Read Error while updating checksum.\n"); 2630 goto out; 2631 } 2632 checksum += nvm_data; 2633 } 2634 checksum = (u16) NVM_SUM - checksum; 2635 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, 2636 &checksum); 2637 if (ret_val) 2638 DEBUGOUT("NVM Write Error while updating checksum.\n"); 2639 2640 out: 2641 return ret_val; 2642 } 2643 2644 /** 2645 * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum 2646 * @hw: pointer to the HW structure 2647 * 2648 * Calculates the EEPROM section checksum by reading/adding each word of 2649 * the EEPROM and then verifies that the sum of the EEPROM is 2650 * equal to 0xBABA. 2651 **/ 2652 static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) 2653 { 2654 s32 ret_val; 2655 u16 eeprom_regions_count = 1; 2656 u16 j, nvm_data; 2657 u16 nvm_offset; 2658 2659 DEBUGFUNC("e1000_validate_nvm_checksum_82580"); 2660 2661 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2662 if (ret_val) { 2663 DEBUGOUT("NVM Read Error\n"); 2664 goto out; 2665 } 2666 2667 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { 2668 /* if chekcsums compatibility bit is set validate checksums 2669 * for all 4 ports. */ 2670 eeprom_regions_count = 4; 2671 } 2672 2673 for (j = 0; j < eeprom_regions_count; j++) { 2674 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2675 ret_val = e1000_validate_nvm_checksum_with_offset(hw, 2676 nvm_offset); 2677 if (ret_val != E1000_SUCCESS) 2678 goto out; 2679 } 2680 2681 out: 2682 return ret_val; 2683 } 2684 2685 /** 2686 * e1000_update_nvm_checksum_82580 - Update EEPROM checksum 2687 * @hw: pointer to the HW structure 2688 * 2689 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2690 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2691 * checksum and writes the value to the EEPROM. 2692 **/ 2693 static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) 2694 { 2695 s32 ret_val; 2696 u16 j, nvm_data; 2697 u16 nvm_offset; 2698 2699 DEBUGFUNC("e1000_update_nvm_checksum_82580"); 2700 2701 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2702 if (ret_val) { 2703 DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); 2704 goto out; 2705 } 2706 2707 if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { 2708 /* set compatibility bit to validate checksums appropriately */ 2709 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; 2710 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, 2711 &nvm_data); 2712 if (ret_val) { 2713 DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); 2714 goto out; 2715 } 2716 } 2717 2718 for (j = 0; j < 4; j++) { 2719 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2720 ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); 2721 if (ret_val) 2722 goto out; 2723 } 2724 2725 out: 2726 return ret_val; 2727 } 2728 2729 /** 2730 * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum 2731 * @hw: pointer to the HW structure 2732 * 2733 * Calculates the EEPROM section checksum by reading/adding each word of 2734 * the EEPROM and then verifies that the sum of the EEPROM is 2735 * equal to 0xBABA. 2736 **/ 2737 static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) 2738 { 2739 s32 ret_val = E1000_SUCCESS; 2740 u16 j; 2741 u16 nvm_offset; 2742 2743 DEBUGFUNC("e1000_validate_nvm_checksum_i350"); 2744 2745 for (j = 0; j < 4; j++) { 2746 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2747 ret_val = e1000_validate_nvm_checksum_with_offset(hw, 2748 nvm_offset); 2749 if (ret_val != E1000_SUCCESS) 2750 goto out; 2751 } 2752 2753 out: 2754 return ret_val; 2755 } 2756 2757 /** 2758 * e1000_update_nvm_checksum_i350 - Update EEPROM checksum 2759 * @hw: pointer to the HW structure 2760 * 2761 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2762 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2763 * checksum and writes the value to the EEPROM. 