xref: /freebsd/sys/dev/e1000/e1000_82575.c (revision b9128a37faafede823eb456aa65a11ac69997284)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 /*
36  * 82575EB Gigabit Network Connection
37  * 82575EB Gigabit Backplane Connection
38  * 82575GB Gigabit Network Connection
39  * 82576 Gigabit Network Connection
40  * 82576 Quad Port Gigabit Mezzanine Adapter
41  * 82580 Gigabit Network Connection
42  * I350 Gigabit Network Connection
43  */
44 
45 #include "e1000_api.h"
46 #include "e1000_i210.h"
47 
48 static s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
49 static s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
50 static s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
51 static void e1000_release_nvm_82575(struct e1000_hw *hw);
52 static s32  e1000_check_for_link_82575(struct e1000_hw *hw);
53 static s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
54 static s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
55 static s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
56 					 u16 *duplex);
57 static s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
58 static s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
59 					   u16 *data);
60 static s32  e1000_reset_hw_82575(struct e1000_hw *hw);
61 static s32  e1000_init_hw_82575(struct e1000_hw *hw);
62 static s32  e1000_reset_hw_82580(struct e1000_hw *hw);
63 static s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
64 				     u32 offset, u16 *data);
65 static s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
66 				      u32 offset, u16 data);
67 static s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
68 					  bool active);
69 static s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
70 					  bool active);
71 static s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
72 					  bool active);
73 static s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
74 static s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
75 static s32  e1000_get_media_type_82575(struct e1000_hw *hw);
76 static s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
77 static s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
78 static s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
79 					    u32 offset, u16 data);
80 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
81 static s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
82 						 u16 *speed, u16 *duplex);
83 static s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
84 static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
85 static s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
86 static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
87 static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
88 static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
89 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
90 static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
91 static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
92 static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
93 static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
94 						 u16 offset);
95 static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
96 						   u16 offset);
97 static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
98 static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
99 static void e1000_clear_vfta_i350(struct e1000_hw *hw);
100 
101 static void e1000_i2c_start(struct e1000_hw *hw);
102 static void e1000_i2c_stop(struct e1000_hw *hw);
103 static void e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
104 static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
105 static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
106 static void e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
107 static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
108 static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
109 static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
110 static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
111 static bool e1000_get_i2c_data(u32 *i2cctl);
112 
113 static const u16 e1000_82580_rxpbs_table[] = {
114 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
115 #define E1000_82580_RXPBS_TABLE_SIZE \
116 	(sizeof(e1000_82580_rxpbs_table) / \
117 	 sizeof(e1000_82580_rxpbs_table[0]))
118 
119 
120 /**
121  *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
122  *  @hw: pointer to the HW structure
123  *
124  *  Called to determine if the I2C pins are being used for I2C or as an
125  *  external MDIO interface since the two options are mutually exclusive.
126  **/
127 static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
128 {
129 	u32 reg = 0;
130 	bool ext_mdio = false;
131 
132 	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
133 
134 	switch (hw->mac.type) {
135 	case e1000_82575:
136 	case e1000_82576:
137 		reg = E1000_READ_REG(hw, E1000_MDIC);
138 		ext_mdio = !!(reg & E1000_MDIC_DEST);
139 		break;
140 	case e1000_82580:
141 	case e1000_i350:
142 	case e1000_i354:
143 	case e1000_i210:
144 	case e1000_i211:
145 		reg = E1000_READ_REG(hw, E1000_MDICNFG);
146 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
147 		break;
148 	default:
149 		break;
150 	}
151 	return ext_mdio;
152 }
153 
154 /**
155  * e1000_init_phy_params_82575 - Initialize PHY function ptrs
156  * @hw: pointer to the HW structure
157  **/
158 static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
159 {
160 	struct e1000_phy_info *phy = &hw->phy;
161 	s32 ret_val = E1000_SUCCESS;
162 	u32 ctrl_ext;
163 
164 	DEBUGFUNC("e1000_init_phy_params_82575");
165 
166 	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
167 	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
168 
169 	if (hw->phy.media_type != e1000_media_type_copper) {
170 		phy->type = e1000_phy_none;
171 		goto out;
172 	}
173 
174 	phy->ops.power_up	= e1000_power_up_phy_copper;
175 	phy->ops.power_down	= e1000_power_down_phy_copper_base;
176 
177 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
178 	phy->reset_delay_us	= 100;
179 
180 	phy->ops.acquire	= e1000_acquire_phy_base;
181 	phy->ops.check_reset_block = e1000_check_reset_block_generic;
182 	phy->ops.commit		= e1000_phy_sw_reset_generic;
183 	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
184 	phy->ops.release	= e1000_release_phy_base;
185 
186 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
187 
188 	if (e1000_sgmii_active_82575(hw)) {
189 		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
190 		ctrl_ext |= E1000_CTRL_I2C_ENA;
191 	} else {
192 		phy->ops.reset = e1000_phy_hw_reset_generic;
193 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
194 	}
195 
196 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
197 	e1000_reset_mdicnfg_82580(hw);
198 
199 	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
200 		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
201 		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
202 	} else {
203 		switch (hw->mac.type) {
204 		case e1000_82580:
205 		case e1000_i350:
206 		case e1000_i354:
207 			phy->ops.read_reg = e1000_read_phy_reg_82580;
208 			phy->ops.write_reg = e1000_write_phy_reg_82580;
209 			break;
210 		case e1000_i210:
211 		case e1000_i211:
212 			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
213 			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
214 			break;
215 		default:
216 			phy->ops.read_reg = e1000_read_phy_reg_igp;
217 			phy->ops.write_reg = e1000_write_phy_reg_igp;
218 		}
219 	}
220 
221 	/* Set phy->phy_addr and phy->id. */
222 	ret_val = e1000_get_phy_id_82575(hw);
223 
224 	/* Verify phy id and set remaining function pointers */
225 	switch (phy->id) {
226 	case M88E1543_E_PHY_ID:
227 	case M88E1512_E_PHY_ID:
228 	case I347AT4_E_PHY_ID:
229 	case M88E1112_E_PHY_ID:
230 	case M88E1340M_E_PHY_ID:
231 		phy->type		= e1000_phy_m88;
232 		phy->ops.check_polarity	= e1000_check_polarity_m88;
233 		phy->ops.get_info	= e1000_get_phy_info_m88;
234 		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
235 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
236 		break;
237 	case M88E1111_I_PHY_ID:
238 		phy->type		= e1000_phy_m88;
239 		phy->ops.check_polarity	= e1000_check_polarity_m88;
240 		phy->ops.get_info	= e1000_get_phy_info_m88;
241 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
242 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
243 		break;
244 	case IGP03E1000_E_PHY_ID:
245 	case IGP04E1000_E_PHY_ID:
246 		phy->type		= e1000_phy_igp_3;
247 		phy->ops.check_polarity	= e1000_check_polarity_igp;
248 		phy->ops.get_info	= e1000_get_phy_info_igp;
249 		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
250 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
251 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
252 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
253 		break;
254 	case I82580_I_PHY_ID:
255 	case I350_I_PHY_ID:
256 		phy->type		= e1000_phy_82580;
257 		phy->ops.check_polarity	= e1000_check_polarity_82577;
258 		phy->ops.get_info	= e1000_get_phy_info_82577;
259 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
260 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
261 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
262 		phy->ops.force_speed_duplex =
263 				e1000_phy_force_speed_duplex_82577;
264 		break;
265 	case I210_I_PHY_ID:
266 		phy->type		= e1000_phy_i210;
267 		phy->ops.check_polarity	= e1000_check_polarity_m88;
268 		phy->ops.get_info	= e1000_get_phy_info_m88;
269 		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
270 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
271 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
272 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
273 		break;
274 	default:
275 		ret_val = -E1000_ERR_PHY;
276 		goto out;
277 	}
278 
279 	/* Check if this PHY is configured for media swap. */
280 	switch (phy->id) {
281 	case M88E1112_E_PHY_ID:
282 	{
283 		u16 data;
284 
285 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 2);
286 		if (ret_val)
287 			goto out;
288 		ret_val = phy->ops.read_reg(hw, E1000_M88E1112_MAC_CTRL_1,
289 					    &data);
290 		if (ret_val)
291 			goto out;
292 
293 		data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
294 			E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
295 		if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
296 		    data == E1000_M88E1112_AUTO_COPPER_BASEX)
297 			hw->mac.ops.check_for_link =
298 						e1000_check_for_link_media_swap;
299 		break;
300 	}
301 	case M88E1512_E_PHY_ID:
302 	{
303 		ret_val = e1000_initialize_M88E1512_phy(hw);
304 		break;
305 	}
306 	case M88E1543_E_PHY_ID:
307 	{
308 		ret_val = e1000_initialize_M88E1543_phy(hw);
309 		break;
310 	}
311 	default:
312 		goto out;
313 	}
314 
315 out:
316 	return ret_val;
317 }
318 
319 /**
320  * e1000_init_mac_params_82575 - Init MAC func ptrs.
321  * @hw: pointer to the HW structure
322  **/
323 static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
324 {
325 	struct e1000_mac_info *mac = &hw->mac;
326 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
327 
328 	DEBUGFUNC("e1000_init_mac_params_82575");
329 
330 	/* Initialize function pointer */
331 	e1000_init_mac_ops_generic(hw);
332 
333 	/* Derives media type */
334 	e1000_get_media_type_82575(hw);
335 	/* Set MTA register count */
336 	mac->mta_reg_count = 128;
337 	/* Set UTA register count */
338 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
339 	/* Set RAR entry count */
340 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
341 	if (mac->type == e1000_82576)
342 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
343 	if (mac->type == e1000_82580)
344 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
345 	if (mac->type == e1000_i350 || mac->type == e1000_i354)
346 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
347 
348 	/* Enable EEE default settings for EEE supported devices */
349 	if (mac->type >= e1000_i350)
350 		dev_spec->eee_disable = false;
351 
352 	/* Allow a single clear of the SW semaphore on I210 and newer */
353 	if (mac->type >= e1000_i210)
354 		dev_spec->clear_semaphore_once = true;
355 
356 	/* Set if part includes ASF firmware */
357 	mac->asf_firmware_present = true;
358 	/* FWSM register */
359 	mac->has_fwsm = true;
360 	/* ARC supported; valid only if manageability features are enabled. */
361 	mac->arc_subsystem_valid =
362 		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
363 
364 	/* Function pointers */
365 
366 	/* bus type/speed/width */
367 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
368 	/* reset */
369 	if (mac->type >= e1000_82580)
370 		mac->ops.reset_hw = e1000_reset_hw_82580;
371 	else
372 		mac->ops.reset_hw = e1000_reset_hw_82575;
373 	/* HW initialization */
374 	if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
375 		mac->ops.init_hw = e1000_init_hw_i210;
376 	else
377 		mac->ops.init_hw = e1000_init_hw_82575;
378 	/* link setup */
379 	mac->ops.setup_link = e1000_setup_link_generic;
380 	/* physical interface link setup */
381 	mac->ops.setup_physical_interface =
382 		(hw->phy.media_type == e1000_media_type_copper)
383 		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
384 	/* physical interface shutdown */
385 	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
386 	/* physical interface power up */
387 	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
388 	/* check for link */
389 	mac->ops.check_for_link = e1000_check_for_link_82575;
390 	/* read mac address */
391 	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
392 	/* configure collision distance */
393 	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
394 	/* multicast address update */
395 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
396 	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
397 		/* writing VFTA */
398 		mac->ops.write_vfta = e1000_write_vfta_i350;
399 		/* clearing VFTA */
400 		mac->ops.clear_vfta = e1000_clear_vfta_i350;
401 	} else {
402 		/* writing VFTA */
403 		mac->ops.write_vfta = e1000_write_vfta_generic;
404 		/* clearing VFTA */
405 		mac->ops.clear_vfta = e1000_clear_vfta_generic;
406 	}
407 	if (hw->mac.type >= e1000_82580)
408 		mac->ops.validate_mdi_setting =
409 			e1000_validate_mdi_setting_crossover_generic;
410 	/* ID LED init */
411 	mac->ops.id_led_init = e1000_id_led_init_generic;
412 	/* blink LED */
413 	mac->ops.blink_led = e1000_blink_led_generic;
414 	/* setup LED */
415 	mac->ops.setup_led = e1000_setup_led_generic;
416 	/* cleanup LED */
417 	mac->ops.cleanup_led = e1000_cleanup_led_generic;
418 	/* turn on/off LED */
419 	mac->ops.led_on = e1000_led_on_generic;
420 	mac->ops.led_off = e1000_led_off_generic;
421 	/* clear hardware counters */
422 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
423 	/* link info */
424 	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
425 	/* acquire SW_FW sync */
426 	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync;
427 	/* release SW_FW sync */
428 	mac->ops.release_swfw_sync = e1000_release_swfw_sync;
429 
430 	/* set lan id for port to determine which phy lock to use */
431 	hw->mac.ops.set_lan_id(hw);
432 
433 	return E1000_SUCCESS;
434 }
435 
436 /**
437  * e1000_init_nvm_params_82575 - Initialize NVM function ptrs
438  * @hw: pointer to the HW structure
439  **/
440 s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
441 {
442 	struct e1000_nvm_info *nvm = &hw->nvm;
443 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
444 	u16 size;
445 
446 	DEBUGFUNC("e1000_init_nvm_params_82575");
447 
448 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
449 		     E1000_EECD_SIZE_EX_SHIFT);
450 	/* Added to a constant, "size" becomes the left-shift value
451 	 * for setting word_size.
