xref: /freebsd/sys/dev/e1000/e1000_82543.c (revision 3c4ba5f55438f7afd4f4b0b56f88f2bb505fd6a6)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 /*
37  * 82543GC Gigabit Ethernet Controller (Fiber)
38  * 82543GC Gigabit Ethernet Controller (Copper)
39  * 82544EI Gigabit Ethernet Controller (Copper)
40  * 82544EI Gigabit Ethernet Controller (Fiber)
41  * 82544GC Gigabit Ethernet Controller (Copper)
42  * 82544GC Gigabit Ethernet Controller (LOM)
43  */
44 
45 #include "e1000_api.h"
46 
47 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
48 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
49 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
50 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
51 				     u16 *data);
52 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
53 				      u16 data);
54 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
55 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
56 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
57 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
58 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
59 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
60 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
61 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
62 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
63 static s32  e1000_led_on_82543(struct e1000_hw *hw);
64 static s32  e1000_led_off_82543(struct e1000_hw *hw);
65 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
66 				   u32 value);
67 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
68 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
69 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
70 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
71 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
72 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
73 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
74 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
75 					   u16 count);
76 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
77 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
78 static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
79 
80 
81 /**
82  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
83  *  @hw: pointer to the HW structure
84  **/
85 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
86 {
87 	struct e1000_phy_info *phy = &hw->phy;
88 	s32 ret_val = E1000_SUCCESS;
89 
90 	DEBUGFUNC("e1000_init_phy_params_82543");
91 
92 	if (hw->phy.media_type != e1000_media_type_copper) {
93 		phy->type = e1000_phy_none;
94 		goto out;
95 	} else {
96 		phy->ops.power_up = e1000_power_up_phy_copper;
97 		phy->ops.power_down = e1000_power_down_phy_copper;
98 	}
99 
100 	phy->addr		= 1;
101 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
102 	phy->reset_delay_us	= 10000;
103 	phy->type		= e1000_phy_m88;
104 
105 	/* Function Pointers */
106 	phy->ops.check_polarity	= e1000_check_polarity_m88;
107 	phy->ops.commit		= e1000_phy_sw_reset_generic;
108 	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
109 	phy->ops.get_cable_length = e1000_get_cable_length_m88;
110 	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
111 	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
112 				  ? e1000_read_phy_reg_82543
113 				  : e1000_read_phy_reg_m88;
114 	phy->ops.reset		= (hw->mac.type == e1000_82543)
115 				  ? e1000_phy_hw_reset_82543
116 				  : e1000_phy_hw_reset_generic;
117 	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
118 				  ? e1000_write_phy_reg_82543
119 				  : e1000_write_phy_reg_m88;
120 	phy->ops.get_info	= e1000_get_phy_info_m88;
121 
122 	/*
123 	 * The external PHY of the 82543 can be in a funky state.
124 	 * Resetting helps us read the PHY registers for acquiring
125 	 * the PHY ID.
126 	 */
127 	if (!e1000_init_phy_disabled_82543(hw)) {
128 		ret_val = phy->ops.reset(hw);
129 		if (ret_val) {
130 			DEBUGOUT("Resetting PHY during init failed.\n");
131 			goto out;
132 		}
133 		msec_delay(20);
134 	}
135 
136 	ret_val = e1000_get_phy_id(hw);
137 	if (ret_val)
138 		goto out;
139 
140 	/* Verify phy id */
141 	switch (hw->mac.type) {
142 	case e1000_82543:
143 		if (phy->id != M88E1000_E_PHY_ID) {
144 			ret_val = -E1000_ERR_PHY;
145 			goto out;
146 		}
147 		break;
148 	case e1000_82544:
149 		if (phy->id != M88E1000_I_PHY_ID) {
150 			ret_val = -E1000_ERR_PHY;
151 			goto out;
152 		}
153 		break;
154 	default:
155 		ret_val = -E1000_ERR_PHY;
156 		goto out;
157 		break;
158 	}
159 
160 out:
161 	return ret_val;
162 }
163 
164 /**
165  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
166  *  @hw: pointer to the HW structure
167  **/
168 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
169 {
170 	struct e1000_nvm_info *nvm = &hw->nvm;
171 
172 	DEBUGFUNC("e1000_init_nvm_params_82543");
173 
174 	nvm->type		= e1000_nvm_eeprom_microwire;
175 	nvm->word_size		= 64;
176 	nvm->delay_usec		= 50;
177 	nvm->address_bits	=  6;
178 	nvm->opcode_bits	=  3;
179 
180 	/* Function Pointers */
181 	nvm->ops.read		= e1000_read_nvm_microwire;
182 	nvm->ops.update		= e1000_update_nvm_checksum_generic;
183 	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
184 	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
185 	nvm->ops.write		= e1000_write_nvm_microwire;
186 
187 	return E1000_SUCCESS;
188 }
189 
190 /**
191  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
192  *  @hw: pointer to the HW structure
193  **/
194 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
195 {
196 	struct e1000_mac_info *mac = &hw->mac;
197 
198 	DEBUGFUNC("e1000_init_mac_params_82543");
199 
200 	/* Set media type */
201 	switch (hw->device_id) {
202 	case E1000_DEV_ID_82543GC_FIBER:
203 	case E1000_DEV_ID_82544EI_FIBER:
204 		hw->phy.media_type = e1000_media_type_fiber;
205 		break;
206 	default:
207 		hw->phy.media_type = e1000_media_type_copper;
208 		break;
209 	}
210 
211 	/* Set mta register count */
212 	mac->mta_reg_count = 128;
213 	/* Set rar entry count */
214 	mac->rar_entry_count = E1000_RAR_ENTRIES;
215 
216 	/* Function pointers */
217 
218 	/* bus type/speed/width */
219 	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
220 	/* function id */
221 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
222 	/* reset */
223 	mac->ops.reset_hw = e1000_reset_hw_82543;
224 	/* hw initialization */
225 	mac->ops.init_hw = e1000_init_hw_82543;
226 	/* link setup */
227 	mac->ops.setup_link = e1000_setup_link_82543;
228 	/* physical interface setup */
229 	mac->ops.setup_physical_interface =
230 		(hw->phy.media_type == e1000_media_type_copper)
231 		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
232 	/* check for link */
233 	mac->ops.check_for_link =
234 		(hw->phy.media_type == e1000_media_type_copper)
235 		 ? e1000_check_for_copper_link_82543
236 		 : e1000_check_for_fiber_link_82543;
237 	/* link info */
238 	mac->ops.get_link_up_info =
239 		(hw->phy.media_type == e1000_media_type_copper)
240 		 ? e1000_get_speed_and_duplex_copper_generic
241 		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
242 	/* multicast address update */
243 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
244 	/* writing VFTA */
245 	mac->ops.write_vfta = e1000_write_vfta_82543;
246 	/* clearing VFTA */
247 	mac->ops.clear_vfta = e1000_clear_vfta_generic;
248 	/* read mac address */
249 	mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
250 	/* turn on/off LED */
251 	mac->ops.led_on = e1000_led_on_82543;
252 	mac->ops.led_off = e1000_led_off_82543;
253 	/* clear hardware counters */
254 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
255 
256 	/* Set tbi compatibility */
257 	if ((hw->mac.type != e1000_82543) ||
258 	    (hw->phy.media_type == e1000_media_type_fiber))
259 		e1000_set_tbi_compatibility_82543(hw, false);
260 
261 	return E1000_SUCCESS;
262 }
263 
264 /**
265  *  e1000_init_function_pointers_82543 - Init func ptrs.
