xref: /freebsd/sys/dev/e1000/e1000_82543.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2010, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /*
36  * 82543GC Gigabit Ethernet Controller (Fiber)
37  * 82543GC Gigabit Ethernet Controller (Copper)
38  * 82544EI Gigabit Ethernet Controller (Copper)
39  * 82544EI Gigabit Ethernet Controller (Fiber)
40  * 82544GC Gigabit Ethernet Controller (Copper)
41  * 82544GC Gigabit Ethernet Controller (LOM)
42  */
43 
44 #include "e1000_api.h"
45 
46 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50                                      u16 *data);
51 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52                                       u16 data);
53 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62 static s32  e1000_led_on_82543(struct e1000_hw *hw);
63 static s32  e1000_led_off_82543(struct e1000_hw *hw);
64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65                                    u32 value);
66 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
67 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
68 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
69 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
70 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
71 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
72 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
73 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
74                                            u16 count);
75 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
76 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
77 static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
78 
79 
80 /**
81  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
82  *  @hw: pointer to the HW structure
83  **/
84 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = E1000_SUCCESS;
88 
89 	DEBUGFUNC("e1000_init_phy_params_82543");
90 
91 	if (hw->phy.media_type != e1000_media_type_copper) {
92 		phy->type               = e1000_phy_none;
93 		goto out;
94 	} else {
95 		phy->ops.power_up       = e1000_power_up_phy_copper;
96 		phy->ops.power_down     = e1000_power_down_phy_copper;
97 	}
98 
99 	phy->addr                       = 1;
100 	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
101 	phy->reset_delay_us             = 10000;
102 	phy->type                       = e1000_phy_m88;
103 
104 	/* Function Pointers */
105 	phy->ops.check_polarity         = e1000_check_polarity_m88;
106 	phy->ops.commit                 = e1000_phy_sw_reset_generic;
107 	phy->ops.force_speed_duplex     = e1000_phy_force_speed_duplex_82543;
108 	phy->ops.get_cable_length       = e1000_get_cable_length_m88;
109 	phy->ops.get_cfg_done           = e1000_get_cfg_done_generic;
110 	phy->ops.read_reg               = (hw->mac.type == e1000_82543)
111 	                                  ? e1000_read_phy_reg_82543
112 	                                  : e1000_read_phy_reg_m88;
113 	phy->ops.reset                  = (hw->mac.type == e1000_82543)
114 	                                  ? e1000_phy_hw_reset_82543
115 	                                  : e1000_phy_hw_reset_generic;
116 	phy->ops.write_reg              = (hw->mac.type == e1000_82543)
117 	                                  ? e1000_write_phy_reg_82543
118 	                                  : e1000_write_phy_reg_m88;
119 	phy->ops.get_info               = e1000_get_phy_info_m88;
120 
121 	/*
122 	 * The external PHY of the 82543 can be in a funky state.
123 	 * Resetting helps us read the PHY registers for acquiring
124 	 * the PHY ID.
125 	 */
126 	if (!e1000_init_phy_disabled_82543(hw)) {
127 		ret_val = phy->ops.reset(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Resetting PHY during init failed.\n");
130 			goto out;
131 		}
132 		msec_delay(20);
133 	}
134 
135 	ret_val = e1000_get_phy_id(hw);
136 	if (ret_val)
137 		goto out;
138 
139 	/* Verify phy id */
140 	switch (hw->mac.type) {
141 	case e1000_82543:
142 		if (phy->id != M88E1000_E_PHY_ID) {
143 			ret_val = -E1000_ERR_PHY;
144 			goto out;
145 		}
146 		break;
147 	case e1000_82544:
148 		if (phy->id != M88E1000_I_PHY_ID) {
149 			ret_val = -E1000_ERR_PHY;
150 			goto out;
151 		}
152 		break;
153 	default:
154 		ret_val = -E1000_ERR_PHY;
155 		goto out;
156 		break;
157 	}
158 
159 out:
160 	return ret_val;
161 }
162 
163 /**
164  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
165  *  @hw: pointer to the HW structure
166  **/
167 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
168 {
169 	struct e1000_nvm_info *nvm = &hw->nvm;
170 
171 	DEBUGFUNC("e1000_init_nvm_params_82543");
172 
173 	nvm->type               = e1000_nvm_eeprom_microwire;
174 	nvm->word_size          = 64;
175 	nvm->delay_usec         = 50;
176 	nvm->address_bits       =  6;
177 	nvm->opcode_bits        =  3;
178 
179 	/* Function Pointers */
180 	nvm->ops.read           = e1000_read_nvm_microwire;
181 	nvm->ops.update         = e1000_update_nvm_checksum_generic;
182 	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
183 	nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
184 	nvm->ops.write          = e1000_write_nvm_microwire;
185 
186 	return E1000_SUCCESS;
187 }
188 
189 /**
190  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
191  *  @hw: pointer to the HW structure
192  **/
193 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
194 {
195 	struct e1000_mac_info *mac = &hw->mac;
196 
197 	DEBUGFUNC("e1000_init_mac_params_82543");
198 
199 	/* Set media type */
200 	switch (hw->device_id) {
201 	case E1000_DEV_ID_82543GC_FIBER:
202 	case E1000_DEV_ID_82544EI_FIBER:
203 		hw->phy.media_type = e1000_media_type_fiber;
204 		break;
205 	default:
206 		hw->phy.media_type = e1000_media_type_copper;
207 		break;
208 	}
209 
210 	/* Set mta register count */
211 	mac->mta_reg_count = 128;
212 	/* Set rar entry count */
213 	mac->rar_entry_count = E1000_RAR_ENTRIES;
214 
215 	/* Function pointers */
216 
217 	/* bus type/speed/width */
218 	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
219 	/* function id */
220 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
221 	/* reset */
222 	mac->ops.reset_hw = e1000_reset_hw_82543;
223 	/* hw initialization */
224 	mac->ops.init_hw = e1000_init_hw_82543;
225 	/* link setup */
226 	mac->ops.setup_link = e1000_setup_link_82543;
227 	/* physical interface setup */
228 	mac->ops.setup_physical_interface =
229 	        (hw->phy.media_type == e1000_media_type_copper)
230 	                ? e1000_setup_copper_link_82543
231 	                : e1000_setup_fiber_link_82543;
232 	/* check for link */
233 	mac->ops.check_for_link =
234 	        (hw->phy.media_type == e1000_media_type_copper)
235 	                ? e1000_check_for_copper_link_82543
236 	                : e1000_check_for_fiber_link_82543;
237 	/* link info */
238 	mac->ops.get_link_up_info =
239 	        (hw->phy.media_type == e1000_media_type_copper)
240 	                ? e1000_get_speed_and_duplex_copper_generic
241 	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
242 	/* multicast address update */
243 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
244 	/* writing VFTA */
245 	mac->ops.write_vfta = e1000_write_vfta_82543;
246 	/* clearing VFTA */
247 	mac->ops.clear_vfta = e1000_clear_vfta_generic;
248 	/* read mac address */
249 	mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
250 	/* turn on/off LED */
251 	mac->ops.led_on = e1000_led_on_82543;
252 	mac->ops.led_off = e1000_led_off_82543;
253 	/* clear hardware counters */
254 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
255 
256 	/* Set tbi compatibility */
257 	if ((hw->mac.type != e1000_82543) ||
258 	    (hw->phy.media_type == e1000_media_type_fiber))
259 		e1000_set_tbi_compatibility_82543(hw, FALSE);
260 
261 	return E1000_SUCCESS;
262 }
263 
264 /**
265  *  e1000_init_function_pointers_82543 - Init func ptrs.
