1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2020, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 35 /* 36 * 82540EM Gigabit Ethernet Controller 37 * 82540EP Gigabit Ethernet Controller 38 * 82545EM Gigabit Ethernet Controller (Copper) 39 * 82545EM Gigabit Ethernet Controller (Fiber) 40 * 82545GM Gigabit Ethernet Controller 41 * 82546EB Gigabit Ethernet Controller (Copper) 42 * 82546EB Gigabit Ethernet Controller (Fiber) 43 * 82546GB Gigabit Ethernet Controller 44 */ 45 46 #include "e1000_api.h" 47 48 static s32 e1000_init_phy_params_82540(struct e1000_hw *hw); 49 static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); 50 static s32 e1000_init_mac_params_82540(struct e1000_hw *hw); 51 static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); 52 static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw); 53 static s32 e1000_init_hw_82540(struct e1000_hw *hw); 54 static s32 e1000_reset_hw_82540(struct e1000_hw *hw); 55 static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); 56 static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); 57 static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); 58 static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); 59 static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw); 60 static s32 e1000_read_mac_addr_82540(struct e1000_hw *hw); 61 62 /** 63 * e1000_init_phy_params_82540 - Init PHY func ptrs. 64 * @hw: pointer to the HW structure 65 **/ 66 static s32 e1000_init_phy_params_82540(struct e1000_hw *hw) 67 { 68 struct e1000_phy_info *phy = &hw->phy; 69 s32 ret_val; 70 71 phy->addr = 1; 72 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 73 phy->reset_delay_us = 10000; 74 phy->type = e1000_phy_m88; 75 76 /* Function Pointers */ 77 phy->ops.check_polarity = e1000_check_polarity_m88; 78 phy->ops.commit = e1000_phy_sw_reset_generic; 79 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; 80 phy->ops.get_cable_length = e1000_get_cable_length_m88; 81 phy->ops.get_cfg_done = e1000_get_cfg_done_generic; 82 phy->ops.read_reg = e1000_read_phy_reg_m88; 83 phy->ops.reset = e1000_phy_hw_reset_generic; 84 phy->ops.write_reg = e1000_write_phy_reg_m88; 85 phy->ops.get_info = e1000_get_phy_info_m88; 86 phy->ops.power_up = e1000_power_up_phy_copper; 87 phy->ops.power_down = e1000_power_down_phy_copper_82540; 88 89 ret_val = e1000_get_phy_id(hw); 90 if (ret_val) 91 goto out; 92 93 /* Verify phy id */ 94 switch (hw->mac.type) { 95 case e1000_82540: 96 case e1000_82545: 97 case e1000_82545_rev_3: 98 case e1000_82546: 99 case e1000_82546_rev_3: 100 if (phy->id == M88E1011_I_PHY_ID) 101 break; 102 /* FALLTHROUGH */ 103 default: 104 ret_val = -E1000_ERR_PHY; 105 goto out; 106 break; 107 } 108 109 out: 110 return ret_val; 111 } 112 113 /** 114 * e1000_init_nvm_params_82540 - Init NVM func ptrs. 115 * @hw: pointer to the HW structure 116 **/ 117 static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw) 118 { 119 struct e1000_nvm_info *nvm = &hw->nvm; 120 u32 eecd = E1000_READ_REG(hw, E1000_EECD); 121 122 DEBUGFUNC("e1000_init_nvm_params_82540"); 123 124 nvm->type = e1000_nvm_eeprom_microwire; 125 nvm->delay_usec = 50; 126 nvm->opcode_bits = 3; 127 switch (nvm->override) { 128 case e1000_nvm_override_microwire_large: 129 nvm->address_bits = 8; 130 nvm->word_size = 256; 131 break; 132 case e1000_nvm_override_microwire_small: 133 nvm->address_bits = 6; 134 nvm->word_size = 64; 135 break; 136 default: 137 nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6; 138 nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64; 139 break; 140 } 141 142 /* Function Pointers */ 143 nvm->ops.acquire = e1000_acquire_nvm_generic; 144 nvm->ops.read = e1000_read_nvm_microwire; 145 nvm->ops.release = e1000_release_nvm_generic; 146 nvm->ops.update = e1000_update_nvm_checksum_generic; 147 nvm->ops.valid_led_default = e1000_valid_led_default_generic; 148 nvm->ops.validate = e1000_validate_nvm_checksum_generic; 149 nvm->ops.write = e1000_write_nvm_microwire; 150 151 return E1000_SUCCESS; 152 } 153 154 /** 155 * e1000_init_mac_params_82540 - Init MAC func ptrs. 156 * @hw: pointer to the HW structure 157 **/ 158 static s32 e1000_init_mac_params_82540(struct e1000_hw *hw) 159 { 160 struct e1000_mac_info *mac = &hw->mac; 161 s32 ret_val = E1000_SUCCESS; 162 163 DEBUGFUNC("e1000_init_mac_params_82540"); 164 165 /* Set media type */ 166 switch (hw->device_id) { 167 case E1000_DEV_ID_82545EM_FIBER: 168 case E1000_DEV_ID_82545GM_FIBER: 169 case E1000_DEV_ID_82546EB_FIBER: 170 case E1000_DEV_ID_82546GB_FIBER: 171 hw->phy.media_type = e1000_media_type_fiber; 172 break; 173 case E1000_DEV_ID_82545GM_SERDES: 174 case E1000_DEV_ID_82546GB_SERDES: 175 hw->phy.media_type = e1000_media_type_internal_serdes; 176 break; 177 default: 178 hw->phy.media_type = e1000_media_type_copper; 179 break; 180 } 181 182 /* Set mta register count */ 183 mac->mta_reg_count = 128; 184 /* Set rar entry count */ 185 mac->rar_entry_count = E1000_RAR_ENTRIES; 186 187 /* Function pointers */ 188 189 /* bus type/speed/width */ 190 mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; 191 /* function id */ 192 mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; 193 /* reset */ 194 mac->ops.reset_hw = e1000_reset_hw_82540; 195 /* hw initialization */ 196 mac->ops.init_hw = e1000_init_hw_82540; 197 /* link setup */ 198 mac->ops.setup_link = e1000_setup_link_generic; 199 /* physical interface setup */ 200 mac->ops.setup_physical_interface = 201 (hw->phy.media_type == e1000_media_type_copper) 202 ? e1000_setup_copper_link_82540 203 : e1000_setup_fiber_serdes_link_82540; 204 /* check for link */ 205 switch (hw->phy.media_type) { 206 case e1000_media_type_copper: 207 mac->ops.check_for_link = e1000_check_for_copper_link_generic; 208 break; 209 case e1000_media_type_fiber: 210 mac->ops.check_for_link = e1000_check_for_fiber_link_generic; 211 break; 212 case e1000_media_type_internal_serdes: 213 mac->ops.check_for_link = e1000_check_for_serdes_link_generic; 214 break; 215 default: 216 ret_val = -E1000_ERR_CONFIG; 217 goto out; 218 break; 219 } 220 /* link info */ 221 mac->ops.get_link_up_info = 222 (hw->phy.media_type == e1000_media_type_copper) 223 ? e1000_get_speed_and_duplex_copper_generic 224 : e1000_get_speed_and_duplex_fiber_serdes_generic; 225 /* multicast address update */ 226 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; 227 /* writing VFTA */ 228 mac->ops.write_vfta = e1000_write_vfta_generic; 229 /* clearing VFTA */ 230 mac->ops.clear_vfta = e1000_clear_vfta_generic; 231 /* read mac address */ 232 mac->ops.read_mac_addr = e1000_read_mac_addr_82540; 233 /* ID LED init */ 234 mac->ops.id_led_init = e1000_id_led_init_generic; 235 /* setup LED */ 236 mac->ops.setup_led = e1000_setup_led_generic; 237 /* cleanup LED */ 238 mac->ops.cleanup_led = e1000_cleanup_led_generic; 239 /* turn on/off LED */ 240 mac->ops.led_on = e1000_led_on_generic; 241 mac->ops.led_off = e1000_led_off_generic; 242 /* clear hardware counters */ 243 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540; 244 245 out: 246 return ret_val; 247 } 248 249 /** 250 * e1000_init_function_pointers_82540 - Init func ptrs. 251 * @hw: pointer to the HW structure 252 * 253 * Called to initialize all function pointers and parameters. 254 **/ 255 void e1000_init_function_pointers_82540(struct e1000_hw *hw) 256 { 257 DEBUGFUNC("e1000_init_function_pointers_82540"); 258 259 hw->mac.ops.init_params = e1000_init_mac_params_82540; 260 hw->nvm.ops.init_params = e1000_init_nvm_params_82540; 261 hw->phy.ops.init_params = e1000_init_phy_params_82540; 262 } 263 264 /** 265 * e1000_reset_hw_82540 - Reset hardware 266 * @hw: pointer to the HW structure 267 * 268 * This resets the hardware into a known state. 269 **/ 270 static s32 e1000_reset_hw_82540(struct e1000_hw *hw) 271 { 272 u32 ctrl, manc; 273 s32 ret_val = E1000_SUCCESS; 274 275 DEBUGFUNC("e1000_reset_hw_82540"); 276 277 DEBUGOUT("Masking off all interrupts\n"); 278 E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); 279 280 E1000_WRITE_REG(hw, E1000_RCTL, 0); 281 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); 282 E1000_WRITE_FLUSH(hw); 283 284 /* 285 * Delay to allow any outstanding PCI transactions to complete 286 * before resetting the device. 