266  *  @hw: pointer to the HW structure
267  *
268  *  Called to initialize all function pointers and parameters.
269  **/
270 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
271 {
272 	DEBUGFUNC("e1000_init_function_pointers_82543");
273 
274 	hw->mac.ops.init_params = e1000_init_mac_params_82543;
275 	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
276 	hw->phy.ops.init_params = e1000_init_phy_params_82543;
277 }
278 
279 /**
280  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
281  *  @hw: pointer to the HW structure
282  *
283  *  Returns the current status of 10-bit Interface (TBI) compatibility
284  *  (enabled/disabled).
285  **/
286 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
287 {
288 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
289 	bool state = false;
290 
291 	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
292 
293 	if (hw->mac.type != e1000_82543) {
294 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
295 		goto out;
296 	}
297 
298 	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
299 
300 out:
301 	return state;
302 }
303 
304 /**
305  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
306  *  @hw: pointer to the HW structure
307  *  @state: enable/disable TBI compatibility
308  *
309  *  Enables or disabled 10-bit Interface (TBI) compatibility.
310  **/
311 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
312 {
313 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
314 
315 	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
316 
317 	if (hw->mac.type != e1000_82543) {
318 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
319 		goto out;
320 	}
321 
322 	if (state)
323 		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
324 	else
325 		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
326 
327 out:
328 	return;
329 }
330 
331 /**
332  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
333  *  @hw: pointer to the HW structure
334  *
335  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
336  *  (enabled/disabled).
337  **/
338 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
339 {
340 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
341 	bool state = false;
342 
343 	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
344 
345 	if (hw->mac.type != e1000_82543) {
346 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
347 		goto out;
348 	}
349 
350 	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
351 
352 out:
353 	return state;
354 }
355 
356 /**
357  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
358  *  @hw: pointer to the HW structure
359  *  @state: enable/disable TBI store bad packet
360  *
361  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
362  **/
363 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
364 {
365 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
366 
367 	DEBUGFUNC("e1000_set_tbi_sbp_82543");
368 
369 	if (state && e1000_tbi_compatibility_enabled_82543(hw))
370 		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
371 	else
372 		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
373 
374 	return;
375 }
376 
377 /**
378  *  e1000_init_phy_disabled_82543 - Returns init PHY status
379  *  @hw: pointer to the HW structure
380  *
381  *  Returns the current status of whether PHY initialization is disabled.
382  *  True if PHY initialization is disabled else false.
383  **/
384 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
385 {
386 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
387 	bool ret_val;
388 
389 	DEBUGFUNC("e1000_init_phy_disabled_82543");
390 
391 	if (hw->mac.type != e1000_82543) {
392 		ret_val = false;
393 		goto out;
394 	}
395 
396 	ret_val = dev_spec->init_phy_disabled;
397 
398 out:
399 	return ret_val;
400 }
401 
402 /**
403  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
404  *  @hw: pointer to the HW structure
405  *  @stats: Struct containing statistic register values
406  *  @frame_len: The length of the frame in question
407  *  @mac_addr: The Ethernet destination address of the frame in question
408  *  @max_frame_size: The maximum frame size
409  *
410  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
411  **/
412 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
413 				  struct e1000_hw_stats *stats, u32 frame_len,
414 				  u8 *mac_addr, u32 max_frame_size)
415 {
416 	if (!(e1000_tbi_sbp_enabled_82543(hw)))
417 		goto out;
418 
419 	/* First adjust the frame length. */
420 	frame_len--;
421 	/*
422 	 * We need to adjust the statistics counters, since the hardware
423 	 * counters overcount this packet as a CRC error and undercount
424 	 * the packet as a good packet
425 	 */
426 	/* This packet should not be counted as a CRC error. */
427 	stats->crcerrs--;
428 	/* This packet does count as a Good Packet Received. */
429 	stats->gprc++;
430 
431 	/* Adjust the Good Octets received counters */
432 	stats->gorc += frame_len;
433 
434 	/*
435 	 * Is this a broadcast or multicast?  Check broadcast first,
436 	 * since the test for a multicast frame will test positive on
437 	 * a broadcast frame.
438 	 */
439 	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
440 		/* Broadcast packet */
441 		stats->bprc++;
442 	else if (*mac_addr & 0x01)
443 		/* Multicast packet */
444 		stats->mprc++;
445 
446 	/*
447 	 * In this case, the hardware has over counted the number of
448 	 * oversize frames.
