xref: /freebsd/sys/dev/drm2/ttm/ttm_page_alloc_dma.c (revision 3823d5e198425b4f5e5a80267d195769d1063773)
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3 
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25 
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #define pr_fmt(fmt) "[TTM] " fmt
40 
41 #include <linux/dma-mapping.h>
42 #include <linux/list.h>
43 #include <linux/seq_file.h> /* for seq_printf */
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46 #include <linux/highmem.h>
47 #include <linux/mm_types.h>
48 #include <linux/module.h>
49 #include <linux/mm.h>
50 #include <linux/atomic.h>
51 #include <linux/device.h>
52 #include <linux/kthread.h>
53 #include <drm/ttm/ttm_bo_driver.h>
54 #include <drm/ttm/ttm_page_alloc.h>
55 #ifdef TTM_HAS_AGP
56 #include <asm/agp.h>
57 #endif
58 
59 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
60 #define SMALL_ALLOCATION		4
61 #define FREE_ALL_PAGES			(~0U)
62 /* times are in msecs */
63 #define IS_UNDEFINED			(0)
64 #define IS_WC				(1<<1)
65 #define IS_UC				(1<<2)
66 #define IS_CACHED			(1<<3)
67 #define IS_DMA32			(1<<4)
68 
69 enum pool_type {
70 	POOL_IS_UNDEFINED,
71 	POOL_IS_WC = IS_WC,
72 	POOL_IS_UC = IS_UC,
73 	POOL_IS_CACHED = IS_CACHED,
74 	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
75 	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
76 	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
77 };
78 /*
79  * The pool structure. There are usually six pools:
80  *  - generic (not restricted to DMA32):
81  *      - write combined, uncached, cached.
82  *  - dma32 (up to 2^32 - so up 4GB):
83  *      - write combined, uncached, cached.
84  * for each 'struct device'. The 'cached' is for pages that are actively used.
85  * The other ones can be shrunk by the shrinker API if neccessary.
86  * @pools: The 'struct device->dma_pools' link.
87  * @type: Type of the pool
88  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
89  * used with irqsave/irqrestore variants because pool allocator maybe called
90  * from delayed work.
91  * @inuse_list: Pool of pages that are in use. The order is very important and
92  *   it is in the order that the TTM pages that are put back are in.
93  * @free_list: Pool of pages that are free to be used. No order requirements.
94  * @dev: The device that is associated with these pools.
95  * @size: Size used during DMA allocation.
96  * @npages_free: Count of available pages for re-use.
97  * @npages_in_use: Count of pages that are in use.
98  * @nfrees: Stats when pool is shrinking.
99  * @nrefills: Stats when the pool is grown.
100  * @gfp_flags: Flags to pass for alloc_page.
101  * @name: Name of the pool.
102  * @dev_name: Name derieved from dev - similar to how dev_info works.
103  *   Used during shutdown as the dev_info during release is unavailable.
104  */
105 struct dma_pool {
106 	struct list_head pools; /* The 'struct device->dma_pools link */
107 	enum pool_type type;
108 	spinlock_t lock;
109 	struct list_head inuse_list;
110 	struct list_head free_list;
111 	struct device *dev;
112 	unsigned size;
113 	unsigned npages_free;
114 	unsigned npages_in_use;
115 	unsigned long nfrees; /* Stats when shrunk. */
116 	unsigned long nrefills; /* Stats when grown. */
117 	gfp_t gfp_flags;
118 	char name[13]; /* "cached dma32" */
119 	char dev_name[64]; /* Constructed from dev */
120 };
121 
122 /*
123  * The accounting page keeping track of the allocated page along with
124  * the DMA address.
125  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
126  * @vaddr: The virtual address of the page
127  * @dma: The bus address of the page. If the page is not allocated
128  *   via the DMA API, it will be -1.
129  */
130 struct dma_page {
131 	struct list_head page_list;
132 	void *vaddr;
133 	struct page *p;
134 	dma_addr_t dma;
135 };
136 
137 /*
138  * Limits for the pool. They are handled without locks because only place where
139  * they may change is in sysfs store. They won't have immediate effect anyway
140  * so forcing serialization to access them is pointless.
141  */
142 
143 struct ttm_pool_opts {
144 	unsigned	alloc_size;
145 	unsigned	max_size;
146 	unsigned	small;
147 };
148 
149 /*
150  * Contains the list of all of the 'struct device' and their corresponding
151  * DMA pools. Guarded by _mutex->lock.