452 	 */
453 	size += NVM_WORD_SIZE_BASE_SHIFT;
454 
455 	/* Just in case size is out of range, cap it to the largest
456 	 * EEPROM size supported
457 	 */
458 	if (size > 15)
459 		size = 15;
460 
461 	nvm->word_size = 1 << size;
462 	if (hw->mac.type < e1000_i210) {
463 		nvm->opcode_bits = 8;
464 		nvm->delay_usec = 1;
465 
466 		switch (nvm->override) {
467 		case e1000_nvm_override_spi_large:
468 			nvm->page_size = 32;
469 			nvm->address_bits = 16;
470 			break;
471 		case e1000_nvm_override_spi_small:
472 			nvm->page_size = 8;
473 			nvm->address_bits = 8;
474 			break;
475 		default:
476 			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
477 			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
478 					    16 : 8;
479 			break;
480 		}
481 		if (nvm->word_size == (1 << 15))
482 			nvm->page_size = 128;
483 
484 		nvm->type = e1000_nvm_eeprom_spi;
485 	} else {
486 		nvm->type = e1000_nvm_flash_hw;
487 	}
488 
489 	/* Function Pointers */
490 	nvm->ops.acquire = e1000_acquire_nvm_82575;
491 	nvm->ops.release = e1000_release_nvm_82575;
492 	if (nvm->word_size < (1 << 15))
493 		nvm->ops.read = e1000_read_nvm_eerd;
494 	else
495 		nvm->ops.read = e1000_read_nvm_spi;
496 
497 	nvm->ops.write = e1000_write_nvm_spi;
498 	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
499 	nvm->ops.update = e1000_update_nvm_checksum_generic;
500 	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
501 
502 	/* override generic family function pointers for specific descendants */
503 	switch (hw->mac.type) {
504 	case e1000_82580:
505 		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
506 		nvm->ops.update = e1000_update_nvm_checksum_82580;
507 		break;
508 	case e1000_i350:
509 		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
510 		nvm->ops.update = e1000_update_nvm_checksum_i350;
511 		break;
512 	default:
513 		break;
514 	}
515 
516 	return E1000_SUCCESS;
517 }
518 
519 /**
520  *  e1000_init_function_pointers_82575 - Init func ptrs.
521  *  @hw: pointer to the HW structure
522  *
523  *  Called to initialize all function pointers and parameters.
524  **/
525 void e1000_init_function_pointers_82575(struct e1000_hw *hw)
526 {
527 	DEBUGFUNC("e1000_init_function_pointers_82575");
528 
529 	hw->mac.ops.init_params = e1000_init_mac_params_82575;
530 	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
531 	hw->phy.ops.init_params = e1000_init_phy_params_82575;
532 	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
533 }
534 
535 /**
536  *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
537  *  @hw: pointer to the HW structure
538  *  @offset: register offset to be read
539  *  @data: pointer to the read data
540  *
541  *  Reads the PHY register at offset using the serial gigabit media independent
542  *  interface and stores the retrieved information in data.
543  **/
544 static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
545 					  u16 *data)
546 {
547 	s32 ret_val = -E1000_ERR_PARAM;
548 
549 	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
550 
551 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
552 		DEBUGOUT1("PHY Address %u is out of range\n", offset);
553 		goto out;
554 	}
555 
556 	ret_val = hw->phy.ops.acquire(hw);
557 	if (ret_val)
558 		goto out;
559 
560 	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
561 
562 	hw->phy.ops.release(hw);
563 
564 out:
565 	return ret_val;
566 }
567 
568 /**
569  *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
570  *  @hw: pointer to the HW structure
571  *  @offset: register offset to write to
572  *  @data: data to write at register offset
573  *
574  *  Writes the data to PHY register at the offset using the serial gigabit
575  *  media independent interface.
576  **/
577 static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
578 					   u16 data)
579 {
580 	s32 ret_val = -E1000_ERR_PARAM;
581 
582 	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
583 
584 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
585 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
586 		goto out;
587 	}
588 
589 	ret_val = hw->phy.ops.acquire(hw);
590 	if (ret_val)
591 		goto out;
592 
593 	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
594 
595 	hw->phy.ops.release(hw);
596 
597 out:
598 	return ret_val;
599 }
600 
601 /**
602  *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
603  *  @hw: pointer to the HW structure
604  *
605  *  Retrieves the PHY address and ID for both PHY's which do and do not use
606  *  sgmi interface.
607  **/
608 static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
609 {
610 	struct e1000_phy_info *phy = &hw->phy;
611 	s32  ret_val = E1000_SUCCESS;
612 	u16 phy_id;
613 	u32 ctrl_ext;
614 	u32 mdic;
615 
616 	DEBUGFUNC("e1000_get_phy_id_82575");
617 
618 	/* some i354 devices need an extra read for phy id */
619 	if (hw->mac.type == e1000_i354)
620 		e1000_get_phy_id(hw);
621 
622 	/*
623 	 * For SGMII PHYs, we try the list of possible addresses until
624 	 * we find one that works.  For non-SGMII PHYs
625 	 * (e.g. integrated copper PHYs), an address of 1 should
626 	 * work.  The result of this function should mean phy->phy_addr
627 	 * and phy->id are set correctly.
628 	 */
629 	if (!e1000_sgmii_active_82575(hw)) {
630 		phy->addr = 1;
631 		ret_val = e1000_get_phy_id(hw);
632 		goto out;
633 	}
634 
635 	if (e1000_sgmii_uses_mdio_82575(hw)) {
636 		switch (hw->mac.type) {
637 		case e1000_82575:
638 		case e1000_82576:
639 			mdic = E1000_READ_REG(hw, E1000_MDIC);
640 			mdic &= E1000_MDIC_PHY_MASK;
641 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
642 			break;
643 		case e1000_82580:
644 		case e1000_i350:
645 		case e1000_i354:
646 		case e1000_i210:
647 		case e1000_i211:
648 			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
649 			mdic &= E1000_MDICNFG_PHY_MASK;
650 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
651 			break;
652 		default:
653 			ret_val = -E1000_ERR_PHY;
654 			goto out;
655 			break;
656 		}
657 		ret_val = e1000_get_phy_id(hw);
658 		goto out;
659 	}
660 
661 	/* Power on sgmii phy if it is disabled */
662 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
663 	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
664 			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
665 	E1000_WRITE_FLUSH(hw);
666 	msec_delay(300);
667 
668 	/*
669 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
670 	 * Therefore, we need to test 1-7
671 	 */
672 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
673 		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
674 		if (ret_val == E1000_SUCCESS) {
675 			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
676 				  phy_id, phy->addr);
677 			/*
678 			 * At the time of this writing, The M88 part is
679 			 * the only supported SGMII PHY product.
680 			 */
681 			if (phy_id == M88_VENDOR)
682 				break;
683 		} else {
684 			DEBUGOUT1("PHY address %u was unreadable\n",
685 				  phy->addr);
686 		}
687 	}
688 
689 	/* A valid PHY type couldn't be found. */
690 	if (phy->addr == 8) {
691 		phy->addr = 0;
692 		ret_val = -E1000_ERR_PHY;
693 	} else {
694 		ret_val = e1000_get_phy_id(hw);
695 	}
696 
697 	/* restore previous sfp cage power state */
698 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
699 
700 out:
701 	return ret_val;
702 }
703 
704 /**
705  *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
706  *  @hw: pointer to the HW structure
707  *
708  *  Resets the PHY using the serial gigabit media independent interface.
709  **/
710 static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
711 {
712 	s32 ret_val = E1000_SUCCESS;
713 	struct e1000_phy_info *phy = &hw->phy;
714 
715 	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
716 
717 	/*
718 	 * This isn't a true "hard" reset, but is the only reset
719 	 * available to us at this time.
720 	 */
721 
722 	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
723 
724 	if (!(hw->phy.ops.write_reg))
725 		goto out;
726 
727 	/*
728 	 * SFP documentation requires the following to configure the SPF module
729 	 * to work on SGMII.  No further documentation is given.
730 	 */
731 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
732 	if (ret_val)
733 		goto out;
734 
735 	ret_val = hw->phy.ops.commit(hw);
736 	if (ret_val)
737 		goto out;
738 
739 	if (phy->id == M88E1512_E_PHY_ID)
740 		ret_val = e1000_initialize_M88E1512_phy(hw);
741 out:
742 	return ret_val;
743 }
744 
745 /**
746  *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
747  *  @hw: pointer to the HW structure
748  *  @active: true to enable LPLU, false to disable
749  *
750  *  Sets the LPLU D0 state according to the active flag.  When
751  *  activating LPLU this function also disables smart speed
752  *  and vice versa.  LPLU will not be activated unless the
753  *  device autonegotiation advertisement meets standards of
754  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
755  *  This is a function pointer entry point only called by
756  *  PHY setup routines.
757  **/
758 static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
759 {
760 	struct e1000_phy_info *phy = &hw->phy;
761 	s32 ret_val = E1000_SUCCESS;
762 	u16 data;
763 
764 	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
765 
766 	if (!(hw->phy.ops.read_reg))
767 		goto out;
768 
769 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
770 	if (ret_val)
771 		goto out;
772 
773 	if (active) {
774 		data |= IGP02E1000_PM_D0_LPLU;
775 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
776 					     data);
777 		if (ret_val)
778 			goto out;
779 
780 		/* When LPLU is enabled, we should disable SmartSpeed */
781 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
782 					    &data);
783 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
784 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
785 					     data);
786 		if (ret_val)
787 			goto out;
788 	} else {
789 		data &= ~IGP02E1000_PM_D0_LPLU;
790 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791 					     data);
792 		/*
793 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
794 		 * during Dx states where the power conservation is most
795 		 * important.  During driver activity we should enable
796 		 * SmartSpeed, so performance is maintained.
797 		 */
798 		if (phy->smart_speed == e1000_smart_speed_on) {
799 			ret_val = phy->ops.read_reg(hw,
800 						    IGP01E1000_PHY_PORT_CONFIG,
801 						    &data);
802 			if (ret_val)
803 				goto out;
804 
805 			data |= IGP01E1000_PSCFR_SMART_SPEED;
806 			ret_val = phy->ops.write_reg(hw,
807 						     IGP01E1000_PHY_PORT_CONFIG,
808 						     data);
809 			if (ret_val)
810 				goto out;
811 		} else if (phy->smart_speed == e1000_smart_speed_off) {
812 			ret_val = phy->ops.read_reg(hw,
813 						    IGP01E1000_PHY_PORT_CONFIG,
814 						    &data);
815 			if (ret_val)
816 				goto out;
817 
818 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
819 			ret_val = phy->ops.write_reg(hw,
820 						     IGP01E1000_PHY_PORT_CONFIG,
821 						     data);
822 			if (ret_val)
823 				goto out;
824 		}
825 	}
826 
827 out:
828 	return ret_val;
829 }
830 
831 /**
832  *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
833  *  @hw: pointer to the HW structure
834  *  @active: true to enable LPLU, false to disable
835  *
836  *  Sets the LPLU D0 state according to the active flag.  When
837  *  activating LPLU this function also disables smart speed
838  *  and vice versa.  LPLU will not be activated unless the
839  *  device autonegotiation advertisement meets standards of
840  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
841  *  This is a function pointer entry point only called by
842  *  PHY setup routines.
843  **/
844 static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
845 {
846 	struct e1000_phy_info *phy = &hw->phy;
847 	u32 data;
848 
849 	DEBUGFUNC("e1000_set_d0_lplu_state_82580");
850 
851 	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
852 
853 	if (active) {
854 		data |= E1000_82580_PM_D0_LPLU;
855 
856 		/* When LPLU is enabled, we should disable SmartSpeed */
857 		data &= ~E1000_82580_PM_SPD;
858 	} else {
859 		data &= ~E1000_82580_PM_D0_LPLU;
860 
861 		/*
862 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
863 		 * during Dx states where the power conservation is most
864 		 * important.  During driver activity we should enable
865 		 * SmartSpeed, so performance is maintained.
866 		 */
867 		if (phy->smart_speed == e1000_smart_speed_on)
868 			data |= E1000_82580_PM_SPD;
869 		else if (phy->smart_speed == e1000_smart_speed_off)
870 			data &= ~E1000_82580_PM_SPD;
871 	}
872 
873 	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
874 	return E1000_SUCCESS;
875 }
876 
877 /**
878  *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
879  *  @hw: pointer to the HW structure
880  *  @active: boolean used to enable/disable lplu
881  *
882  *  Success returns 0, Failure returns 1
883  *
884  *  The low power link up (lplu) state is set to the power management level D3
885  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
886  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
887  *  is used during Dx states where the power conservation is most important.
888  *  During driver activity, SmartSpeed should be enabled so performance is
889  *  maintained.