266  *  @hw: pointer to the HW structure
267  *
268  *  Called to initialize all function pointers and parameters.
269  **/
270 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
271 {
272 	DEBUGFUNC("e1000_init_function_pointers_82543");
273 
274 	hw->mac.ops.init_params = e1000_init_mac_params_82543;
275 	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
276 	hw->phy.ops.init_params = e1000_init_phy_params_82543;
277 }
278 
279 /**
280  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
281  *  @hw: pointer to the HW structure
282  *
283  *  Returns the current status of 10-bit Interface (TBI) compatibility
284  *  (enabled/disabled).
285  **/
286 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
287 {
288 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
289 	bool state = FALSE;
290 
291 	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
292 
293 	if (hw->mac.type != e1000_82543) {
294 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
295 		goto out;
296 	}
297 
298 	state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
299 	        ? TRUE : FALSE;
300 
301 out:
302 	return state;
303 }
304 
305 /**
306  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
307  *  @hw: pointer to the HW structure
308  *  @state: enable/disable TBI compatibility
309  *
310  *  Enables or disabled 10-bit Interface (TBI) compatibility.
311  **/
312 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
313 {
314 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
315 
316 	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
317 
318 	if (hw->mac.type != e1000_82543) {
319 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
320 		goto out;
321 	}
322 
323 	if (state)
324 		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
325 	else
326 		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
327 
328 out:
329 	return;
330 }
331 
332 /**
333  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
334  *  @hw: pointer to the HW structure
335  *
336  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
337  *  (enabled/disabled).
338  **/
339 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
340 {
341 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
342 	bool state = FALSE;
343 
344 	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
345 
346 	if (hw->mac.type != e1000_82543) {
347 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
348 		goto out;
349 	}
350 
351 	state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
352 	        ? TRUE : FALSE;
353 
354 out:
355 	return state;
356 }
357 
358 /**
359  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
360  *  @hw: pointer to the HW structure
361  *  @state: enable/disable TBI store bad packet
362  *
363  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
364  **/
365 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
366 {
367 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
368 
369 	DEBUGFUNC("e1000_set_tbi_sbp_82543");
370 
371 	if (state && e1000_tbi_compatibility_enabled_82543(hw))
372 		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
373 	else
374 		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
375 
376 	return;
377 }
378 
379 /**
380  *  e1000_init_phy_disabled_82543 - Returns init PHY status
381  *  @hw: pointer to the HW structure
382  *
383  *  Returns the current status of whether PHY initialization is disabled.
384  *  True if PHY initialization is disabled else FALSE.
385  **/
386 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
387 {
388 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
389 	bool ret_val;
390 
391 	DEBUGFUNC("e1000_init_phy_disabled_82543");
392 
393 	if (hw->mac.type != e1000_82543) {
394 		ret_val = FALSE;
395 		goto out;
396 	}
397 
398 	ret_val = dev_spec->init_phy_disabled;
399 
400 out:
401 	return ret_val;
402 }
403 
404 /**
405  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
406  *  @hw: pointer to the HW structure
407  *  @stats: Struct containing statistic register values
408  *  @frame_len: The length of the frame in question
409  *  @mac_addr: The Ethernet destination address of the frame in question
410  *  @max_frame_size: The maximum frame size
411  *
412  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
413  **/
414 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
415                                   struct e1000_hw_stats *stats, u32 frame_len,
416                                   u8 *mac_addr, u32 max_frame_size)
417 {
418 	if (!(e1000_tbi_sbp_enabled_82543(hw)))
419 		goto out;
420 
421 	/* First adjust the frame length. */
422 	frame_len--;
423 	/*
424 	 * We need to adjust the statistics counters, since the hardware
425 	 * counters overcount this packet as a CRC error and undercount
426 	 * the packet as a good packet
427 	 */
428 	/* This packet should not be counted as a CRC error.    */
429 	stats->crcerrs--;
430 	/* This packet does count as a Good Packet Received.    */
431 	stats->gprc++;
432 
433 	/* Adjust the Good Octets received counters             */
434 	stats->gorc += frame_len;
435 
436 	/*
437 	 * Is this a broadcast or multicast?  Check broadcast first,
438 	 * since the test for a multicast frame will test positive on
439 	 * a broadcast frame.