2764 **/ 2765 static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) 2766 { 2767 s32 ret_val = E1000_SUCCESS; 2768 u16 j; 2769 u16 nvm_offset; 2770 2771 DEBUGFUNC("e1000_update_nvm_checksum_i350"); 2772 2773 for (j = 0; j < 4; j++) { 2774 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2775 ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); 2776 if (ret_val != E1000_SUCCESS) 2777 goto out; 2778 } 2779 2780 out: 2781 return ret_val; 2782 } 2783 2784 /** 2785 * __e1000_access_emi_reg - Read/write EMI register 2786 * @hw: pointer to the HW structure 2787 * @addr: EMI address to program 2788 * @data: pointer to value to read/write from/to the EMI address 2789 * @read: boolean flag to indicate read or write 2790 **/ 2791 static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, 2792 u16 *data, bool read) 2793 { 2794 s32 ret_val; 2795 2796 DEBUGFUNC("__e1000_access_emi_reg"); 2797 2798 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); 2799 if (ret_val) 2800 return ret_val; 2801 2802 if (read) 2803 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); 2804 else 2805 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); 2806 2807 return ret_val; 2808 } 2809 2810 /** 2811 * e1000_read_emi_reg - Read Extended Management Interface register 2812 * @hw: pointer to the HW structure 2813 * @addr: EMI address to program 2814 * @data: value to be read from the EMI address 2815 **/ 2816 s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) 2817 { 2818 DEBUGFUNC("e1000_read_emi_reg"); 2819 2820 return __e1000_access_emi_reg(hw, addr, data, TRUE); 2821 } 2822 2823 /** 2824 * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY 2825 * @hw: pointer to the HW structure 2826 * 2827 * Initialize Marvell 1512 to work correctly with Avoton. 2828 **/ 2829 s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw) 2830 { 2831 struct e1000_phy_info *phy = &hw->phy; 2832 s32 ret_val = E1000_SUCCESS; 2833 2834 DEBUGFUNC("e1000_initialize_M88E1512_phy"); 2835 2836 /* Check if this is correct PHY. */ 2837 if (phy->id != M88E1512_E_PHY_ID) 2838 goto out; 2839 2840 /* Switch to PHY page 0xFF. */ 2841 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2842 if (ret_val) 2843 goto out; 2844 2845 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2846 if (ret_val) 2847 goto out; 2848 2849 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2850 if (ret_val) 2851 goto out; 2852 2853 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2854 if (ret_val) 2855 goto out; 2856 2857 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2858 if (ret_val) 2859 goto out; 2860 2861 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2862 if (ret_val) 2863 goto out; 2864 2865 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2866 if (ret_val) 2867 goto out; 2868 2869 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); 2870 if (ret_val) 2871 goto out; 2872 2873 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2874 if (ret_val) 2875 goto out; 2876 2877 /* Switch to PHY page 0xFB. */ 2878 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2879 if (ret_val) 2880 goto out; 2881 2882 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); 2883 if (ret_val) 2884 goto out; 2885 2886 /* Switch to PHY page 0x12. */ 2887 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2888 if (ret_val) 2889 goto out; 2890 2891 /* Change mode to SGMII-to-Copper */ 2892 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2893 if (ret_val) 2894 goto out; 2895 2896 /* Return the PHY to page 0. */ 2897 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2898 if (ret_val) 2899 goto out; 2900 2901 ret_val = phy->ops.commit(hw); 2902 if (ret_val) { 2903 DEBUGOUT("Error committing the PHY changes\n"); 2904 return ret_val; 2905 } 2906 2907 msec_delay(1000); 2908 out: 2909 return ret_val; 2910 } 2911 2912 /** 2913 * e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY 2914 * @hw: pointer to the HW structure 2915 * 2916 * Initialize Marvell 1543 to work correctly with Avoton. 