449 	 */
450 	if ((frame_len == max_frame_size) && (stats->roc > 0))
451 		stats->roc--;
452 
453 	/*
454 	 * Adjust the bin counters when the extra byte put the frame in the
455 	 * wrong bin. Remember that the frame_len was adjusted above.
456 	 */
457 	if (frame_len == 64) {
458 		stats->prc64++;
459 		stats->prc127--;
460 	} else if (frame_len == 127) {
461 		stats->prc127++;
462 		stats->prc255--;
463 	} else if (frame_len == 255) {
464 		stats->prc255++;
465 		stats->prc511--;
466 	} else if (frame_len == 511) {
467 		stats->prc511++;
468 		stats->prc1023--;
469 	} else if (frame_len == 1023) {
470 		stats->prc1023++;
471 		stats->prc1522--;
472 	} else if (frame_len == 1522) {
473 		stats->prc1522++;
474 	}
475 
476 out:
477 	return;
478 }
479 
480 /**
481  *  e1000_read_phy_reg_82543 - Read PHY register
482  *  @hw: pointer to the HW structure
483  *  @offset: register offset to be read
484  *  @data: pointer to the read data
485  *
486  *  Reads the PHY at offset and stores the information read to data.
487  **/
488 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
489 {
490 	u32 mdic;
491 	s32 ret_val = E1000_SUCCESS;
492 
493 	DEBUGFUNC("e1000_read_phy_reg_82543");
494 
495 	if (offset > MAX_PHY_REG_ADDRESS) {
496 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
497 		ret_val = -E1000_ERR_PARAM;
498 		goto out;
499 	}
500 
501 	/*
502 	 * We must first send a preamble through the MDIO pin to signal the
503 	 * beginning of an MII instruction.  This is done by sending 32
504 	 * consecutive "1" bits.
505 	 */
506 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
507 
508 	/*
509 	 * Now combine the next few fields that are required for a read
510 	 * operation.  We use this method instead of calling the
511 	 * e1000_shift_out_mdi_bits routine five different times.  The format
512 	 * of an MII read instruction consists of a shift out of 14 bits and
513 	 * is defined as follows:
514 	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
515 	 * followed by a shift in of 18 bits.  This first two bits shifted in
516 	 * are TurnAround bits used to avoid contention on the MDIO pin when a
517 	 * READ operation is performed.  These two bits are thrown away
518 	 * followed by a shift in of 16 bits which contains the desired data.
519 	 */
520 	mdic = (offset | (hw->phy.addr << 5) |
521 		(PHY_OP_READ << 10) | (PHY_SOF << 12));
522 
523 	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
524 
525 	/*
526 	 * Now that we've shifted out the read command to the MII, we need to
527 	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
528 	 * register address.
529 	 */
530 	*data = e1000_shift_in_mdi_bits_82543(hw);
531 
532 out:
533 	return ret_val;
534 }
535 
536 /**
537  *  e1000_write_phy_reg_82543 - Write PHY register
538  *  @hw: pointer to the HW structure
539  *  @offset: register offset to be written
540  *  @data: pointer to the data to be written at offset
541  *
542  *  Writes data to the PHY at offset.
543  **/
544 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
545 {
546 	u32 mdic;
547 	s32 ret_val = E1000_SUCCESS;
548 
549 	DEBUGFUNC("e1000_write_phy_reg_82543");
550 
551 	if (offset > MAX_PHY_REG_ADDRESS) {
552 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
553 		ret_val = -E1000_ERR_PARAM;
554 		goto out;
555 	}
556 
557 	/*
558 	 * We'll need to use the SW defined pins to shift the write command
559 	 * out to the PHY. We first send a preamble to the PHY to signal the
560 	 * beginning of the MII instruction.  This is done by sending 32
561 	 * consecutive "1" bits.
562 	 */
563 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
564 
565 	/*
566 	 * Now combine the remaining required fields that will indicate a
567 	 * write operation. We use this method instead of calling the
568 	 * e1000_shift_out_mdi_bits routine for each field in the command. The
569 	 * format of a MII write instruction is as follows:
570 	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
571 	 */
572 	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
573 		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
574 	mdic <<= 16;
575 	mdic |= (u32)data;
576 
577 	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
578 
579 out:
580 	return ret_val;
581 }
582 
583 /**
584  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
585  *  @hw: pointer to the HW structure
586  *  @ctrl: pointer to the control register
587  *
588  *  Raise the management data input clock by setting the MDC bit in the control
589  *  register.
590  **/
591 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
592 {
593 	/*
594 	 * Raise the clock input to the Management Data Clock (by setting the
595 	 * MDC bit), and then delay a sufficient amount of time.
596 	 */
597 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
598 	E1000_WRITE_FLUSH(hw);
599 	usec_delay(10);
600 }
601 
602 /**
603  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
604  *  @hw: pointer to the HW structure
605  *  @ctrl: pointer to the control register
606  *
607  *  Lower the management data input clock by clearing the MDC bit in the
608  *  control register.
609  **/
610 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
611 {
612 	/*
613 	 * Lower the clock input to the Management Data Clock (by clearing the
614 	 * MDC bit), and then delay a sufficient amount of time.
615 	 */
616 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
617 	E1000_WRITE_FLUSH(hw);
618 	usec_delay(10);
619 }
620 
621 /**
622  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
623  *  @hw: pointer to the HW structure
624  *  @data: data to send to the PHY
625  *  @count: number of bits to shift out
626  *
627  *  We need to shift 'count' bits out to the PHY.  So, the value in the
628  *  "data" parameter will be shifted out to the PHY one bit at a time.
629  *  In order to do this, "data" must be broken down into bits.