440 	 */
441 	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
442 		/* Broadcast packet */
443 		stats->bprc++;
444 	else if (*mac_addr & 0x01)
445 		/* Multicast packet */
446 		stats->mprc++;
447 
448 	/*
449 	 * In this case, the hardware has overcounted the number of
450 	 * oversize frames.
451 	 */
452 	if ((frame_len == max_frame_size) && (stats->roc > 0))
453 		stats->roc--;
454 
455 	/*
456 	 * Adjust the bin counters when the extra byte put the frame in the
457 	 * wrong bin. Remember that the frame_len was adjusted above.
458 	 */
459 	if (frame_len == 64) {
460 		stats->prc64++;
461 		stats->prc127--;
462 	} else if (frame_len == 127) {
463 		stats->prc127++;
464 		stats->prc255--;
465 	} else if (frame_len == 255) {
466 		stats->prc255++;
467 		stats->prc511--;
468 	} else if (frame_len == 511) {
469 		stats->prc511++;
470 		stats->prc1023--;
471 	} else if (frame_len == 1023) {
472 		stats->prc1023++;
473 		stats->prc1522--;
474 	} else if (frame_len == 1522) {
475 		stats->prc1522++;
476 	}
477 
478 out:
479 	return;
480 }
481 
482 /**
483  *  e1000_read_phy_reg_82543 - Read PHY register
484  *  @hw: pointer to the HW structure
485  *  @offset: register offset to be read
486  *  @data: pointer to the read data
487  *
488  *  Reads the PHY at offset and stores the information read to data.
489  **/
490 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
491 {
492 	u32 mdic;
493 	s32 ret_val = E1000_SUCCESS;
494 
495 	DEBUGFUNC("e1000_read_phy_reg_82543");
496 
497 	if (offset > MAX_PHY_REG_ADDRESS) {
498 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
499 		ret_val = -E1000_ERR_PARAM;
500 		goto out;
501 	}
502 
503 	/*
504 	 * We must first send a preamble through the MDIO pin to signal the
505 	 * beginning of an MII instruction.  This is done by sending 32
506 	 * consecutive "1" bits.
507 	 */
508 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
509 
510 	/*
511 	 * Now combine the next few fields that are required for a read
512 	 * operation.  We use this method instead of calling the
513 	 * e1000_shift_out_mdi_bits routine five different times.  The format
514 	 * of an MII read instruction consists of a shift out of 14 bits and
515 	 * is defined as follows:
516 	 * 	<Preamble><SOF><Op Code><Phy Addr><Offset>
517 	 * followed by a shift in of 18 bits.  This first two bits shifted in
518 	 * are TurnAround bits used to avoid contention on the MDIO pin when a
519 	 * READ operation is performed.  These two bits are thrown away
520 	 * followed by a shift in of 16 bits which contains the desired data.
521 	 */
522 	mdic = (offset | (hw->phy.addr << 5) |
523 		(PHY_OP_READ << 10) | (PHY_SOF << 12));
524 
525 	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
526 
527 	/*
528 	 * Now that we've shifted out the read command to the MII, we need to
529 	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
530 	 * register address.
531 	 */
532 	*data = e1000_shift_in_mdi_bits_82543(hw);
533 
534 out:
535 	return ret_val;
536 }
537 
538 /**
539  *  e1000_write_phy_reg_82543 - Write PHY register
540  *  @hw: pointer to the HW structure
541  *  @offset: register offset to be written
542  *  @data: pointer to the data to be written at offset
543  *
544  *  Writes data to the PHY at offset.
545  **/
546 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
547 {
548 	u32 mdic;
549 	s32 ret_val = E1000_SUCCESS;
550 
551 	DEBUGFUNC("e1000_write_phy_reg_82543");
552 
553 	if (offset > MAX_PHY_REG_ADDRESS) {
554 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
555 		ret_val = -E1000_ERR_PARAM;
556 		goto out;
557 	}
558 
559 	/*
560 	 * We'll need to use the SW defined pins to shift the write command
561 	 * out to the PHY. We first send a preamble to the PHY to signal the
562 	 * beginning of the MII instruction.  This is done by sending 32
563 	 * consecutive "1" bits.
564 	 */
565 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
566 
567 	/*
568 	 * Now combine the remaining required fields that will indicate a
569 	 * write operation. We use this method instead of calling the
570 	 * e1000_shift_out_mdi_bits routine for each field in the command. The
571 	 * format of a MII write instruction is as follows:
572 	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
573 	 */
574 	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
575 	        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
576 	mdic <<= 16;
577 	mdic |= (u32) data;
578 
579 	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
580 
581 out:
582 	return ret_val;
583 }
584 
585 /**
586  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
587  *  @hw: pointer to the HW structure
588  *  @ctrl: pointer to the control register
589  *
590  *  Raise the management data input clock by setting the MDC bit in the control
591  *  register.
592  **/
593 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
594 {
595 	/*
596 	 * Raise the clock input to the Management Data Clock (by setting the
597 	 * MDC bit), and then delay a sufficient amount of time.
598 	 */
599 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
600 	E1000_WRITE_FLUSH(hw);
601 	usec_delay(10);
602 }
603 
604 /**
605  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
606  *  @hw: pointer to the HW structure
607  *  @ctrl: pointer to the control register
608  *
609  *  Lower the management data input clock by clearing the MDC bit in the
610  *  control register.
611  **/
612 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
613 {
614 	/*
615 	 * Lower the clock input to the Management Data Clock (by clearing the
616 	 * MDC bit), and then delay a sufficient amount of time.
617 	 */
618 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
619 	E1000_WRITE_FLUSH(hw);
620 	usec_delay(10);
621 }
622 
623 /**
624  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
625  *  @hw: pointer to the HW structure
626  *  @data: data to send to the PHY
627  *  @count: number of bits to shift out
628  *
629  *  We need to shift 'count' bits out to the PHY.  So, the value in the
630  *  "data" parameter will be shifted out to the PHY one bit at a time.
631  *  In order to do this, "data" must be broken down into bits.