2917 **/ 2918 s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw) 2919 { 2920 struct e1000_phy_info *phy = &hw->phy; 2921 s32 ret_val = E1000_SUCCESS; 2922 2923 DEBUGFUNC("e1000_initialize_M88E1543_phy"); 2924 2925 /* Check if this is correct PHY. */ 2926 if (phy->id != M88E1543_E_PHY_ID) 2927 goto out; 2928 2929 /* Switch to PHY page 0xFF. */ 2930 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2931 if (ret_val) 2932 goto out; 2933 2934 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2935 if (ret_val) 2936 goto out; 2937 2938 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2939 if (ret_val) 2940 goto out; 2941 2942 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2943 if (ret_val) 2944 goto out; 2945 2946 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2947 if (ret_val) 2948 goto out; 2949 2950 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2951 if (ret_val) 2952 goto out; 2953 2954 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2955 if (ret_val) 2956 goto out; 2957 2958 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); 2959 if (ret_val) 2960 goto out; 2961 2962 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2963 if (ret_val) 2964 goto out; 2965 2966 /* Switch to PHY page 0xFB. */ 2967 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2968 if (ret_val) 2969 goto out; 2970 2971 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D); 2972 if (ret_val) 2973 goto out; 2974 2975 /* Switch to PHY page 0x12. */ 2976 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2977 if (ret_val) 2978 goto out; 2979 2980 /* Change mode to SGMII-to-Copper */ 2981 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2982 if (ret_val) 2983 goto out; 2984 2985 /* Switch to PHY page 1. */ 2986 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); 2987 if (ret_val) 2988 goto out; 2989 2990 /* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */ 2991 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); 2992 if (ret_val) 2993 goto out; 2994 2995 /* Return the PHY to page 0. */ 2996 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2997 if (ret_val) 2998 goto out; 2999 3000 ret_val = phy->ops.commit(hw); 3001 if (ret_val) { 3002 DEBUGOUT("Error committing the PHY changes\n"); 3003 return ret_val; 3004 } 3005 3006 msec_delay(1000); 3007 out: 3008 return ret_val; 3009 } 3010 3011 /** 3012 * e1000_set_eee_i350 - Enable/disable EEE support 3013 * @hw: pointer to the HW structure 3014 * @adv1g: boolean flag enabling 1G EEE advertisement 3015 * @adv100m: boolean flag enabling 100M EEE advertisement 3016 * 3017 * Enable/disable EEE based on setting in dev_spec structure. 3018 * 3019 **/ 3020 s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) 3021 { 3022 u32 ipcnfg, eeer; 3023 3024 DEBUGFUNC("e1000_set_eee_i350"); 3025 3026 if ((hw->mac.type < e1000_i350) || 3027 (hw->phy.media_type != e1000_media_type_copper)) 3028 goto out; 3029 ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); 3030 eeer = E1000_READ_REG(hw, E1000_EEER); 3031 3032 /* enable or disable per user setting */ 3033 if (!(hw->dev_spec._82575.eee_disable)) { 3034 u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); 3035 3036 if (adv100M) 3037 ipcnfg |= E1000_IPCNFG_EEE_100M_AN; 3038 else 3039 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; 3040 3041 if (adv1G) 3042 ipcnfg |= E1000_IPCNFG_EEE_1G_AN; 3043 else 3044 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; 3045 3046 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | 3047 E1000_EEER_LPI_FC); 3048 3049 /* This bit should not be set in normal operation. */ 3050 if (eee_su & E1000_EEE_SU_LPI_CLK_STP) 3051 DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); 3052 } else { 3053 