152  * @pools: The link to 'struct ttm_pool_manager->pools'
153  * @dev: The 'struct device' associated with the 'pool'
154  * @pool: The 'struct dma_pool' associated with the 'dev'
155  */
156 struct device_pools {
157 	struct list_head pools;
158 	struct device *dev;
159 	struct dma_pool *pool;
160 };
161 
162 /*
163  * struct ttm_pool_manager - Holds memory pools for fast allocation
164  *
165  * @lock: Lock used when adding/removing from pools
166  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
167  * @options: Limits for the pool.
168  * @npools: Total amount of pools in existence.
169  * @shrinker: The structure used by [un|]register_shrinker
170  */
171 struct ttm_pool_manager {
172 	struct mutex		lock;
173 	struct list_head	pools;
174 	struct ttm_pool_opts	options;
175 	unsigned		npools;
176 	struct shrinker		mm_shrink;
177 	struct kobject		kobj;
178 };
179 
180 static struct ttm_pool_manager *_manager;
181 
182 static struct attribute ttm_page_pool_max = {
183 	.name = "pool_max_size",
184 	.mode = S_IRUGO | S_IWUSR
185 };
186 static struct attribute ttm_page_pool_small = {
187 	.name = "pool_small_allocation",
188 	.mode = S_IRUGO | S_IWUSR
189 };
190 static struct attribute ttm_page_pool_alloc_size = {
191 	.name = "pool_allocation_size",
192 	.mode = S_IRUGO | S_IWUSR
193 };
194 
195 static struct attribute *ttm_pool_attrs[] = {
196 	&ttm_page_pool_max,
197 	&ttm_page_pool_small,
198 	&ttm_page_pool_alloc_size,
199 	NULL
200 };
201 
202 static void ttm_pool_kobj_release(struct kobject *kobj)
203 {
204 	struct ttm_pool_manager *m =
205 		container_of(kobj, struct ttm_pool_manager, kobj);
206 	kfree(m);
207 }
208 
209 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
210 			      const char *buffer, size_t size)
211 {
212 	struct ttm_pool_manager *m =
213 		container_of(kobj, struct ttm_pool_manager, kobj);
214 	int chars;
215 	unsigned val;
216 	chars = sscanf(buffer, "%u", &val);
217 	if (chars == 0)
218 		return size;
219 
220 	/* Convert kb to number of pages */
221 	val = val / (PAGE_SIZE >> 10);
222 
223 	if (attr == &ttm_page_pool_max)
224 		m->options.max_size = val;
225 	else if (attr == &ttm_page_pool_small)
226 		m->options.small = val;
227 	else if (attr == &ttm_page_pool_alloc_size) {
228 		if (val > NUM_PAGES_TO_ALLOC*8) {
229 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
230 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
231 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
232 			return size;
233 		} else if (val > NUM_PAGES_TO_ALLOC) {
234 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
235 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
236 		}
237 		m->options.alloc_size = val;
238 	}
239 
240 	return size;
241 }
242 
243 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
244 			     char *buffer)
245 {
246 	struct ttm_pool_manager *m =
247 		container_of(kobj, struct ttm_pool_manager, kobj);
248 	unsigned val = 0;
249 
250 	if (attr == &ttm_page_pool_max)
251 		val = m->options.max_size;
252 	else if (attr == &ttm_page_pool_small)
253 		val = m->options.small;
254 	else if (attr == &ttm_page_pool_alloc_size)
255 		val = m->options.alloc_size;
256 
257 	val = val * (PAGE_SIZE >> 10);
258 
259 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
260 }
261 
262 static const struct sysfs_ops ttm_pool_sysfs_ops = {
263 	.show = &ttm_pool_show,
264 	.store = &ttm_pool_store,
265 };
266 
267 static struct kobj_type ttm_pool_kobj_type = {
268 	.release = &ttm_pool_kobj_release,
269 	.sysfs_ops = &ttm_pool_sysfs_ops,
270 	.default_attrs = ttm_pool_attrs,
271 };
272 
