xref: /freebsd/sys/dev/e1000/e1000_82543.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 /*
36  * 82543GC Gigabit Ethernet Controller (Fiber)
37  * 82543GC Gigabit Ethernet Controller (Copper)
38  * 82544EI Gigabit Ethernet Controller (Copper)
39  * 82544EI Gigabit Ethernet Controller (Fiber)
40  * 82544GC Gigabit Ethernet Controller (Copper)
41  * 82544GC Gigabit Ethernet Controller (LOM)
42  */
43 
44 #include "e1000_api.h"
45 
46 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50 				     u16 *data);
51 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52 				      u16 data);
53 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62 static s32  e1000_led_on_82543(struct e1000_hw *hw);
63 static s32  e1000_led_off_82543(struct e1000_hw *hw);
64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65 				   u32 value);
66 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
67 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
68 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
69 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
70 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
71 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
72 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
73 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
74 					   u16 count);
75 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
76 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
77 static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
78 
79 
80 /**
81  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
82  *  @hw: pointer to the HW structure
83  **/
84 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = E1000_SUCCESS;
88 
89 	DEBUGFUNC("e1000_init_phy_params_82543");
90 
91 	if (hw->phy.media_type != e1000_media_type_copper) {
92 		phy->type = e1000_phy_none;
93 		goto out;
94 	} else {
95 		phy->ops.power_up = e1000_power_up_phy_copper;
96 		phy->ops.power_down = e1000_power_down_phy_copper;
97 	}
98 
99 	phy->addr		= 1;
100 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
101 	phy->reset_delay_us	= 10000;
102 	phy->type		= e1000_phy_m88;
103 
104 	/* Function Pointers */
105 	phy->ops.check_polarity	= e1000_check_polarity_m88;
106 	phy->ops.commit		= e1000_phy_sw_reset_generic;
107 	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
108 	phy->ops.get_cable_length = e1000_get_cable_length_m88;
109 	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
110 	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
111 				  ? e1000_read_phy_reg_82543
112 				  : e1000_read_phy_reg_m88;
113 	phy->ops.reset		= (hw->mac.type == e1000_82543)
114 				  ? e1000_phy_hw_reset_82543
115 				  : e1000_phy_hw_reset_generic;
116 	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
117 				  ? e1000_write_phy_reg_82543
118 				  : e1000_write_phy_reg_m88;
119 	phy->ops.get_info	= e1000_get_phy_info_m88;
120 
121 	/*
122 	 * The external PHY of the 82543 can be in a funky state.
123 	 * Resetting helps us read the PHY registers for acquiring
124 	 * the PHY ID.
125 	 */
126 	if (!e1000_init_phy_disabled_82543(hw)) {
127 		ret_val = phy->ops.reset(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Resetting PHY during init failed.\n");
130 			goto out;
131 		}
132 		msec_delay(20);
133 	}
134 
135 	ret_val = e1000_get_phy_id(hw);
136 	if (ret_val)
137 		goto out;
138 
139 	/* Verify phy id */
140 	switch (hw->mac.type) {
141 	case e1000_82543:
142 		if (phy->id != M88E1000_E_PHY_ID) {
143 			ret_val = -E1000_ERR_PHY;
144 			goto out;
145 		}
146 		break;
147 	case e1000_82544:
148 		if (phy->id != M88E1000_I_PHY_ID) {
149 			ret_val = -E1000_ERR_PHY;
150 			goto out;
151 		}
152 		break;
153 	default:
154 		ret_val = -E1000_ERR_PHY;
155 		goto out;
156 		break;
157 	}
158 
159 out:
160 	return ret_val;
161 }
162 
163 /**
164  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
165  *  @hw: pointer to the HW structure
166  **/
167 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
168 {
169 	struct e1000_nvm_info *nvm = &hw->nvm;
170 
171 	DEBUGFUNC("e1000_init_nvm_params_82543");
172 
173 	nvm->type		= e1000_nvm_eeprom_microwire;
174 	nvm->word_size		= 64;
175 	nvm->delay_usec		= 50;
176 	nvm->address_bits	=  6;
177 	nvm->opcode_bits	=  3;
178 
179 	/* Function Pointers */
180 	nvm->ops.read		= e1000_read_nvm_microwire;
181 	nvm->ops.update		= e1000_update_nvm_checksum_generic;
182 	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
183 	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
184 	nvm->ops.write		= e1000_write_nvm_microwire;
185 
186 	return E1000_SUCCESS;
187 }
188 
189 /**
190  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
191  *  @hw: pointer to the HW structure
192  **/
193 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
194 {
195 	struct e1000_mac_info *mac = &hw->mac;
196 
197 	DEBUGFUNC("e1000_init_mac_params_82543");
198 
199 	/* Set media type */
200 	switch (hw->device_id) {
201 	case E1000_DEV_ID_82543GC_FIBER:
202 	case E1000_DEV_ID_82544EI_FIBER:
203 		hw->phy.media_type = e1000_media_type_fiber;
204 		break;
205 	default:
206 		hw->phy.media_type = e1000_media_type_copper;
207 		break;
208 	}
209 
210 	/* Set mta register count */
211 	mac->mta_reg_count = 128;
212 	/* Set rar entry count */
213 	mac->rar_entry_count = E1000_RAR_ENTRIES;
214 
215 	/* Function pointers */
216 
217 	/* bus type/speed/width */
218 	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
219 	/* function id */
220 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
221 	/* reset */
222 	mac->ops.reset_hw = e1000_reset_hw_82543;
223 	/* hw initialization */
224 	mac->ops.init_hw = e1000_init_hw_82543;
225 	/* link setup */
226 	mac->ops.setup_link = e1000_setup_link_82543;
227 	/* physical interface setup */
228 	mac->ops.setup_physical_interface =
229 		(hw->phy.media_type == e1000_media_type_copper)
230 		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
231 	/* check for link */
232 	mac->ops.check_for_link =
233 		(hw->phy.media_type == e1000_media_type_copper)
234 		 ? e1000_check_for_copper_link_82543
235 		 : e1000_check_for_fiber_link_82543;
236 	/* link info */
237 	mac->ops.get_link_up_info =
238 		(hw->phy.media_type == e1000_media_type_copper)
239 		 ? e1000_get_speed_and_duplex_copper_generic
240 		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
241 	/* multicast address update */
242 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
243 	/* writing VFTA */
244 	mac->ops.write_vfta = e1000_write_vfta_82543;
245 	/* clearing VFTA */
246 	mac->ops.clear_vfta = e1000_clear_vfta_generic;
247 	/* read mac address */
248 	mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
249 	/* turn on/off LED */
250 	mac->ops.led_on = e1000_led_on_82543;
251 	mac->ops.led_off = e1000_led_off_82543;
252 	/* clear hardware counters */
253 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
254 
255 	/* Set tbi compatibility */
256 	if ((hw->mac.type != e1000_82543) ||
257 	    (hw->phy.media_type == e1000_media_type_fiber))
258 		e1000_set_tbi_compatibility_82543(hw, false);
259 
260 	return E1000_SUCCESS;
261 }
262 
263 /**
264  *  e1000_init_function_pointers_82543 - Init func ptrs.