632  **/
633 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
634                                            u16 count)
635 {
636 	u32 ctrl, mask;
637 
638 	/*
639 	 * We need to shift "count" number of bits out to the PHY.  So, the
640 	 * value in the "data" parameter will be shifted out to the PHY one
641 	 * bit at a time.  In order to do this, "data" must be broken down
642 	 * into bits.
643 	 */
644 	mask = 0x01;
645 	mask <<= (count -1);
646 
647 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
648 
649 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
650 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
651 
652 	while (mask) {
653 		/*
654 		 * A "1" is shifted out to the PHY by setting the MDIO bit to
655 		 * "1" and then raising and lowering the Management Data Clock.
656 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
657 		 * "0" and then raising and lowering the clock.
658 		 */
659 		if (data & mask) ctrl |= E1000_CTRL_MDIO;
660 		else ctrl &= ~E1000_CTRL_MDIO;
661 
662 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
663 		E1000_WRITE_FLUSH(hw);
664 
665 		usec_delay(10);
666 
667 		e1000_raise_mdi_clk_82543(hw, &ctrl);
668 		e1000_lower_mdi_clk_82543(hw, &ctrl);
669 
670 		mask >>= 1;
671 	}
672 }
673 
674 /**
675  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
676  *  @hw: pointer to the HW structure
677  *
678  *  In order to read a register from the PHY, we need to shift 18 bits
679  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
680  *  the PHY (setting the MDC bit), and then reading the value of the data out
681  *  MDIO bit.
682  **/
683 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
684 {
685 	u32 ctrl;
686 	u16 data = 0;
687 	u8 i;
688 
689 	/*
690 	 * In order to read a register from the PHY, we need to shift in a
691 	 * total of 18 bits from the PHY.  The first two bit (turnaround)
692 	 * times are used to avoid contention on the MDIO pin when a read
693 	 * operation is performed.  These two bits are ignored by us and
694 	 * thrown away.  Bits are "shifted in" by raising the input to the
695 	 * Management Data Clock (setting the MDC bit) and then reading the
696 	 * value of the MDIO bit.
697 	 */
698 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
699 
700 	/*
701 	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
702 	 * input.
703 	 */
704 	ctrl &= ~E1000_CTRL_MDIO_DIR;
705 	ctrl &= ~E1000_CTRL_MDIO;
706 
707 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
708 	E1000_WRITE_FLUSH(hw);
709 
710 	/*
711 	 * Raise and lower the clock before reading in the data.  This accounts
712 	 * for the turnaround bits.  The first clock occurred when we clocked
713 	 * out the last bit of the Register Address.
714 	 */
715 	e1000_raise_mdi_clk_82543(hw, &ctrl);
716 	e1000_lower_mdi_clk_82543(hw, &ctrl);
717 
718 	for (data = 0, i = 0; i < 16; i++) {
719 		data <<= 1;
720 		e1000_raise_mdi_clk_82543(hw, &ctrl);
721 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
722 		/* Check to see if we shifted in a "1". */
723 		if (ctrl & E1000_CTRL_MDIO)
724 			data |= 1;
725 		e1000_lower_mdi_clk_82543(hw, &ctrl);
726 	}
727 
728 	e1000_raise_mdi_clk_82543(hw, &ctrl);
729 	e1000_lower_mdi_clk_82543(hw, &ctrl);
730 
731 	return data;
732 }
733 
734 /**
735  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
736  *  @hw: pointer to the HW structure
737  *
738  *  Calls the function to force speed and duplex for the m88 PHY, and
739  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
740  *  then call the function for polarity reversal workaround.
741  **/
742 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
743 {
744 	s32 ret_val;
745 
746 	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
747 
748 	ret_val = e1000_phy_force_speed_duplex_m88(hw);
749 	if (ret_val)
750 		goto out;
751 
752 	if (!hw->mac.autoneg &&
753 	    (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
754 		ret_val = e1000_polarity_reversal_workaround_82543(hw);
755 
756 out:
757 	return ret_val;
758 }
759 
760 /**
761  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
762  *  @hw: pointer to the HW structure
763  *
764  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
765  *  inadvertently.  To workaround the issue, we disable the transmitter on
766  *  the PHY until we have established the link partner's link parameters.
767  **/
768 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
769 {
770 	s32 ret_val = E1000_SUCCESS;
771 	u16 mii_status_reg;
772 	u16 i;
773 	bool link;
774 
775 	if (!(hw->phy.ops.write_reg))
776 		goto out;
777 
778 	/* Polarity reversal workaround for forced 10F/10H links. */
779 
780 	/* Disable the transmitter on the PHY */
781 
782 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
783 	if (ret_val)
784 		goto out;
785 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
786 	if (ret_val)
787 		goto out;
788 
789 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
790 	if (ret_val)
791 		goto out;
792 
793 	/*
794 	 * This loop will early-out if the NO link condition has been met.
795 	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
796 	 */
797 	for (i = PHY_FORCE_TIME; i > 0; i--) {
798 		/*
799 		 * Read the MII Status Register and wait for Link Status bit
800 		 * to be clear.
801 		 */
802 
803 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
804 		if (ret_val)
805 			goto out;
806 
807 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
808 		if (ret_val)
809 			goto out;
810 
811 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
812 			break;
813 		msec_delay_irq(100);
814 	}
815 
816 	/* Recommended delay time after link has been lost */
817 	msec_delay_irq(1000);
818 
819 	/* Now we will re-enable the transmitter on the PHY */
820 
821 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
822 	if (ret_val)
823 		goto out;
824 	msec_delay_irq(50);
825 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
826 	if (ret_val)
827 		goto out;
828 	msec_delay_irq(50);
829 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
830 	if (ret_val)
831 		goto out;
832 	msec_delay_irq(50);
833 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
834 	if (ret_val)
835 		goto out;
836 
837 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
838 	if (ret_val)
839 		goto out;
840 
841 	/*
842 	 * Read the MII Status Register and wait for Link Status bit
843 	 * to be set.
