1 /* 2 * Copyright (c) Red Hat Inc. 3 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sub license, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the 12 * next paragraph) shall be included in all copies or substantial portions 13 * of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: Dave Airlie <airlied@redhat.com> 24 * Jerome Glisse <jglisse@redhat.com> 25 * Pauli Nieminen <suokkos@gmail.com> 26 */ 27 /* 28 * Copyright (c) 2013 The FreeBSD Foundation 29 * All rights reserved. 30 * 31 * Portions of this software were developed by Konstantin Belousov 32 * <kib@FreeBSD.org> under sponsorship from the FreeBSD Foundation. 33 */ 34 35 /* simple list based uncached page pool 36 * - Pool collects resently freed pages for reuse 37 * - Use page->lru to keep a free list 38 * - doesn't track currently in use pages 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include <dev/drm2/drmP.h> 45 #include <dev/drm2/ttm/ttm_bo_driver.h> 46 #include <dev/drm2/ttm/ttm_page_alloc.h> 47 48 #ifdef TTM_HAS_AGP 49 #include <asm/agp.h> 50 #endif 51 52 #define VM_ALLOC_DMA32 VM_ALLOC_RESERVED1 53 54 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(vm_page_t)) 55 #define SMALL_ALLOCATION 16 56 #define FREE_ALL_PAGES (~0U) 57 /* times are in msecs */ 58 #define PAGE_FREE_INTERVAL 1000 59 60 /** 61 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages. 62 * 63 * @lock: Protects the shared pool from concurrnet access. Must be used with 64 * irqsave/irqrestore variants because pool allocator maybe called from 65 * delayed work. 66 * @fill_lock: Prevent concurrent calls to fill. 67 * @list: Pool of free uc/wc pages for fast reuse. 68 * @gfp_flags: Flags to pass for alloc_page. 69 * @npages: Number of pages in pool. 70 */ 71 struct ttm_page_pool { 72 struct mtx lock; 73 bool fill_lock; 74 bool dma32; 75 struct pglist list; 76 int ttm_page_alloc_flags; 77 unsigned npages; 78 char *name; 79 unsigned long nfrees; 80 unsigned long nrefills; 81 }; 82 83 /** 84 * Limits for the pool. They are handled without locks because only place where 85 * they may change is in sysfs store. They won't have immediate effect anyway 86 * so forcing serialization to access them is pointless. 87 */ 88 89 struct ttm_pool_opts { 90 unsigned alloc_size; 91 unsigned max_size; 92 unsigned small; 93 }; 94 95 #define NUM_POOLS 4 96 97 /** 98 * struct ttm_pool_manager - Holds memory pools for fst allocation 99 * 100 * Manager is read only object for pool code so it doesn't need locking. 101 * 102 * @free_interval: minimum number of jiffies between freeing pages from pool. 103 * @page_alloc_inited: reference counting for pool allocation. 104 * @work: Work that is used to shrink the pool. Work is only run when there is 105 * some pages to free. 106 * @small_allocation: Limit in number of pages what is small allocation. 107 * 108 * @pools: All pool objects in use. 109 **/ 110 struct ttm_pool_manager { 111 unsigned int kobj_ref; 112 eventhandler_tag lowmem_handler; 113 struct ttm_pool_opts options; 114 115 union { 116 struct ttm_page_pool u_pools[NUM_POOLS]; 117 struct _utag { 118 struct ttm_page_pool u_wc_pool; 119 struct ttm_page_pool u_uc_pool; 120 struct ttm_page_pool u_wc_pool_dma32; 121 struct ttm_page_pool u_uc_pool_dma32; 122 } _ut; 123 } _u; 124 }; 125 126 #define pools _u.u_pools 127 #define wc_pool _u._ut.u_wc_pool 128 #define uc_pool _u._ut.u_uc_pool 129 #define wc_pool_dma32 _u._ut.u_wc_pool_dma32 130 #define uc_pool_dma32 _u._ut.u_uc_pool_dma32 131 132 MALLOC_DEFINE(M_TTM_POOLMGR, "ttm_poolmgr", "TTM Pool Manager"); 133 134 static void 135 ttm_vm_page_free(vm_page_t m) 136 { 137 138 KASSERT(m->object == NULL, ("ttm page %p is owned", m)); 139 KASSERT(m->wire_count == 1, ("ttm lost wire %p", m)); 140 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("ttm lost fictitious %p", m)); 141 KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("ttm got unmanaged %p", m)); 142 m->flags &= ~PG_FICTITIOUS; 143 m->oflags |= VPO_UNMANAGED; 144 vm_page_unwire(m, 0); 145 vm_page_free(m); 146 } 147 148 static vm_memattr_t 149 ttm_caching_state_to_vm(enum ttm_caching_state cstate) 150 { 151 152 switch (cstate) { 153 case tt_uncached: 154 return (VM_MEMATTR_UNCACHEABLE); 155 case tt_wc: 156 return (VM_MEMATTR_WRITE_COMBINING); 157 case tt_cached: 158 return (VM_MEMATTR_WRITE_BACK); 159 } 160 panic("caching state %d\n", cstate); 161 } 162 163 static void ttm_pool_kobj_release(struct ttm_pool_manager *m) 164 { 165 166 free(m, M_TTM_POOLMGR); 167 } 168 169 #if 0 170 /* XXXKIB sysctl */ 171 static ssize_t ttm_pool_store(struct ttm_pool_manager *m, 172 struct attribute *attr, const char *buffer, size_t size) 173 { 174 int chars; 175 unsigned val; 176 chars = sscanf(buffer, "%u", &val); 177 if (chars == 0) 178 return size; 179 180 /* Convert kb to number of pages */ 181 val = val / (PAGE_SIZE >> 10); 182 183 if (attr == &ttm_page_pool_max) 184 m->options.max_size = val; 185 else if (attr == &ttm_page_pool_small) 186 m->options.small = val; 187 else if (attr == &ttm_page_pool_alloc_size) { 188 if (val > NUM_PAGES_TO_ALLOC*8) { 189 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n", 190 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7), 191 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); 192 return size; 193 } else if (val > NUM_PAGES_TO_ALLOC) { 194 pr_warn("Setting allocation size to larger than %lu is not recommended\n", 195 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); 196 } 197 m->options.alloc_size = val; 198 } 199 200 return size; 201 } 202 203 static ssize_t ttm_pool_show(struct ttm_pool_manager *m, 204 struct attribute *attr, char *buffer) 205 { 206 unsigned val = 0; 207 208 if (attr == &ttm_page_pool_max) 209 val = m->options.max_size; 210 else if (attr == &ttm_page_pool_small) 211 val = m->options.small; 212 else if (attr == &ttm_page_pool_alloc_size) 213 val = m->options.alloc_size; 214 215 val = val * (PAGE_SIZE >> 10); 216 217 return snprintf(buffer, PAGE_SIZE, "%u\n", val); 218 } 219 #endif 220 221 static struct ttm_pool_manager *_manager; 222 223 static int set_pages_array_wb(vm_page_t *pages, int addrinarray) 224 { 225 vm_page_t m; 226 int i; 227 228 for (i = 0; i < addrinarray; i++) { 229 m = pages[i]; 230 #ifdef TTM_HAS_AGP 231 unmap_page_from_agp(m); 232 #endif 233 pmap_page_set_memattr(m, VM_MEMATTR_WRITE_BACK); 234 } 235 return 0; 236 } 237 238 static int set_pages_array_wc(vm_page_t *pages, int addrinarray) 239 { 240 vm_page_t m; 241 int i; 242 243 for (i = 0; i < addrinarray; i++) { 244 m = pages[i]; 245 #ifdef TTM_HAS_AGP 246 map_page_into_agp(pages[i]); 247 #endif 248 pmap_page_set_memattr(m, VM_MEMATTR_WRITE_COMBINING); 249 } 250 return 0; 251 } 252 253 static int set_pages_array_uc(vm_page_t *pages, int addrinarray) 254 { 255 vm_page_t m; 256 int i; 257 258 for (i = 0; i < addrinarray; i++) { 259 m = pages[i]; 260 #ifdef TTM_HAS_AGP 261 map_page_into_agp(pages[i]); 262 #endif 263 pmap_page_set_memattr(m, VM_MEMATTR_UNCACHEABLE); 264 } 265 return 0; 266 } 267 268 /** 269 * Select the right pool or requested caching state and ttm flags. */ 270 static struct ttm_page_pool *ttm_get_pool(int flags, 271 enum ttm_caching_state cstate) 272 { 273 int pool_index; 274 275 if (cstate == tt_cached) 276 return NULL; 277 278 if (cstate == tt_wc) 279 pool_index = 0x0; 280 else 281 pool_index = 0x1; 282 283 if (flags & TTM_PAGE_FLAG_DMA32) 284 pool_index |= 0x2; 285 286 return &_manager->pools[pool_index]; 287 } 288 289 /* set memory back to wb and free the pages. */ 290 static void ttm_pages_put(vm_page_t *pages, unsigned npages) 291 { 292 unsigned i; 293 294 /* Our VM handles vm memattr automatically on the page free. */ 295 if (set_pages_array_wb(pages, npages)) 296 printf("[TTM] Failed to set %d pages to wb!\n", npages); 297 for (i = 0; i < npages; ++i) 298 ttm_vm_page_free(pages[i]); 299 } 300 301 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool, 302 unsigned freed_pages) 303 { 304 pool->npages -= freed_pages; 305 pool->nfrees += freed_pages; 306 } 307 308 /** 309 * Free pages from pool. 310 * 311 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC 312 * number of pages in one go. 313 * 314 * @pool: to free the pages from 315 * @free_all: If set to true will free all pages in pool 316 **/ 317 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free) 318 { 319 vm_page_t p, p1; 320 vm_page_t *pages_to_free; 321 unsigned freed_pages = 0, 322 npages_to_free = nr_free; 323 324 if (NUM_PAGES_TO_ALLOC < nr_free) 325 npages_to_free = NUM_PAGES_TO_ALLOC; 326 327 pages_to_free = malloc(npages_to_free * sizeof(vm_page_t), 328 M_TEMP, M_WAITOK | M_ZERO); 329 330 restart: 331 mtx_lock(&pool->lock); 332 333 TAILQ_FOREACH_REVERSE_SAFE(p, &pool->list, pglist, pageq, p1) { 334 if (freed_pages >= npages_to_free) 335 break; 336 337 pages_to_free[freed_pages++] = p; 338 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */ 339 if (freed_pages >= NUM_PAGES_TO_ALLOC) { 340 /* remove range of pages from the pool */ 341 TAILQ_REMOVE(&pool->list, p, pageq); 342 343 ttm_pool_update_free_locked(pool, freed_pages); 344 /** 345 * Because changing page caching is costly 346 * we unlock the pool to prevent stalling. 347 */ 348 mtx_unlock(&pool->lock); 349 350 ttm_pages_put(pages_to_free, freed_pages); 351 if (likely(nr_free != FREE_ALL_PAGES)) 352 nr_free -= freed_pages; 353 354 if (NUM_PAGES_TO_ALLOC >= nr_free) 355 npages_to_free = nr_free; 356 else 357 npages_to_free = NUM_PAGES_TO_ALLOC; 358 359 freed_pages = 0; 360 361 /* free all so restart the processing */ 362 if (nr_free) 363 goto restart; 364 365 /* Not allowed to fall through or break because 366 * following context is inside spinlock while we are 367 * outside here. 368 */ 369 goto out; 370 371 } 372 } 373 374 /* remove range of pages from the pool */ 375 if (freed_pages) { 376 TAILQ_REMOVE(&pool->list, p, pageq); 377 378 ttm_pool_update_free_locked(pool, freed_pages); 379 nr_free -= freed_pages; 380 } 381 382 mtx_unlock(&pool->lock); 383 384 if (freed_pages) 385 ttm_pages_put(pages_to_free, freed_pages); 386 out: 387 free(pages_to_free, M_TEMP); 388 return nr_free; 389 } 390 391 /* Get good estimation how many pages are free in pools */ 392 static int ttm_pool_get_num_unused_pages(void) 393 { 394 unsigned i; 395 int