287 */ 288 msec_delay(10); 289 290 ctrl = E1000_READ_REG(hw, E1000_CTRL); 291 292 DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n"); 293 switch (hw->mac.type) { 294 case e1000_82545_rev_3: 295 case e1000_82546_rev_3: 296 E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST); 297 break; 298 default: 299 /* 300 * These controllers can't ack the 64-bit write when 301 * issuing the reset, so we use IO-mapping as a 302 * workaround to issue the reset. 303 */ 304 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); 305 break; 306 } 307 308 /* Wait for EEPROM reload */ 309 msec_delay(5); 310 311 /* Disable HW ARPs on ASF enabled adapters */ 312 manc = E1000_READ_REG(hw, E1000_MANC); 313 manc &= ~E1000_MANC_ARP_EN; 314 E1000_WRITE_REG(hw, E1000_MANC, manc); 315 316 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 317 E1000_READ_REG(hw, E1000_ICR); 318 319 return ret_val; 320 } 321 322 /** 323 * e1000_init_hw_82540 - Initialize hardware 324 * @hw: pointer to the HW structure 325 * 326 * This inits the hardware readying it for operation. 327 **/ 328 static s32 e1000_init_hw_82540(struct e1000_hw *hw) 329 { 330 struct e1000_mac_info *mac = &hw->mac; 331 u32 txdctl, ctrl_ext; 332 s32 ret_val; 333 u16 i; 334 335 DEBUGFUNC("e1000_init_hw_82540"); 336 337 /* Initialize identification LED */ 338 ret_val = mac->ops.id_led_init(hw); 339 if (ret_val) { 340 DEBUGOUT("Error initializing identification LED\n"); 341 /* This is not fatal and we should not stop init due to this */ 342 } 343 344 /* Disabling VLAN filtering */ 345 DEBUGOUT("Initializing the IEEE VLAN\n"); 346 if (mac->type < e1000_82545_rev_3) 347 E1000_WRITE_REG(hw, E1000_VET, 0); 348 349 mac->ops.clear_vfta(hw); 350 351 /* Setup the receive address. */ 352 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); 353 354 /* Zero out the Multicast HASH table */ 355 DEBUGOUT("Zeroing the MTA\n"); 356 for (i = 0; i < mac->mta_reg_count; i++) { 357 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 358 /* 359 * Avoid back to back register writes by adding the register 360 * read (flush). This is to protect against some strange 361 * bridge configurations that may issue Memory Write Block 362 * (MWB) to our register space. The *_rev_3 hardware at 363 * least doesn't respond correctly to every other dword in an 364 * MWB to our register space. 365 */ 366 E1000_WRITE_FLUSH(hw); 367 } 368 369 if (mac->type < e1000_82545_rev_3) 370 e1000_pcix_mmrbc_workaround_generic(hw); 371 372 /* Setup link and flow control */ 373 ret_val = mac->ops.setup_link(hw); 374 375 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); 376 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 377 E1000_TXDCTL_FULL_TX_DESC_WB; 378 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); 379 380 /* 381 * Clear all of the statistics registers (clear on read). It is 382 * important that we do this after we have tried to establish link 383 * because the symbol error count will increment wildly if there 384 * is no link. 385 */ 386 e1000_clear_hw_cntrs_82540(hw); 387 388 if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) || 389 (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) { 390 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 391 /* 392 * Relaxed ordering must be disabled to avoid a parity 393 * error crash in a PCI slot. 394 */ 395 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 396 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 397 } 398 399 return ret_val; 400 } 401 402 /** 403 * e1000_setup_copper_link_82540 - Configure copper link settings 404 * @hw: pointer to the HW structure 405 * 406 * Calls the appropriate function to configure the link for auto-neg or forced 407 * speed and duplex. Then we check for link, once link is established calls 408 * to configure collision distance and flow control are called. If link is 409 * not established, we return -E1000_ERR_PHY (-2). 