844 	 */
845 	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
846 	if (ret_val)
847 		goto out;
848 
849 out:
850 	return ret_val;
851 }
852 
853 /**
854  *  e1000_phy_hw_reset_82543 - PHY hardware reset
855  *  @hw: pointer to the HW structure
856  *
857  *  Sets the PHY_RESET_DIR bit in the extended device control register
858  *  to put the PHY into a reset and waits for completion.  Once the reset
859  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
860  *  of reset.
861  **/
862 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
863 {
864 	u32 ctrl_ext;
865 	s32 ret_val;
866 
867 	DEBUGFUNC("e1000_phy_hw_reset_82543");
868 
869 	/*
870 	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
871 	 * bit to put the PHY into reset...
872 	 */
873 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
874 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
875 	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
876 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
877 	E1000_WRITE_FLUSH(hw);
878 
879 	msec_delay(10);
880 
881 	/* ...then take it out of reset. */
882 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
883 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
884 	E1000_WRITE_FLUSH(hw);
885 
886 	usec_delay(150);
887 
888 	if (!(hw->phy.ops.get_cfg_done))
889 		return E1000_SUCCESS;
890 
891 	ret_val = hw->phy.ops.get_cfg_done(hw);
892 
893 	return ret_val;
894 }
895 
896 /**
897  *  e1000_reset_hw_82543 - Reset hardware
898  *  @hw: pointer to the HW structure
899  *
900  *  This resets the hardware into a known state.
901  **/
902 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
903 {
904 	u32 ctrl;
905 	s32 ret_val = E1000_SUCCESS;
906 
907 	DEBUGFUNC("e1000_reset_hw_82543");
908 
909 	DEBUGOUT("Masking off all interrupts\n");
910 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
911 
912 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
913 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
914 	E1000_WRITE_FLUSH(hw);
915 
916 	e1000_set_tbi_sbp_82543(hw, FALSE);
917 
918 	/*
919 	 * Delay to allow any outstanding PCI transactions to complete before
920 	 * resetting the device
921 	 */
922 	msec_delay(10);
923 
924 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
925 
926 	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
927 	if (hw->mac.type == e1000_82543) {
928 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
929 	} else {
930 		/*
931 		 * The 82544 can't ACK the 64-bit write when issuing the
932 		 * reset, so use IO-mapping as a workaround.
933 		 */
934 		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
935 	}
936 
937 	/*
938 	 * After MAC reset, force reload of NVM to restore power-on
939 	 * settings to device.
940 	 */
941 	hw->nvm.ops.reload(hw);
942 	msec_delay(2);
943 
944 	/* Masking off and clearing any pending interrupts */
945 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
946 	E1000_READ_REG(hw, E1000_ICR);
947 
948 	return ret_val;
949 }
950 
951 /**
952  *  e1000_init_hw_82543 - Initialize hardware
953  *  @hw: pointer to the HW structure
954  *
955  *  This inits the hardware readying it for operation.
956  **/
957 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
958 {
959 	struct e1000_mac_info *mac = &hw->mac;
960 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
961 	u32 ctrl;
962 	s32 ret_val;
963 	u16 i;
964 
965 	DEBUGFUNC("e1000_init_hw_82543");
966 
967 	/* Disabling VLAN filtering */
968 	E1000_WRITE_REG(hw, E1000_VET, 0);
969 	mac->ops.clear_vfta(hw);
970 
971 	/* Setup the receive address. */
972 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
973 
974 	/* Zero out the Multicast HASH table */
975 	DEBUGOUT("Zeroing the MTA\n");
976 	for (i = 0; i < mac->mta_reg_count; i++) {
977 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
978 		E1000_WRITE_FLUSH(hw);
979 	}
980 
981 	/*
982 	 * Set the PCI priority bit correctly in the CTRL register.  This
983 	 * determines if the adapter gives priority to receives, or if it
984 	 * gives equal priority to transmits and receives.
985 	 */
986 	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
987 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
988 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
989 	}
990 
991 	e1000_pcix_mmrbc_workaround_generic(hw);
992 
993 	/* Setup link and flow control */
994 	ret_val = mac->ops.setup_link(hw);
995 
996 	/*
997 	 * Clear all of the statistics registers (clear on read).  It is
998 	 * important that we do this after we have tried to establish link
999 	 * because the symbol error count will increment wildly if there
1000 	 * is no link.
1001 	 */
1002 	e1000_clear_hw_cntrs_82543(hw);
1003 
1004 	return ret_val;
1005 }
1006 
1007 /**
1008  *  e1000_setup_link_82543 - Setup flow control and link settings
1009  *  @hw: pointer to the HW structure
1010  *
1011  *  Read the EEPROM to determine the initial polarity value and write the
1012  *  extended device control register with the information before calling
1013  *  the generic setup link function, which does the following:
1014  *  Determines which flow control settings to use, then configures flow
1015  *  control.  Calls the appropriate media-specific link configuration
1016  *  function.  Assuming the adapter has a valid link partner, a valid link
1017  *  should be established.  Assumes the hardware has previously been reset
1018  *  and the transmitter and receiver are not enabled.
1019  **/
1020 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1021 {
1022 	u32 ctrl_ext;
1023 	s32  ret_val;
1024 	u16 data;
1025 
1026 	DEBUGFUNC("e1000_setup_link_82543");
1027 
1028 	/*
1029 	 * Take the 4 bits from NVM word 0xF that determine the initial
1030 	 * polarity value for the SW controlled pins, and setup the
1031 	 * Extended Device Control reg with that info.
1032 	 * This is needed because one of the SW controlled pins is used for
1033 	 * signal detection.  So this should be done before phy setup.
1034 	 */
1035 	if (hw->mac.type == e1000_82543) {
1036 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1037 		if (ret_val) {
1038 			DEBUGOUT("NVM Read Error\n");
1039 			ret_val = -E1000_ERR_NVM;
1040 			goto out;
1041 		}
1042 		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1043 		            NVM_SWDPIO_EXT_SHIFT);
1044 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1045 	}
1046 
1047 	ret_val = e1000_setup_link_generic(hw);
1048 
1049 out:
1050 	return ret_val;
1051 }
1052 
1053 /**
1054  *  e1000_setup_copper_link_82543 - Configure copper link settings
1055  *  @hw: pointer to the HW structure
1056  *
1057  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1058  *  for link, once link is established calls to configure collision distance
1059  *  and flow control are called.