total = 0; 396 for (i = 0; i < NUM_POOLS; ++i) 397 total += _manager->pools[i].npages; 398 399 return total; 400 } 401 402 /** 403 * Callback for mm to request pool to reduce number of page held. 404 */ 405 static int ttm_pool_mm_shrink(void *arg) 406 { 407 static unsigned int start_pool = 0; 408 unsigned i; 409 unsigned pool_offset = atomic_fetchadd_int(&start_pool, 1); 410 struct ttm_page_pool *pool; 411 int shrink_pages = 100; /* XXXKIB */ 412 413 pool_offset = pool_offset % NUM_POOLS; 414 /* select start pool in round robin fashion */ 415 for (i = 0; i < NUM_POOLS; ++i) { 416 unsigned nr_free = shrink_pages; 417 if (shrink_pages == 0) 418 break; 419 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS]; 420 shrink_pages = ttm_page_pool_free(pool, nr_free); 421 } 422 /* return estimated number of unused pages in pool */ 423 return ttm_pool_get_num_unused_pages(); 424 } 425 426 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager) 427 { 428 429 manager->lowmem_handler = EVENTHANDLER_REGISTER(vm_lowmem, 430 ttm_pool_mm_shrink, manager, EVENTHANDLER_PRI_ANY); 431 } 432 433 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager) 434 { 435 436 EVENTHANDLER_DEREGISTER(vm_lowmem, manager->lowmem_handler); 437 } 438 439 static int ttm_set_pages_caching(vm_page_t *pages, 440 enum ttm_caching_state cstate, unsigned cpages) 441 { 442 int r = 0; 443 /* Set page caching */ 444 switch (cstate) { 445 case tt_uncached: 446 r = set_pages_array_uc(pages, cpages); 447 if (r) 448 printf("[TTM] Failed to set %d pages to uc!\n", cpages); 449 break; 450 case tt_wc: 451 r = set_pages_array_wc(pages, cpages); 452 if (r) 453 printf("[TTM] Failed to set %d pages to wc!\n", cpages); 454 break; 455 default: 456 break; 457 } 458 return r; 459 } 460 461 /** 462 * Free pages the pages that failed to change the caching state. If there is 463 * any pages that have changed their caching state already put them to the 464 * pool. 465 */ 466 static void ttm_handle_caching_state_failure(struct pglist *pages, 467 int ttm_flags, enum ttm_caching_state cstate, 468 vm_page_t *failed_pages, unsigned cpages) 469 { 470 unsigned i; 471 /* Failed pages have to be freed */ 472 for (i = 0; i < cpages; ++i) { 473 TAILQ_REMOVE(pages, failed_pages[i], pageq); 474 ttm_vm_page_free(failed_pages[i]); 475 } 476 } 477 478 /** 479 * Allocate new pages with correct caching. 480 * 481 * This function is reentrant if caller updates count depending on number of 482 * pages returned in pages array. 483 */ 484 static int ttm_alloc_new_pages(struct pglist *pages, int ttm_alloc_flags, 485 int ttm_flags, enum ttm_caching_state cstate, unsigned count) 486 { 487 vm_page_t *caching_array; 488 vm_page_t p; 489 int r = 0; 490 unsigned i, cpages, aflags; 491 unsigned max_cpages = min(count, 492 (unsigned)(PAGE_SIZE/sizeof(vm_page_t))); 493 494 aflags = VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 495 ((ttm_alloc_flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ? 