890  **/
891 s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
892 {
893 	struct e1000_phy_info *phy = &hw->phy;
894 	u32 data;
895 
896 	DEBUGFUNC("e1000_set_d3_lplu_state_82580");
897 
898 	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
899 
900 	if (!active) {
901 		data &= ~E1000_82580_PM_D3_LPLU;
902 		/*
903 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
904 		 * during Dx states where the power conservation is most
905 		 * important.  During driver activity we should enable
906 		 * SmartSpeed, so performance is maintained.
907 		 */
908 		if (phy->smart_speed == e1000_smart_speed_on)
909 			data |= E1000_82580_PM_SPD;
910 		else if (phy->smart_speed == e1000_smart_speed_off)
911 			data &= ~E1000_82580_PM_SPD;
912 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
913 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
914 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
915 		data |= E1000_82580_PM_D3_LPLU;
916 		/* When LPLU is enabled, we should disable SmartSpeed */
917 		data &= ~E1000_82580_PM_SPD;
918 	}
919 
920 	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
921 	return E1000_SUCCESS;
922 }
923 
924 /**
925  *  e1000_acquire_nvm_82575 - Request for access to EEPROM
926  *  @hw: pointer to the HW structure
927  *
928  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
929  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
930  *  Return successful if access grant bit set, else clear the request for
931  *  EEPROM access and return -E1000_ERR_NVM (-1).
932  **/
933 static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
934 {
935 	s32 ret_val = E1000_SUCCESS;
936 
937 	DEBUGFUNC("e1000_acquire_nvm_82575");
938 
939 	ret_val = e1000_acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
940 	if (ret_val)
941 		goto out;
942 
943 	/*
944 	 * Check if there is some access
945 	 * error this access may hook on
946 	 */
947 	if (hw->mac.type == e1000_i350) {
948 		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
949 		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
950 		    E1000_EECD_TIMEOUT)) {
951 			/* Clear all access error flags */
952 			E1000_WRITE_REG(hw, E1000_EECD, eecd |
953 					E1000_EECD_ERROR_CLR);
954 			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
955 		}
956 	}
957 
958 	if (hw->mac.type == e1000_82580) {
959 		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
960 		if (eecd & E1000_EECD_BLOCKED) {
961 			/* Clear access error flag */
962 			E1000_WRITE_REG(hw, E1000_EECD, eecd |
963 					E1000_EECD_BLOCKED);
964 			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
965 		}
966 	}
967 
968 	ret_val = e1000_acquire_nvm_generic(hw);
969 	if (ret_val)
970 		e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM);
971 
972 out:
973 	return ret_val;
974 }
975 
976 /**
977  *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
978  *  @hw: pointer to the HW structure
979  *
980  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
981  *  then release the semaphores acquired.
982  **/
983 static void e1000_release_nvm_82575(struct e1000_hw *hw)
984 {
985 	DEBUGFUNC("e1000_release_nvm_82575");
986 
987 	e1000_release_nvm_generic(hw);
988 
989 	e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM);
990 }
991 
992 /**
993  *  e1000_get_cfg_done_82575 - Read config done bit
994  *  @hw: pointer to the HW structure
995  *
996  *  Read the management control register for the config done bit for
997  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
998  *  to read the config done bit, so an error is *ONLY* logged and returns
999  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
1000  *  would not be able to be reset or change link.
1001  **/
1002 static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
1003 {
1004 	s32 timeout = PHY_CFG_TIMEOUT;
1005 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1006 
1007 	DEBUGFUNC("e1000_get_cfg_done_82575");
1008 
1009 	if (hw->bus.func == E1000_FUNC_1)
1010 		mask = E1000_NVM_CFG_DONE_PORT_1;
1011 	else if (hw->bus.func == E1000_FUNC_2)
1012 		mask = E1000_NVM_CFG_DONE_PORT_2;
1013 	else if (hw->bus.func == E1000_FUNC_3)
1014 		mask = E1000_NVM_CFG_DONE_PORT_3;
1015 	while (timeout) {
1016 		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
1017 			break;
1018 		msec_delay(1);
1019 		timeout--;
1020 	}
1021 	if (!timeout)
1022 		DEBUGOUT("MNG configuration cycle has not completed.\n");
1023 
1024 	/* If EEPROM is not marked present, init the PHY manually */
1025 	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
1026 	    (hw->phy.type == e1000_phy_igp_3))
1027 		e1000_phy_init_script_igp3(hw);
1028 
1029 	return E1000_SUCCESS;
1030 }
1031 
1032 /**
1033  *  e1000_get_link_up_info_82575 - Get link speed/duplex info
1034  *  @hw: pointer to the HW structure
1035  *  @speed: stores the current speed
1036  *  @duplex: stores the current duplex
1037  *
1038  *  This is a wrapper function, if using the serial gigabit media independent
1039  *  interface, use PCS to retrieve the link speed and duplex information.
1040  *  Otherwise, use the generic function to get the link speed and duplex info.
1041  **/
1042 static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1043 					u16 *duplex)
1044 {
1045 	s32 ret_val;
1046 
1047 	DEBUGFUNC("e1000_get_link_up_info_82575");
1048 
1049 	if (hw->phy.media_type != e1000_media_type_copper)
1050 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
1051 							       duplex);
1052 	else
1053 		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
1054 								    duplex);
1055 
1056 	return ret_val;
1057 }
1058 
1059 /**
1060  *  e1000_check_for_link_82575 - Check for link
1061  *  @hw: pointer to the HW structure
1062  *
1063  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1064  *  use the generic interface for determining link.
1065  **/
1066 static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
1067 {
1068 	s32 ret_val;
1069 	u16 speed, duplex;
1070 
1071 	DEBUGFUNC("e1000_check_for_link_82575");
1072 
1073 	if (hw->phy.media_type != e1000_media_type_copper) {
1074 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
1075 							       &duplex);
1076 		/*
1077 		 * Use this flag to determine if link needs to be checked or
1078 		 * not.  If we have link clear the flag so that we do not
1079 		 * continue to check for link.
1080 		 */
1081 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1082 
1083 		/*
1084 		 * Configure Flow Control now that Auto-Neg has completed.
1085 		 * First, we need to restore the desired flow control
1086 		 * settings because we may have had to re-autoneg with a
1087 		 * different link partner.
1088 		 */
1089 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1090 		if (ret_val)
1091 			DEBUGOUT("Error configuring flow control\n");
1092 	} else {
1093 		ret_val = e1000_check_for_copper_link_generic(hw);
1094 	}
1095 
1096 	return ret_val;
1097 }
1098 
1099 /**
1100  *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
1101  *  @hw: pointer to the HW structure
1102  *
1103  *  Poll the M88E1112 interfaces to see which interface achieved link.
1104  */
1105 static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
1106 {
1107 	struct e1000_phy_info *phy = &hw->phy;
1108 	s32 ret_val;
1109 	u16 data;
1110 	u8 port = 0;
1111 
1112 	DEBUGFUNC("e1000_check_for_link_media_swap");
1113 
1114 	/* Check for copper. */
1115 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1116 	if (ret_val)
1117 		return ret_val;
1118 
1119 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1120 	if (ret_val)
1121 		return ret_val;
1122 
1123 	if (data & E1000_M88E1112_STATUS_LINK)
1124 		port = E1000_MEDIA_PORT_COPPER;
1125 
1126 	/* Check for other. */
1127 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
1128 	if (ret_val)
1129 		return ret_val;
1130 
1131 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1132 	if (ret_val)
1133 		return ret_val;
1134 
1135 	if (data & E1000_M88E1112_STATUS_LINK)
1136 		port = E1000_MEDIA_PORT_OTHER;
1137 
1138 	/* Determine if a swap needs to happen. */
1139 	if (port && (hw->dev_spec._82575.media_port != port)) {
1140 		hw->dev_spec._82575.media_port = port;
1141 		hw->dev_spec._82575.media_changed = true;
1142 	}
1143 
1144 	if (port == E1000_MEDIA_PORT_COPPER) {
1145 		/* reset page to 0 */
1146 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1147 		if (ret_val)
1148 			return ret_val;
1149 		e1000_check_for_link_82575(hw);
1150 	} else {
1151 		e1000_check_for_link_82575(hw);
1152 		/* reset page to 0 */
1153 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1154 		if (ret_val)
1155 			return ret_val;
1156 	}
1157 
1158 	return E1000_SUCCESS;
1159 }
1160 
1161 /**
1162  *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1163  *  @hw: pointer to the HW structure
1164  **/
1165 static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
1166 {
1167 	u32 reg;
1168 
1169 	DEBUGFUNC("e1000_power_up_serdes_link_82575");
1170 
1171 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1172 	    !e1000_sgmii_active_82575(hw))
1173 		return;
1174 
1175 	/* Enable PCS to turn on link */
1176 	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1177 	reg |= E1000_PCS_CFG_PCS_EN;
1178 	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1179 
1180 	/* Power up the laser */
1181 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1182 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1183 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1184 
1185 	/* flush the write to verify completion */
1186 	E1000_WRITE_FLUSH(hw);
1187 	msec_delay(1);
1188 }
1189 
1190 /**
1191  *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1192  *  @hw: pointer to the HW structure
1193  *  @speed: stores the current speed
1194  *  @duplex: stores the current duplex
1195  *
1196  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1197  *  duplex, then store the values in the pointers provided.
1198  **/
1199 static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
1200 						u16 *speed, u16 *duplex)
1201 {
1202 	struct e1000_mac_info *mac = &hw->mac;
1203 	u32 pcs;
1204 	u32 status;
1205 
1206 	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
1207 
1208 	/*
1209 	 * Read the PCS Status register for link state. For non-copper mode,
1210 	 * the status register is not accurate. The PCS status register is
1211 	 * used instead.
1212 	 */
1213 	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
1214 
1215 	/*
1216 	 * The link up bit determines when link is up on autoneg.
1217 	 */
1218 	if (pcs & E1000_PCS_LSTS_LINK_OK) {
1219 		mac->serdes_has_link = true;
1220 
1221 		/* Detect and store PCS speed */
1222 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1223 			*speed = SPEED_1000;
1224 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1225 			*speed = SPEED_100;
1226 		else
1227 			*speed = SPEED_10;
1228 
1229 		/* Detect and store PCS duplex */
1230 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1231 			*duplex = FULL_DUPLEX;
1232 		else
1233 			*duplex = HALF_DUPLEX;
1234 
1235 		/* Check if it is an I354 2.5Gb backplane connection. */
1236 		if (mac->type == e1000_i354) {
1237 			status = E1000_READ_REG(hw, E1000_STATUS);
1238 			if ((status & E1000_STATUS_2P5_SKU) &&
1239 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1240 				*speed = SPEED_2500;
1241 				*duplex = FULL_DUPLEX;
1242 				DEBUGOUT("2500 Mbs, ");
1243 				DEBUGOUT("Full Duplex\n");
1244 			}
1245 		}
1246 
1247 	} else {
1248 		mac->serdes_has_link = false;
1249 		*speed = 0;
1250 		*duplex = 0;
1251 	}
1252 
1253 	return E1000_SUCCESS;
1254 }
1255 
1256 /**
1257  *  e1000_shutdown_serdes_link_82575 - Remove link during power down
1258  *  @hw: pointer to the HW structure
1259  *
1260  *  In the case of serdes shut down sfp and PCS on driver unload
1261  *  when management pass thru is not enabled.
1262  **/
1263 void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
1264 {
1265 	u32 reg;
1266 
1267 	DEBUGFUNC("e1000_shutdown_serdes_link_82575");
1268 
1269 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1270 	    !e1000_sgmii_active_82575(hw))
1271 		return;
1272 
1273 	if (!e1000_enable_mng_pass_thru(hw)) {
1274 		/* Disable PCS to turn off link */
1275 		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1276 		reg &= ~E1000_PCS_CFG_PCS_EN;
1277 		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1278 
1279 		/* shutdown the laser */
1280 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1281 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1282 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1283 
1284 		/* flush the write to verify completion */
1285 		E1000_WRITE_FLUSH(hw);
1286 		msec_delay(1);
1287 	}
1288 
1289 	return;
1290 }
1291 
1292 /**
1293  *  e1000_reset_hw_82575 - Reset hardware
1294  *  @hw: pointer to the HW structure
1295  *
1296  *  This resets the hardware into a known state.
1297  **/
1298 static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
1299 {
1300 	u32 ctrl;
1301 	s32 ret_val;
1302 
1303 	DEBUGFUNC("e1000_reset_hw_82575");
1304 
1305 	/*
1306 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1307 	 * on the last TLP read/write transaction when MAC is reset.
1308 	 */
1309 	ret_val = e1000_disable_pcie_master_generic(hw);
1310 	if (ret_val)
1311 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1312 
1313 	/* set the completion timeout for interface */
1314 	ret_val = e1000_set_pcie_completion_timeout(hw);
1315 	if (ret_val)
1316 		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
1317 
1318 	DEBUGOUT("Masking off all interrupts\n");
1319 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1320 
1321 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1322 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1323 	E1000_WRITE_FLUSH(hw);
1324 
1325 	msec_delay(10);
1326 
1327 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1328 
1329 	DEBUGOUT("Issuing a global reset to MAC\n");
1330 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1331 
1332 	ret_val = e1000_get_auto_rd_done_generic(hw);
1333 	if (ret_val) {
1334 		/*
1335 		 * When auto config read does not complete, do not
1336 		 * return with an error. This can happen in situations
1337 		 * where there is no eeprom and prevents getting link.