273 #ifndef CONFIG_X86
274 static int set_pages_array_wb(struct page **pages, int addrinarray)
275 {
276 #ifdef TTM_HAS_AGP
277 	int i;
278 
279 	for (i = 0; i < addrinarray; i++)
280 		unmap_page_from_agp(pages[i]);
281 #endif
282 	return 0;
283 }
284 
285 static int set_pages_array_wc(struct page **pages, int addrinarray)
286 {
287 #ifdef TTM_HAS_AGP
288 	int i;
289 
290 	for (i = 0; i < addrinarray; i++)
291 		map_page_into_agp(pages[i]);
292 #endif
293 	return 0;
294 }
295 
296 static int set_pages_array_uc(struct page **pages, int addrinarray)
297 {
298 #ifdef TTM_HAS_AGP
299 	int i;
300 
301 	for (i = 0; i < addrinarray; i++)
302 		map_page_into_agp(pages[i]);
303 #endif
304 	return 0;
305 }
306 #endif /* for !CONFIG_X86 */
307 
308 static int ttm_set_pages_caching(struct dma_pool *pool,
309 				 struct page **pages, unsigned cpages)
310 {
311 	int r = 0;
312 	/* Set page caching */
313 	if (pool->type & IS_UC) {
314 		r = set_pages_array_uc(pages, cpages);
315 		if (r)
316 			pr_err("%s: Failed to set %d pages to uc!\n",
317 			       pool->dev_name, cpages);
318 	}
319 	if (pool->type & IS_WC) {
320 		r = set_pages_array_wc(pages, cpages);
321 		if (r)
322 			pr_err("%s: Failed to set %d pages to wc!\n",
323 			       pool->dev_name, cpages);
324 	}
325 	return r;
326 }
327 
328 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
329 {
330 	dma_addr_t dma = d_page->dma;
331 	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
332 
333 	kfree(d_page);
334 	d_page = NULL;
335 }
336 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
337 {
338 	struct dma_page *d_page;
339 
340 	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
341 	if (!d_page)
342 		return NULL;
343 
344 	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
345 					   &d_page->dma,
346 					   pool->gfp_flags);
347 	if (d_page->vaddr)
348 		d_page->p = virt_to_page(d_page->vaddr);
349 	else {
350 		kfree(d_page);
351 		d_page = NULL;
352 	}
353 	return d_page;
354 }
355 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
356 {
357 	enum pool_type type = IS_UNDEFINED;
358 
359 	if (flags & TTM_PAGE_FLAG_DMA32)
360 		type |= IS_DMA32;
361 	if (cstate == tt_cached)
362 		type |= IS_CACHED;
363 	else if (cstate == tt_uncached)
364 		type |= IS_UC;
365 	else
366 		type |= IS_WC;
367 
368 	return type;
369 }
370 
371 static void ttm_pool_update_free_locked(struct dma_pool *pool,
372 					unsigned freed_pages)
373 {
374 	pool->npages_free -= freed_pages;
375 	pool->nfrees += freed_pages;
376 
377 }
378 
379 /* set memory back to wb and free the pages. */
380 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
381 			      struct page *pages[], unsigned npages)
382 {
383 	struct dma_page *d_page, *tmp;
384 
385 	/* Don't set WB on WB page pool. */
386 	if (npages && !(pool->type & IS_CACHED) &&
387 	    set_pages_array_wb(pages, npages))
388 		pr_err("%s: Failed to set %d pages to wb!\n",
389 		       pool->dev_name, npages);
390 
391 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
392 		list_del(&d_page->page_list);
393 		__ttm_dma_free_page(pool, d_page);
394 	}
395 }
396 
397 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
398 {
399 	/* Don't set WB on WB page pool. */
400 	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
401 		pr_err("%s: Failed to set %d pages to wb!\n",
402 		       pool->dev_name, 1);
403 
404 	list_del(&d_page->page_list);
405 	__ttm_dma_free_page(pool, d_page);
406 }
407 
408 /*
409  * Free pages from pool.
410  *
411  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
412  * number of pages in one go.