496 VM_ALLOC_ZERO : 0); 497 498 /* allocate array for page caching change */ 499 caching_array = malloc(max_cpages * sizeof(vm_page_t), M_TEMP, 500 M_WAITOK | M_ZERO); 501 502 for (i = 0, cpages = 0; i < count; ++i) { 503 p = vm_page_alloc_contig(NULL, 0, aflags, 1, 0, 504 (ttm_alloc_flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff : 505 VM_MAX_ADDRESS, PAGE_SIZE, 0, 506 ttm_caching_state_to_vm(cstate)); 507 if (!p) { 508 printf("[TTM] Unable to get page %u\n", i); 509 510 /* store already allocated pages in the pool after 511 * setting the caching state */ 512 if (cpages) { 513 r = ttm_set_pages_caching(caching_array, 514 cstate, cpages); 515 if (r) 516 ttm_handle_caching_state_failure(pages, 517 ttm_flags, cstate, 518 caching_array, cpages); 519 } 520 r = -ENOMEM; 521 goto out; 522 } 523 p->oflags &= ~VPO_UNMANAGED; 524 p->flags |= PG_FICTITIOUS; 525 526 #ifdef CONFIG_HIGHMEM /* KIB: nop */ 527 /* gfp flags of highmem page should never be dma32 so we 528 * we should be fine in such case 529 */ 530 if (!PageHighMem(p)) 531 #endif 532 { 533 caching_array[cpages++] = p; 534 if (cpages == max_cpages) { 535 536 r = ttm_set_pages_caching(caching_array, 537 cstate, cpages); 538 if (r) { 539 ttm_handle_caching_state_failure(pages, 540 ttm_flags, cstate, 541 caching_array, cpages); 542 goto out; 543 } 544 cpages = 0; 545 } 546 } 547 548 TAILQ_INSERT_HEAD(pages, p, pageq); 549 } 550 551 if (cpages) { 552 r = ttm_set_pages_caching(caching_array, cstate, cpages); 553 if (r) 554 ttm_handle_caching_state_failure(pages, 555 ttm_flags, cstate, 556 caching_array, cpages); 557 } 558 out: 559 free(caching_array, M_TEMP); 560 561 return r; 562 } 563 564 /** 565 * Fill the given pool if there aren't enough pages and the requested number of 566 * pages is small. 567 */ 568 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, 569 int ttm_flags, enum ttm_caching_state cstate, unsigned count) 570 { 571 vm_page_t p; 572 int r; 573 unsigned cpages = 0; 574 /** 575 * Only allow one pool fill operation at a time. 576 * If pool doesn't have enough pages for the allocation new pages are 577 * allocated from outside of pool. 578 */ 579 if (pool->fill_lock) 580 return; 581 582 pool->fill_lock = true; 583 584 /* If allocation request is small and there are not enough 585 * pages in a pool we fill the pool up first. */ 586 if (count < _manager->options.small 587 && count > pool->npages) { 588 struct pglist new_pages; 589 unsigned alloc_size = _manager->options.alloc_size; 590 591 /** 592 * Can't change page caching if in irqsave context. We have to 593 * drop the pool->lock. 594 */ 595 mtx_unlock(&pool->lock); 596 597 TAILQ_INIT(&new_pages); 598 r = ttm_alloc_new_pages(&new_pages, pool->ttm_page_alloc_flags, 599 ttm_flags, cstate, alloc_size); 600 mtx_lock(&pool->lock); 601 602 if (!r) { 603 TAILQ_CONCAT(&pool->list, &new_pages, pageq); 604 ++pool->nrefills; 605 pool->npages += alloc_size; 606 } else { 607 printf("[TTM] Failed to fill pool (%p)\n", pool); 608 /* If we have any pages left put them to the pool. */ 609 TAILQ_FOREACH(p, &pool->list, pageq) { 610 ++cpages; 611 } 612 TAILQ_CONCAT(&pool->list, &new_pages, pageq); 613 pool->npages += cpages; 614 } 615 616 } 617 pool->fill_lock = false; 618 } 619 620 /** 621 * Cut 'count' number of pages from the pool and put them on the return list. 622 * 623 * @return count of pages still required to fulfill the request. 