1338 		 */
1339 		DEBUGOUT("Auto Read Done did not complete\n");
1340 	}
1341 
1342 	/* If EEPROM is not present, run manual init scripts */
1343 	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
1344 		e1000_reset_init_script_82575(hw);
1345 
1346 	/* Clear any pending interrupt events. */
1347 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1348 	E1000_READ_REG(hw, E1000_ICR);
1349 
1350 	/* Install any alternate MAC address into RAR0 */
1351 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1352 
1353 	return ret_val;
1354 }
1355 
1356 /**
1357  * e1000_init_hw_82575 - Initialize hardware
1358  * @hw: pointer to the HW structure
1359  *
1360  * This inits the hardware readying it for operation.
1361  **/
1362 static s32 e1000_init_hw_82575(struct e1000_hw *hw)
1363 {
1364 	struct e1000_mac_info *mac = &hw->mac;
1365 	s32 ret_val;
1366 
1367 	DEBUGFUNC("e1000_init_hw_82575");
1368 
1369 	/* Initialize identification LED */
1370 	ret_val = mac->ops.id_led_init(hw);
1371 	if (ret_val) {
1372 		DEBUGOUT("Error initializing identification LED\n");
1373 		/* This is not fatal and we should not stop init due to this */
1374 	}
1375 
1376 	/* Disabling VLAN filtering */
1377 	DEBUGOUT("Initializing the IEEE VLAN\n");
1378 	mac->ops.clear_vfta(hw);
1379 
1380 	ret_val = e1000_init_hw_base(hw);
1381 
1382 	/* Set the default MTU size */
1383 	hw->dev_spec._82575.mtu = 1500;
1384 
1385 	/* Clear all of the statistics registers (clear on read).  It is
1386 	 * important that we do this after we have tried to establish link
1387 	 * because the symbol error count will increment wildly if there
1388 	 * is no link.
1389 	 */
1390 	e1000_clear_hw_cntrs_82575(hw);
1391 
1392 	return ret_val;
1393 }
1394 /**
1395  *  e1000_setup_copper_link_82575 - Configure copper link settings
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1399  *  for link, once link is established calls to configure collision distance
1400  *  and flow control are called.
1401  **/
1402 static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
1403 {
1404 	u32 phpm_reg;
1405 	u32 ctrl;
1406 	s32 ret_val;
1407 
1408 	DEBUGFUNC("e1000_setup_copper_link_82575");
1409 
1410 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1411 	ctrl |= E1000_CTRL_SLU;
1412 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1413 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1414 
1415 	/* Clear Go Link Disconnect bit on supported devices */
1416 	switch (hw->mac.type) {
1417 	case e1000_82580:
1418 	case e1000_i350:
1419 	case e1000_i210:
1420 	case e1000_i211:
1421 		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1422 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1423 		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1424 		break;
1425 	default:
1426 		break;
1427 	}
1428 
1429 	ret_val = e1000_setup_serdes_link_82575(hw);
1430 	if (ret_val)
1431 		goto out;
1432 
1433 	if (e1000_sgmii_active_82575(hw)) {
1434 		/* allow time for SFP cage time to power up phy */
1435 		msec_delay(300);
1436 
1437 		ret_val = hw->phy.ops.reset(hw);
1438 		if (ret_val) {
1439 			DEBUGOUT("Error resetting the PHY.\n");
1440 			goto out;
1441 		}
1442 	}
1443 	switch (hw->phy.type) {
1444 	case e1000_phy_i210:
1445 		/* FALLTHROUGH */
1446 	case e1000_phy_m88:
1447 		switch (hw->phy.id) {
1448 		case I347AT4_E_PHY_ID:
1449 			/* FALLTHROUGH */
1450 		case M88E1112_E_PHY_ID:
1451 			/* FALLTHROUGH */
1452 		case M88E1340M_E_PHY_ID:
1453 			/* FALLTHROUGH */
1454 		case M88E1543_E_PHY_ID:
1455 			/* FALLTHROUGH */
1456 		case M88E1512_E_PHY_ID:
1457 			/* FALLTHROUGH */
1458 		case I210_I_PHY_ID:
1459 			ret_val = e1000_copper_link_setup_m88_gen2(hw);
1460 			break;
1461 		default:
1462 			ret_val = e1000_copper_link_setup_m88(hw);
1463 			break;
1464 		}
1465 		break;
1466 	case e1000_phy_igp_3:
1467 		ret_val = e1000_copper_link_setup_igp(hw);
1468 		break;
1469 	case e1000_phy_82580:
1470 		ret_val = e1000_copper_link_setup_82577(hw);
1471 		break;
1472 	default:
1473 		ret_val = -E1000_ERR_PHY;
1474 		break;
1475 	}
1476 
1477 	if (ret_val)
1478 		goto out;
1479 
1480 	ret_val = e1000_setup_copper_link_generic(hw);
1481 out:
1482 	return ret_val;
1483 }
1484 
1485 /**
1486  *  e1000_setup_serdes_link_82575 - Setup link for serdes
1487  *  @hw: pointer to the HW structure
1488  *
1489  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1490  *  used on copper connections where the serialized gigabit media independent
1491  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1492  *  for auto-negotiation or forces speed/duplex.
1493  **/
1494 static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
1495 {
1496 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1497 	bool pcs_autoneg;
1498 	s32 ret_val = E1000_SUCCESS;
1499 	u16 data;
1500 
1501 	DEBUGFUNC("e1000_setup_serdes_link_82575");
1502 
1503 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1504 	    !e1000_sgmii_active_82575(hw))
1505 		return ret_val;
1506 
1507 	/*
1508 	 * On the 82575, SerDes loopback mode persists until it is
1509 	 * explicitly turned off or a power cycle is performed.  A read to
1510 	 * the register does not indicate its status.  Therefore, we ensure
1511 	 * loopback mode is disabled during initialization.
1512 	 */
1513 	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1514 
1515 	/* power on the sfp cage if present */
1516 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1517 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1518 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1519 
1520 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
1521 	ctrl_reg |= E1000_CTRL_SLU;
1522 
1523 	/* set both sw defined pins on 82575/82576*/
1524 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
1525 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1526 
1527 	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1528 
1529 	/* default pcs_autoneg to the same setting as mac autoneg */
1530 	pcs_autoneg = hw->mac.autoneg;
1531 
1532 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1533 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1534 		/* sgmii mode lets the phy handle forcing speed/duplex */
1535 		pcs_autoneg = true;
1536 		/* autoneg time out should be disabled for SGMII mode */
1537 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1538 		break;
1539 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1540 		/* disable PCS autoneg and support parallel detect only */
1541 		pcs_autoneg = false;
1542 		/* FALLTHROUGH */
1543 	default:
1544 		if (hw->mac.type == e1000_82575 ||
1545 		    hw->mac.type == e1000_82576) {
1546 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1547 			if (ret_val) {
1548 				DEBUGOUT("NVM Read Error\n");
1549 				return ret_val;
1550 			}
1551 
1552 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1553 				pcs_autoneg = false;
1554 		}
1555 
1556 		/*
1557 		 * non-SGMII modes only supports a speed of 1000/Full for the
1558 		 * link so it is best to just force the MAC and let the pcs
1559 		 * link either autoneg or be forced to 1000/Full
1560 		 */
1561 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1562 			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1563 
1564 		/* set speed of 1000/Full if speed/duplex is forced */
1565 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1566 		break;
1567 	}
1568 
1569 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
1570 
1571 	/*
1572 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1573 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1574 	 * mode that will be compatible with older link partners and switches.
1575 	 * However, both are supported by the hardware and some drivers/tools.
1576 	 */
1577 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1578 		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1579 
1580 	if (pcs_autoneg) {
1581 		/* Set PCS register for autoneg */
1582 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1583 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1584 
1585 		/* Disable force flow control for autoneg */
1586 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1587 
1588 		/* Configure flow control advertisement for autoneg */
1589 		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
1590 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1591 
1592 		switch (hw->fc.requested_mode) {
1593 		case e1000_fc_full:
1594 		case e1000_fc_rx_pause:
1595 			anadv_reg |= E1000_TXCW_ASM_DIR;
1596 			anadv_reg |= E1000_TXCW_PAUSE;
1597 			break;
1598 		case e1000_fc_tx_pause:
1599 			anadv_reg |= E1000_TXCW_ASM_DIR;
1600 			break;
1601 		default:
1602 			break;
1603 		}
1604 
1605 		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
1606 
1607 		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1608 	} else {
1609 		/* Set PCS register for forced link */
1610 		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
1611 
1612 		/* Force flow control for forced link */
1613 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1614 
1615 		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1616 	}
1617 
1618 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
1619 
1620 	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
1621 		e1000_force_mac_fc_generic(hw);
1622 
1623 	return ret_val;
1624 }
1625 
1626 /**
1627  *  e1000_get_media_type_82575 - derives current media type.
1628  *  @hw: pointer to the HW structure
1629  *
1630  *  The media type is chosen reflecting few settings.
1631  *  The following are taken into account:
1632  *  - link mode set in the current port Init Control Word #3
1633  *  - current link mode settings in CSR register
1634  *  - MDIO vs. I2C PHY control interface chosen
1635  *  - SFP module media type
1636  **/
1637 static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
1638 {
1639 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1640 	s32 ret_val = E1000_SUCCESS;
1641 	u32 ctrl_ext = 0;
1642 	u32 link_mode = 0;
1643 
1644 	/* Set internal phy as default */
1645 	dev_spec->sgmii_active = false;
1646 	dev_spec->module_plugged = false;
1647 
1648 	/* Get CSR setting */
1649 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1650 
1651 	/* extract link mode setting */
1652 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
1653 
1654 	switch (link_mode) {
1655 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1656 		hw->phy.media_type = e1000_media_type_internal_serdes;
1657 		break;
1658 	case E1000_CTRL_EXT_LINK_MODE_GMII:
1659 		hw->phy.media_type = e1000_media_type_copper;
1660 		break;
1661 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1662 		/* Get phy control interface type set (MDIO vs. I2C)*/
1663 		if (e1000_sgmii_uses_mdio_82575(hw)) {
1664 			hw->phy.media_type = e1000_media_type_copper;
1665 			dev_spec->sgmii_active = true;
1666 			break;
1667 		}
1668 		/* fall through for I2C based SGMII */
1669 		/* FALLTHROUGH */
1670 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
1671 		/* read media type from SFP EEPROM */
1672 		ret_val = e1000_set_sfp_media_type_82575(hw);
1673 		if ((ret_val != E1000_SUCCESS) ||
1674 		    (hw->phy.media_type == e1000_media_type_unknown)) {
1675 			/*
1676 			 * If media type was not identified then return media
1677 			 * type defined by the CTRL_EXT settings.
1678 			 */
1679 			hw->phy.media_type = e1000_media_type_internal_serdes;
1680 
1681 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
1682 				hw->phy.media_type = e1000_media_type_copper;
1683 				dev_spec->sgmii_active = true;
1684 			}
1685 
1686 			break;
1687 		}
1688 
1689 		/* do not change link mode for 100BaseFX */
1690 		if (dev_spec->eth_flags.e100_base_fx)
1691 			break;
1692 
1693 		/* change current link mode setting */
1694 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
1695 
1696 		if (hw->phy.media_type == e1000_media_type_copper)
1697 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
1698 		else
1699 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1700 
1701 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1702 
1703 		break;
1704 	}
1705 
1706 	return ret_val;
1707 }
1708 
1709 /**
1710  *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
1711  *  @hw: pointer to the HW structure
1712  *
1713  *  The media type is chosen based on SFP module.
1714  *  compatibility flags retrieved from SFP ID EEPROM.