630  **/
631 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
632 					   u16 count)
633 {
634 	u32 ctrl, mask;
635 
636 	/*
637 	 * We need to shift "count" number of bits out to the PHY.  So, the
638 	 * value in the "data" parameter will be shifted out to the PHY one
639 	 * bit at a time.  In order to do this, "data" must be broken down
640 	 * into bits.
641 	 */
642 	mask = 0x01;
643 	mask <<= (count - 1);
644 
645 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
646 
647 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
648 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
649 
650 	while (mask) {
651 		/*
652 		 * A "1" is shifted out to the PHY by setting the MDIO bit to
653 		 * "1" and then raising and lowering the Management Data Clock.
654 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
655 		 * "0" and then raising and lowering the clock.
656 		 */
657 		if (data & mask)
658 			ctrl |= E1000_CTRL_MDIO;
659 		else
660 			ctrl &= ~E1000_CTRL_MDIO;
661 
662 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
663 		E1000_WRITE_FLUSH(hw);
664 
665 		usec_delay(10);
666 
667 		e1000_raise_mdi_clk_82543(hw, &ctrl);
668 		e1000_lower_mdi_clk_82543(hw, &ctrl);
669 
670 		mask >>= 1;
671 	}
672 }
673 
674 /**
675  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
676  *  @hw: pointer to the HW structure
677  *
678  *  In order to read a register from the PHY, we need to shift 18 bits
679  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
680  *  the PHY (setting the MDC bit), and then reading the value of the data out
681  *  MDIO bit.
682  **/
683 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
684 {
685 	u32 ctrl;
686 	u16 data = 0;
687 	u8 i;
688 
689 	/*
690 	 * In order to read a register from the PHY, we need to shift in a
691 	 * total of 18 bits from the PHY.  The first two bit (turnaround)
692 	 * times are used to avoid contention on the MDIO pin when a read
693 	 * operation is performed.  These two bits are ignored by us and
694 	 * thrown away.  Bits are "shifted in" by raising the input to the
695 	 * Management Data Clock (setting the MDC bit) and then reading the
696 	 * value of the MDIO bit.
697 	 */
698 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
699 
700 	/*
701 	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
702 	 * input.
703 	 */
704 	ctrl &= ~E1000_CTRL_MDIO_DIR;
705 	ctrl &= ~E1000_CTRL_MDIO;
706 
707 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
708 	E1000_WRITE_FLUSH(hw);
709 
710 	/*
711 	 * Raise and lower the clock before reading in the data.  This accounts
712 	 * for the turnaround bits.  The first clock occurred when we clocked
713 	 * out the last bit of the Register Address.
714 	 */
715 	e1000_raise_mdi_clk_82543(hw, &ctrl);
716 	e1000_lower_mdi_clk_82543(hw, &ctrl);
717 
718 	for (data = 0, i = 0; i < 16; i++) {
719 		data <<= 1;
720 		e1000_raise_mdi_clk_82543(hw, &ctrl);
721 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
722 		/* Check to see if we shifted in a "1". */
723 		if (ctrl & E1000_CTRL_MDIO)
724 			data |= 1;
725 		e1000_lower_mdi_clk_82543(hw, &ctrl);
726 	}
727 
728 	e1000_raise_mdi_clk_82543(hw, &ctrl);
729 	e1000_lower_mdi_clk_82543(hw, &ctrl);
730 
731 	return data;
732 }
733 
734 /**
735  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
736  *  @hw: pointer to the HW structure
737  *
738  *  Calls the function to force speed and duplex for the m88 PHY, and
739  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
740  *  then call the function for polarity reversal workaround.
741  **/
742 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
743 {
744 	s32 ret_val;
745 
746 	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
747 
748 	ret_val = e1000_phy_force_speed_duplex_m88(hw);
749 	if (ret_val)
750 		goto out;
751 
752 	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
753 	    E1000_ALL_10_SPEED))
754 		ret_val = e1000_polarity_reversal_workaround_82543(hw);
755 
756 out:
757 	return ret_val;
758 }
759 
760 /**
761  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
762  *  @hw: pointer to the HW structure
763  *
764  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
765  *  inadvertently.  To workaround the issue, we disable the transmitter on
766  *  the PHY until we have established the link partner's link parameters.
767  **/
768 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
769 {
770 	s32 ret_val = E1000_SUCCESS;
771 	u16 mii_status_reg;
772 	u16 i;
773 	bool link;
774 
775 	if (!(hw->phy.ops.write_reg))
776 		goto out;
777 
778 	/* Polarity reversal workaround for forced 10F/10H links. */
779 
780 	/* Disable the transmitter on the PHY */
781 
782 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
783 	if (ret_val)
784 		goto out;
785 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
786 	if (ret_val)
787 		goto out;
788 
789 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
790 	if (ret_val)
791 		goto out;
792 
793 	/*
794 	 * This loop will early-out if the NO link condition has been met.
795 	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
796 	 */
797 	for (i = PHY_FORCE_TIME; i > 0; i--) {
798 		/*
799 		 * Read the MII Status Register and wait for Link Status bit
800 		 * to be clear.
801 		 */
802 
803 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
804 		if (ret_val)
805 			goto out;
806 
807 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
808 		if (ret_val)
809 			goto out;
810 
811 		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
812 			break;
813 		msec_delay_irq(100);
814 	}
815 
816 	/* Recommended delay time after link has been lost */
817 	msec_delay_irq(1000);
818 
819 	/* Now we will re-enable the transmitter on the PHY */
820 
821 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
822 	if (ret_val)
823 		goto out;
824 	msec_delay_irq(50);
825 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
826 	if (ret_val)
827 		goto out;
828 	msec_delay_irq(50);
829 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
830 	if (ret_val)
831 		goto out;
832 	msec_delay_irq(50);
833 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
834 	if (ret_val)
835 		goto out;
836 
837 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
838 	if (ret_val)
839 		goto out;
840 
841 	/*
842 	 * Read the MII Status Register and wait for Link Status bit
843 	 * to be set.