624 */ 625 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool, 626 struct pglist *pages, 627 int ttm_flags, 628 enum ttm_caching_state cstate, 629 unsigned count) 630 { 631 vm_page_t p; 632 unsigned i; 633 634 mtx_lock(&pool->lock); 635 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count); 636 637 if (count >= pool->npages) { 638 /* take all pages from the pool */ 639 TAILQ_CONCAT(pages, &pool->list, pageq); 640 count -= pool->npages; 641 pool->npages = 0; 642 goto out; 643 } 644 for (i = 0; i < count; i++) { 645 p = TAILQ_FIRST(&pool->list); 646 TAILQ_REMOVE(&pool->list, p, pageq); 647 TAILQ_INSERT_TAIL(pages, p, pageq); 648 } 649 pool->npages -= count; 650 count = 0; 651 out: 652 mtx_unlock(&pool->lock); 653 return count; 654 } 655 656 /* Put all pages in pages list to correct pool to wait for reuse */ 657 static void ttm_put_pages(vm_page_t *pages, unsigned npages, int flags, 658 enum ttm_caching_state cstate) 659 { 660 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); 661 unsigned i; 662 663 if (pool == NULL) { 664 /* No pool for this memory type so free the pages */ 665 for (i = 0; i < npages; i++) { 666 if (pages[i]) { 667 ttm_vm_page_free(pages[i]); 668 pages[i] = NULL; 669 } 670 } 671 return; 672 } 673 674 mtx_lock(&pool->lock); 675 for (i = 0; i < npages; i++) { 676 if (pages[i]) { 677 TAILQ_INSERT_TAIL(&pool->list, pages[i], pageq); 678 pages[i] = NULL; 679 pool->npages++; 680 } 681 } 682 /* Check that we don't go over the pool limit */ 683 npages = 0; 684 if (pool->npages > _manager->options.max_size) { 685 npages = pool->npages - _manager->options.max_size; 686 /* free at least NUM_PAGES_TO_ALLOC number of pages 687 * to reduce calls to set_memory_wb */ 688 if (npages < NUM_PAGES_TO_ALLOC) 689 npages = NUM_PAGES_TO_ALLOC; 690 } 691 mtx_unlock(&pool->lock); 692 if (npages) 693 ttm_page_pool_free(pool, npages); 694 } 695 696 /* 697 * On success pages list will hold count number of correctly 698 * cached pages. 699 */ 700 static int ttm_get_pages(vm_page_t *pages, unsigned npages, int flags, 701 enum ttm_caching_state cstate) 702 { 703 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); 704 struct pglist plist; 705 vm_page_t p = NULL; 706 int gfp_flags, aflags; 707 unsigned count; 708 int r; 709 710 aflags = VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 711 ((flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0 ? VM_ALLOC_ZERO : 0); 712 713 /* No pool for cached pages */ 714 if (pool == NULL) { 715 for (r = 0; r < npages; ++r) { 716 p = vm_page_alloc_contig(NULL, 0, aflags, 1, 0, 717 (flags & TTM_PAGE_FLAG_DMA32) ? 0xffffffff : 718 VM_MAX_ADDRESS, PAGE_SIZE, 719 0, ttm_caching_state_to_vm(cstate)); 720 if (!p) { 721 printf("[TTM] Unable to allocate page\n"); 722 return -ENOMEM; 723 } 724 p->oflags &= ~VPO_UNMANAGED; 725 p->flags |= PG_FICTITIOUS; 726 pages[r] = p; 727 } 728 return 0; 729 } 730 731 /* combine zero flag to pool flags */ 732 gfp_flags = flags | pool->ttm_page_alloc_flags; 733 734 /* First we take pages from the pool */ 735 TAILQ_INIT(&plist); 736 npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages); 737 count = 0; 738 TAILQ_FOREACH(p, &plist, pageq) { 739 pages[count++] = p; 740 } 741 742 /* clear the pages coming from the pool if requested */ 743 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) { 744 TAILQ_FOREACH(p, &plist, pageq) { 745 pmap_zero_page(p); 746 } 747 } 748 749 /* If pool didn't have enough pages allocate new one. */ 750 if (npages > 0) { 751 /* ttm_alloc_new_pages doesn't reference pool so we can run 752 * multiple requests in parallel. 