1715  **/
1716 static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
1717 {
1718 	s32 ret_val = E1000_ERR_CONFIG;
1719 	u32 ctrl_ext = 0;
1720 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1721 	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
1722 	u8 tranceiver_type = 0;
1723 	s32 timeout = 3;
1724 
1725 	/* Turn I2C interface ON and power on sfp cage */
1726 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1727 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1728 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
1729 
1730 	E1000_WRITE_FLUSH(hw);
1731 
1732 	/* Read SFP module data */
1733 	while (timeout) {
1734 		ret_val = e1000_read_sfp_data_byte(hw,
1735 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
1736 			&tranceiver_type);
1737 		if (ret_val == E1000_SUCCESS)
1738 			break;
1739 		msec_delay(100);
1740 		timeout--;
1741 	}
1742 	if (ret_val != E1000_SUCCESS)
1743 		goto out;
1744 
1745 	ret_val = e1000_read_sfp_data_byte(hw,
1746 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
1747 			(u8 *)eth_flags);
1748 	if (ret_val != E1000_SUCCESS)
1749 		goto out;
1750 
1751 	/* Check if there is some SFP module plugged and powered */
1752 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
1753 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
1754 		dev_spec->module_plugged = true;
1755 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
1756 			hw->phy.media_type = e1000_media_type_internal_serdes;
1757 		} else if (eth_flags->e100_base_fx) {
1758 			dev_spec->sgmii_active = true;
1759 			hw->phy.media_type = e1000_media_type_internal_serdes;
1760 		} else if (eth_flags->e1000_base_t) {
1761 			dev_spec->sgmii_active = true;
1762 			hw->phy.media_type = e1000_media_type_copper;
1763 		} else {
1764 			hw->phy.media_type = e1000_media_type_unknown;
1765 			DEBUGOUT("PHY module has not been recognized\n");
1766 			goto out;
1767 		}
1768 	} else {
1769 		hw->phy.media_type = e1000_media_type_unknown;
1770 	}
1771 	ret_val = E1000_SUCCESS;
1772 out:
1773 	/* Restore I2C interface setting */
1774 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1775 	return ret_val;
1776 }
1777 
1778 /**
1779  *  e1000_valid_led_default_82575 - Verify a valid default LED config
1780  *  @hw: pointer to the HW structure
1781  *  @data: pointer to the NVM (EEPROM)
1782  *
1783  *  Read the EEPROM for the current default LED configuration.  If the
1784  *  LED configuration is not valid, set to a valid LED configuration.
1785  **/
1786 static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
1787 {
1788 	s32 ret_val;
1789 
1790 	DEBUGFUNC("e1000_valid_led_default_82575");
1791 
1792 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1793 	if (ret_val) {
1794 		DEBUGOUT("NVM Read Error\n");
1795 		goto out;
1796 	}
1797 
1798 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1799 		switch (hw->phy.media_type) {
1800 		case e1000_media_type_internal_serdes:
1801 			*data = ID_LED_DEFAULT_82575_SERDES;
1802 			break;
1803 		case e1000_media_type_copper:
1804 		default:
1805 			*data = ID_LED_DEFAULT;
1806 			break;
1807 		}
1808 	}
1809 out:
1810 	return ret_val;
1811 }
1812 
1813 /**
1814  *  e1000_sgmii_active_82575 - Return sgmii state
1815  *  @hw: pointer to the HW structure
1816  *
1817  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1818  *  which can be enabled for use in the embedded applications.  Simply
1819  *  return the current state of the sgmii interface.
1820  **/
1821 static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
1822 {
1823 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1824 	return dev_spec->sgmii_active;
1825 }
1826 
1827 /**
1828  *  e1000_reset_init_script_82575 - Inits HW defaults after reset
1829  *  @hw: pointer to the HW structure
1830  *
1831  *  Inits recommended HW defaults after a reset when there is no EEPROM
1832  *  detected. This is only for the 82575.
1833  **/
1834 s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
1835 {
1836 	DEBUGFUNC("e1000_reset_init_script_82575");
1837 
1838 	if (hw->mac.type == e1000_82575) {
1839 		DEBUGOUT("Running reset init script for 82575\n");
1840 		/* SerDes configuration via SERDESCTRL */
1841 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
1842 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
1843 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
1844 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
1845 
1846 		/* CCM configuration via CCMCTL register */
1847 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
1848 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
1849 
1850 		/* PCIe lanes configuration */
1851 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
1852 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
1853 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
1854 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
1855 
1856 		/* PCIe PLL Configuration */
1857 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
1858 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
1859 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
1860 	}
1861 
1862 	return E1000_SUCCESS;
1863 }
1864 
1865 /**
1866  *  e1000_read_mac_addr_82575 - Read device MAC address
1867  *  @hw: pointer to the HW structure
1868  **/
1869 static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
1870 {
1871 	s32 ret_val;
1872 
1873 	DEBUGFUNC("e1000_read_mac_addr_82575");
1874 
1875 	/*
1876 	 * If there's an alternate MAC address place it in RAR0
1877 	 * so that it will override the Si installed default perm
1878 	 * address.
1879 	 */
1880 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1881 	if (ret_val)
1882 		goto out;
1883 
1884 	ret_val = e1000_read_mac_addr_generic(hw);
1885 
1886 out:
1887 	return ret_val;
1888 }
1889 
1890 /**
1891  *  e1000_config_collision_dist_82575 - Configure collision distance
1892  *  @hw: pointer to the HW structure
1893  *
1894  *  Configures the collision distance to the default value and is used
1895  *  during link setup.
1896  **/
1897 static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
1898 {
1899 	u32 tctl_ext;
1900 
1901 	DEBUGFUNC("e1000_config_collision_dist_82575");
1902 
1903 	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
1904 
1905 	tctl_ext &= ~E1000_TCTL_EXT_COLD;
1906 	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
1907 
1908 	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
1909 	E1000_WRITE_FLUSH(hw);
1910 }
1911 
1912 /**
1913  *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1914  *  @hw: pointer to the HW structure
1915  *
1916  *  Clears the hardware counters by reading the counter registers.
1917  **/
1918 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
1919 {
1920 	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
1921 
1922 	e1000_clear_hw_cntrs_base_generic(hw);
1923 
1924 	E1000_READ_REG(hw, E1000_PRC64);
1925 	E1000_READ_REG(hw, E1000_PRC127);
1926 	E1000_READ_REG(hw, E1000_PRC255);
1927 	E1000_READ_REG(hw, E1000_PRC511);
1928 	E1000_READ_REG(hw, E1000_PRC1023);
1929 	E1000_READ_REG(hw, E1000_PRC1522);
1930 	E1000_READ_REG(hw, E1000_PTC64);
1931 	E1000_READ_REG(hw, E1000_PTC127);
1932 	E1000_READ_REG(hw, E1000_PTC255);
1933 	E1000_READ_REG(hw, E1000_PTC511);
1934 	E1000_READ_REG(hw, E1000_PTC1023);
1935 	E1000_READ_REG(hw, E1000_PTC1522);
1936 
1937 	E1000_READ_REG(hw, E1000_ALGNERRC);
1938 	E1000_READ_REG(hw, E1000_RXERRC);
1939 	E1000_READ_REG(hw, E1000_TNCRS);
1940 	E1000_READ_REG(hw, E1000_CEXTERR);
1941 	E1000_READ_REG(hw, E1000_TSCTC);
1942 	E1000_READ_REG(hw, E1000_TSCTFC);
1943 
1944 	E1000_READ_REG(hw, E1000_MGTPRC);
1945 	E1000_READ_REG(hw, E1000_MGTPDC);
1946 	E1000_READ_REG(hw, E1000_MGTPTC);
1947 
1948 	E1000_READ_REG(hw, E1000_IAC);
1949 	E1000_READ_REG(hw, E1000_ICRXOC);
1950 
1951 	E1000_READ_REG(hw, E1000_ICRXPTC);
1952 	E1000_READ_REG(hw, E1000_ICRXATC);
1953 	E1000_READ_REG(hw, E1000_ICTXPTC);
1954 	E1000_READ_REG(hw, E1000_ICTXATC);
1955 	E1000_READ_REG(hw, E1000_ICTXQEC);
1956 	E1000_READ_REG(hw, E1000_ICTXQMTC);
1957 	E1000_READ_REG(hw, E1000_ICRXDMTC);
1958 
1959 	E1000_READ_REG(hw, E1000_CBTMPC);
1960 	E1000_READ_REG(hw, E1000_HTDPMC);
1961 	E1000_READ_REG(hw, E1000_CBRMPC);
1962 	E1000_READ_REG(hw, E1000_RPTHC);
1963 	E1000_READ_REG(hw, E1000_HGPTC);
1964 	E1000_READ_REG(hw, E1000_HTCBDPC);
1965 	E1000_READ_REG(hw, E1000_HGORCL);
1966 	E1000_READ_REG(hw, E1000_HGORCH);
1967 	E1000_READ_REG(hw, E1000_HGOTCL);
1968 	E1000_READ_REG(hw, E1000_HGOTCH);
1969 	E1000_READ_REG(hw, E1000_LENERRS);
1970 
1971 	/* This register should not be read in copper configurations */
1972 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
1973 	    e1000_sgmii_active_82575(hw))
1974 		E1000_READ_REG(hw, E1000_SCVPC);
1975 }
1976 
1977 /**
1978  *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
1979  *  @hw: pointer to the HW structure
1980  *
1981  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1982  *  however the hardware default for these parts is 500us to 1ms which is less
1983  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1984  *  increase the value to either 10ms to 200ms for capability version 1 config,
1985  *  or 16ms to 55ms for version 2.
1986  **/
1987 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
1988 {
1989 	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
1990 	s32 ret_val = E1000_SUCCESS;
1991 	u16 pcie_devctl2;
1992 
1993 	/* only take action if timeout value is defaulted to 0 */
1994 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1995 		goto out;
1996 
1997 	/*
1998 	 * if capababilities version is type 1 we can write the
1999 	 * timeout of 10ms to 200ms through the GCR register
2000 	 */
2001 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2002 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2003 		goto out;
2004 	}
2005 
2006 	/*
2007 	 * for version 2 capabilities we need to write the config space
2008 	 * directly in order to set the completion timeout value for
2009 	 * 16ms to 55ms
2010 	 */
2011 	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2012 					  &pcie_devctl2);
2013 	if (ret_val)
2014 		goto out;
2015 
2016 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2017 
2018 	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2019 					   &pcie_devctl2);
2020 out:
2021 	/* disable completion timeout resend */
2022 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2023 
2024 	E1000_WRITE_REG(hw, E1000_GCR, gcr);
2025 	return ret_val;
2026 }
2027 
2028 /**
2029  *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2030  *  @hw: pointer to the hardware struct
2031  *  @enable: state to enter, either enabled or disabled
2032  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2033  *
2034  *  enables/disables L2 switch anti-spoofing functionality.
2035  **/
2036 void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2037 {
2038 	u32 reg_val, reg_offset;
2039 
2040 	switch (hw->mac.type) {
2041 	case e1000_82576:
2042 		reg_offset = E1000_DTXSWC;
2043 		break;
2044 	case e1000_i350:
2045 	case e1000_i354:
2046 		reg_offset = E1000_TXSWC;
2047 		break;
2048 	default:
2049 		return;
2050 	}
2051 
2052 	reg_val = E1000_READ_REG(hw, reg_offset);
2053 	if (enable) {
2054 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2055 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2056 		/* The PF can spoof - it has to in order to
2057 		 * support emulation mode NICs
2058 		 */
2059 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2060 	} else {
2061 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2062 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2063 	}
2064 	E1000_WRITE_REG(hw, reg_offset, reg_val);
2065 }
2066 
2067 /**
2068  *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
2069  *  @hw: pointer to the hardware struct
2070  *  @enable: state to enter, either enabled or disabled
2071  *
2072  *  enables/disables L2 switch loopback functionality.
2073  **/
2074 void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2075 {
2076 	u32 dtxswc;
2077 
2078 	switch (hw->mac.type) {
2079 	case e1000_82576:
2080 		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
2081 		if (enable)
2082 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2083 		else
2084 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2085 		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
2086 		break;
2087 	case e1000_i350:
2088 	case e1000_i354:
2089 		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
2090 		if (enable)
2091 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2092 		else
2093 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2094 		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
2095 		break;
2096 	default:
2097 		/* Currently no other hardware supports loopback */
2098 		break;
2099 	}
2100 
2101 
2102 }
2103 
2104 /**
2105  *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
2106  *  @hw: pointer to the hardware struct
2107  *  @enable: state to enter, either enabled or disabled
2108  *
2109  *  enables/disables replication of packets across multiple pools.
2110  **/
2111 void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2112 {
2113 	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2114 
2115 	if (enable)
2116 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2117 	else
2118 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2119 
2120 	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2121 }
2122 
2123 /**
2124  *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
2125  *  @hw: pointer to the HW structure
2126  *  @offset: register offset to be read
2127  *  @data: pointer to the read data
2128  *
2129  *  Reads the MDI control register in the PHY at offset and stores the
2130  *  information read to data.
2131  **/
2132 static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2133 {
2134 	s32 ret_val;
2135 
2136 	DEBUGFUNC("e1000_read_phy_reg_82580");
2137 
2138 	ret_val = hw->phy.ops.acquire(hw);
2139 	if (ret_val)
2140 		goto out;
2141 
2142 	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
2143 
2144 	hw->phy.ops.release(hw);
2145 
2146 out:
2147 	return ret_val;
2148 }
2149 
2150 /**
2151  *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
2152  *  @hw: pointer to the HW structure
2153  *  @offset: register offset to write to
2154  *  @data: data to write to register at offset
2155  *
2156  *  Writes data to MDI control register in the PHY at offset.
2157  **/
2158 static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2159 {
2160 	s32 ret_val;
2161 
2162 	DEBUGFUNC("e1000_write_phy_reg_82580");
2163 
2164 	ret_val = hw->phy.ops.acquire(hw);
2165 	if (ret_val)
2166 		goto out;
2167 
2168 	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
2169 
2170 	hw->phy.ops.release(hw);
2171 
2172 out:
2173 	return ret_val;
2174 }
2175 
2176 /**
2177  *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2178  *  @hw: pointer to the HW structure
2179  *
2180  *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2181  *  the values found in the EEPROM.  This addresses an issue in which these
2182  *  bits are not restored from EEPROM after reset.