413  *
414  * @pool: to free the pages from
415  * @nr_free: If set to true will free all pages in pool
416  **/
417 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
418 {
419 	unsigned long irq_flags;
420 	struct dma_page *dma_p, *tmp;
421 	struct page **pages_to_free;
422 	struct list_head d_pages;
423 	unsigned freed_pages = 0,
424 		 npages_to_free = nr_free;
425 
426 	if (NUM_PAGES_TO_ALLOC < nr_free)
427 		npages_to_free = NUM_PAGES_TO_ALLOC;
428 #if 0
429 	if (nr_free > 1) {
430 		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
431 			 pool->dev_name, pool->name, current->pid,
432 			 npages_to_free, nr_free);
433 	}
434 #endif
435 	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
436 			GFP_KERNEL);
437 
438 	if (!pages_to_free) {
439 		pr_err("%s: Failed to allocate memory for pool free operation\n",
440 		       pool->dev_name);
441 		return 0;
442 	}
443 	INIT_LIST_HEAD(&d_pages);
444 restart:
445 	spin_lock_irqsave(&pool->lock, irq_flags);
446 
447 	/* We picking the oldest ones off the list */
448 	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
449 					 page_list) {
450 		if (freed_pages >= npages_to_free)
451 			break;
452 
453 		/* Move the dma_page from one list to another. */
454 		list_move(&dma_p->page_list, &d_pages);
455 
456 		pages_to_free[freed_pages++] = dma_p->p;
457 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
458 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
459 
460 			ttm_pool_update_free_locked(pool, freed_pages);
461 			/**
462 			 * Because changing page caching is costly
463 			 * we unlock the pool to prevent stalling.
464 			 */
465 			spin_unlock_irqrestore(&pool->lock, irq_flags);
466 
467 			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
468 					  freed_pages);
469 
470 			INIT_LIST_HEAD(&d_pages);
471 
472 			if (likely(nr_free != FREE_ALL_PAGES))
473 				nr_free -= freed_pages;
474 
475 			if (NUM_PAGES_TO_ALLOC >= nr_free)
476 				npages_to_free = nr_free;
477 			else
478 				npages_to_free = NUM_PAGES_TO_ALLOC;
479 
480 			freed_pages = 0;
481 
482 			/* free all so restart the processing */
483 			if (nr_free)
484 				goto restart;
485 
486 			/* Not allowed to fall through or break because
487 			 * following context is inside spinlock while we are
488 			 * outside here.
489 			 */
490 			goto out;
491 
492 		}
493 	}
494 
495 	/* remove range of pages from the pool */
496 	if (freed_pages) {
497 		ttm_pool_update_free_locked(pool, freed_pages);
498 		nr_free -= freed_pages;
499 	}
500 
501 	spin_unlock_irqrestore(&pool->lock, irq_flags);
502 
503 	if (freed_pages)
504 		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
505 out:
506 	kfree(pages_to_free);
507 	return nr_free;
508 }
509 
510 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
511 {
512 	struct device_pools *p;
513 	struct dma_pool *pool;
514 
515 	if (!dev)
516 		return;
517 
518 	mutex_lock(&_manager->lock);
519 	list_for_each_entry_reverse(p, &_manager->pools, pools) {
520 		if (p->dev != dev)
521 			continue;
522 		pool = p->pool;
523 		if (pool->type != type)
524 			continue;
525 
526 		list_del(&p->pools);
527 		kfree(p);
528 		_manager->npools--;
529 		break;
530 	}
531 	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
532 		if (pool->type != type)
533 			continue;
534 		/* Takes a spinlock.. */
535 		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
536 		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
537 		/* This code path is called after _all_ references to the
538 		 * struct device has been dropped - so nobody should be
539 		 * touching it. In case somebody is trying to _add_ we are
540 		 * guarded by the mutex. */
541 		list_del(&pool->pools);
542 		kfree(pool);
543 		break;
544 	}
545 	mutex_unlock(&_manager->lock);
546 }
547 
548 /*
549  * On free-ing of the 'struct device' this deconstructor is run.
550  * Albeit the pool might have already been freed earlier.