1060  **/
1061 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1062 {
1063 	u32 ctrl;
1064 	s32 ret_val;
1065 	bool link;
1066 
1067 	DEBUGFUNC("e1000_setup_copper_link_82543");
1068 
1069 	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1070 	/*
1071 	 * With 82543, we need to force speed and duplex on the MAC
1072 	 * equal to what the PHY speed and duplex configuration is.
1073 	 * In addition, we need to perform a hardware reset on the
1074 	 * PHY to take it out of reset.
1075 	 */
1076 	if (hw->mac.type == e1000_82543) {
1077 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1078 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1079 		ret_val = hw->phy.ops.reset(hw);
1080 		if (ret_val)
1081 			goto out;
1082 		hw->phy.reset_disable = FALSE;
1083 	} else {
1084 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1085 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1086 	}
1087 
1088 	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1089 	ret_val = e1000_copper_link_setup_m88(hw);
1090 	if (ret_val)
1091 		goto out;
1092 
1093 	if (hw->mac.autoneg) {
1094 		/*
1095 		 * Setup autoneg and flow control advertisement and perform
1096 		 * autonegotiation.
1097 		 */
1098 		ret_val = e1000_copper_link_autoneg(hw);
1099 		if (ret_val)
1100 			goto out;
1101 	} else {
1102 		/*
1103 		 * PHY will be set to 10H, 10F, 100H or 100F
1104 		 * depending on user settings.
1105 		 */
1106 		DEBUGOUT("Forcing Speed and Duplex\n");
1107 		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1108 		if (ret_val) {
1109 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1110 			goto out;
1111 		}
1112 	}
1113 
1114 	/*
1115 	 * Check link status. Wait up to 100 microseconds for link to become
1116 	 * valid.
1117 	 */
1118 	ret_val = e1000_phy_has_link_generic(hw,
1119 	                                     COPPER_LINK_UP_LIMIT,
1120 	                                     10,
1121 	                                     &link);
1122 	if (ret_val)
1123 		goto out;
1124 
1125 
1126 	if (link) {
1127 		DEBUGOUT("Valid link established!!!\n");
1128 		/* Config the MAC and PHY after link is up */
1129 		if (hw->mac.type == e1000_82544) {
1130 			e1000_config_collision_dist_generic(hw);
1131 		} else {
1132 			ret_val = e1000_config_mac_to_phy_82543(hw);
1133 			if (ret_val)
1134 				goto out;
1135 		}
1136 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1137 	} else {
1138 		DEBUGOUT("Unable to establish link!!!\n");
1139 	}
1140 
1141 out:
1142 	return ret_val;
1143 }
1144 
1145 /**
1146  *  e1000_setup_fiber_link_82543 - Setup link for fiber
1147  *  @hw: pointer to the HW structure
1148  *
1149  *  Configures collision distance and flow control for fiber links.  Upon
1150  *  successful setup, poll for link.
1151  **/
1152 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1153 {
1154 	u32 ctrl;
1155 	s32 ret_val;
1156 
1157 	DEBUGFUNC("e1000_setup_fiber_link_82543");
1158 
1159 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1160 
1161 	/* Take the link out of reset */
1162 	ctrl &= ~E1000_CTRL_LRST;
1163 
1164 	e1000_config_collision_dist_generic(hw);
1165 
1166 	ret_val = e1000_commit_fc_settings_generic(hw);
1167 	if (ret_val)
1168 		goto out;
1169 
1170 	DEBUGOUT("Auto-negotiation enabled\n");
1171 
1172 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1173 	E1000_WRITE_FLUSH(hw);
1174 	msec_delay(1);
1175 
1176 	/*
1177 	 * For these adapters, the SW definable pin 1 is cleared when the
1178 	 * optics detect a signal.  If we have a signal, then poll for a
1179 	 * "Link-Up" indication.
1180 	 */
1181 	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1182 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1183 	} else {
1184 		DEBUGOUT("No signal detected\n");
1185 	}
1186 
1187 out:
1188 	return ret_val;
1189 }
1190 
1191 /**
1192  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1193  *  @hw: pointer to the HW structure
1194  *
1195  *  Checks the phy for link, if link exists, do the following:
1196  *   - check for downshift
1197  *   - do polarity workaround (if necessary)
1198  *   - configure collision distance
1199  *   - configure flow control after link up
1200  *   - configure tbi compatibility
1201  **/
1202 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1203 {
1204 	struct e1000_mac_info *mac = &hw->mac;
1205 	u32 icr, rctl;
1206 	s32 ret_val;
1207 	u16 speed, duplex;
1208 	bool link;
1209 
1210 	DEBUGFUNC("e1000_check_for_copper_link_82543");
1211 
1212 	if (!mac->get_link_status) {
1213 		ret_val = E1000_SUCCESS;
1214 		goto out;
1215 	}
1216 
1217 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1218 	if (ret_val)
1219 		goto out;
1220 
1221 	if (!link)
1222 		goto out; /* No link detected */
1223 
1224 	mac->get_link_status = FALSE;
1225 
1226 	e1000_check_downshift_generic(hw);
1227 
1228 	/*
1229 	 * If we are forcing speed/duplex, then we can return since
1230 	 * we have already determined whether we have link or not.
1231 	 */
1232 	if (!mac->autoneg) {
1233 		/*
1234 		 * If speed and duplex are forced to 10H or 10F, then we will
1235 		 * implement the polarity reversal workaround.  We disable
1236 		 * interrupts first, and upon returning, place the devices
1237 		 * interrupt state to its previous value except for the link
1238 		 * status change interrupt which will happened due to the
1239 		 * execution of this workaround.