2183  **/
2184 static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
2185 {
2186 	s32 ret_val = E1000_SUCCESS;
2187 	u32 mdicnfg;
2188 	u16 nvm_data = 0;
2189 
2190 	DEBUGFUNC("e1000_reset_mdicnfg_82580");
2191 
2192 	if (hw->mac.type != e1000_82580)
2193 		goto out;
2194 	if (!e1000_sgmii_active_82575(hw))
2195 		goto out;
2196 
2197 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2198 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2199 				   &nvm_data);
2200 	if (ret_val) {
2201 		DEBUGOUT("NVM Read Error\n");
2202 		goto out;
2203 	}
2204 
2205 	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
2206 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2207 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2208 	if (nvm_data & NVM_WORD24_COM_MDIO)
2209 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2210 	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
2211 out:
2212 	return ret_val;
2213 }
2214 
2215 /**
2216  *  e1000_reset_hw_82580 - Reset hardware
2217  *  @hw: pointer to the HW structure
2218  *
2219  *  This resets function or entire device (all ports, etc.)
2220  *  to a known state.
2221  **/
2222 static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
2223 {
2224 	s32 ret_val = E1000_SUCCESS;
2225 	/* BH SW mailbox bit in SW_FW_SYNC */
2226 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2227 	u32 ctrl;
2228 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2229 
2230 	DEBUGFUNC("e1000_reset_hw_82580");
2231 
2232 	hw->dev_spec._82575.global_device_reset = false;
2233 
2234 	/* 82580 does not reliably do global_device_reset due to hw errata */
2235 	if (hw->mac.type == e1000_82580)
2236 		global_device_reset = false;
2237 
2238 	/* Get current control state. */
2239 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2240 
2241 	/*
2242 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2243 	 * on the last TLP read/write transaction when MAC is reset.
2244 	 */
2245 	ret_val = e1000_disable_pcie_master_generic(hw);
2246 	if (ret_val)
2247 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
2248 
2249 	DEBUGOUT("Masking off all interrupts\n");
2250 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2251 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
2252 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
2253 	E1000_WRITE_FLUSH(hw);
2254 
2255 	msec_delay(10);
2256 
2257 	/* Determine whether or not a global dev reset is requested */
2258 	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
2259 	    swmbsw_mask))
2260 			global_device_reset = false;
2261 
2262 	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
2263 	    E1000_STAT_DEV_RST_SET))
2264 		ctrl |= E1000_CTRL_DEV_RST;
2265 	else
2266 		ctrl |= E1000_CTRL_RST;
2267 
2268 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2269 
2270 	switch (hw->device_id) {
2271 	case E1000_DEV_ID_DH89XXCC_SGMII:
2272 		break;
2273 	default:
2274 		E1000_WRITE_FLUSH(hw);
2275 		break;
2276 	}
2277 
2278 	/* Add delay to insure DEV_RST or RST has time to complete */
2279 	msec_delay(5);
2280 
2281 	ret_val = e1000_get_auto_rd_done_generic(hw);
2282 	if (ret_val) {
2283 		/*
2284 		 * When auto config read does not complete, do not
2285 		 * return with an error. This can happen in situations
2286 		 * where there is no eeprom and prevents getting link.
2287 		 */
2288 		DEBUGOUT("Auto Read Done did not complete\n");
2289 	}
2290 
2291 	/* clear global device reset status bit */
2292 	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
2293 
2294 	/* Clear any pending interrupt events. */
2295 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2296 	E1000_READ_REG(hw, E1000_ICR);
2297 
2298 	ret_val = e1000_reset_mdicnfg_82580(hw);
2299 	if (ret_val)
2300 		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
2301 
2302 	/* Install any alternate MAC address into RAR0 */
2303 	ret_val = e1000_check_alt_mac_addr_generic(hw);
2304 
2305 	/* Release semaphore */
2306 	if (global_device_reset)
2307 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2308 
2309 	return ret_val;
2310 }
2311 
2312 /**
2313  *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
2314  *  @data: data received by reading RXPBS register
2315  *
2316  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2317  *  This function converts the retrieved value into the correct table value
2318  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2319  *  0x0 36  72 144   1   2   4   8  16
2320  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2321  */
2322 u16 e1000_rxpbs_adjust_82580(u32 data)
2323 {
2324 	u16 ret_val = 0;
2325 
2326 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2327 		ret_val = e1000_82580_rxpbs_table[data];
2328 
2329 	return ret_val;
2330 }
2331 
2332 /**
2333  *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
2334  *  checksum
2335  *  @hw: pointer to the HW structure
2336  *  @offset: offset in words of the checksum protected region
2337  *
2338  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2339  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2340  **/
2341 s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2342 {
2343 	s32 ret_val = E1000_SUCCESS;
2344 	u16 checksum = 0;
2345 	u16 i, nvm_data;
2346 
2347 	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
2348 
2349 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2350 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2351 		if (ret_val) {
2352 			DEBUGOUT("NVM Read Error\n");
2353 			goto out;
2354 		}
2355 		checksum += nvm_data;
2356 	}
2357 
2358 	if (checksum != (u16) NVM_SUM) {
2359 		DEBUGOUT("NVM Checksum Invalid\n");
2360 		ret_val = -E1000_ERR_NVM;
2361 		goto out;
2362 	}
2363 
2364 out:
2365 	return ret_val;
2366 }
2367 
2368 /**
2369  *  e1000_update_nvm_checksum_with_offset - Update EEPROM
2370  *  checksum
2371  *  @hw: pointer to the HW structure
2372  *  @offset: offset in words of the checksum protected region
2373  *
2374  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2375  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2376  *  value to the EEPROM.
2377  **/
2378 s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2379 {
2380 	s32 ret_val;
2381 	u16 checksum = 0;
2382 	u16 i, nvm_data;
2383 
2384 	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
2385 
2386 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2387 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2388 		if (ret_val) {
2389 			DEBUGOUT("NVM Read Error while updating checksum.\n");
2390 			goto out;
2391 		}
2392 		checksum += nvm_data;
2393 	}
2394 	checksum = (u16) NVM_SUM - checksum;
2395 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2396 				    &checksum);
2397 	if (ret_val)
2398 		DEBUGOUT("NVM Write Error while updating checksum.\n");
2399 
2400 out:
2401 	return ret_val;
2402 }
2403 
2404 /**
2405  *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
2406  *  @hw: pointer to the HW structure
2407  *
2408  *  Calculates the EEPROM section checksum by reading/adding each word of
2409  *  the EEPROM and then verifies that the sum of the EEPROM is
2410  *  equal to 0xBABA.
2411  **/
2412 static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
2413 {
2414 	s32 ret_val;
2415 	u16 eeprom_regions_count = 1;
2416 	u16 j, nvm_data;
2417 	u16 nvm_offset;
2418 
2419 	DEBUGFUNC("e1000_validate_nvm_checksum_82580");
2420 
2421 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2422 	if (ret_val) {
2423 		DEBUGOUT("NVM Read Error\n");
2424 		goto out;
2425 	}
2426 
2427 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2428 		/* if chekcsums compatibility bit is set validate checksums
2429 		 * for all 4 ports. */
2430 		eeprom_regions_count = 4;
2431 	}
2432 
2433 	for (j = 0; j < eeprom_regions_count; j++) {
2434 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2435 		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2436 								  nvm_offset);
2437 		if (ret_val != E1000_SUCCESS)
2438 			goto out;
2439 	}
2440 
2441 out:
2442 	return ret_val;
2443 }
2444 
2445 /**
2446  *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
2447  *  @hw: pointer to the HW structure
2448  *
2449  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2450  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2451  *  checksum and writes the value to the EEPROM.
2452  **/
2453 static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
2454 {
2455 	s32 ret_val;
2456 	u16 j, nvm_data;
2457 	u16 nvm_offset;
2458 
2459 	DEBUGFUNC("e1000_update_nvm_checksum_82580");
2460 
2461 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2462 	if (ret_val) {
2463 		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
2464 		goto out;
2465 	}
2466 
2467 	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
2468 		/* set compatibility bit to validate checksums appropriately */
2469 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2470 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2471 					    &nvm_data);
2472 		if (ret_val) {
2473 			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
2474 			goto out;
2475 		}
2476 	}
2477 
2478 	for (j = 0; j < 4; j++) {
2479 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2480 		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2481 		if (ret_val)
2482 			goto out;
2483 	}
2484 
2485 out:
2486 	return ret_val;
2487 }
2488 
2489 /**
2490  *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
2491  *  @hw: pointer to the HW structure
2492  *
2493  *  Calculates the EEPROM section checksum by reading/adding each word of
2494  *  the EEPROM and then verifies that the sum of the EEPROM is
2495  *  equal to 0xBABA.
2496  **/
2497 static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
2498 {
2499 	s32 ret_val = E1000_SUCCESS;
2500 	u16 j;
2501 	u16 nvm_offset;
2502 
2503 	DEBUGFUNC("e1000_validate_nvm_checksum_i350");
2504 
2505 	for (j = 0; j < 4; j++) {
2506 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2507 		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2508 								  nvm_offset);
2509 		if (ret_val != E1000_SUCCESS)
2510 			goto out;
2511 	}
2512 
2513 out:
2514 	return ret_val;
2515 }
2516 
2517 /**
2518  *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
2519  *  @hw: pointer to the HW structure
2520  *
2521  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2522  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2523  *  checksum and writes the value to the EEPROM.
2524  **/
2525 static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
2526 {
2527 	s32 ret_val = E1000_SUCCESS;
2528 	u16 j;
2529 	u16 nvm_offset;
2530 
2531 	DEBUGFUNC("e1000_update_nvm_checksum_i350");
2532 
2533 	for (j = 0; j < 4; j++) {
2534 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2535 		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2536 		if (ret_val != E1000_SUCCESS)
2537 			goto out;
2538 	}
2539 
2540 out:
2541 	return ret_val;
2542 }
2543 
2544 /**
2545  *  __e1000_access_emi_reg - Read/write EMI register
2546  *  @hw: pointer to the HW structure
2547  *  @address: EMI address to program
2548  *  @data: pointer to value to read/write from/to the EMI address
2549  *  @read: boolean flag to indicate read or write
2550  **/
2551 static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
2552 				  u16 *data, bool read)
2553 {
2554 	s32 ret_val;
2555 
2556 	DEBUGFUNC("__e1000_access_emi_reg");
2557 
2558 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2559 	if (ret_val)
2560 		return ret_val;
2561 
2562 	if (read)
2563 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2564 	else
2565 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2566 
2567 	return ret_val;
2568 }
2569 
2570 /**
2571  *  e1000_read_emi_reg - Read Extended Management Interface register
2572  *  @hw: pointer to the HW structure
2573  *  @addr: EMI address to program
2574  *  @data: value to be read from the EMI address
2575  **/
2576 s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2577 {
2578 	DEBUGFUNC("e1000_read_emi_reg");
2579 
2580 	return __e1000_access_emi_reg(hw, addr, data, true);
2581 }
2582 
2583 /**
2584  *  e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
2585  *  @hw: pointer to the HW structure
2586  *
2587  *  Initialize Marvell 1512 to work correctly with Avoton.
2588  **/
2589 s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
2590 {
2591 	struct e1000_phy_info *phy = &hw->phy;
2592 	s32 ret_val = E1000_SUCCESS;
2593 
2594 	DEBUGFUNC("e1000_initialize_M88E1512_phy");
2595 
2596 	/* Check if this is correct PHY. */
2597 	if (phy->id != M88E1512_E_PHY_ID)
2598 		goto out;
2599 
2600 	/* Switch to PHY page 0xFF. */
2601 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2602 	if (ret_val)
2603 		goto out;
2604 
2605 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2606 	if (ret_val)
2607 		goto out;
2608 
2609 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2610 	if (ret_val)
2611 		goto out;
2612 
2613 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2614 	if (ret_val)
2615 		goto out;
2616 
2617 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2618 	if (ret_val)
2619 		goto out;
2620 
2621 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2622 	if (ret_val)
2623 		goto out;
2624 
2625 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2626 	if (ret_val)
2627 		goto out;
2628 
2629 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2630 	if (ret_val)
2631 		goto out;
2632 
2633 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2634 	if (ret_val)
2635 		goto out;
2636 
2637 	/* Switch to PHY page 0xFB. */
2638 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2639 	if (ret_val)
2640 		goto out;
2641 
2642 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2643 	if (ret_val)
2644 		goto out;
2645 
2646 	/* Switch to PHY page 0x12. */
2647 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2648 	if (ret_val)
2649 		goto out;
2650 
2651 	/* Change mode to SGMII-to-Copper */
2652 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2653 	if (ret_val)
2654 		goto out;
2655 
2656 	/* Return the PHY to page 0. */
2657 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2658 	if (ret_val)
2659 		goto out;
2660 
2661 	ret_val = phy->ops.commit(hw);
2662 	if (ret_val) {
2663 		DEBUGOUT("Error committing the PHY changes\n");
2664 		return ret_val;
2665 	}
2666 
2667 	msec_delay(1000);
2668 out:
2669 	return ret_val;
2670 }
2671 
2672 /**
2673  *  e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY
2674  *  @hw: pointer to the HW structure
2675  *
2676  *  Initialize Marvell 1543 to work correctly with Avoton.