551  */
552 static void ttm_dma_pool_release(struct device *dev, void *res)
553 {
554 	struct dma_pool *pool = *(struct dma_pool **)res;
555 
556 	if (pool)
557 		ttm_dma_free_pool(dev, pool->type);
558 }
559 
560 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
561 {
562 	return *(struct dma_pool **)res == match_data;
563 }
564 
565 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
566 					  enum pool_type type)
567 {
568 	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
569 	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
570 	struct device_pools *sec_pool = NULL;
571 	struct dma_pool *pool = NULL, **ptr;
572 	unsigned i;
573 	int ret = -ENODEV;
574 	char *p;
575 
576 	if (!dev)
577 		return NULL;
578 
579 	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
580 	if (!ptr)
581 		return NULL;
582 
583 	ret = -ENOMEM;
584 
585 	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
586 			    dev_to_node(dev));
587 	if (!pool)
588 		goto err_mem;
589 
590 	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
591 				dev_to_node(dev));
592 	if (!sec_pool)
593 		goto err_mem;
594 
595 	INIT_LIST_HEAD(&sec_pool->pools);
596 	sec_pool->dev = dev;
597 	sec_pool->pool =  pool;
598 
599 	INIT_LIST_HEAD(&pool->free_list);
600 	INIT_LIST_HEAD(&pool->inuse_list);
601 	INIT_LIST_HEAD(&pool->pools);
602 	spin_lock_init(&pool->lock);
603 	pool->dev = dev;
604 	pool->npages_free = pool->npages_in_use = 0;
605 	pool->nfrees = 0;
606 	pool->gfp_flags = flags;
607 	pool->size = PAGE_SIZE;
608 	pool->type = type;
609 	pool->nrefills = 0;
610 	p = pool->name;
611 	for (i = 0; i < 5; i++) {
612 		if (type & t[i]) {
613 			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
614 				      "%s", n[i]);
615 		}
616 	}
617 	*p = 0;
618 	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
619 	 * - the kobj->name has already been deallocated.*/
620 	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
621 		 dev_driver_string(dev), dev_name(dev));
622 	mutex_lock(&_manager->lock);
623 	/* You can get the dma_pool from either the global: */
624 	list_add(&sec_pool->pools, &_manager->pools);
625 	_manager->npools++;
626 	/* or from 'struct device': */
627 	list_add(&pool->pools, &dev->dma_pools);
628 	mutex_unlock(&_manager->lock);
629 
630 	*ptr = pool;
631 	devres_add(dev, ptr);
632 
633 	return pool;
634 err_mem:
635 	devres_free(ptr);
636 	kfree(sec_pool);
637 	kfree(pool);
638 	return ERR_PTR(ret);
639 }
640 
641 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
642 					  enum pool_type type)
643 {
644 	struct dma_pool *pool, *tmp, *found = NULL;
645 
646 	if (type == IS_UNDEFINED)
647 		return found;
648 
649 	/* NB: We iterate on the 'struct dev' which has no spinlock, but
650 	 * it does have a kref which we have taken. The kref is taken during
651 	 * graphic driver loading - in the drm_pci_init it calls either
652 	 * pci_dev_get or pci_register_driver which both end up taking a kref
653 	 * on 'struct device'.
654 	 *
655 	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
656 	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
657 	 * thing is at that point of time there are no pages associated with the
658 	 * driver so this function will not be called.
659 	 */
660 	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
661 		if (pool->type != type)
662 			continue;
663 		found = pool;
664 		break;
665 	}
666 	return found;
667 }
668 
669 /*
670  * Free pages the pages that failed to change the caching state. If there
671  * are pages that have changed their caching state already put them to the
672  * pool.
673  */
674 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
675 						 struct list_head *d_pages,
676 						 struct page **failed_pages,
677 						 unsigned cpages)
678 {
679 	struct dma_page *d_page, *tmp;
680 	struct page *p;
681 	unsigned i = 0;
682 
683 	p = failed_pages[0];
684 	if (!p)
685 		return;
686 	/* Find the failed page. */
687 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
688 		if (d_page->p != p)
689 			continue;
690 		/* .. and then progress over the full list. */
691 		list_del(&d_page->page_list);
692 		__ttm_dma_free_page(pool, d_page);
693 		if (++i < cpages)
694 			p = failed_pages[i];
695 		else
696 			break;
697 	}
698 
699 }
700 
701 /*
702  * Allocate 'count' pages, and put 'need' number of them on the
703  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
704  * The full list of pages should also be on 'd_pages'.
705  * We return zero for success, and negative numbers as errors.