1240 		 */
1241 		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1242 			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1243 			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1244 			icr = E1000_READ_REG(hw, E1000_ICR);
1245 			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1246 			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1247 		}
1248 
1249 		ret_val = -E1000_ERR_CONFIG;
1250 		goto out;
1251 	}
1252 
1253 	/*
1254 	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1255 	 * have Si on board that is 82544 or newer, Auto
1256 	 * Speed Detection takes care of MAC speed/duplex
1257 	 * configuration.  So we only need to configure Collision
1258 	 * Distance in the MAC.  Otherwise, we need to force
1259 	 * speed/duplex on the MAC to the current PHY speed/duplex
1260 	 * settings.
1261 	 */
1262 	if (mac->type == e1000_82544)
1263 		e1000_config_collision_dist_generic(hw);
1264 	else {
1265 		ret_val = e1000_config_mac_to_phy_82543(hw);
1266 		if (ret_val) {
1267 			DEBUGOUT("Error configuring MAC to PHY settings\n");
1268 			goto out;
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Configure Flow Control now that Auto-Neg has completed.
1274 	 * First, we need to restore the desired flow control
1275 	 * settings because we may have had to re-autoneg with a
1276 	 * different link partner.
1277 	 */
1278 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1279 	if (ret_val) {
1280 		DEBUGOUT("Error configuring flow control\n");
1281 	}
1282 
1283 	/*
1284 	 * At this point we know that we are on copper and we have
1285 	 * auto-negotiated link.  These are conditions for checking the link
1286 	 * partner capability register.  We use the link speed to determine if
1287 	 * TBI compatibility needs to be turned on or off.  If the link is not
1288 	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1289 	 * at gigabit speed, we turn on TBI compatibility.
1290 	 */
1291 	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1292 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1293 		if (ret_val) {
1294 			DEBUGOUT("Error getting link speed and duplex\n");
1295 			return ret_val;
1296 		}
1297 		if (speed != SPEED_1000) {
1298 			/*
1299 			 * If link speed is not set to gigabit speed,
1300 			 * we do not need to enable TBI compatibility.
1301 			 */
1302 			if (e1000_tbi_sbp_enabled_82543(hw)) {
1303 				/*
1304 				 * If we previously were in the mode,
1305 				 * turn it off.
1306 				 */
1307 				e1000_set_tbi_sbp_82543(hw, FALSE);
1308 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1309 				rctl &= ~E1000_RCTL_SBP;
1310 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1311 			}
1312 		} else {
1313 			/*
1314 			 * If TBI compatibility is was previously off,
1315 			 * turn it on. For compatibility with a TBI link
1316 			 * partner, we will store bad packets. Some
1317 			 * frames have an additional byte on the end and
1318 			 * will look like CRC errors to to the hardware.
1319 			 */
1320 			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1321 				e1000_set_tbi_sbp_82543(hw, TRUE);
1322 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1323 				rctl |= E1000_RCTL_SBP;
1324 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1325 			}
1326 		}
1327 	}
1328 out:
1329 	return ret_val;
1330 }
1331 
1332 /**
1333  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  Checks for link up on the hardware.  If link is not up and we have
1337  *  a signal, then we need to force link up.
1338  **/
1339 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1340 {
1341 	struct e1000_mac_info *mac = &hw->mac;
1342 	u32 rxcw, ctrl, status;
1343 	s32 ret_val = E1000_SUCCESS;
1344 
1345 	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1346 
1347 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1348 	status = E1000_READ_REG(hw, E1000_STATUS);
1349 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1350 
1351 	/*
1352 	 * If we don't have link (auto-negotiation failed or link partner
1353 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1354 	 * and our link partner is not trying to auto-negotiate with us (we
1355 	 * are receiving idles or data), we need to force link up. We also
1356 	 * need to give auto-negotiation time to complete, in case the cable
1357 	 * was just plugged in. The autoneg_failed flag does this.
1358 	 */
1359 	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1360 	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1361 	    (!(status & E1000_STATUS_LU)) &&
1362 	    (!(rxcw & E1000_RXCW_C))) {
1363 		if (mac->autoneg_failed == 0) {
1364 			mac->autoneg_failed = 1;
1365 			ret_val = 0;
1366 			goto out;
1367 		}
1368 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1369 
1370 		/* Disable auto-negotiation in the TXCW register */
1371 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1372 
1373 		/* Force link-up and also force full-duplex. */
1374 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1375 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1376 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1377 
1378 		/* Configure Flow Control after forcing link up. */
1379 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1380 		if (ret_val) {
1381 			DEBUGOUT("Error configuring flow control\n");
1382 			goto out;
1383 		}
1384 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1385 		/*
1386 		 * If we are forcing link and we are receiving /C/ ordered
1387 		 * sets, re-enable auto-negotiation in the TXCW register
1388 		 * and disable forced link in the Device Control register
1389 		 * in an attempt to auto-negotiate with our link partner.
1390 		 */
1391 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1392 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1393 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1394 
1395 		mac->serdes_has_link = TRUE;
1396 	}
1397 
1398 out:
1399 	return ret_val;
1400 }
1401 
1402 /**
1403  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1404  *  @hw: pointer to the HW structure
1405  *
1406  *  For the 82543 silicon, we need to set the MAC to match the settings
1407  *  of the PHY, even if the PHY is auto-negotiating.
1408  **/
1409 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1410 {
1411 	u32 ctrl;
1412 	s32 ret_val = E1000_SUCCESS;
1413 	u16 phy_data;
1414 
1415 	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1416 
1417 	if (!(hw->phy.ops.read_reg))
1418 		goto out;
1419 
1420 	/* Set the bits to force speed and duplex */
1421 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1422 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1423 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1424 
1425 	/*
1426 	 * Set up duplex in the Device Control and Transmit Control
1427 	 * registers depending on negotiated values.
1428 	 */
1429 	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1430 	if (ret_val)
1431 		goto out;
1432 
1433 	ctrl &= ~E1000_CTRL_FD;
1434 	if (phy_data & M88E1000_PSSR_DPLX)
1435 		ctrl |= E1000_CTRL_FD;
1436 
1437 	e1000_config_collision_dist_generic(hw);
1438 
1439 	/*
1440 	 * Set up speed in the Device Control register depending on
1441 	 * negotiated values.