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); 3054 eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | 3055 E1000_EEER_LPI_FC); 3056 } 3057 E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); 3058 E1000_WRITE_REG(hw, E1000_EEER, eeer); 3059 E1000_READ_REG(hw, E1000_IPCNFG); 3060 E1000_READ_REG(hw, E1000_EEER); 3061 out: 3062 3063 return E1000_SUCCESS; 3064 } 3065 3066 /** 3067 * e1000_set_eee_i354 - Enable/disable EEE support 3068 * @hw: pointer to the HW structure 3069 * @adv1g: boolean flag enabling 1G EEE advertisement 3070 * @adv100m: boolean flag enabling 100M EEE advertisement 3071 * 3072 * Enable/disable EEE legacy mode based on setting in dev_spec structure. 3073 * 3074 **/ 3075 s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) 3076 { 3077 struct e1000_phy_info *phy = &hw->phy; 3078 s32 ret_val = E1000_SUCCESS; 3079 u16 phy_data; 3080 3081 DEBUGFUNC("e1000_set_eee_i354"); 3082 3083 if ((hw->phy.media_type != e1000_media_type_copper) || 3084 ((phy->id != M88E1543_E_PHY_ID) && 3085 (phy->id != M88E1512_E_PHY_ID))) 3086 goto out; 3087 3088 if (!hw->dev_spec._82575.eee_disable) { 3089 /* Switch to PHY page 18. */ 3090 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); 3091 if (ret_val) 3092 goto out; 3093 3094 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, 3095 &phy_data); 3096 if (ret_val) 3097 goto out; 3098 3099 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; 3100 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, 3101 phy_data); 3102 if (ret_val) 3103 goto out; 3104 3105 /* Return the PHY to page 0. */ 3106 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 3107 if (ret_val) 3108 goto out; 3109 3110 /* Turn on EEE advertisement. */ 3111 ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 3112 E1000_EEE_ADV_DEV_I354, 3113 &phy_data); 3114 if (ret_val) 3115 goto out; 3116 3117 if (adv100M) 3118 phy_data |= E1000_EEE_ADV_100_SUPPORTED; 3119 else 3120 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; 3121 3122 if (adv1G) 3123 phy_data |= E1000_EEE_ADV_1000_SUPPORTED; 3124 else 3125 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; 3126 3127 ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 3128 E1000_EEE_ADV_DEV_I354, 3129 phy_data); 3130 } else { 3131 /* Turn off EEE advertisement. */ 3132 ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 3133 E1000_EEE_ADV_DEV_I354, 3134 &phy_data); 3135 if (ret_val) 3136 goto out; 3137 3138 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | 3139 E1000_EEE_ADV_1000_SUPPORTED); 3140 ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 3141 E1000_EEE_ADV_DEV_I354, 3142 phy_data); 3143 } 3144 3145 out: 3146 return ret_val; 3147 } 3148 3149 /** 3150 * e1000_get_eee_status_i354 - Get EEE status 3151 * @hw: pointer to the HW structure 3152 * @status: EEE status 3153 * 3154 * Get EEE status by guessing based on whether Tx or Rx LPI indications have 3155 * been received. 3156 **/ 3157 s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) 3158 { 3159 struct e1000_phy_info *phy = &hw->phy; 3160 s32 ret_val = E1000_SUCCESS; 3161 u16 phy_data; 3162 3163 DEBUGFUNC("e1000_get_eee_status_i354"); 3164 3165 /* Check if EEE is supported on this device. */ 3166 if ((hw->phy.media_type != e1000_media_type_copper) || 3167 ((phy->id != M88E1543_E_PHY_ID) && 3168 (phy->id != M88E1512_E_PHY_ID))) 3169 goto out; 3170 3171 ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, 3172 E1000_PCS_STATUS_DEV_I354, 3173 &phy_data); 3174 if (ret_val) 3175 goto out; 3176 3177 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | 3178 E1000_PCS_STATUS_RX_LPI_RCVD) ? TRUE : FALSE; 3179 3180 out: 3181 return ret_val; 3182 } 3183 3184 /* Due to a hw errata, if the host tries to configure the VFTA register 3185 * while performing queries from the BMC or DMA, then the VFTA in some 3186 * cases won't be written. 