706  */
707 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
708 					struct list_head *d_pages,
709 					unsigned count)
710 {
711 	struct page **caching_array;
712 	struct dma_page *dma_p;
713 	struct page *p;
714 	int r = 0;
715 	unsigned i, cpages;
716 	unsigned max_cpages = min(count,
717 			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
718 
719 	/* allocate array for page caching change */
720 	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
721 
722 	if (!caching_array) {
723 		pr_err("%s: Unable to allocate table for new pages\n",
724 		       pool->dev_name);
725 		return -ENOMEM;
726 	}
727 
728 	if (count > 1) {
729 		pr_debug("%s: (%s:%d) Getting %d pages\n",
730 			 pool->dev_name, pool->name, current->pid, count);
731 	}
732 
733 	for (i = 0, cpages = 0; i < count; ++i) {
734 		dma_p = __ttm_dma_alloc_page(pool);
735 		if (!dma_p) {
736 			pr_err("%s: Unable to get page %u\n",
737 			       pool->dev_name, i);
738 
739 			/* store already allocated pages in the pool after
740 			 * setting the caching state */
741 			if (cpages) {
742 				r = ttm_set_pages_caching(pool, caching_array,
743 							  cpages);
744 				if (r)
745 					ttm_dma_handle_caching_state_failure(
746 						pool, d_pages, caching_array,
747 						cpages);
748 			}
749 			r = -ENOMEM;
750 			goto out;
751 		}
752 		p = dma_p->p;
753 #ifdef CONFIG_HIGHMEM
754 		/* gfp flags of highmem page should never be dma32 so we
755 		 * we should be fine in such case
756 		 */
757 		if (!PageHighMem(p))
758 #endif
759 		{
760 			caching_array[cpages++] = p;
761 			if (cpages == max_cpages) {
762 				/* Note: Cannot hold the spinlock */
763 				r = ttm_set_pages_caching(pool, caching_array,
764 						 cpages);
765 				if (r) {
766 					ttm_dma_handle_caching_state_failure(
767 						pool, d_pages, caching_array,
768 						cpages);
769 					goto out;
770 				}
771 				cpages = 0;
772 			}
773 		}
774 		list_add(&dma_p->page_list, d_pages);
775 	}
776 
777 	if (cpages) {
778 		r = ttm_set_pages_caching(pool, caching_array, cpages);
779 		if (r)
780 			ttm_dma_handle_caching_state_failure(pool, d_pages,
781 					caching_array, cpages);
782 	}
783 out:
784 	kfree(caching_array);
785 	return r;
786 }
787 
788 /*
789  * @return count of pages still required to fulfill the request.
790  */
791 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
792 					 unsigned long *irq_flags)
793 {
794 	unsigned count = _manager->options.small;
795 	int r = pool->npages_free;
796 
797 	if (count > pool->npages_free) {
798 		struct list_head d_pages;
799 
800 		INIT_LIST_HEAD(&d_pages);
801 
802 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
803 
804 		/* Returns how many more are neccessary to fulfill the
805 		 * request. */
806 		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
807 
808 		spin_lock_irqsave(&pool->lock, *irq_flags);
809 		if (!r) {
810 			/* Add the fresh to the end.. */
811 			list_splice(&d_pages, &pool->free_list);
812 			++pool->nrefills;
813 			pool->npages_free += count;
814 			r = count;
815 		} else {
816 			struct dma_page *d_page;
817 			unsigned cpages = 0;
818 
819 			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
820 			       pool->dev_name, pool->name, r);
821 
822 			list_for_each_entry(d_page, &d_pages, page_list) {
823 				cpages++;
824 			}
825 			list_splice_tail(&d_pages, &pool->free_list);
826 			pool->npages_free += cpages;
827 			r = cpages;
828 		}
829 	}
830 	return r;
831 }
832 
833 /*
834  * @return count of pages still required to fulfill the request.
835  * The populate list is actually a stack (not that is matters as TTM
836  * allocates one page at a time.