410 **/ 411 static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw) 412 { 413 u32 ctrl; 414 s32 ret_val; 415 u16 data; 416 417 DEBUGFUNC("e1000_setup_copper_link_82540"); 418 419 ctrl = E1000_READ_REG(hw, E1000_CTRL); 420 ctrl |= E1000_CTRL_SLU; 421 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 422 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 423 424 ret_val = e1000_set_phy_mode_82540(hw); 425 if (ret_val) 426 goto out; 427 428 if (hw->mac.type == e1000_82545_rev_3 || 429 hw->mac.type == e1000_82546_rev_3) { 430 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 431 &data); 432 if (ret_val) 433 goto out; 434 data |= 0x00000008; 435 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 436 data); 437 if (ret_val) 438 goto out; 439 } 440 441 ret_val = e1000_copper_link_setup_m88(hw); 442 if (ret_val) 443 goto out; 444 445 ret_val = e1000_setup_copper_link_generic(hw); 446 447 out: 448 return ret_val; 449 } 450 451 /** 452 * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes 453 * @hw: pointer to the HW structure 454 * 455 * Set the output amplitude to the value in the EEPROM and adjust the VCO 456 * speed to improve Bit Error Rate (BER) performance. Configures collision 457 * distance and flow control for fiber and serdes links. Upon successful 458 * setup, poll for link. 459 **/ 460 static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) 461 { 462 struct e1000_mac_info *mac = &hw->mac; 463 s32 ret_val = E1000_SUCCESS; 464 465 DEBUGFUNC("e1000_setup_fiber_serdes_link_82540"); 466 467 switch (mac->type) { 468 case e1000_82545_rev_3: 469 case e1000_82546_rev_3: 470 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 471 /* 472 * If we're on serdes media, adjust the output 473 * amplitude to value set in the EEPROM. 474 */ 475 ret_val = e1000_adjust_serdes_amplitude_82540(hw); 476 if (ret_val) 477 goto out; 478 } 479 /* Adjust VCO speed to improve BER performance */ 480 ret_val = e1000_set_vco_speed_82540(hw); 481 if (ret_val) 482 goto out; 483 default: 484 break; 485 } 486 487 ret_val = e1000_setup_fiber_serdes_link_generic(hw); 488 489 out: 490 return ret_val; 491 } 492 493 /** 494 * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM 495 * @hw: pointer to the HW structure 496 * 497 * Adjust the SERDES output amplitude based on the EEPROM settings. 498 **/ 499 static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) 500 { 501 s32 ret_val; 502 u16 nvm_data; 503 504 DEBUGFUNC("e1000_adjust_serdes_amplitude_82540"); 505 506 ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data); 507 if (ret_val) 508 goto out; 509 510 if (nvm_data != NVM_RESERVED_WORD) { 511 /* Adjust serdes output amplitude only. */ 512 nvm_data &= NVM_SERDES_AMPLITUDE_MASK; 513 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL, 514 nvm_data); 515 if (ret_val) 516 goto out; 517 } 518 519 out: 520 return ret_val; 521 } 522 523 /** 524 * e1000_set_vco_speed_82540 - Set VCO speed for better performance 525 * @hw: pointer to the HW structure 526 * 527 * Set the VCO speed to improve Bit Error Rate (BER) performance. 528 **/ 529 static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw) 530 { 531 s32 ret_val; 532 u16 default_page = 0; 533 u16 phy_data; 534 535 DEBUGFUNC("e1000_set_vco_speed_82540"); 536 537 /* Set PHY register 30, page 5, bit 8 to 0 */ 538 539 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT, 540 &default_page); 541 if (ret_val) 542 goto out; 543 544 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); 545 if (ret_val) 546 goto out; 547 548 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); 549 if (ret_val) 550 goto out; 551 552 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; 553 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); 554 if (ret_val) 555 goto out; 556 557 /* Set PHY register 30, page 4, bit 11 to 1 */ 558 559 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); 560 if (ret_val) 561 goto out; 562 563 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); 564 if (ret_val) 565 goto out; 566 567 phy_data |= M88E1000_PHY_VCO_REG_BIT11; 568 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); 569 if (ret_val) 570 goto out; 571 572 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 573 default_page); 574 575 out: 576 return ret_val; 577 } 578 579 /** 580 * e1000_set_phy_mode_82540 - Set PHY to class A mode 581 * @hw: pointer to the HW structure 582 * 583 * Sets the PHY to class A mode and assumes the following operations will 584 * follow to enable the new class mode: 585 * 1. Do a PHY soft reset. 