753 **/ 754 TAILQ_INIT(&plist); 755 r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, 756 npages); 757 TAILQ_FOREACH(p, &plist, pageq) { 758 pages[count++] = p; 759 } 760 if (r) { 761 /* If there is any pages in the list put them back to 762 * the pool. */ 763 printf("[TTM] Failed to allocate extra pages for large request\n"); 764 ttm_put_pages(pages, count, flags, cstate); 765 return r; 766 } 767 } 768 769 return 0; 770 } 771 772 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags, 773 char *name) 774 { 775 mtx_init(&pool->lock, "ttmpool", NULL, MTX_DEF); 776 pool->fill_lock = false; 777 TAILQ_INIT(&pool->list); 778 pool->npages = pool->nfrees = 0; 779 pool->ttm_page_alloc_flags = flags; 780 pool->name = name; 781 } 782 783 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages) 784 { 785 786 if (_manager != NULL) 787 printf("[TTM] manager != NULL\n"); 788 printf("[TTM] Initializing pool allocator\n"); 789 790 _manager = malloc(sizeof(*_manager), M_TTM_POOLMGR, M_WAITOK | M_ZERO); 791 792 ttm_page_pool_init_locked(&_manager->wc_pool, 0, "wc"); 793 ttm_page_pool_init_locked(&_manager->uc_pool, 0, "uc"); 794 ttm_page_pool_init_locked(&_manager->wc_pool_dma32, 795 TTM_PAGE_FLAG_DMA32, "wc dma"); 796 ttm_page_pool_init_locked(&_manager->uc_pool_dma32, 797 TTM_PAGE_FLAG_DMA32, "uc dma"); 798 799 _manager->options.max_size = max_pages; 800 _manager->options.small = SMALL_ALLOCATION; 801 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC; 802 803 refcount_init(&_manager->kobj_ref, 1); 804 ttm_pool_mm_shrink_init(_manager); 805 806 return 0; 807 } 808 809 void ttm_page_alloc_fini(void) 810 { 811 int i; 812 813 printf("[TTM] Finalizing pool allocator\n"); 814 ttm_pool_mm_shrink_fini(_manager); 815 816 for (i = 0; i < NUM_POOLS; ++i) 817 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES); 818 819 if (refcount_release(&_manager->kobj_ref)) 820 ttm_pool_kobj_release(_manager); 821 _manager = NULL; 822 } 823 824 int ttm_pool_populate(struct ttm_tt *ttm) 825 { 826 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob; 827 unsigned i; 828 int ret; 829 830 if (ttm->state != tt_unpopulated) 831 return 0; 832 833 for (i = 0; i < ttm->num_pages; ++i) { 834 ret = ttm_get_pages(&ttm->pages[i], 1, 835 ttm->page_flags, 836 ttm->caching_state); 837 if (ret != 0) { 838 ttm_pool_unpopulate(ttm); 839 return -ENOMEM; 840 } 841 842 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i], 843 false, false); 844 if (unlikely(ret != 0)) { 845 ttm_pool_unpopulate(ttm); 846 return -ENOMEM; 847 } 848 } 849 850 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) { 851 ret = ttm_tt_swapin(ttm); 852 if (unlikely(ret != 0)) { 853 ttm_pool_unpopulate(ttm); 854 return ret; 855 } 856 } 857 858 ttm->state = tt_unbound; 859 return 0; 860 } 861 862 void ttm_pool_unpopulate(struct ttm_tt *ttm) 863 { 864 unsigned i; 865 866 for (i = 0; i < ttm->num_pages; ++i) { 867 if (ttm->pages[i]) { 868 ttm_mem_global_free_page(ttm->glob->mem_glob, 869 ttm->pages[i]); 870 ttm_put_pages(&ttm->pages[i], 1, 871 ttm->page_flags, 872 ttm->caching_state); 873 } 874 } 875 ttm->state = tt_unpopulated; 876 } 877 878 #if 0 879 /* XXXKIB sysctl */ 880 int ttm_page_alloc_debugfs(struct seq_file *m, void *data) 881 { 882 struct ttm_page_pool *p; 883 unsigned i; 884 char *h[] = {"pool", "refills", "pages freed", "size"}; 885 if (!_manager) { 886 seq_printf(m, "No pool allocator running.\n"); 887 return 0; 888 } 889 seq_printf(m, "%6s %12s %13s %8s\n", 890 h[0], h[1], h[2], h[3]); 891 for (i = 0; i < NUM_POOLS; ++i) { 892 p = &_manager->pools[i]; 893 894 seq_printf(m, "%6s %12ld %13ld %8d\n", 895 p->name, p->nrefills, 896 p->nfrees, p->npages); 897 } 898 return 0; 899 } 900 #endif 901