844 	 */
845 	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
846 	if (ret_val)
847 		goto out;
848 
849 out:
850 	return ret_val;
851 }
852 
853 /**
854  *  e1000_phy_hw_reset_82543 - PHY hardware reset
855  *  @hw: pointer to the HW structure
856  *
857  *  Sets the PHY_RESET_DIR bit in the extended device control register
858  *  to put the PHY into a reset and waits for completion.  Once the reset
859  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
860  *  of reset.
861  **/
862 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
863 {
864 	u32 ctrl_ext;
865 	s32 ret_val;
866 
867 	DEBUGFUNC("e1000_phy_hw_reset_82543");
868 
869 	/*
870 	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
871 	 * bit to put the PHY into reset...
872 	 */
873 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
874 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
875 	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
876 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
877 	E1000_WRITE_FLUSH(hw);
878 
879 	msec_delay(10);
880 
881 	/* ...then take it out of reset. */
882 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
883 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
884 	E1000_WRITE_FLUSH(hw);
885 
886 	usec_delay(150);
887 
888 	if (!(hw->phy.ops.get_cfg_done))
889 		return E1000_SUCCESS;
890 
891 	ret_val = hw->phy.ops.get_cfg_done(hw);
892 
893 	return ret_val;
894 }
895 
896 /**
897  *  e1000_reset_hw_82543 - Reset hardware
898  *  @hw: pointer to the HW structure
899  *
900  *  This resets the hardware into a known state.
901  **/
902 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
903 {
904 	u32 ctrl;
905 	s32 ret_val = E1000_SUCCESS;
906 
907 	DEBUGFUNC("e1000_reset_hw_82543");
908 
909 	DEBUGOUT("Masking off all interrupts\n");
910 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
911 
912 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
913 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
914 	E1000_WRITE_FLUSH(hw);
915 
916 	e1000_set_tbi_sbp_82543(hw, false);
917 
918 	/*
919 	 * Delay to allow any outstanding PCI transactions to complete before
920 	 * resetting the device
921 	 */
922 	msec_delay(10);
923 
924 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
925 
926 	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
927 	if (hw->mac.type == e1000_82543) {
928 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
929 	} else {
930 		/*
931 		 * The 82544 can't ACK the 64-bit write when issuing the
932 		 * reset, so use IO-mapping as a workaround.
933 		 */
934 		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
935 	}
936 
937 	/*
938 	 * After MAC reset, force reload of NVM to restore power-on
939 	 * settings to device.
940 	 */
941 	hw->nvm.ops.reload(hw);
942 	msec_delay(2);
943 
944 	/* Masking off and clearing any pending interrupts */
945 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
946 	E1000_READ_REG(hw, E1000_ICR);
947 
948 	return ret_val;
949 }
950 
951 /**
952  *  e1000_init_hw_82543 - Initialize hardware
953  *  @hw: pointer to the HW structure
954  *
955  *  This inits the hardware readying it for operation.
956  **/
957 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
958 {
959 	struct e1000_mac_info *mac = &hw->mac;
960 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
961 	u32 ctrl;
962 	s32 ret_val;
963 	u16 i;
964 
965 	DEBUGFUNC("e1000_init_hw_82543");
966 
967 	/* Disabling VLAN filtering */
968 	E1000_WRITE_REG(hw, E1000_VET, 0);
969 	mac->ops.clear_vfta(hw);
970 
971 	/* Setup the receive address. */
972 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
973 
974 	/* Zero out the Multicast HASH table */
975 	DEBUGOUT("Zeroing the MTA\n");
976 	for (i = 0; i < mac->mta_reg_count; i++) {
977 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
978 		E1000_WRITE_FLUSH(hw);
979 	}
980 
981 	/*
982 	 * Set the PCI priority bit correctly in the CTRL register.  This
983 	 * determines if the adapter gives priority to receives, or if it
984 	 * gives equal priority to transmits and receives.
985 	 */
986 	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
987 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
988 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
989 	}
990 
991 	e1000_pcix_mmrbc_workaround_generic(hw);
992 
993 	/* Setup link and flow control */
994 	ret_val = mac->ops.setup_link(hw);
995 
996 	/*
997 	 * Clear all of the statistics registers (clear on read).  It is
998 	 * important that we do this after we have tried to establish link
999 	 * because the symbol error count will increment wildly if there
1000 	 * is no link.
1001 	 */
1002 	e1000_clear_hw_cntrs_82543(hw);
1003 
1004 	return ret_val;
1005 }
1006 
1007 /**
1008  *  e1000_setup_link_82543 - Setup flow control and link settings
1009  *  @hw: pointer to the HW structure
1010  *
1011  *  Read the EEPROM to determine the initial polarity value and write the
1012  *  extended device control register with the information before calling
1013  *  the generic setup link function, which does the following:
1014  *  Determines which flow control settings to use, then configures flow
1015  *  control.  Calls the appropriate media-specific link configuration
1016  *  function.  Assuming the adapter has a valid link partner, a valid link
1017  *  should be established.  Assumes the hardware has previously been reset
1018  *  and the transmitter and receiver are not enabled.
1019  **/
1020 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1021 {
1022 	u32 ctrl_ext;
1023 	s32  ret_val;
1024 	u16 data;
1025 
1026 	DEBUGFUNC("e1000_setup_link_82543");
1027 
1028 	/*
1029 	 * Take the 4 bits from NVM word 0xF that determine the initial
1030 	 * polarity value for the SW controlled pins, and setup the
1031 	 * Extended Device Control reg with that info.
1032 	 * This is needed because one of the SW controlled pins is used for
1033 	 * signal detection.  So this should be done before phy setup.