265  *  @hw: pointer to the HW structure
266  *
267  *  Called to initialize all function pointers and parameters.
268  **/
269 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
270 {
271 	DEBUGFUNC("e1000_init_function_pointers_82543");
272 
273 	hw->mac.ops.init_params = e1000_init_mac_params_82543;
274 	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
275 	hw->phy.ops.init_params = e1000_init_phy_params_82543;
276 }
277 
278 /**
279  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
280  *  @hw: pointer to the HW structure
281  *
282  *  Returns the current status of 10-bit Interface (TBI) compatibility
283  *  (enabled/disabled).
284  **/
285 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
286 {
287 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
288 	bool state = false;
289 
290 	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
291 
292 	if (hw->mac.type != e1000_82543) {
293 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
294 		goto out;
295 	}
296 
297 	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
298 
299 out:
300 	return state;
301 }
302 
303 /**
304  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
305  *  @hw: pointer to the HW structure
306  *  @state: enable/disable TBI compatibility
307  *
308  *  Enables or disabled 10-bit Interface (TBI) compatibility.
309  **/
310 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
311 {
312 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
313 
314 	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
315 
316 	if (hw->mac.type != e1000_82543) {
317 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
318 		goto out;
319 	}
320 
321 	if (state)
322 		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
323 	else
324 		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
325 
326 out:
327 	return;
328 }
329 
330 /**
331  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
332  *  @hw: pointer to the HW structure
333  *
334  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
335  *  (enabled/disabled).
336  **/
337 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
338 {
339 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
340 	bool state = false;
341 
342 	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
343 
344 	if (hw->mac.type != e1000_82543) {
345 		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
346 		goto out;
347 	}
348 
349 	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
350 
351 out:
352 	return state;
353 }
354 
355 /**
356  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
357  *  @hw: pointer to the HW structure
358  *  @state: enable/disable TBI store bad packet
359  *
360  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
361  **/
362 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
363 {
364 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
365 
366 	DEBUGFUNC("e1000_set_tbi_sbp_82543");
367 
368 	if (state && e1000_tbi_compatibility_enabled_82543(hw))
369 		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
370 	else
371 		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
372 
373 	return;
374 }
375 
376 /**
377  *  e1000_init_phy_disabled_82543 - Returns init PHY status
378  *  @hw: pointer to the HW structure
379  *
380  *  Returns the current status of whether PHY initialization is disabled.
381  *  True if PHY initialization is disabled else false.
382  **/
383 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
384 {
385 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
386 	bool ret_val;
387 
388 	DEBUGFUNC("e1000_init_phy_disabled_82543");
389 
390 	if (hw->mac.type != e1000_82543) {
391 		ret_val = false;
392 		goto out;
393 	}
394 
395 	ret_val = dev_spec->init_phy_disabled;
396 
397 out:
398 	return ret_val;
399 }
400 
401 /**
402  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
403  *  @hw: pointer to the HW structure
404  *  @stats: Struct containing statistic register values
405  *  @frame_len: The length of the frame in question
406  *  @mac_addr: The Ethernet destination address of the frame in question
407  *  @max_frame_size: The maximum frame size
408  *
409  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
410  **/
411 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
412 				  struct e1000_hw_stats *stats, u32 frame_len,
413 				  u8 *mac_addr, u32 max_frame_size)
414 {
415 	if (!(e1000_tbi_sbp_enabled_82543(hw)))
416 		goto out;
417 
418 	/* First adjust the frame length. */
419 	frame_len--;
420 	/*
421 	 * We need to adjust the statistics counters, since the hardware
422 	 * counters overcount this packet as a CRC error and undercount
423 	 * the packet as a good packet
424 	 */
425 	/* This packet should not be counted as a CRC error. */
426 	stats->crcerrs--;
427 	/* This packet does count as a Good Packet Received. */
428 	stats->gprc++;
429 
430 	/* Adjust the Good Octets received counters */
431 	stats->gorc += frame_len;
432 
433 	/*
434 	 * Is this a broadcast or multicast?  Check broadcast first,
435 	 * since the test for a multicast frame will test positive on
436 	 * a broadcast frame.
437 	 */
438 	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
439 		/* Broadcast packet */
440 		stats->bprc++;
441 	else if (*mac_addr & 0x01)
442 		/* Multicast packet */
443 		stats->mprc++;
444 
445 	/*
446 	 * In this case, the hardware has over counted the number of
447 	 * oversize frames.
448 	 */
449 	if ((frame_len == max_frame_size) && (stats->roc > 0))
450 		stats->roc--;
451 
452 	/*
453 	 * Adjust the bin counters when the extra byte put the frame in the
454 	 * wrong bin. Remember that the frame_len was adjusted above.