586 * 2. Restart auto-negotiation or force link. 587 **/ 588 static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw) 589 { 590 s32 ret_val = E1000_SUCCESS; 591 u16 nvm_data; 592 593 DEBUGFUNC("e1000_set_phy_mode_82540"); 594 595 if (hw->mac.type != e1000_82545_rev_3) 596 goto out; 597 598 ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data); 599 if (ret_val) { 600 ret_val = -E1000_ERR_PHY; 601 goto out; 602 } 603 604 if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) { 605 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 606 0x000B); 607 if (ret_val) { 608 ret_val = -E1000_ERR_PHY; 609 goto out; 610 } 611 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 612 0x8104); 613 if (ret_val) { 614 ret_val = -E1000_ERR_PHY; 615 goto out; 616 } 617 618 } 619 620 out: 621 return ret_val; 622 } 623 624 /** 625 * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down 626 * @hw: pointer to the HW structure 627 * 628 * In the case of a PHY power down to save power, or to turn off link during a 629 * driver unload, or wake on lan is not enabled, remove the link. 630 **/ 631 static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw) 632 { 633 /* If the management interface is not enabled, then power down */ 634 if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) 635 e1000_power_down_phy_copper(hw); 636 637 return; 638 } 639 640 /** 641 * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters 642 * @hw: pointer to the HW structure 643 * 644 * Clears the hardware counters by reading the counter registers. 645 **/ 646 static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) 647 { 648 DEBUGFUNC("e1000_clear_hw_cntrs_82540"); 649 650 e1000_clear_hw_cntrs_base_generic(hw); 651 652 E1000_READ_REG(hw, E1000_PRC64); 653 E1000_READ_REG(hw, E1000_PRC127); 654 E1000_READ_REG(hw, E1000_PRC255); 655 E1000_READ_REG(hw, E1000_PRC511); 656 E1000_READ_REG(hw, E1000_PRC1023); 657 E1000_READ_REG(hw, E1000_PRC1522); 658 E1000_READ_REG(hw, E1000_PTC64); 659 E1000_READ_REG(hw, E1000_PTC127); 660 E1000_READ_REG(hw, E1000_PTC255); 661 E1000_READ_REG(hw, E1000_PTC511); 662 E1000_READ_REG(hw, E1000_PTC1023); 663 E1000_READ_REG(hw, E1000_PTC1522); 664 665 E1000_READ_REG(hw, E1000_ALGNERRC); 666 E1000_READ_REG(hw, E1000_RXERRC); 667 E1000_READ_REG(hw, E1000_TNCRS); 668 E1000_READ_REG(hw, E1000_CEXTERR); 669 E1000_READ_REG(hw, E1000_TSCTC); 670 E1000_READ_REG(hw, E1000_TSCTFC); 671 672 E1000_READ_REG(hw, E1000_MGTPRC); 673 E1000_READ_REG(hw, E1000_MGTPDC); 674 E1000_READ_REG(hw, E1000_MGTPTC); 675 } 676 677 /** 678 * e1000_read_mac_addr_82540 - Read device MAC address 679 * @hw: pointer to the HW structure 680 * 681 * Reads the device MAC address from the EEPROM and stores the value. 682 * Since devices with two ports use the same EEPROM, we increment the 683 * last bit in the MAC address for the second port. 684 * 685 * This version is being used over generic because of customer issues 686 * with VmWare and Virtual Box when using generic. It seems in 687 * the emulated 82545, RAR[0] does NOT have a valid address after a 688 * reset, this older method works and using this breaks nothing for 689 * these legacy adapters. 690 **/ 691 s32 e1000_read_mac_addr_82540(struct e1000_hw *hw) 692 { 693 s32 ret_val = E1000_SUCCESS; 694 u16 offset, nvm_data, i; 695 696 DEBUGFUNC("e1000_read_mac_addr"); 697 698 for (i = 0; i < ETHER_ADDR_LEN; i += 2) { 699 offset = i >> 1; 700 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); 701 if (ret_val) { 702 DEBUGOUT("NVM Read Error\n"); 703 goto out; 704 } 705 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); 706 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); 707 } 708 709 /* Flip last bit of mac address if we're on second port */ 710 if (hw->bus.func == E1000_FUNC_1) 711 hw->mac.perm_addr[5] ^= 1; 712 713 for (i = 0; i < ETHER_ADDR_LEN; i++) 714 hw->mac.addr[i] = hw->mac.perm_addr[i]; 715 716 out: 717 return ret_val; 718 } 719