1034 	 */
1035 	if (hw->mac.type == e1000_82543) {
1036 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1037 		if (ret_val) {
1038 			DEBUGOUT("NVM Read Error\n");
1039 			ret_val = -E1000_ERR_NVM;
1040 			goto out;
1041 		}
1042 		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1043 			    NVM_SWDPIO_EXT_SHIFT);
1044 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1045 	}
1046 
1047 	ret_val = e1000_setup_link_generic(hw);
1048 
1049 out:
1050 	return ret_val;
1051 }
1052 
1053 /**
1054  *  e1000_setup_copper_link_82543 - Configure copper link settings
1055  *  @hw: pointer to the HW structure
1056  *
1057  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1058  *  for link, once link is established calls to configure collision distance
1059  *  and flow control are called.
1060  **/
1061 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1062 {
1063 	u32 ctrl;
1064 	s32 ret_val;
1065 	bool link = true;
1066 
1067 	DEBUGFUNC("e1000_setup_copper_link_82543");
1068 
1069 	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1070 	/*
1071 	 * With 82543, we need to force speed and duplex on the MAC
1072 	 * equal to what the PHY speed and duplex configuration is.
1073 	 * In addition, we need to perform a hardware reset on the
1074 	 * PHY to take it out of reset.
1075 	 */
1076 	if (hw->mac.type == e1000_82543) {
1077 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1078 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1079 		ret_val = hw->phy.ops.reset(hw);
1080 		if (ret_val)
1081 			goto out;
1082 	} else {
1083 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1084 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1085 	}
1086 
1087 	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1088 	ret_val = e1000_copper_link_setup_m88(hw);
1089 	if (ret_val)
1090 		goto out;
1091 
1092 	if (hw->mac.autoneg) {
1093 		/*
1094 		 * Setup autoneg and flow control advertisement and perform
1095 		 * autonegotiation.
1096 		 */
1097 		ret_val = e1000_copper_link_autoneg(hw);
1098 		if (ret_val)
1099 			goto out;
1100 	} else {
1101 		/*
1102 		 * PHY will be set to 10H, 10F, 100H or 100F
1103 		 * depending on user settings.
1104 		 */
1105 		DEBUGOUT("Forcing Speed and Duplex\n");
1106 		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1107 		if (ret_val) {
1108 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1109 			goto out;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Check link status. Wait up to 100 microseconds for link to become
1115 	 * valid.
1116 	 */
1117 	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1118 					     &link);
1119 	if (ret_val)
1120 		goto out;
1121 
1122 
1123 	if (link) {
1124 		DEBUGOUT("Valid link established!!!\n");
1125 		/* Config the MAC and PHY after link is up */
1126 		if (hw->mac.type == e1000_82544) {
1127 			hw->mac.ops.config_collision_dist(hw);
1128 		} else {
1129 			ret_val = e1000_config_mac_to_phy_82543(hw);
1130 			if (ret_val)
1131 				goto out;
1132 		}
1133 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1134 	} else {
1135 		DEBUGOUT("Unable to establish link!!!\n");
1136 	}
1137 
1138 out:
1139 	return ret_val;
1140 }
1141 
1142 /**
1143  *  e1000_setup_fiber_link_82543 - Setup link for fiber
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  Configures collision distance and flow control for fiber links.  Upon
1147  *  successful setup, poll for link.
1148  **/
1149 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1150 {
1151 	u32 ctrl;
1152 	s32 ret_val;
1153 
1154 	DEBUGFUNC("e1000_setup_fiber_link_82543");
1155 
1156 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1157 
1158 	/* Take the link out of reset */
1159 	ctrl &= ~E1000_CTRL_LRST;
1160 
1161 	hw->mac.ops.config_collision_dist(hw);
1162 
1163 	ret_val = e1000_commit_fc_settings_generic(hw);
1164 	if (ret_val)
1165 		goto out;
1166 
1167 	DEBUGOUT("Auto-negotiation enabled\n");
1168 
1169 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1170 	E1000_WRITE_FLUSH(hw);
1171 	msec_delay(1);
1172 
1173 	/*
1174 	 * For these adapters, the SW definable pin 1 is cleared when the
1175 	 * optics detect a signal.  If we have a signal, then poll for a
1176 	 * "Link-Up" indication.
1177 	 */
1178 	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1179 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1180 	else
1181 		DEBUGOUT("No signal detected\n");
1182 
1183 out:
1184 	return ret_val;
1185 }
1186 
1187 /**
1188  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1189  *  @hw: pointer to the HW structure
1190  *
1191  *  Checks the phy for link, if link exists, do the following:
1192  *   - check for downshift
1193  *   - do polarity workaround (if necessary)
1194  *   - configure collision distance
1195  *   - configure flow control after link up
1196  *   - configure tbi compatibility
1197  **/
1198 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1199 {
1200 	struct e1000_mac_info *mac = &hw->mac;
1201 	u32 icr, rctl;
1202 	s32 ret_val;
1203 	u16 speed, duplex;
1204 	bool link;
1205 
1206 	DEBUGFUNC("e1000_check_for_copper_link_82543");
1207 
1208 	if (!mac->get_link_status) {
1209 		ret_val = E1000_SUCCESS;
1210 		goto out;
1211 	}
1212 
1213 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1214 	if (ret_val)
1215 		goto out;
1216 
1217 	if (!link)
1218 		goto out; /* No link detected */
1219 
1220 	mac->get_link_status = false;
1221 
1222 	e1000_check_downshift_generic(hw);
1223 
1224 	/*
1225 	 * If we are forcing speed/duplex, then we can return since
1226 	 * we have already determined whether we have link or not.
1227 	 */
1228 	if (!mac->autoneg) {
1229 		/*
1230 		 * If speed and duplex are forced to 10H or 10F, then we will
1231 		 * implement the polarity reversal workaround.  We disable
1232 		 * interrupts first, and upon returning, place the devices
1233 		 * interrupt state to its previous value except for the link
1234 		 * status change interrupt which will happened due to the
1235 		 * execution of this workaround.