455 	 */
456 	if (frame_len == 64) {
457 		stats->prc64++;
458 		stats->prc127--;
459 	} else if (frame_len == 127) {
460 		stats->prc127++;
461 		stats->prc255--;
462 	} else if (frame_len == 255) {
463 		stats->prc255++;
464 		stats->prc511--;
465 	} else if (frame_len == 511) {
466 		stats->prc511++;
467 		stats->prc1023--;
468 	} else if (frame_len == 1023) {
469 		stats->prc1023++;
470 		stats->prc1522--;
471 	} else if (frame_len == 1522) {
472 		stats->prc1522++;
473 	}
474 
475 out:
476 	return;
477 }
478 
479 /**
480  *  e1000_read_phy_reg_82543 - Read PHY register
481  *  @hw: pointer to the HW structure
482  *  @offset: register offset to be read
483  *  @data: pointer to the read data
484  *
485  *  Reads the PHY at offset and stores the information read to data.
486  **/
487 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
488 {
489 	u32 mdic;
490 	s32 ret_val = E1000_SUCCESS;
491 
492 	DEBUGFUNC("e1000_read_phy_reg_82543");
493 
494 	if (offset > MAX_PHY_REG_ADDRESS) {
495 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
496 		ret_val = -E1000_ERR_PARAM;
497 		goto out;
498 	}
499 
500 	/*
501 	 * We must first send a preamble through the MDIO pin to signal the
502 	 * beginning of an MII instruction.  This is done by sending 32
503 	 * consecutive "1" bits.
504 	 */
505 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
506 
507 	/*
508 	 * Now combine the next few fields that are required for a read
509 	 * operation.  We use this method instead of calling the
510 	 * e1000_shift_out_mdi_bits routine five different times.  The format
511 	 * of an MII read instruction consists of a shift out of 14 bits and
512 	 * is defined as follows:
513 	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
514 	 * followed by a shift in of 18 bits.  This first two bits shifted in
515 	 * are TurnAround bits used to avoid contention on the MDIO pin when a
516 	 * READ operation is performed.  These two bits are thrown away
517 	 * followed by a shift in of 16 bits which contains the desired data.
518 	 */
519 	mdic = (offset | (hw->phy.addr << 5) |
520 		(PHY_OP_READ << 10) | (PHY_SOF << 12));
521 
522 	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
523 
524 	/*
525 	 * Now that we've shifted out the read command to the MII, we need to
526 	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
527 	 * register address.
528 	 */
529 	*data = e1000_shift_in_mdi_bits_82543(hw);
530 
531 out:
532 	return ret_val;
533 }
534 
535 /**
536  *  e1000_write_phy_reg_82543 - Write PHY register
537  *  @hw: pointer to the HW structure
538  *  @offset: register offset to be written
539  *  @data: pointer to the data to be written at offset
540  *
541  *  Writes data to the PHY at offset.
542  **/
543 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
544 {
545 	u32 mdic;
546 	s32 ret_val = E1000_SUCCESS;
547 
548 	DEBUGFUNC("e1000_write_phy_reg_82543");
549 
550 	if (offset > MAX_PHY_REG_ADDRESS) {
551 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
552 		ret_val = -E1000_ERR_PARAM;
553 		goto out;
554 	}
555 
556 	/*
557 	 * We'll need to use the SW defined pins to shift the write command
558 	 * out to the PHY. We first send a preamble to the PHY to signal the
559 	 * beginning of the MII instruction.  This is done by sending 32
560 	 * consecutive "1" bits.
561 	 */
562 	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
563 
564 	/*
565 	 * Now combine the remaining required fields that will indicate a
566 	 * write operation. We use this method instead of calling the
567 	 * e1000_shift_out_mdi_bits routine for each field in the command. The
568 	 * format of a MII write instruction is as follows:
569 	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
570 	 */
571 	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
572 		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
573 	mdic <<= 16;
574 	mdic |= (u32)data;
575 
576 	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
577 
578 out:
579 	return ret_val;
580 }
581 
582 /**
583  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
584  *  @hw: pointer to the HW structure
585  *  @ctrl: pointer to the control register
586  *
587  *  Raise the management data input clock by setting the MDC bit in the control
588  *  register.
589  **/
590 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
591 {
592 	/*
593 	 * Raise the clock input to the Management Data Clock (by setting the
594 	 * MDC bit), and then delay a sufficient amount of time.
595 	 */
596 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
597 	E1000_WRITE_FLUSH(hw);
598 	usec_delay(10);
599 }
600 
601 /**
602  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
603  *  @hw: pointer to the HW structure
604  *  @ctrl: pointer to the control register
605  *
606  *  Lower the management data input clock by clearing the MDC bit in the
607  *  control register.
608  **/
609 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
610 {
611 	/*
612 	 * Lower the clock input to the Management Data Clock (by clearing the
613 	 * MDC bit), and then delay a sufficient amount of time.
614 	 */
615 	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
616 	E1000_WRITE_FLUSH(hw);
617 	usec_delay(10);
618 }
619 
620 /**
621  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
622  *  @hw: pointer to the HW structure
623  *  @data: data to send to the PHY
624  *  @count: number of bits to shift out
625  *
626  *  We need to shift 'count' bits out to the PHY.  So, the value in the
627  *  "data" parameter will be shifted out to the PHY one bit at a time.
628  *  In order to do this, "data" must be broken down into bits.
629  **/
630 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
631 					   u16 count)
632 {
633 	u32 ctrl, mask;
634 
635 	/*
636 	 * We need to shift "count" number of bits out to the PHY.  So, the
637 	 * value in the "data" parameter will be shifted out to the PHY one
638 	 * bit at a time.  In order to do this, "data" must be broken down
639 	 * into bits.