1442 	 */
1443 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1444 		ctrl |= E1000_CTRL_SPD_1000;
1445 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1446 		ctrl |= E1000_CTRL_SPD_100;
1447 
1448 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1449 
1450 out:
1451 	return ret_val;
1452 }
1453 
1454 /**
1455  *  e1000_write_vfta_82543 - Write value to VLAN filter table
1456  *  @hw: pointer to the HW structure
1457  *  @offset: the 32-bit offset in which to write the value to.
1458  *  @value: the 32-bit value to write at location offset.
1459  *
1460  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1461  *  table.
1462  **/
1463 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1464 {
1465 	u32 temp;
1466 
1467 	DEBUGFUNC("e1000_write_vfta_82543");
1468 
1469 	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1470 		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1471 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1472 		E1000_WRITE_FLUSH(hw);
1473 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1474 		E1000_WRITE_FLUSH(hw);
1475 	} else {
1476 		e1000_write_vfta_generic(hw, offset, value);
1477 	}
1478 }
1479 
1480 /**
1481  *  e1000_led_on_82543 - Turn on SW controllable LED
1482  *  @hw: pointer to the HW structure
1483  *
1484  *  Turns the SW defined LED on.
1485  **/
1486 static s32 e1000_led_on_82543(struct e1000_hw *hw)
1487 {
1488 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1489 
1490 	DEBUGFUNC("e1000_led_on_82543");
1491 
1492 	if (hw->mac.type == e1000_82544 &&
1493 	    hw->phy.media_type == e1000_media_type_copper) {
1494 		/* Clear SW-definable Pin 0 to turn on the LED */
1495 		ctrl &= ~E1000_CTRL_SWDPIN0;
1496 		ctrl |= E1000_CTRL_SWDPIO0;
1497 	} else {
1498 		/* Fiber 82544 and all 82543 use this method */
1499 		ctrl |= E1000_CTRL_SWDPIN0;
1500 		ctrl |= E1000_CTRL_SWDPIO0;
1501 	}
1502 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1503 
1504 	return E1000_SUCCESS;
1505 }
1506 
1507 /**
1508  *  e1000_led_off_82543 - Turn off SW controllable LED
1509  *  @hw: pointer to the HW structure
1510  *
1511  *  Turns the SW defined LED off.
1512  **/
1513 static s32 e1000_led_off_82543(struct e1000_hw *hw)
1514 {
1515 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1516 
1517 	DEBUGFUNC("e1000_led_off_82543");
1518 
1519 	if (hw->mac.type == e1000_82544 &&
1520 	    hw->phy.media_type == e1000_media_type_copper) {
1521 		/* Set SW-definable Pin 0 to turn off the LED */
1522 		ctrl |= E1000_CTRL_SWDPIN0;
1523 		ctrl |= E1000_CTRL_SWDPIO0;
1524 	} else {
1525 		ctrl &= ~E1000_CTRL_SWDPIN0;
1526 		ctrl |= E1000_CTRL_SWDPIO0;
1527 	}
1528 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1529 
1530 	return E1000_SUCCESS;
1531 }
1532 
1533 /**
1534  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1535  *  @hw: pointer to the HW structure
1536  *
1537  *  Clears the hardware counters by reading the counter registers.
1538  **/
1539 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1540 {
1541 	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1542 
1543 	e1000_clear_hw_cntrs_base_generic(hw);
1544 
1545 	E1000_READ_REG(hw, E1000_PRC64);
1546 	E1000_READ_REG(hw, E1000_PRC127);
1547 	E1000_READ_REG(hw, E1000_PRC255);
1548 	E1000_READ_REG(hw, E1000_PRC511);
1549 	E1000_READ_REG(hw, E1000_PRC1023);
1550 	E1000_READ_REG(hw, E1000_PRC1522);
1551 	E1000_READ_REG(hw, E1000_PTC64);
1552 	E1000_READ_REG(hw, E1000_PTC127);
1553 	E1000_READ_REG(hw, E1000_PTC255);
1554 	E1000_READ_REG(hw, E1000_PTC511);
1555 	E1000_READ_REG(hw, E1000_PTC1023);
1556 	E1000_READ_REG(hw, E1000_PTC1522);
1557 
1558 	E1000_READ_REG(hw, E1000_ALGNERRC);
1559 	E1000_READ_REG(hw, E1000_RXERRC);
1560 	E1000_READ_REG(hw, E1000_TNCRS);
1561 	E1000_READ_REG(hw, E1000_CEXTERR);
1562 	E1000_READ_REG(hw, E1000_TSCTC);
1563 	E1000_READ_REG(hw, E1000_TSCTFC);
1564 }
1565 
1566 /**
1567  *  e1000_read_mac_addr_82543 - Read device MAC address
1568  *  @hw: pointer to the HW structure
1569  *
1570  *  Reads the device MAC address from the EEPROM and stores the value.
1571  *  Since devices with two ports use the same EEPROM, we increment the
1572  *  last bit in the MAC address for the second port.
1573  *
1574  **/
1575 s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
1576 {
1577 	s32  ret_val = E1000_SUCCESS;
1578 	u16 offset, nvm_data, i;
1579 
1580 	DEBUGFUNC("e1000_read_mac_addr");
1581 
1582 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
1583 		offset = i >> 1;
1584 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1585 		if (ret_val) {
1586 			DEBUGOUT("NVM Read Error\n");
1587 			goto out;
1588 		}
1589 		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1590 		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1591 	}
1592 
1593 	/* Flip last bit of mac address if we're on second port */
1594 	if (hw->bus.func == E1000_FUNC_1)
1595 		hw->mac.perm_addr[5] ^= 1;
1596 
1597 	for (i = 0; i < ETH_ADDR_LEN; i++)
1598 		hw->mac.addr[i] = hw->mac.perm_addr[i];
1599 
1600 out:
1601 	return ret_val;
1602 }
1603