1236 		 */
1237 		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1238 			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1239 			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1240 			icr = E1000_READ_REG(hw, E1000_ICR);
1241 			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1242 			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1243 		}
1244 
1245 		ret_val = -E1000_ERR_CONFIG;
1246 		goto out;
1247 	}
1248 
1249 	/*
1250 	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1251 	 * have Si on board that is 82544 or newer, Auto
1252 	 * Speed Detection takes care of MAC speed/duplex
1253 	 * configuration.  So we only need to configure Collision
1254 	 * Distance in the MAC.  Otherwise, we need to force
1255 	 * speed/duplex on the MAC to the current PHY speed/duplex
1256 	 * settings.
1257 	 */
1258 	if (mac->type == e1000_82544)
1259 		hw->mac.ops.config_collision_dist(hw);
1260 	else {
1261 		ret_val = e1000_config_mac_to_phy_82543(hw);
1262 		if (ret_val) {
1263 			DEBUGOUT("Error configuring MAC to PHY settings\n");
1264 			goto out;
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Configure Flow Control now that Auto-Neg has completed.
1270 	 * First, we need to restore the desired flow control
1271 	 * settings because we may have had to re-autoneg with a
1272 	 * different link partner.
1273 	 */
1274 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1275 	if (ret_val)
1276 		DEBUGOUT("Error configuring flow control\n");
1277 
1278 	/*
1279 	 * At this point we know that we are on copper and we have
1280 	 * auto-negotiated link.  These are conditions for checking the link
1281 	 * partner capability register.  We use the link speed to determine if
1282 	 * TBI compatibility needs to be turned on or off.  If the link is not
1283 	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1284 	 * at gigabit speed, we turn on TBI compatibility.
1285 	 */
1286 	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1287 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1288 		if (ret_val) {
1289 			DEBUGOUT("Error getting link speed and duplex\n");
1290 			return ret_val;
1291 		}
1292 		if (speed != SPEED_1000) {
1293 			/*
1294 			 * If link speed is not set to gigabit speed,
1295 			 * we do not need to enable TBI compatibility.
1296 			 */
1297 			if (e1000_tbi_sbp_enabled_82543(hw)) {
1298 				/*
1299 				 * If we previously were in the mode,
1300 				 * turn it off.
1301 				 */
1302 				e1000_set_tbi_sbp_82543(hw, false);
1303 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1304 				rctl &= ~E1000_RCTL_SBP;
1305 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1306 			}
1307 		} else {
1308 			/*
1309 			 * If TBI compatibility is was previously off,
1310 			 * turn it on. For compatibility with a TBI link
1311 			 * partner, we will store bad packets. Some
1312 			 * frames have an additional byte on the end and
1313 			 * will look like CRC errors to the hardware.
1314 			 */
1315 			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1316 				e1000_set_tbi_sbp_82543(hw, true);
1317 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1318 				rctl |= E1000_RCTL_SBP;
1319 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1320 			}
1321 		}
1322 	}
1323 out:
1324 	return ret_val;
1325 }
1326 
1327 /**
1328  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1329  *  @hw: pointer to the HW structure
1330  *
1331  *  Checks for link up on the hardware.  If link is not up and we have
1332  *  a signal, then we need to force link up.
1333  **/
1334 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1335 {
1336 	struct e1000_mac_info *mac = &hw->mac;
1337 	u32 rxcw, ctrl, status;
1338 	s32 ret_val = E1000_SUCCESS;
1339 
1340 	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1341 
1342 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1343 	status = E1000_READ_REG(hw, E1000_STATUS);
1344 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1345 
1346 	/*
1347 	 * If we don't have link (auto-negotiation failed or link partner
1348 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1349 	 * and our link partner is not trying to auto-negotiate with us (we
1350 	 * are receiving idles or data), we need to force link up. We also
1351 	 * need to give auto-negotiation time to complete, in case the cable
1352 	 * was just plugged in. The autoneg_failed flag does this.
1353 	 */
1354 	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1355 	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1356 	    (!(status & E1000_STATUS_LU)) &&
1357 	    (!(rxcw & E1000_RXCW_C))) {
1358 		if (!mac->autoneg_failed) {
1359 			mac->autoneg_failed = true;
1360 			ret_val = 0;
1361 			goto out;
1362 		}
1363 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1364 
1365 		/* Disable auto-negotiation in the TXCW register */
1366 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1367 
1368 		/* Force link-up and also force full-duplex. */
1369 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1370 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1371 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1372 
1373 		/* Configure Flow Control after forcing link up. */
1374 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1375 		if (ret_val) {
1376 			DEBUGOUT("Error configuring flow control\n");
1377 			goto out;
1378 		}
1379 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1380 		/*
1381 		 * If we are forcing link and we are receiving /C/ ordered
1382 		 * sets, re-enable auto-negotiation in the TXCW register
1383 		 * and disable forced link in the Device Control register
1384 		 * in an attempt to auto-negotiate with our link partner.
1385 		 */
1386 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1387 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1388 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1389 
1390 		mac->serdes_has_link = true;
1391 	}
1392 
1393 out:
1394 	return ret_val;
1395 }
1396 
1397 /**
1398  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1399  *  @hw: pointer to the HW structure
1400  *
1401  *  For the 82543 silicon, we need to set the MAC to match the settings
1402  *  of the PHY, even if the PHY is auto-negotiating.
1403  **/
1404 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1405 {
1406 	u32 ctrl;
1407 	s32 ret_val = E1000_SUCCESS;
1408 	u16 phy_data;
1409 
1410 	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1411 
1412 	if (!(hw->phy.ops.read_reg))
1413 		goto out;
1414 
1415 	/* Set the bits to force speed and duplex */
1416 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1417 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1418 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1419 
1420 	/*
1421 	 * Set up duplex in the Device Control and Transmit Control
1422 	 * registers depending on negotiated values.
1423 	 */
1424 	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1425 	if (ret_val)
1426 		goto out;
1427 
1428 	ctrl &= ~E1000_CTRL_FD;
1429 	if (phy_data & M88E1000_PSSR_DPLX)
1430 		ctrl |= E1000_CTRL_FD;
1431 
1432 	hw->mac.ops.config_collision_dist(hw);
1433 
1434 	/*
1435 	 * Set up speed in the Device Control register depending on
1436 	 * negotiated values.