640 	 */
641 	mask = 0x01;
642 	mask <<= (count - 1);
643 
644 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
645 
646 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
647 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
648 
649 	while (mask) {
650 		/*
651 		 * A "1" is shifted out to the PHY by setting the MDIO bit to
652 		 * "1" and then raising and lowering the Management Data Clock.
653 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
654 		 * "0" and then raising and lowering the clock.
655 		 */
656 		if (data & mask)
657 			ctrl |= E1000_CTRL_MDIO;
658 		else
659 			ctrl &= ~E1000_CTRL_MDIO;
660 
661 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
662 		E1000_WRITE_FLUSH(hw);
663 
664 		usec_delay(10);
665 
666 		e1000_raise_mdi_clk_82543(hw, &ctrl);
667 		e1000_lower_mdi_clk_82543(hw, &ctrl);
668 
669 		mask >>= 1;
670 	}
671 }
672 
673 /**
674  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
675  *  @hw: pointer to the HW structure
676  *
677  *  In order to read a register from the PHY, we need to shift 18 bits
678  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
679  *  the PHY (setting the MDC bit), and then reading the value of the data out
680  *  MDIO bit.
681  **/
682 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
683 {
684 	u32 ctrl;
685 	u16 data = 0;
686 	u8 i;
687 
688 	/*
689 	 * In order to read a register from the PHY, we need to shift in a
690 	 * total of 18 bits from the PHY.  The first two bit (turnaround)
691 	 * times are used to avoid contention on the MDIO pin when a read
692 	 * operation is performed.  These two bits are ignored by us and
693 	 * thrown away.  Bits are "shifted in" by raising the input to the
694 	 * Management Data Clock (setting the MDC bit) and then reading the
695 	 * value of the MDIO bit.
696 	 */
697 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
698 
699 	/*
700 	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
701 	 * input.
702 	 */
703 	ctrl &= ~E1000_CTRL_MDIO_DIR;
704 	ctrl &= ~E1000_CTRL_MDIO;
705 
706 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
707 	E1000_WRITE_FLUSH(hw);
708 
709 	/*
710 	 * Raise and lower the clock before reading in the data.  This accounts
711 	 * for the turnaround bits.  The first clock occurred when we clocked
712 	 * out the last bit of the Register Address.
713 	 */
714 	e1000_raise_mdi_clk_82543(hw, &ctrl);
715 	e1000_lower_mdi_clk_82543(hw, &ctrl);
716 
717 	for (data = 0, i = 0; i < 16; i++) {
718 		data <<= 1;
719 		e1000_raise_mdi_clk_82543(hw, &ctrl);
720 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
721 		/* Check to see if we shifted in a "1". */
722 		if (ctrl & E1000_CTRL_MDIO)
723 			data |= 1;
724 		e1000_lower_mdi_clk_82543(hw, &ctrl);
725 	}
726 
727 	e1000_raise_mdi_clk_82543(hw, &ctrl);
728 	e1000_lower_mdi_clk_82543(hw, &ctrl);
729 
730 	return data;
731 }
732 
733 /**
734  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
735  *  @hw: pointer to the HW structure
736  *
737  *  Calls the function to force speed and duplex for the m88 PHY, and
738  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
739  *  then call the function for polarity reversal workaround.
740  **/
741 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
742 {
743 	s32 ret_val;
744 
745 	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
746 
747 	ret_val = e1000_phy_force_speed_duplex_m88(hw);
748 	if (ret_val)
749 		goto out;
750 
751 	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
752 	    E1000_ALL_10_SPEED))
753 		ret_val = e1000_polarity_reversal_workaround_82543(hw);
754 
755 out:
756 	return ret_val;
757 }
758 
759 /**
760  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
761  *  @hw: pointer to the HW structure
762  *
763  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
764  *  inadvertently.  To workaround the issue, we disable the transmitter on
765  *  the PHY until we have established the link partner's link parameters.
766  **/
767 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
768 {
769 	s32 ret_val = E1000_SUCCESS;
770 	u16 mii_status_reg;
771 	u16 i;
772 	bool link;
773 
774 	if (!(hw->phy.ops.write_reg))
775 		goto out;
776 
777 	/* Polarity reversal workaround for forced 10F/10H links. */
778 
779 	/* Disable the transmitter on the PHY */
780 
781 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
782 	if (ret_val)
783 		goto out;
784 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
785 	if (ret_val)
786 		goto out;
787 
788 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
789 	if (ret_val)
790 		goto out;
791 
792 	/*
793 	 * This loop will early-out if the NO link condition has been met.
794 	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
795 	 */
796 	for (i = PHY_FORCE_TIME; i > 0; i--) {
797 		/*
798 		 * Read the MII Status Register and wait for Link Status bit
799 		 * to be clear.
800 		 */
801 
802 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
803 		if (ret_val)
804 			goto out;
805 
806 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
807 		if (ret_val)
808 			goto out;
809 
810 		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
811 			break;
812 		msec_delay_irq(100);
813 	}
814 
815 	/* Recommended delay time after link has been lost */
816 	msec_delay_irq(1000);
817 
818 	/* Now we will re-enable the transmitter on the PHY */
819 
820 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
821 	if (ret_val)
822 		goto out;
823 	msec_delay_irq(50);
824 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
825 	if (ret_val)
826 		goto out;
827 	msec_delay_irq(50);
828 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
829 	if (ret_val)
830 		goto out;
831 	msec_delay_irq(50);
832 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
833 	if (ret_val)
834 		goto out;
835 
836 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
837 	if (ret_val)
838 		goto out;
839 
840 	/*
841 	 * Read the MII Status Register and wait for Link Status bit
842 	 * to be set.
843 	 */
844 	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
845 	if (ret_val)
846 		goto out;
847 
848 out:
849 	return ret_val;
850 }
851 
852 /**
853  *  e1000_phy_hw_reset_82543 - PHY hardware reset
854  *  @hw: pointer to the HW structure
855  *
856  *  Sets the PHY_RESET_DIR bit in the extended device control register
857  *  to put the PHY into a reset and waits for completion.  Once the reset
858  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
859  *  of reset.