3187 */ 3188 3189 /** 3190 * e1000_clear_vfta_i350 - Clear VLAN filter table 3191 * @hw: pointer to the HW structure 3192 * 3193 * Clears the register array which contains the VLAN filter table by 3194 * setting all the values to 0. 3195 **/ 3196 void e1000_clear_vfta_i350(struct e1000_hw *hw) 3197 { 3198 u32 offset; 3199 int i; 3200 3201 DEBUGFUNC("e1000_clear_vfta_350"); 3202 3203 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 3204 for (i = 0; i < 10; i++) 3205 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 3206 3207 E1000_WRITE_FLUSH(hw); 3208 } 3209 } 3210 3211 /** 3212 * e1000_write_vfta_i350 - Write value to VLAN filter table 3213 * @hw: pointer to the HW structure 3214 * @offset: register offset in VLAN filter table 3215 * @value: register value written to VLAN filter table 3216 * 3217 * Writes value at the given offset in the register array which stores 3218 * the VLAN filter table. 3219 **/ 3220 void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) 3221 { 3222 int i; 3223 3224 DEBUGFUNC("e1000_write_vfta_350"); 3225 3226 for (i = 0; i < 10; i++) 3227 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 3228 3229 E1000_WRITE_FLUSH(hw); 3230 } 3231 3232 3233 /** 3234 * e1000_set_i2c_bb - Enable I2C bit-bang 3235 * @hw: pointer to the HW structure 3236 * 3237 * Enable I2C bit-bang interface 3238 * 3239 **/ 3240 s32 e1000_set_i2c_bb(struct e1000_hw *hw) 3241 { 3242 s32 ret_val = E1000_SUCCESS; 3243 u32 ctrl_ext, i2cparams; 3244 3245 DEBUGFUNC("e1000_set_i2c_bb"); 3246 3247 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 3248 ctrl_ext |= E1000_CTRL_I2C_ENA; 3249 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 3250 E1000_WRITE_FLUSH(hw); 3251 3252 i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); 3253 i2cparams |= E1000_I2CBB_EN; 3254 i2cparams |= E1000_I2C_DATA_OE_N; 3255 i2cparams |= E1000_I2C_CLK_OE_N; 3256 E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); 3257 E1000_WRITE_FLUSH(hw); 3258 3259 return ret_val; 3260 } 3261 3262 /** 3263 * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C 3264 * @hw: pointer to hardware structure 3265 * @byte_offset: byte offset to read 3266 * @dev_addr: device address 3267 * @data: value read 3268 * 3269 * Performs byte read operation over I2C interface at 3270 * a specified device address. 3271 **/ 3272 s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, 3273 u8 dev_addr, u8 *data) 3274 { 3275 s32 status = E1000_SUCCESS; 3276 u32 max_retry = 10; 3277 u32 retry = 1; 3278 u16 swfw_mask = 0; 3279 3280 bool nack = TRUE; 3281 3282 DEBUGFUNC("e1000_read_i2c_byte_generic"); 3283 3284 swfw_mask = E1000_SWFW_PHY0_SM; 3285 3286 do { 3287 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) 3288 != E1000_SUCCESS) { 3289 status = E1000_ERR_SWFW_SYNC; 3290 goto read_byte_out; 3291 } 3292 3293 e1000_i2c_start(hw); 3294 3295 /* Device Address and write indication */ 3296 status = e1000_clock_out_i2c_byte(hw, dev_addr); 3297 if (status != E1000_SUCCESS) 3298 goto fail; 3299 3300 status = e1000_get_i2c_ack(hw); 3301 if (status != E1000_SUCCESS) 3302 goto fail; 3303 3304 status = e1000_clock_out_i2c_byte(hw, byte_offset); 3305 if (status != E1000_SUCCESS) 3306 goto fail; 3307 3308 status = e1000_get_i2c_ack(hw); 3309 if (status != E1000_SUCCESS) 3310 goto fail; 3311 3312 e1000_i2c_start(hw); 3313 3314 /* Device Address and read indication */ 3315 status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); 3316 if (status != E1000_SUCCESS) 3317 goto fail; 3318 3319 status = e1000_get_i2c_ack(hw); 3320 if (status != E1000_SUCCESS) 3321 goto fail; 3322 3323 status = e1000_clock_in_i2c_byte(hw, data); 3324 if (status != E1000_SUCCESS) 3325 goto fail; 3326 3327 status = e1000_clock_out_i2c_bit(hw, nack); 3328 if (status != E1000_SUCCESS) 3329 goto fail; 3330 3331 e1000_i2c_stop(hw); 3332 break; 3333 3334 fail: 3335 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 3336 msec_delay(100); 3337 e1000_i2c_bus_clear(hw); 3338 retry++; 3339 if (retry < max_retry) 3340 DEBUGOUT("I2C byte read error - Retrying.