2677  **/
2678 s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw)
2679 {
2680 	struct e1000_phy_info *phy = &hw->phy;
2681 	s32 ret_val = E1000_SUCCESS;
2682 
2683 	DEBUGFUNC("e1000_initialize_M88E1543_phy");
2684 
2685 	/* Check if this is correct PHY. */
2686 	if (phy->id != M88E1543_E_PHY_ID)
2687 		goto out;
2688 
2689 	/* Switch to PHY page 0xFF. */
2690 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2691 	if (ret_val)
2692 		goto out;
2693 
2694 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2695 	if (ret_val)
2696 		goto out;
2697 
2698 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2699 	if (ret_val)
2700 		goto out;
2701 
2702 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2703 	if (ret_val)
2704 		goto out;
2705 
2706 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2707 	if (ret_val)
2708 		goto out;
2709 
2710 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2711 	if (ret_val)
2712 		goto out;
2713 
2714 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2715 	if (ret_val)
2716 		goto out;
2717 
2718 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2719 	if (ret_val)
2720 		goto out;
2721 
2722 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2723 	if (ret_val)
2724 		goto out;
2725 
2726 	/* Switch to PHY page 0xFB. */
2727 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2728 	if (ret_val)
2729 		goto out;
2730 
2731 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D);
2732 	if (ret_val)
2733 		goto out;
2734 
2735 	/* Switch to PHY page 0x12. */
2736 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2737 	if (ret_val)
2738 		goto out;
2739 
2740 	/* Change mode to SGMII-to-Copper */
2741 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2742 	if (ret_val)
2743 		goto out;
2744 
2745 	/* Switch to PHY page 1. */
2746 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2747 	if (ret_val)
2748 		goto out;
2749 
2750 	/* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */
2751 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2752 	if (ret_val)
2753 		goto out;
2754 
2755 	/* Return the PHY to page 0. */
2756 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2757 	if (ret_val)
2758 		goto out;
2759 
2760 	ret_val = phy->ops.commit(hw);
2761 	if (ret_val) {
2762 		DEBUGOUT("Error committing the PHY changes\n");
2763 		return ret_val;
2764 	}
2765 
2766 	msec_delay(1000);
2767 out:
2768 	return ret_val;
2769 }
2770 
2771 /**
2772  *  e1000_set_eee_i350 - Enable/disable EEE support
2773  *  @hw: pointer to the HW structure
2774  *  @adv1G: boolean flag enabling 1G EEE advertisement
2775  *  @adv100M: boolean flag enabling 100M EEE advertisement
2776  *
2777  *  Enable/disable EEE based on setting in dev_spec structure.
2778  *
2779  **/
2780 s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2781 {
2782 	u32 ipcnfg, eeer;
2783 
2784 	DEBUGFUNC("e1000_set_eee_i350");
2785 
2786 	if ((hw->mac.type < e1000_i350) ||
2787 	    (hw->phy.media_type != e1000_media_type_copper))
2788 		goto out;
2789 	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
2790 	eeer = E1000_READ_REG(hw, E1000_EEER);
2791 
2792 	/* enable or disable per user setting */
2793 	if (!(hw->dev_spec._82575.eee_disable)) {
2794 		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
2795 
2796 		if (adv100M)
2797 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2798 		else
2799 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2800 
2801 		if (adv1G)
2802 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2803 		else
2804 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2805 
2806 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2807 			 E1000_EEER_LPI_FC);
2808 
2809 		/* This bit should not be set in normal operation. */
2810 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2811 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
2812 	} else {
2813 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2814 		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2815 			  E1000_EEER_LPI_FC);
2816 	}
2817 	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
2818 	E1000_WRITE_REG(hw, E1000_EEER, eeer);
2819 	E1000_READ_REG(hw, E1000_IPCNFG);
2820 	E1000_READ_REG(hw, E1000_EEER);
2821 out:
2822 
2823 	return E1000_SUCCESS;
2824 }
2825 
2826 /**
2827  *  e1000_set_eee_i354 - Enable/disable EEE support
2828  *  @hw: pointer to the HW structure
2829  *  @adv1G: boolean flag enabling 1G EEE advertisement
2830  *  @adv100M: boolean flag enabling 100M EEE advertisement
2831  *
2832  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2833  *
2834  **/
2835 s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2836 {
2837 	struct e1000_phy_info *phy = &hw->phy;
2838 	s32 ret_val = E1000_SUCCESS;
2839 	u16 phy_data;
2840 
2841 	DEBUGFUNC("e1000_set_eee_i354");
2842 
2843 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2844 	    ((phy->id != M88E1543_E_PHY_ID) &&
2845 	    (phy->id != M88E1512_E_PHY_ID)))
2846 		goto out;
2847 
2848 	if (!hw->dev_spec._82575.eee_disable) {
2849 		/* Switch to PHY page 18. */
2850 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2851 		if (ret_val)
2852 			goto out;
2853 
2854 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2855 					    &phy_data);
2856 		if (ret_val)
2857 			goto out;
2858 
2859 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2860 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2861 					     phy_data);
2862 		if (ret_val)
2863 			goto out;
2864 
2865 		/* Return the PHY to page 0. */
2866 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2867 		if (ret_val)
2868 			goto out;
2869 
2870 		/* Turn on EEE advertisement. */
2871 		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2872 					       E1000_EEE_ADV_DEV_I354,
2873 					       &phy_data);
2874 		if (ret_val)
2875 			goto out;
2876 
2877 		if (adv100M)
2878 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2879 		else
2880 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2881 
2882 		if (adv1G)
2883 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2884 		else
2885 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2886 
2887 		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2888 						E1000_EEE_ADV_DEV_I354,
2889 						phy_data);
2890 	} else {
2891 		/* Turn off EEE advertisement. */
2892 		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2893 					       E1000_EEE_ADV_DEV_I354,
2894 					       &phy_data);
2895 		if (ret_val)
2896 			goto out;
2897 
2898 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2899 			      E1000_EEE_ADV_1000_SUPPORTED);
2900 		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2901 						E1000_EEE_ADV_DEV_I354,
2902 						phy_data);
2903 	}
2904 
2905 out:
2906 	return ret_val;
2907 }
2908 
2909 /**
2910  *  e1000_get_eee_status_i354 - Get EEE status
2911  *  @hw: pointer to the HW structure
2912  *  @status: EEE status
2913  *
2914  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2915  *  been received.
2916  **/
2917 s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2918 {
2919 	struct e1000_phy_info *phy = &hw->phy;
2920 	s32 ret_val = E1000_SUCCESS;
2921 	u16 phy_data;
2922 
2923 	DEBUGFUNC("e1000_get_eee_status_i354");
2924 
2925 	/* Check if EEE is supported on this device. */
2926 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2927 	    ((phy->id != M88E1543_E_PHY_ID) &&
2928 	    (phy->id != M88E1512_E_PHY_ID)))
2929 		goto out;
2930 
2931 	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2932 				       E1000_PCS_STATUS_DEV_I354,
2933 				       &phy_data);
2934 	if (ret_val)
2935 		goto out;
2936 
2937 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2938 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2939 
2940 out:
2941 	return ret_val;
2942 }
2943 
2944 /* Due to a hw errata, if the host tries to  configure the VFTA register
2945  * while performing queries from the BMC or DMA, then the VFTA in some
2946  * cases won't be written.
2947  */
2948 
2949 /**
2950  *  e1000_clear_vfta_i350 - Clear VLAN filter table
2951  *  @hw: pointer to the HW structure
2952  *
2953  *  Clears the register array which contains the VLAN filter table by
2954  *  setting all the values to 0.
2955  **/
2956 void e1000_clear_vfta_i350(struct e1000_hw *hw)
2957 {
2958 	u32 offset;
2959 	int i;
2960 
2961 	DEBUGFUNC("e1000_clear_vfta_350");
2962 
2963 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
2964 		for (i = 0; i < 10; i++)
2965 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
2966 
2967 		E1000_WRITE_FLUSH(hw);
2968 	}
2969 }
2970 
2971 /**
2972  *  e1000_write_vfta_i350 - Write value to VLAN filter table
2973  *  @hw: pointer to the HW structure
2974  *  @offset: register offset in VLAN filter table
2975  *  @value: register value written to VLAN filter table
2976  *
2977  *  Writes value at the given offset in the register array which stores
2978  *  the VLAN filter table.
2979  **/
2980 void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
2981 {
2982 	int i;
2983 
2984 	DEBUGFUNC("e1000_write_vfta_350");
2985 
2986 	for (i = 0; i < 10; i++)
2987 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
2988 
2989 	E1000_WRITE_FLUSH(hw);
2990 }
2991 
2992 
2993 /**
2994  *  e1000_set_i2c_bb - Enable I2C bit-bang
2995  *  @hw: pointer to the HW structure
2996  *
2997  *  Enable I2C bit-bang interface
2998  *
2999  **/
3000 s32 e1000_set_i2c_bb(struct e1000_hw *hw)
3001 {
3002 	s32 ret_val = E1000_SUCCESS;
3003 	u32 ctrl_ext, i2cparams;
3004 
3005 	DEBUGFUNC("e1000_set_i2c_bb");
3006 
3007 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3008 	ctrl_ext |= E1000_CTRL_I2C_ENA;
3009 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3010 	E1000_WRITE_FLUSH(hw);
3011 
3012 	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
3013 	i2cparams |= E1000_I2CBB_EN;
3014 	i2cparams |= E1000_I2C_DATA_OE_N;
3015 	i2cparams |= E1000_I2C_CLK_OE_N;
3016 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
3017 	E1000_WRITE_FLUSH(hw);
3018 
3019 	return ret_val;
3020 }
3021 
3022 /**
3023  *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
3024  *  @hw: pointer to hardware structure
3025  *  @byte_offset: byte offset to read
3026  *  @dev_addr: device address
3027  *  @data: value read
3028  *
3029  *  Performs byte read operation over I2C interface at
3030  *  a specified device address.
3031  **/
3032 s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3033 				u8 dev_addr, u8 *data)
3034 {
3035 	s32 status = E1000_SUCCESS;
3036 	u32 max_retry = 10;
3037 	u32 retry = 1;
3038 	u16 swfw_mask = 0;
3039 
3040 	bool nack = true;
3041 
3042 	DEBUGFUNC("e1000_read_i2c_byte_generic");
3043 
3044 	swfw_mask = E1000_SWFW_PHY0_SM;
3045 
3046 	do {
3047 		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
3048 		    != E1000_SUCCESS) {
3049 			status = E1000_ERR_SWFW_SYNC;
3050 			goto read_byte_out;
3051 		}
3052 
3053 		e1000_i2c_start(hw);
3054 
3055 		/* Device Address and write indication */
3056 		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3057 		if (status != E1000_SUCCESS)
3058 			goto fail;
3059 
3060 		status = e1000_get_i2c_ack(hw);
3061 		if (status != E1000_SUCCESS)
3062 			goto fail;
3063 
3064 		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3065 		if (status != E1000_SUCCESS)
3066 			goto fail;
3067 
3068 		status = e1000_get_i2c_ack(hw);
3069 		if (status != E1000_SUCCESS)
3070 			goto fail;
3071 
3072 		e1000_i2c_start(hw);
3073 
3074 		/* Device Address and read indication */
3075 		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
3076 		if (status != E1000_SUCCESS)
3077 			goto fail;
3078 
3079 		status = e1000_get_i2c_ack(hw);
3080 		if (status != E1000_SUCCESS)
3081 			goto fail;
3082 
3083 		e1000_clock_in_i2c_byte(hw, data);
3084 
3085 		status = e1000_clock_out_i2c_bit(hw, nack);
3086 		if (status != E1000_SUCCESS)
3087 			goto fail;
3088 
3089 		e1000_i2c_stop(hw);
3090 		break;
3091 
3092 fail:
3093 		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3094 		msec_delay(100);
3095 		e1000_i2c_bus_clear(hw);
3096 		retry++;
3097 		if (retry < max_retry)
3098 			DEBUGOUT("I2C byte read error - Retrying.\n");
3099 		else
3100 			DEBUGOUT("I2C byte read error.\n");
3101 
3102 	} while (retry < max_retry);
3103 
3104 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3105 
3106 read_byte_out:
3107 
3108 	return status;
3109 }
3110 
3111 /**
3112  *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
3113  *  @hw: pointer to hardware structure
3114  *  @byte_offset: byte offset to write
3115  *  @dev_addr: device address
3116  *  @data: value to write
3117  *
3118  *  Performs byte write operation over I2C interface at
3119  *  a specified device address.