860  **/
861 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
862 {
863 	u32 ctrl_ext;
864 	s32 ret_val;
865 
866 	DEBUGFUNC("e1000_phy_hw_reset_82543");
867 
868 	/*
869 	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
870 	 * bit to put the PHY into reset...
871 	 */
872 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
873 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
874 	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
875 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
876 	E1000_WRITE_FLUSH(hw);
877 
878 	msec_delay(10);
879 
880 	/* ...then take it out of reset. */
881 	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
882 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
883 	E1000_WRITE_FLUSH(hw);
884 
885 	usec_delay(150);
886 
887 	if (!(hw->phy.ops.get_cfg_done))
888 		return E1000_SUCCESS;
889 
890 	ret_val = hw->phy.ops.get_cfg_done(hw);
891 
892 	return ret_val;
893 }
894 
895 /**
896  *  e1000_reset_hw_82543 - Reset hardware
897  *  @hw: pointer to the HW structure
898  *
899  *  This resets the hardware into a known state.
900  **/
901 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
902 {
903 	u32 ctrl;
904 	s32 ret_val = E1000_SUCCESS;
905 
906 	DEBUGFUNC("e1000_reset_hw_82543");
907 
908 	DEBUGOUT("Masking off all interrupts\n");
909 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
910 
911 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
912 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
913 	E1000_WRITE_FLUSH(hw);
914 
915 	e1000_set_tbi_sbp_82543(hw, false);
916 
917 	/*
918 	 * Delay to allow any outstanding PCI transactions to complete before
919 	 * resetting the device
920 	 */
921 	msec_delay(10);
922 
923 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
924 
925 	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
926 	if (hw->mac.type == e1000_82543) {
927 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
928 	} else {
929 		/*
930 		 * The 82544 can't ACK the 64-bit write when issuing the
931 		 * reset, so use IO-mapping as a workaround.
932 		 */
933 		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
934 	}
935 
936 	/*
937 	 * After MAC reset, force reload of NVM to restore power-on
938 	 * settings to device.
939 	 */
940 	hw->nvm.ops.reload(hw);
941 	msec_delay(2);
942 
943 	/* Masking off and clearing any pending interrupts */
944 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
945 	E1000_READ_REG(hw, E1000_ICR);
946 
947 	return ret_val;
948 }
949 
950 /**
951  *  e1000_init_hw_82543 - Initialize hardware
952  *  @hw: pointer to the HW structure
953  *
954  *  This inits the hardware readying it for operation.
955  **/
956 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
957 {
958 	struct e1000_mac_info *mac = &hw->mac;
959 	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
960 	u32 ctrl;
961 	s32 ret_val;
962 	u16 i;
963 
964 	DEBUGFUNC("e1000_init_hw_82543");
965 
966 	/* Disabling VLAN filtering */
967 	E1000_WRITE_REG(hw, E1000_VET, 0);
968 	mac->ops.clear_vfta(hw);
969 
970 	/* Setup the receive address. */
971 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
972 
973 	/* Zero out the Multicast HASH table */
974 	DEBUGOUT("Zeroing the MTA\n");
975 	for (i = 0; i < mac->mta_reg_count; i++) {
976 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
977 		E1000_WRITE_FLUSH(hw);
978 	}
979 
980 	/*
981 	 * Set the PCI priority bit correctly in the CTRL register.  This
982 	 * determines if the adapter gives priority to receives, or if it
983 	 * gives equal priority to transmits and receives.
984 	 */
985 	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
986 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
987 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
988 	}
989 
990 	e1000_pcix_mmrbc_workaround_generic(hw);
991 
992 	/* Setup link and flow control */
993 	ret_val = mac->ops.setup_link(hw);
994 
995 	/*
996 	 * Clear all of the statistics registers (clear on read).  It is
997 	 * important that we do this after we have tried to establish link
998 	 * because the symbol error count will increment wildly if there
999 	 * is no link.
1000 	 */
1001 	e1000_clear_hw_cntrs_82543(hw);
1002 
1003 	return ret_val;
1004 }
1005 
1006 /**
1007  *  e1000_setup_link_82543 - Setup flow control and link settings
1008  *  @hw: pointer to the HW structure
1009  *
1010  *  Read the EEPROM to determine the initial polarity value and write the
1011  *  extended device control register with the information before calling
1012  *  the generic setup link function, which does the following:
1013  *  Determines which flow control settings to use, then configures flow
1014  *  control.  Calls the appropriate media-specific link configuration
1015  *  function.  Assuming the adapter has a valid link partner, a valid link
1016  *  should be established.  Assumes the hardware has previously been reset
1017  *  and the transmitter and receiver are not enabled.
1018  **/
1019 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1020 {
1021 	u32 ctrl_ext;
1022 	s32  ret_val;
1023 	u16 data;
1024 
1025 	DEBUGFUNC("e1000_setup_link_82543");
1026 
1027 	/*
1028 	 * Take the 4 bits from NVM word 0xF that determine the initial
1029 	 * polarity value for the SW controlled pins, and setup the
1030 	 * Extended Device Control reg with that info.
1031 	 * This is needed because one of the SW controlled pins is used for
1032 	 * signal detection.  So this should be done before phy setup.
1033 	 */
1034 	if (hw->mac.type == e1000_82543) {
1035 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1036 		if (ret_val) {
1037 			DEBUGOUT("NVM Read Error\n");
1038 			ret_val = -E1000_ERR_NVM;
1039 			goto out;
1040 		}
1041 		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1042 			    NVM_SWDPIO_EXT_SHIFT);
1043 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1044 	}
1045 
1046 	ret_val = e1000_setup_link_generic(hw);
1047 
1048 out:
1049 	return ret_val;
1050 }
1051 
1052 /**
1053  *  e1000_setup_copper_link_82543 - Configure copper link settings
1054  *  @hw: pointer to the HW structure
1055  *
1056  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1057  *  for link, once link is established calls to configure collision distance
1058  *  and flow control are called.