837  */
838 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
839 				  struct ttm_dma_tt *ttm_dma,
840 				  unsigned index)
841 {
842 	struct dma_page *d_page;
843 	struct ttm_tt *ttm = &ttm_dma->ttm;
844 	unsigned long irq_flags;
845 	int count, r = -ENOMEM;
846 
847 	spin_lock_irqsave(&pool->lock, irq_flags);
848 	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
849 	if (count) {
850 		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
851 		ttm->pages[index] = d_page->p;
852 		ttm_dma->dma_address[index] = d_page->dma;
853 		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
854 		r = 0;
855 		pool->npages_in_use += 1;
856 		pool->npages_free -= 1;
857 	}
858 	spin_unlock_irqrestore(&pool->lock, irq_flags);
859 	return r;
860 }
861 
862 /*
863  * On success pages list will hold count number of correctly
864  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
865  */
866 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
867 {
868 	struct ttm_tt *ttm = &ttm_dma->ttm;
869 	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
870 	struct dma_pool *pool;
871 	enum pool_type type;
872 	unsigned i;
873 	gfp_t gfp_flags;
874 	int ret;
875 
876 	if (ttm->state != tt_unpopulated)
877 		return 0;
878 
879 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
880 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
881 		gfp_flags = GFP_USER | GFP_DMA32;
882 	else
883 		gfp_flags = GFP_HIGHUSER;
884 	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
885 		gfp_flags |= __GFP_ZERO;
886 
887 	pool = ttm_dma_find_pool(dev, type);
888 	if (!pool) {
889 		pool = ttm_dma_pool_init(dev, gfp_flags, type);
890 		if (IS_ERR_OR_NULL(pool)) {
891 			return -ENOMEM;
892 		}
893 	}
894 
895 	INIT_LIST_HEAD(&ttm_dma->pages_list);
896 	for (i = 0; i < ttm->num_pages; ++i) {
897 		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
898 		if (ret != 0) {
899 			ttm_dma_unpopulate(ttm_dma, dev);
900 			return -ENOMEM;
901 		}
902 
903 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
904 						false, false);
905 		if (unlikely(ret != 0)) {
906 			ttm_dma_unpopulate(ttm_dma, dev);
907 			return -ENOMEM;
908 		}
909 	}
910 
911 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
912 		ret = ttm_tt_swapin(ttm);
913 		if (unlikely(ret != 0)) {
914 			ttm_dma_unpopulate(ttm_dma, dev);
915 			return ret;
916 		}
917 	}
918 
919 	ttm->state = tt_unbound;
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(ttm_dma_populate);
923 
924 /* Get good estimation how many pages are free in pools */
925 static int ttm_dma_pool_get_num_unused_pages(void)
926 {
927 	struct device_pools *p;
928 	unsigned total = 0;
929 
930 	mutex_lock(&_manager->lock);
931 	list_for_each_entry(p, &_manager->pools, pools)
932 		total += p->pool->npages_free;
933 	mutex_unlock(&_manager->lock);
934 	return total;
935 }
936 
937 /* Put all pages in pages list to correct pool to wait for reuse */
938 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
939 {
940 	struct ttm_tt *ttm = &ttm_dma->ttm;
941 	struct dma_pool *pool;
942 	struct dma_page *d_page, *next;
943 	enum pool_type type;
944 	bool is_cached = false;
945 	unsigned count = 0, i, npages = 0;
946 	unsigned long irq_flags;
947 
948 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
949 	pool = ttm_dma_find_pool(dev, type);
950 	if (!pool)
951 		return;
952 
953 	is_cached = (ttm_dma_find_pool(pool->dev,
954 		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
955 
956 	/* make sure pages array match list and count number of pages */
957 	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
958 		ttm->pages[count] = d_page->p;
959 		count++;
960 	}
961 
962 	spin_lock_irqsave(&pool->lock, irq_flags);
963 	pool->npages_in_use -= count;
964 	if (is_cached) {
965 		pool->nfrees += count;
966 	} else {
967 		pool->npages_free += count;
968 		list_splice(&ttm_dma->pages_list, &pool->free_list);
969 		npages = count;
970 		if (pool->npages_free > _manager->options.max_size) {
971 			npages = pool->npages_free - _manager->options.max_size;
972 			/* free at least NUM_PAGES_TO_ALLOC number of pages
973 			 * to reduce calls to set_memory_wb */
974 			if (npages < NUM_PAGES_TO_ALLOC)
975 				npages = NUM_PAGES_TO_ALLOC;
976 		}
977 	}
978 	spin_unlock_irqrestore(&pool->lock, irq_flags);
979 
980 	if (is_cached) {
981 		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
982 			ttm_mem_global_free_page(ttm->glob->mem_glob,
983 						 d_page->p);
984 			ttm_dma_page_put(pool, d_page);
985 		}
986 	} else {
987 		for (i = 0; i < count; i++) {
988 			ttm_mem_global_free_page(ttm->glob->mem_glob,
989 						 ttm->pages[i]);
990 		}
991 	}
992 
993 	INIT_LIST_HEAD(&ttm_dma->pages_list);
994 	for (i = 0; i < ttm->num_pages; i++) {
995 		ttm->pages[i] = NULL;
996 		ttm_dma->dma_address[i] = 0;
997 	}
998 
999 	/* shrink pool if necessary (only on !is_cached pools)*/
1000 	if (npages)
1001 		ttm_dma_page_pool_free(pool, npages);
1002 	ttm->state = tt_unpopulated;
1003 }
1004 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1005 
1006 /**
1007  * Callback for mm to request pool to reduce number of page held.