3120  **/
3121 s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3122 				 u8 dev_addr, u8 data)
3123 {
3124 	s32 status = E1000_SUCCESS;
3125 	u32 max_retry = 1;
3126 	u32 retry = 0;
3127 	u16 swfw_mask = 0;
3128 
3129 	DEBUGFUNC("e1000_write_i2c_byte_generic");
3130 
3131 	swfw_mask = E1000_SWFW_PHY0_SM;
3132 
3133 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
3134 		status = E1000_ERR_SWFW_SYNC;
3135 		goto write_byte_out;
3136 	}
3137 
3138 	do {
3139 		e1000_i2c_start(hw);
3140 
3141 		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3142 		if (status != E1000_SUCCESS)
3143 			goto fail;
3144 
3145 		status = e1000_get_i2c_ack(hw);
3146 		if (status != E1000_SUCCESS)
3147 			goto fail;
3148 
3149 		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3150 		if (status != E1000_SUCCESS)
3151 			goto fail;
3152 
3153 		status = e1000_get_i2c_ack(hw);
3154 		if (status != E1000_SUCCESS)
3155 			goto fail;
3156 
3157 		status = e1000_clock_out_i2c_byte(hw, data);
3158 		if (status != E1000_SUCCESS)
3159 			goto fail;
3160 
3161 		status = e1000_get_i2c_ack(hw);
3162 		if (status != E1000_SUCCESS)
3163 			goto fail;
3164 
3165 		e1000_i2c_stop(hw);
3166 		break;
3167 
3168 fail:
3169 		e1000_i2c_bus_clear(hw);
3170 		retry++;
3171 		if (retry < max_retry)
3172 			DEBUGOUT("I2C byte write error - Retrying.\n");
3173 		else
3174 			DEBUGOUT("I2C byte write error.\n");
3175 	} while (retry < max_retry);
3176 
3177 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3178 
3179 write_byte_out:
3180 
3181 	return status;
3182 }
3183 
3184 /**
3185  *  e1000_i2c_start - Sets I2C start condition
3186  *  @hw: pointer to hardware structure
3187  *
3188  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
3189  **/
3190 static void e1000_i2c_start(struct e1000_hw *hw)
3191 {
3192 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3193 
3194 	DEBUGFUNC("e1000_i2c_start");
3195 
3196 	/* Start condition must begin with data and clock high */
3197 	e1000_set_i2c_data(hw, &i2cctl, 1);
3198 	e1000_raise_i2c_clk(hw, &i2cctl);
3199 
3200 	/* Setup time for start condition (4.7us) */
3201 	usec_delay(E1000_I2C_T_SU_STA);
3202 
3203 	e1000_set_i2c_data(hw, &i2cctl, 0);
3204 
3205 	/* Hold time for start condition (4us) */
3206 	usec_delay(E1000_I2C_T_HD_STA);
3207 
3208 	e1000_lower_i2c_clk(hw, &i2cctl);
3209 
3210 	/* Minimum low period of clock is 4.7 us */
3211 	usec_delay(E1000_I2C_T_LOW);
3212 
3213 }
3214 
3215 /**
3216  *  e1000_i2c_stop - Sets I2C stop condition
3217  *  @hw: pointer to hardware structure
3218  *
3219  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
3220  **/
3221 static void e1000_i2c_stop(struct e1000_hw *hw)
3222 {
3223 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3224 
3225 	DEBUGFUNC("e1000_i2c_stop");
3226 
3227 	/* Stop condition must begin with data low and clock high */
3228 	e1000_set_i2c_data(hw, &i2cctl, 0);
3229 	e1000_raise_i2c_clk(hw, &i2cctl);
3230 
3231 	/* Setup time for stop condition (4us) */
3232 	usec_delay(E1000_I2C_T_SU_STO);
3233 
3234 	e1000_set_i2c_data(hw, &i2cctl, 1);
3235 
3236 	/* bus free time between stop and start (4.7us)*/
3237 	usec_delay(E1000_I2C_T_BUF);
3238 }
3239 
3240 /**
3241  *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
3242  *  @hw: pointer to hardware structure
3243  *  @data: data byte to clock in
3244  *
3245  *  Clocks in one byte data via I2C data/clock
3246  **/
3247 static void e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
3248 {
3249 	s32 i;
3250 	bool bit = 0;
3251 
3252 	DEBUGFUNC("e1000_clock_in_i2c_byte");
3253 
3254 	*data = 0;
3255 	for (i = 7; i >= 0; i--) {
3256 		e1000_clock_in_i2c_bit(hw, &bit);
3257 		*data |= bit << i;
3258 	}
3259 }
3260 
3261 /**
3262  *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
3263  *  @hw: pointer to hardware structure
3264  *  @data: data byte clocked out
3265  *
3266  *  Clocks out one byte data via I2C data/clock
3267  **/
3268 static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
3269 {
3270 	s32 status = E1000_SUCCESS;
3271 	s32 i;
3272 	u32 i2cctl;
3273 	bool bit = 0;
3274 
3275 	DEBUGFUNC("e1000_clock_out_i2c_byte");
3276 
3277 	for (i = 7; i >= 0; i--) {
3278 		bit = (data >> i) & 0x1;
3279 		status = e1000_clock_out_i2c_bit(hw, bit);
3280 
3281 		if (status != E1000_SUCCESS)
3282 			break;
3283 	}
3284 
3285 	/* Release SDA line (set high) */
3286 	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3287 
3288 	i2cctl |= E1000_I2C_DATA_OE_N;
3289 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
3290 	E1000_WRITE_FLUSH(hw);
3291 
3292 	return status;
3293 }
3294 
3295 /**
3296  *  e1000_get_i2c_ack - Polls for I2C ACK
3297  *  @hw: pointer to hardware structure
3298  *
3299  *  Clocks in/out one bit via I2C data/clock
3300  **/
3301 static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
3302 {
3303 	s32 status = E1000_SUCCESS;
3304 	u32 i = 0;
3305 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3306 	u32 timeout = 10;
3307 	bool ack = true;
3308 
3309 	DEBUGFUNC("e1000_get_i2c_ack");
3310 
3311 	e1000_raise_i2c_clk(hw, &i2cctl);
3312 
3313 	/* Minimum high period of clock is 4us */
3314 	usec_delay(E1000_I2C_T_HIGH);
3315 
3316 	/* Wait until SCL returns high */
3317 	for (i = 0; i < timeout; i++) {
3318 		usec_delay(1);
3319 		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3320 		if (i2cctl & E1000_I2C_CLK_IN)
3321 			break;
3322 	}
3323 	if (!(i2cctl & E1000_I2C_CLK_IN))
3324 		return E1000_ERR_I2C;
3325 
3326 	ack = e1000_get_i2c_data(&i2cctl);
3327 	if (ack) {
3328 		DEBUGOUT("I2C ack was not received.\n");
3329 		status = E1000_ERR_I2C;
3330 	}
3331 
3332 	e1000_lower_i2c_clk(hw, &i2cctl);
3333 
3334 	/* Minimum low period of clock is 4.7 us */
3335 	usec_delay(E1000_I2C_T_LOW);
3336 
3337 	return status;
3338 }
3339 
3340 /**
3341  *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
3342  *  @hw: pointer to hardware structure
3343  *  @data: read data value
3344  *
3345  *  Clocks in one bit via I2C data/clock
3346  **/
3347 static void e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
3348 {
3349 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3350 
3351 	DEBUGFUNC("e1000_clock_in_i2c_bit");
3352 
3353 	e1000_raise_i2c_clk(hw, &i2cctl);
3354 
3355 	/* Minimum high period of clock is 4us */
3356 	usec_delay(E1000_I2C_T_HIGH);
3357 
3358 	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3359 	*data = e1000_get_i2c_data(&i2cctl);
3360 
3361 	e1000_lower_i2c_clk(hw, &i2cctl);
3362 
3363 	/* Minimum low period of clock is 4.7 us */
3364 	usec_delay(E1000_I2C_T_LOW);
3365 }
3366 
3367 /**
3368  *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
3369  *  @hw: pointer to hardware structure
3370  *  @data: data value to write
3371  *
3372  *  Clocks out one bit via I2C data/clock
3373  **/
3374 static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
3375 {
3376 	s32 status;
3377 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3378 
3379 	DEBUGFUNC("e1000_clock_out_i2c_bit");
3380 
3381 	status = e1000_set_i2c_data(hw, &i2cctl, data);
3382 	if (status == E1000_SUCCESS) {
3383 		e1000_raise_i2c_clk(hw, &i2cctl);
3384 
3385 		/* Minimum high period of clock is 4us */
3386 		usec_delay(E1000_I2C_T_HIGH);
3387 
3388 		e1000_lower_i2c_clk(hw, &i2cctl);
3389 
3390 		/* Minimum low period of clock is 4.7 us.
3391 		 * This also takes care of the data hold time.
3392 		 */
3393 		usec_delay(E1000_I2C_T_LOW);
3394 	} else {
3395 		status = E1000_ERR_I2C;
3396 		DEBUGOUT1("I2C data was not set to %X\n", data);
3397 	}
3398 
3399 	return status;
3400 }
3401 /**
3402  *  e1000_raise_i2c_clk - Raises the I2C SCL clock
3403  *  @hw: pointer to hardware structure
3404  *  @i2cctl: Current value of I2CCTL register
3405  *
3406  *  Raises the I2C clock line '0'->'1'
3407  **/
3408 static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3409 {
3410 	DEBUGFUNC("e1000_raise_i2c_clk");
3411 
3412 	*i2cctl |= E1000_I2C_CLK_OUT;
3413 	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3414 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3415 	E1000_WRITE_FLUSH(hw);
3416 
3417 	/* SCL rise time (1000ns) */
3418 	usec_delay(E1000_I2C_T_RISE);
3419 }
3420 
3421 /**
3422  *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
3423  *  @hw: pointer to hardware structure
3424  *  @i2cctl: Current value of I2CCTL register
3425  *
3426  *  Lowers the I2C clock line '1'->'0'
3427  **/
3428 static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3429 {
3430 
3431 	DEBUGFUNC("e1000_lower_i2c_clk");
3432 
3433 	*i2cctl &= ~E1000_I2C_CLK_OUT;
3434 	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3435 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3436 	E1000_WRITE_FLUSH(hw);
3437 
3438 	/* SCL fall time (300ns) */
3439 	usec_delay(E1000_I2C_T_FALL);
3440 }
3441 
3442 /**
3443  *  e1000_set_i2c_data - Sets the I2C data bit
3444  *  @hw: pointer to hardware structure
3445  *  @i2cctl: Current value of I2CCTL register
3446  *  @data: I2C data value (0 or 1) to set
3447  *
3448  *  Sets the I2C data bit
3449  **/
3450 static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
3451 {
3452 	s32 status = E1000_SUCCESS;
3453 
3454 	DEBUGFUNC("e1000_set_i2c_data");
3455 
3456 	if (data)
3457 		*i2cctl |= E1000_I2C_DATA_OUT;
3458 	else
3459 		*i2cctl &= ~E1000_I2C_DATA_OUT;
3460 
3461 	*i2cctl &= ~E1000_I2C_DATA_OE_N;
3462 	*i2cctl |= E1000_I2C_CLK_OE_N;
3463 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3464 	E1000_WRITE_FLUSH(hw);
3465 
3466 	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
3467 	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
3468 
3469 	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3470 	if (data != e1000_get_i2c_data(i2cctl)) {
3471 		status = E1000_ERR_I2C;
3472 		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
3473 	}
3474 
3475 	return status;
3476 }
3477 
3478 /**
3479  *  e1000_get_i2c_data - Reads the I2C SDA data bit
3480  *  @i2cctl: Current value of I2CCTL register
3481  *
3482  *  Returns the I2C data bit value
3483  **/
3484 static bool e1000_get_i2c_data(u32 *i2cctl)
3485 {
3486 	bool data;
3487 
3488 	DEBUGFUNC("e1000_get_i2c_data");
3489 
3490 	if (*i2cctl & E1000_I2C_DATA_IN)
3491 		data = 1;
3492 	else
3493 		data = 0;
3494 
3495 	return data;
3496 }
3497 
3498 /**
3499  *  e1000_i2c_bus_clear - Clears the I2C bus
3500  *  @hw: pointer to hardware structure
3501  *
3502  *  Clears the I2C bus by sending nine clock pulses.
3503  *  Used when data line is stuck low.
3504  **/
3505 void e1000_i2c_bus_clear(struct e1000_hw *hw)
3506 {
3507 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3508 	u32 i;
3509 
3510 	DEBUGFUNC("e1000_i2c_bus_clear");
3511 
3512 	e1000_i2c_start(hw);
3513 
3514 	e1000_set_i2c_data(hw, &i2cctl, 1);
3515 
3516 	for (i = 0; i < 9; i++) {
3517 		e1000_raise_i2c_clk(hw, &i2cctl);
3518 
3519 		/* Min high period of clock is 4us */
3520 		usec_delay(E1000_I2C_T_HIGH);
3521 
3522 		e1000_lower_i2c_clk(hw, &i2cctl);
3523 
3524 		/* Min low period of clock is 4.7us*/
3525 		usec_delay(E1000_I2C_T_LOW);
3526 	}
3527 
3528 	e1000_i2c_start(hw);
3529 
3530 	/* Put the i2c bus back to default state */
3531 	e1000_i2c_stop(hw);
3532 }
3533 
3534