1059  **/
1060 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1061 {
1062 	u32 ctrl;
1063 	s32 ret_val;
1064 	bool link = true;
1065 
1066 	DEBUGFUNC("e1000_setup_copper_link_82543");
1067 
1068 	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1069 	/*
1070 	 * With 82543, we need to force speed and duplex on the MAC
1071 	 * equal to what the PHY speed and duplex configuration is.
1072 	 * In addition, we need to perform a hardware reset on the
1073 	 * PHY to take it out of reset.
1074 	 */
1075 	if (hw->mac.type == e1000_82543) {
1076 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1077 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1078 		ret_val = hw->phy.ops.reset(hw);
1079 		if (ret_val)
1080 			goto out;
1081 	} else {
1082 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1083 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1084 	}
1085 
1086 	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1087 	ret_val = e1000_copper_link_setup_m88(hw);
1088 	if (ret_val)
1089 		goto out;
1090 
1091 	if (hw->mac.autoneg) {
1092 		/*
1093 		 * Setup autoneg and flow control advertisement and perform
1094 		 * autonegotiation.
1095 		 */
1096 		ret_val = e1000_copper_link_autoneg(hw);
1097 		if (ret_val)
1098 			goto out;
1099 	} else {
1100 		/*
1101 		 * PHY will be set to 10H, 10F, 100H or 100F
1102 		 * depending on user settings.
1103 		 */
1104 		DEBUGOUT("Forcing Speed and Duplex\n");
1105 		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1106 		if (ret_val) {
1107 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1108 			goto out;
1109 		}
1110 	}
1111 
1112 	/*
1113 	 * Check link status. Wait up to 100 microseconds for link to become
1114 	 * valid.
1115 	 */
1116 	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1117 					     &link);
1118 	if (ret_val)
1119 		goto out;
1120 
1121 
1122 	if (link) {
1123 		DEBUGOUT("Valid link established!!!\n");
1124 		/* Config the MAC and PHY after link is up */
1125 		if (hw->mac.type == e1000_82544) {
1126 			hw->mac.ops.config_collision_dist(hw);
1127 		} else {
1128 			ret_val = e1000_config_mac_to_phy_82543(hw);
1129 			if (ret_val)
1130 				goto out;
1131 		}
1132 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1133 	} else {
1134 		DEBUGOUT("Unable to establish link!!!\n");
1135 	}
1136 
1137 out:
1138 	return ret_val;
1139 }
1140 
1141 /**
1142  *  e1000_setup_fiber_link_82543 - Setup link for fiber
1143  *  @hw: pointer to the HW structure
1144  *
1145  *  Configures collision distance and flow control for fiber links.  Upon
1146  *  successful setup, poll for link.
1147  **/
1148 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1149 {
1150 	u32 ctrl;
1151 	s32 ret_val;
1152 
1153 	DEBUGFUNC("e1000_setup_fiber_link_82543");
1154 
1155 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1156 
1157 	/* Take the link out of reset */
1158 	ctrl &= ~E1000_CTRL_LRST;
1159 
1160 	hw->mac.ops.config_collision_dist(hw);
1161 
1162 	ret_val = e1000_commit_fc_settings_generic(hw);
1163 	if (ret_val)
1164 		goto out;
1165 
1166 	DEBUGOUT("Auto-negotiation enabled\n");
1167 
1168 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1169 	E1000_WRITE_FLUSH(hw);
1170 	msec_delay(1);
1171 
1172 	/*
1173 	 * For these adapters, the SW definable pin 1 is cleared when the
1174 	 * optics detect a signal.  If we have a signal, then poll for a
1175 	 * "Link-Up" indication.
1176 	 */
1177 	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1178 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1179 	else
1180 		DEBUGOUT("No signal detected\n");
1181 
1182 out:
1183 	return ret_val;
1184 }
1185 
1186 /**
1187  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1188  *  @hw: pointer to the HW structure
1189  *
1190  *  Checks the phy for link, if link exists, do the following:
1191  *   - check for downshift
1192  *   - do polarity workaround (if necessary)
1193  *   - configure collision distance
1194  *   - configure flow control after link up
1195  *   - configure tbi compatibility
1196  **/
1197 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1198 {
1199 	struct e1000_mac_info *mac = &hw->mac;
1200 	u32 icr, rctl;
1201 	s32 ret_val;
1202 	u16 speed, duplex;
1203 	bool link;
1204 
1205 	DEBUGFUNC("e1000_check_for_copper_link_82543");
1206 
1207 	if (!mac->get_link_status) {
1208 		ret_val = E1000_SUCCESS;
1209 		goto out;
1210 	}
1211 
1212 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1213 	if (ret_val)
1214 		goto out;
1215 
1216 	if (!link)
1217 		goto out; /* No link detected */
1218 
1219 	mac->get_link_status = false;
1220 
1221 	e1000_check_downshift_generic(hw);
1222 
1223 	/*
1224 	 * If we are forcing speed/duplex, then we can return since
1225 	 * we have already determined whether we have link or not.
1226 	 */
1227 	if (!mac->autoneg) {
1228 		/*
1229 		 * If speed and duplex are forced to 10H or 10F, then we will
1230 		 * implement the polarity reversal workaround.  We disable
1231 		 * interrupts first, and upon returning, place the devices
1232 		 * interrupt state to its previous value except for the link
1233 		 * status change interrupt which will happened due to the
1234 		 * execution of this workaround.
1235 		 */
1236 		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1237 			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1238 			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1239 			icr = E1000_READ_REG(hw, E1000_ICR);
1240 			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1241 			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1242 		}
1243 
1244 		ret_val = -E1000_ERR_CONFIG;
1245 		goto out;
1246 	}
1247 
1248 	/*
1249 	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1250 	 * have Si on board that is 82544 or newer, Auto
1251 	 * Speed Detection takes care of MAC speed/duplex
1252 	 * configuration.  So we only need to configure Collision
1253 	 * Distance in the MAC.  Otherwise, we need to force
1254 	 * speed/duplex on the MAC to the current PHY speed/duplex
1255 	 * settings.