1008  */
1009 static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1010 				  struct shrink_control *sc)
1011 {
1012 	static atomic_t start_pool = ATOMIC_INIT(0);
1013 	unsigned idx = 0;
1014 	unsigned pool_offset = atomic_add_return(1, &start_pool);
1015 	unsigned shrink_pages = sc->nr_to_scan;
1016 	struct device_pools *p;
1017 
1018 	if (list_empty(&_manager->pools))
1019 		return 0;
1020 
1021 	mutex_lock(&_manager->lock);
1022 	pool_offset = pool_offset % _manager->npools;
1023 	list_for_each_entry(p, &_manager->pools, pools) {
1024 		unsigned nr_free;
1025 
1026 		if (!p->dev)
1027 			continue;
1028 		if (shrink_pages == 0)
1029 			break;
1030 		/* Do it in round-robin fashion. */
1031 		if (++idx < pool_offset)
1032 			continue;
1033 		nr_free = shrink_pages;
1034 		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1035 		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1036 			 p->pool->dev_name, p->pool->name, current->pid,
1037 			 nr_free, shrink_pages);
1038 	}
1039 	mutex_unlock(&_manager->lock);
1040 	/* return estimated number of unused pages in pool */
1041 	return ttm_dma_pool_get_num_unused_pages();
1042 }
1043 
1044 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1045 {
1046 	manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1047 	manager->mm_shrink.seeks = 1;
1048 	register_shrinker(&manager->mm_shrink);
1049 }
1050 
1051 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1052 {
1053 	unregister_shrinker(&manager->mm_shrink);
1054 }
1055 
1056 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1057 {
1058 	int ret = -ENOMEM;
1059 
1060 	WARN_ON(_manager);
1061 
1062 	pr_info("Initializing DMA pool allocator\n");
1063 
1064 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1065 	if (!_manager)
1066 		goto err;
1067 
1068 	mutex_init(&_manager->lock);
1069 	INIT_LIST_HEAD(&_manager->pools);
1070 
1071 	_manager->options.max_size = max_pages;
1072 	_manager->options.small = SMALL_ALLOCATION;
1073 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1074 
1075 	/* This takes care of auto-freeing the _manager */
1076 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1077 				   &glob->kobj, "dma_pool");
1078 	if (unlikely(ret != 0)) {
1079 		kobject_put(&_manager->kobj);
1080 		goto err;
1081 	}
1082 	ttm_dma_pool_mm_shrink_init(_manager);
1083 	return 0;
1084 err:
1085 	return ret;
1086 }
1087 
1088 void ttm_dma_page_alloc_fini(void)
1089 {
1090 	struct device_pools *p, *t;
1091 
1092 	pr_info("Finalizing DMA pool allocator\n");
1093 	ttm_dma_pool_mm_shrink_fini(_manager);
1094 
1095 	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1096 		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1097 			current->pid);
1098 		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1099 			ttm_dma_pool_match, p->pool));
1100 		ttm_dma_free_pool(p->dev, p->pool->type);
1101 	}
1102 	kobject_put(&_manager->kobj);
1103 	_manager = NULL;
1104 }
1105 
1106 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1107 {
1108 	struct device_pools *p;
1109 	struct dma_pool *pool = NULL;
1110 	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1111 		     "name", "virt", "busaddr"};
1112 
1113 	if (!_manager) {
1114 		seq_printf(m, "No pool allocator running.\n");
1115 		return 0;
1116 	}
1117 	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1118 		   h[0], h[1], h[2], h[3], h[4], h[5]);
1119 	mutex_lock(&_manager->lock);
1120 	list_for_each_entry(p, &_manager->pools, pools) {
1121 		struct device *dev = p->dev;
1122 		if (!dev)
1123 			continue;
1124 		pool = p->pool;
1125 		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1126 				pool->name, pool->nrefills,
1127 				pool->nfrees, pool->npages_in_use,
1128 				pool->npages_free,
1129 				pool->dev_name);
1130 	}
1131 	mutex_unlock(&_manager->lock);
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1135