\n"); 3341 else 3342 DEBUGOUT("I2C byte read error.\n"); 3343 3344 } while (retry < max_retry); 3345 3346 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 3347 3348 read_byte_out: 3349 3350 return status; 3351 } 3352 3353 /** 3354 * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C 3355 * @hw: pointer to hardware structure 3356 * @byte_offset: byte offset to write 3357 * @dev_addr: device address 3358 * @data: value to write 3359 * 3360 * Performs byte write operation over I2C interface at 3361 * a specified device address. 3362 **/ 3363 s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, 3364 u8 dev_addr, u8 data) 3365 { 3366 s32 status = E1000_SUCCESS; 3367 u32 max_retry = 1; 3368 u32 retry = 0; 3369 u16 swfw_mask = 0; 3370 3371 DEBUGFUNC("e1000_write_i2c_byte_generic"); 3372 3373 swfw_mask = E1000_SWFW_PHY0_SM; 3374 3375 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { 3376 status = E1000_ERR_SWFW_SYNC; 3377 goto write_byte_out; 3378 } 3379 3380 do { 3381 e1000_i2c_start(hw); 3382 3383 status = e1000_clock_out_i2c_byte(hw, dev_addr); 3384 if (status != E1000_SUCCESS) 3385 goto fail; 3386 3387 status = e1000_get_i2c_ack(hw); 3388 if (status != E1000_SUCCESS) 3389 goto fail; 3390 3391 status = e1000_clock_out_i2c_byte(hw, byte_offset); 3392 if (status != E1000_SUCCESS) 3393 goto fail; 3394 3395 status = e1000_get_i2c_ack(hw); 3396 if (status != E1000_SUCCESS) 3397 goto fail; 3398 3399 status = e1000_clock_out_i2c_byte(hw, data); 3400 if (status != E1000_SUCCESS) 3401 goto fail; 3402 3403 status = e1000_get_i2c_ack(hw); 3404 if (status != E1000_SUCCESS) 3405 goto fail; 3406 3407 e1000_i2c_stop(hw); 3408 break; 3409 3410 fail: 3411 e1000_i2c_bus_clear(hw); 3412 retry++; 3413 if (retry < max_retry) 3414 DEBUGOUT("I2C byte write error - Retrying.\n"); 3415 else 3416 DEBUGOUT("I2C byte write error.\n"); 3417 } while (retry < max_retry); 3418 3419 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 3420 3421 write_byte_out: 3422 3423 return status; 3424 } 3425 3426 /** 3427 * e1000_i2c_start - Sets I2C start condition 3428 * @hw: pointer to hardware structure 3429 * 3430 * Sets I2C start condition (High -> Low on SDA while SCL is High) 3431 **/ 3432 static void e1000_i2c_start(struct e1000_hw *hw) 3433 { 3434 u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3435 3436 DEBUGFUNC("e1000_i2c_start"); 3437 3438 /* Start condition must begin with data and clock high */ 3439 e1000_set_i2c_data(hw, &i2cctl, 1); 3440 e1000_raise_i2c_clk(hw, &i2cctl); 3441 3442 /* Setup time for start condition (4.7us) */ 3443 usec_delay(E1000_I2C_T_SU_STA); 3444 3445 e1000_set_i2c_data(hw, &i2cctl, 0); 3446 3447 /* Hold time for start condition (4us) */ 3448 usec_delay(E1000_I2C_T_HD_STA); 3449 3450 e1000_lower_i2c_clk(hw, &i2cctl); 3451 3452 /* Minimum low period of clock is 4.7 us */ 3453 usec_delay(E1000_I2C_T_LOW); 3454 3455 } 3456 3457 /** 3458 * e1000_i2c_stop - Sets I2C stop condition 3459 * @hw: pointer to hardware structure 3460 * 3461 * Sets I2C stop condition (Low -> High on SDA while SCL is High) 3462 **/ 3463 static void e1000_i2c_stop(struct e1000_hw *hw) 3464 { 3465 u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3466 3467 DEBUGFUNC("e1000_i2c_stop"); 3468 3469 /* Stop condition must begin with data low and clock high */ 3470 e1000_set_i2c_data(hw, &i2cctl, 0); 3471 e1000_raise_i2c_clk(hw, &i2cctl); 3472 3473 /* Setup time for stop condition (4us) */ 3474 usec_delay(E1000_I2C_T_SU_STO); 3475 3476 e1000_set_i2c_data(hw, &i2cctl, 1); 3477 3478 /* bus free time between stop and start (4.7us)*/ 3479 usec_delay(E1000_I2C_T_BUF); 3480 } 3481 3482 /** 3483 * e1000_clock_in_i2c_byte - Clocks in one byte via I2C 3484 * @hw: pointer to hardware structure 3485 * @data: data byte to clock in 3486 * 3487 * Clocks in one byte data via I2C data/clock 3488 **/ 3489 static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) 3490 { 3491 s32 i; 3492 bool bit = 0; 3493 3494 DEBUGFUNC("e1000_clock_in_i2c_byte"); 3495 3496 *data = 0; 3497 for (i = 7; i >= 0; i--) { 3498 e1000_clock_in_i2c_bit(hw, &bit); 3499 *data |= bit << i; 3500 } 3501 3502 return E1000_SUCCESS; 3503 } 3504 3505 /** 3506 * e1000_clock_out_i2c_byte - Clocks out one byte via I2C 3507 * @hw: pointer to hardware structure 3508 * @data: data byte clocked out 3509 * 3510 * Clocks out one byte data via I2C data/clock 3511 **/ 3512 static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) 3513 { 3514 s32 status = E1000_SUCCESS; 3515 s32 i; 3516 u32 i2cctl; 3517 bool bit = 0; 3518 3519 DEBUGFUNC("e1000_clock_out_i2c_byte"); 3520 3521 for (i = 7; i >= 0; i--) { 3522 bit = (data >> i) & 0x1; 3523 status = e1000_clock_out_i2c_bit(hw, bit); 3524 3525 if (status != E1000_SUCCESS) 3526 break; 3527 } 3528 3529 /* Release SDA line (set high) */ 3530 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3531 3532 i2cctl |= E1000_I2C_DATA_OE_N; 3533 E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); 3534 E1000_WRITE_FLUSH(hw); 3535 3536 return status; 3537 } 3538 3539 /** 3540 * e1000_get_i2c_ack - Polls for I2C ACK 3541 * @hw: pointer to hardware structure 3542 * 3543 * Clocks in/out one bit via I2C data/clock 3544 **/ 3545 static s32 e1000_get_i2c_ack(struct e1000_hw *hw) 3546 { 3547 s32 status = E1000_SUCCESS; 3548 u32 i = 0; 3549 u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3550 u32 timeout = 10; 3551 bool ack = TRUE; 3552 3553 DEBUGFUNC("e1000_get_i2c_ack"); 3554 3555 e1000_raise_i2c_clk(hw, &i2cctl); 3556 3557 /* Minimum high period of clock is 4us */ 3558 usec_delay(E1000_I2C_T_HIGH); 3559 3560 /* Wait until SCL returns high */ 3561 for (i = 0; i < timeout; i++) { 3562 usec_delay(1); 3563 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3564 if (i2cctl & E1000_I2C_CLK_IN) 3565 break; 3566 } 3567 if (!(i2cctl & E1000_I2C_CLK_IN)) 3568 return E1000_ERR_I2C; 3569 3570 ack = e1000_get_i2c_data(&i2cctl); 3571 if (ack) { 3572 DEBUGOUT("I2C ack was not received.\n"); 3573 status = E1000_ERR_I2C; 3574 } 3575 3576 e1000_lower_i2c_clk(hw, &i2cctl); 3577 3578 /* Minimum low period of clock is 4.7 us */ 3579 usec_delay(E1000_I2C_T_LOW); 3580 3581 return status; 3582 } 3583 3584 /** 3585 * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock 3586 * @hw: pointer to hardware structure 3587 * @data: read data value 3588 * 3589 * Clocks in one bit via I2C data/clock 3590 **/ 3591 static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) 3592 { 3593 u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3594 3595 DEBUGFUNC("e1000_clock_in_i2c_bit"); 3596 3597 e1000_raise_i2c_clk(hw, &i2cctl); 3598 3599 /* Minimum high period of clock is 4us */ 3600 usec_delay(E1000_I2C_T_HIGH); 3601 3602 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3603 *data = e1000_get_i2c_data(&i2cctl); 3604 3605 e1000_lower_i2c_clk(hw, &i2cctl); 3606 3607 /* Minimum low period of clock is 4.7 us */ 3608 usec_delay(E1000_I2C_T_LOW); 3609 3610 return E1000_SUCCESS; 3611 } 3612 3613 /** 3614 * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock 3615 * @hw: pointer to hardware structure 3616 * @data: data value to write 3617 * 3618 * Clocks out one bit via I2C data/clock 3619 **/ 3620 static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) 3621 { 3622 s32 status; 3623 u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3624 3625 DEBUGFUNC("e1000_clock_out_i2c_bit"); 3626 3627 status = e1000_set_i2c_data(hw, &i2cctl, data); 3628 if (status == E1000_SUCCESS) { 3629 e1000_raise_i2c_clk(hw, &i2cctl); 3630 3631 /* Minimum high period of clock is 4us */ 3632 