1256 	 */
1257 	if (mac->type == e1000_82544)
1258 		hw->mac.ops.config_collision_dist(hw);
1259 	else {
1260 		ret_val = e1000_config_mac_to_phy_82543(hw);
1261 		if (ret_val) {
1262 			DEBUGOUT("Error configuring MAC to PHY settings\n");
1263 			goto out;
1264 		}
1265 	}
1266 
1267 	/*
1268 	 * Configure Flow Control now that Auto-Neg has completed.
1269 	 * First, we need to restore the desired flow control
1270 	 * settings because we may have had to re-autoneg with a
1271 	 * different link partner.
1272 	 */
1273 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1274 	if (ret_val)
1275 		DEBUGOUT("Error configuring flow control\n");
1276 
1277 	/*
1278 	 * At this point we know that we are on copper and we have
1279 	 * auto-negotiated link.  These are conditions for checking the link
1280 	 * partner capability register.  We use the link speed to determine if
1281 	 * TBI compatibility needs to be turned on or off.  If the link is not
1282 	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1283 	 * at gigabit speed, we turn on TBI compatibility.
1284 	 */
1285 	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1286 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1287 		if (ret_val) {
1288 			DEBUGOUT("Error getting link speed and duplex\n");
1289 			return ret_val;
1290 		}
1291 		if (speed != SPEED_1000) {
1292 			/*
1293 			 * If link speed is not set to gigabit speed,
1294 			 * we do not need to enable TBI compatibility.
1295 			 */
1296 			if (e1000_tbi_sbp_enabled_82543(hw)) {
1297 				/*
1298 				 * If we previously were in the mode,
1299 				 * turn it off.
1300 				 */
1301 				e1000_set_tbi_sbp_82543(hw, false);
1302 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1303 				rctl &= ~E1000_RCTL_SBP;
1304 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1305 			}
1306 		} else {
1307 			/*
1308 			 * If TBI compatibility is was previously off,
1309 			 * turn it on. For compatibility with a TBI link
1310 			 * partner, we will store bad packets. Some
1311 			 * frames have an additional byte on the end and
1312 			 * will look like CRC errors to the hardware.
1313 			 */
1314 			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1315 				e1000_set_tbi_sbp_82543(hw, true);
1316 				rctl = E1000_READ_REG(hw, E1000_RCTL);
1317 				rctl |= E1000_RCTL_SBP;
1318 				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1319 			}
1320 		}
1321 	}
1322 out:
1323 	return ret_val;
1324 }
1325 
1326 /**
1327  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1328  *  @hw: pointer to the HW structure
1329  *
1330  *  Checks for link up on the hardware.  If link is not up and we have
1331  *  a signal, then we need to force link up.
1332  **/
1333 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1334 {
1335 	struct e1000_mac_info *mac = &hw->mac;
1336 	u32 rxcw, ctrl, status;
1337 	s32 ret_val = E1000_SUCCESS;
1338 
1339 	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1340 
1341 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1342 	status = E1000_READ_REG(hw, E1000_STATUS);
1343 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1344 
1345 	/*
1346 	 * If we don't have link (auto-negotiation failed or link partner
1347 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1348 	 * and our link partner is not trying to auto-negotiate with us (we
1349 	 * are receiving idles or data), we need to force link up. We also
1350 	 * need to give auto-negotiation time to complete, in case the cable
1351 	 * was just plugged in. The autoneg_failed flag does this.
1352 	 */
1353 	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1354 	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1355 	    (!(status & E1000_STATUS_LU)) &&
1356 	    (!(rxcw & E1000_RXCW_C))) {
1357 		if (!mac->autoneg_failed) {
1358 			mac->autoneg_failed = true;
1359 			ret_val = 0;
1360 			goto out;
1361 		}
1362 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1363 
1364 		/* Disable auto-negotiation in the TXCW register */
1365 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1366 
1367 		/* Force link-up and also force full-duplex. */
1368 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1369 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1370 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1371 
1372 		/* Configure Flow Control after forcing link up. */
1373 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1374 		if (ret_val) {
1375 			DEBUGOUT("Error configuring flow control\n");
1376 			goto out;
1377 		}
1378 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1379 		/*
1380 		 * If we are forcing link and we are receiving /C/ ordered
1381 		 * sets, re-enable auto-negotiation in the TXCW register
1382 		 * and disable forced link in the Device Control register
1383 		 * in an attempt to auto-negotiate with our link partner.
1384 		 */
1385 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1386 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1387 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1388 
1389 		mac->serdes_has_link = true;
1390 	}
1391 
1392 out:
1393 	return ret_val;
1394 }
1395 
1396 /**
1397  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1398  *  @hw: pointer to the HW structure
1399  *
1400  *  For the 82543 silicon, we need to set the MAC to match the settings
1401  *  of the PHY, even if the PHY is auto-negotiating.
1402  **/
1403 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1404 {
1405 	u32 ctrl;
1406 	s32 ret_val = E1000_SUCCESS;
1407 	u16 phy_data;
1408 
1409 	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1410 
1411 	if (!(hw->phy.ops.read_reg))
1412 		goto out;
1413 
1414 	/* Set the bits to force speed and duplex */
1415 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1416 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1417 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1418 
1419 	/*
1420 	 * Set up duplex in the Device Control and Transmit Control
1421 	 * registers depending on negotiated values.
1422 	 */
1423 	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1424 	if (ret_val)
1425 		goto out;
1426 
1427 	ctrl &= ~E1000_CTRL_FD;
1428 	if (phy_data & M88E1000_PSSR_DPLX)
1429 		ctrl |= E1000_CTRL_FD;
1430 
1431 	hw->mac.ops.config_collision_dist(hw);
1432 
1433 	/*
1434 	 * Set up speed in the Device Control register depending on
1435 	 * negotiated values.