1437 	 */
1438 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1439 		ctrl |= E1000_CTRL_SPD_1000;
1440 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1441 		ctrl |= E1000_CTRL_SPD_100;
1442 
1443 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1444 
1445 out:
1446 	return ret_val;
1447 }
1448 
1449 /**
1450  *  e1000_write_vfta_82543 - Write value to VLAN filter table
1451  *  @hw: pointer to the HW structure
1452  *  @offset: the 32-bit offset in which to write the value to.
1453  *  @value: the 32-bit value to write at location offset.
1454  *
1455  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1456  *  table.
1457  **/
1458 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1459 {
1460 	u32 temp;
1461 
1462 	DEBUGFUNC("e1000_write_vfta_82543");
1463 
1464 	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1465 		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1466 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1467 		E1000_WRITE_FLUSH(hw);
1468 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1469 		E1000_WRITE_FLUSH(hw);
1470 	} else {
1471 		e1000_write_vfta_generic(hw, offset, value);
1472 	}
1473 }
1474 
1475 /**
1476  *  e1000_led_on_82543 - Turn on SW controllable LED
1477  *  @hw: pointer to the HW structure
1478  *
1479  *  Turns the SW defined LED on.
1480  **/
1481 static s32 e1000_led_on_82543(struct e1000_hw *hw)
1482 {
1483 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1484 
1485 	DEBUGFUNC("e1000_led_on_82543");
1486 
1487 	if (hw->mac.type == e1000_82544 &&
1488 	    hw->phy.media_type == e1000_media_type_copper) {
1489 		/* Clear SW-definable Pin 0 to turn on the LED */
1490 		ctrl &= ~E1000_CTRL_SWDPIN0;
1491 		ctrl |= E1000_CTRL_SWDPIO0;
1492 	} else {
1493 		/* Fiber 82544 and all 82543 use this method */
1494 		ctrl |= E1000_CTRL_SWDPIN0;
1495 		ctrl |= E1000_CTRL_SWDPIO0;
1496 	}
1497 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1498 
1499 	return E1000_SUCCESS;
1500 }
1501 
1502 /**
1503  *  e1000_led_off_82543 - Turn off SW controllable LED
1504  *  @hw: pointer to the HW structure
1505  *
1506  *  Turns the SW defined LED off.
1507  **/
1508 static s32 e1000_led_off_82543(struct e1000_hw *hw)
1509 {
1510 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1511 
1512 	DEBUGFUNC("e1000_led_off_82543");
1513 
1514 	if (hw->mac.type == e1000_82544 &&
1515 	    hw->phy.media_type == e1000_media_type_copper) {
1516 		/* Set SW-definable Pin 0 to turn off the LED */
1517 		ctrl |= E1000_CTRL_SWDPIN0;
1518 		ctrl |= E1000_CTRL_SWDPIO0;
1519 	} else {
1520 		ctrl &= ~E1000_CTRL_SWDPIN0;
1521 		ctrl |= E1000_CTRL_SWDPIO0;
1522 	}
1523 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1524 
1525 	return E1000_SUCCESS;
1526 }
1527 
1528 /**
1529  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1530  *  @hw: pointer to the HW structure
1531  *
1532  *  Clears the hardware counters by reading the counter registers.
1533  **/
1534 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1535 {
1536 	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1537 
1538 	e1000_clear_hw_cntrs_base_generic(hw);
1539 
1540 	E1000_READ_REG(hw, E1000_PRC64);
1541 	E1000_READ_REG(hw, E1000_PRC127);
1542 	E1000_READ_REG(hw, E1000_PRC255);
1543 	E1000_READ_REG(hw, E1000_PRC511);
1544 	E1000_READ_REG(hw, E1000_PRC1023);
1545 	E1000_READ_REG(hw, E1000_PRC1522);
1546 	E1000_READ_REG(hw, E1000_PTC64);
1547 	E1000_READ_REG(hw, E1000_PTC127);
1548 	E1000_READ_REG(hw, E1000_PTC255);
1549 	E1000_READ_REG(hw, E1000_PTC511);
1550 	E1000_READ_REG(hw, E1000_PTC1023);
1551 	E1000_READ_REG(hw, E1000_PTC1522);
1552 
1553 	E1000_READ_REG(hw, E1000_ALGNERRC);
1554 	E1000_READ_REG(hw, E1000_RXERRC);
1555 	E1000_READ_REG(hw, E1000_TNCRS);
1556 	E1000_READ_REG(hw, E1000_CEXTERR);
1557 	E1000_READ_REG(hw, E1000_TSCTC);
1558 	E1000_READ_REG(hw, E1000_TSCTFC);
1559 }
1560 
1561 /**
1562  *  e1000_read_mac_addr_82543 - Read device MAC address
1563  *  @hw: pointer to the HW structure
1564  *
1565  *  Reads the device MAC address from the EEPROM and stores the value.
1566  *  Since devices with two ports use the same EEPROM, we increment the
1567  *  last bit in the MAC address for the second port.
1568  *
1569  **/
1570 s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
1571 {
1572 	s32  ret_val = E1000_SUCCESS;
1573 	u16 offset, nvm_data, i;
1574 
1575 	DEBUGFUNC("e1000_read_mac_addr");
1576 
1577 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1578 		offset = i >> 1;
1579 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1580 		if (ret_val) {
1581 			DEBUGOUT("NVM Read Error\n");
1582 			goto out;
1583 		}
1584 		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1585 		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1586 	}
1587 
1588 	/* Flip last bit of mac address if we're on second port */
1589 	if (hw->bus.func == E1000_FUNC_1)
1590 		hw->mac.perm_addr[5] ^= 1;
1591 
1592 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1593 		hw->mac.addr[i] = hw->mac.perm_addr[i];
1594 
1595 out:
1596 	return ret_val;
1597 }
1598