usec_delay(E1000_I2C_T_HIGH); 3633 3634 e1000_lower_i2c_clk(hw, &i2cctl); 3635 3636 /* Minimum low period of clock is 4.7 us. 3637 * This also takes care of the data hold time. 3638 */ 3639 usec_delay(E1000_I2C_T_LOW); 3640 } else { 3641 status = E1000_ERR_I2C; 3642 DEBUGOUT1("I2C data was not set to %X\n", data); 3643 } 3644 3645 return status; 3646 } 3647 /** 3648 * e1000_raise_i2c_clk - Raises the I2C SCL clock 3649 * @hw: pointer to hardware structure 3650 * @i2cctl: Current value of I2CCTL register 3651 * 3652 * Raises the I2C clock line '0'->'1' 3653 **/ 3654 static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) 3655 { 3656 DEBUGFUNC("e1000_raise_i2c_clk"); 3657 3658 *i2cctl |= E1000_I2C_CLK_OUT; 3659 *i2cctl &= ~E1000_I2C_CLK_OE_N; 3660 E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); 3661 E1000_WRITE_FLUSH(hw); 3662 3663 /* SCL rise time (1000ns) */ 3664 usec_delay(E1000_I2C_T_RISE); 3665 } 3666 3667 /** 3668 * e1000_lower_i2c_clk - Lowers the I2C SCL clock 3669 * @hw: pointer to hardware structure 3670 * @i2cctl: Current value of I2CCTL register 3671 * 3672 * Lowers the I2C clock line '1'->'0' 3673 **/ 3674 static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) 3675 { 3676 3677 DEBUGFUNC("e1000_lower_i2c_clk"); 3678 3679 *i2cctl &= ~E1000_I2C_CLK_OUT; 3680 *i2cctl &= ~E1000_I2C_CLK_OE_N; 3681 E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); 3682 E1000_WRITE_FLUSH(hw); 3683 3684 /* SCL fall time (300ns) */ 3685 usec_delay(E1000_I2C_T_FALL); 3686 } 3687 3688 /** 3689 * e1000_set_i2c_data - Sets the I2C data bit 3690 * @hw: pointer to hardware structure 3691 * @i2cctl: Current value of I2CCTL register 3692 * @data: I2C data value (0 or 1) to set 3693 * 3694 * Sets the I2C data bit 3695 **/ 3696 static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) 3697 { 3698 s32 status = E1000_SUCCESS; 3699 3700 DEBUGFUNC("e1000_set_i2c_data"); 3701 3702 if (data) 3703 *i2cctl |= E1000_I2C_DATA_OUT; 3704 else 3705 *i2cctl &= ~E1000_I2C_DATA_OUT; 3706 3707 *i2cctl &= ~E1000_I2C_DATA_OE_N; 3708 *i2cctl |= E1000_I2C_CLK_OE_N; 3709 E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); 3710 E1000_WRITE_FLUSH(hw); 3711 3712 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ 3713 usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); 3714 3715 *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3716 if (data != e1000_get_i2c_data(i2cctl)) { 3717 status = E1000_ERR_I2C; 3718 DEBUGOUT1("Error - I2C data was not set to %X.\n", data); 3719 } 3720 3721 return status; 3722 } 3723 3724 /** 3725 * e1000_get_i2c_data - Reads the I2C SDA data bit 3726 * @hw: pointer to hardware structure 3727 * @i2cctl: Current value of I2CCTL register 3728 * 3729 * Returns the I2C data bit value 3730 **/ 3731 static bool e1000_get_i2c_data(u32 *i2cctl) 3732 { 3733 bool data; 3734 3735 DEBUGFUNC("e1000_get_i2c_data"); 3736 3737 if (*i2cctl & E1000_I2C_DATA_IN) 3738 data = 1; 3739 else 3740 data = 0; 3741 3742 return data; 3743 } 3744 3745 /** 3746 * e1000_i2c_bus_clear - Clears the I2C bus 3747 * @hw: pointer to hardware structure 3748 * 3749 * Clears the I2C bus by sending nine clock pulses. 3750 * Used when data line is stuck low. 3751 **/ 3752 void e1000_i2c_bus_clear(struct e1000_hw *hw) 3753 { 3754 u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); 3755 u32 i; 3756 3757 DEBUGFUNC("e1000_i2c_bus_clear"); 3758 3759 e1000_i2c_start(hw); 3760 3761 e1000_set_i2c_data(hw, &i2cctl, 1); 3762 3763 for (i = 0; i < 9; i++) { 3764 e1000_raise_i2c_clk(hw, &i2cctl); 3765 3766 /* Min high period of clock is 4us */ 3767 usec_delay(E1000_I2C_T_HIGH); 3768 3769 e1000_lower_i2c_clk(hw, &i2cctl); 3770 3771 /* Min low period of clock is 4.7us*/ 3772 usec_delay(E1000_I2C_T_LOW); 3773 } 3774 3775 e1000_i2c_start(hw); 3776 3777 /* Put the i2c bus back to default state */ 3778 e1000_i2c_stop(hw); 3779 } 3780 3781