1436 	 */
1437 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1438 		ctrl |= E1000_CTRL_SPD_1000;
1439 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1440 		ctrl |= E1000_CTRL_SPD_100;
1441 
1442 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1443 
1444 out:
1445 	return ret_val;
1446 }
1447 
1448 /**
1449  *  e1000_write_vfta_82543 - Write value to VLAN filter table
1450  *  @hw: pointer to the HW structure
1451  *  @offset: the 32-bit offset in which to write the value to.
1452  *  @value: the 32-bit value to write at location offset.
1453  *
1454  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1455  *  table.
1456  **/
1457 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1458 {
1459 	u32 temp;
1460 
1461 	DEBUGFUNC("e1000_write_vfta_82543");
1462 
1463 	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1464 		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1465 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1466 		E1000_WRITE_FLUSH(hw);
1467 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1468 		E1000_WRITE_FLUSH(hw);
1469 	} else {
1470 		e1000_write_vfta_generic(hw, offset, value);
1471 	}
1472 }
1473 
1474 /**
1475  *  e1000_led_on_82543 - Turn on SW controllable LED
1476  *  @hw: pointer to the HW structure
1477  *
1478  *  Turns the SW defined LED on.
1479  **/
1480 static s32 e1000_led_on_82543(struct e1000_hw *hw)
1481 {
1482 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1483 
1484 	DEBUGFUNC("e1000_led_on_82543");
1485 
1486 	if (hw->mac.type == e1000_82544 &&
1487 	    hw->phy.media_type == e1000_media_type_copper) {
1488 		/* Clear SW-definable Pin 0 to turn on the LED */
1489 		ctrl &= ~E1000_CTRL_SWDPIN0;
1490 		ctrl |= E1000_CTRL_SWDPIO0;
1491 	} else {
1492 		/* Fiber 82544 and all 82543 use this method */
1493 		ctrl |= E1000_CTRL_SWDPIN0;
1494 		ctrl |= E1000_CTRL_SWDPIO0;
1495 	}
1496 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1497 
1498 	return E1000_SUCCESS;
1499 }
1500 
1501 /**
1502  *  e1000_led_off_82543 - Turn off SW controllable LED
1503  *  @hw: pointer to the HW structure
1504  *
1505  *  Turns the SW defined LED off.
1506  **/
1507 static s32 e1000_led_off_82543(struct e1000_hw *hw)
1508 {
1509 	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1510 
1511 	DEBUGFUNC("e1000_led_off_82543");
1512 
1513 	if (hw->mac.type == e1000_82544 &&
1514 	    hw->phy.media_type == e1000_media_type_copper) {
1515 		/* Set SW-definable Pin 0 to turn off the LED */
1516 		ctrl |= E1000_CTRL_SWDPIN0;
1517 		ctrl |= E1000_CTRL_SWDPIO0;
1518 	} else {
1519 		ctrl &= ~E1000_CTRL_SWDPIN0;
1520 		ctrl |= E1000_CTRL_SWDPIO0;
1521 	}
1522 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1523 
1524 	return E1000_SUCCESS;
1525 }
1526 
1527 /**
1528  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1529  *  @hw: pointer to the HW structure
1530  *
1531  *  Clears the hardware counters by reading the counter registers.
1532  **/
1533 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1534 {
1535 	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1536 
1537 	e1000_clear_hw_cntrs_base_generic(hw);
1538 
1539 	E1000_READ_REG(hw, E1000_PRC64);
1540 	E1000_READ_REG(hw, E1000_PRC127);
1541 	E1000_READ_REG(hw, E1000_PRC255);
1542 	E1000_READ_REG(hw, E1000_PRC511);
1543 	E1000_READ_REG(hw, E1000_PRC1023);
1544 	E1000_READ_REG(hw, E1000_PRC1522);
1545 	E1000_READ_REG(hw, E1000_PTC64);
1546 	E1000_READ_REG(hw, E1000_PTC127);
1547 	E1000_READ_REG(hw, E1000_PTC255);
1548 	E1000_READ_REG(hw, E1000_PTC511);
1549 	E1000_READ_REG(hw, E1000_PTC1023);
1550 	E1000_READ_REG(hw, E1000_PTC1522);
1551 
1552 	E1000_READ_REG(hw, E1000_ALGNERRC);
1553 	E1000_READ_REG(hw, E1000_RXERRC);
1554 	E1000_READ_REG(hw, E1000_TNCRS);
1555 	E1000_READ_REG(hw, E1000_CEXTERR);
1556 	E1000_READ_REG(hw, E1000_TSCTC);
1557 	E1000_READ_REG(hw, E1000_TSCTFC);
1558 }
1559 
1560 /**
1561  *  e1000_read_mac_addr_82543 - Read device MAC address
1562  *  @hw: pointer to the HW structure
1563  *
1564  *  Reads the device MAC address from the EEPROM and stores the value.
1565  *  Since devices with two ports use the same EEPROM, we increment the
1566  *  last bit in the MAC address for the second port.
1567  *
1568  **/
1569 s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
1570 {
1571 	s32  ret_val = E1000_SUCCESS;
1572 	u16 offset, nvm_data, i;
1573 
1574 	DEBUGFUNC("e1000_read_mac_addr");
1575 
1576 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1577 		offset = i >> 1;
1578 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1579 		if (ret_val) {
1580 			DEBUGOUT("NVM Read Error\n");
1581 			goto out;
1582 		}
1583 		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1584 		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1585 	}
1586 
1587 	/* Flip last bit of mac address if we're on second port */
1588 	if (hw->bus.func == E1000_FUNC_1)
1589 		hw->mac.perm_addr[5] ^= 1;
1590 
1591 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1592 		hw->mac.addr[i] = hw->mac.perm_addr[i];
1593 
1594 out:
1595 	return ret_val;
1596 }
1597