1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/drm2/drmP.h> 35 #include <dev/drm2/ttm/ttm_module.h> 36 #include <dev/drm2/ttm/ttm_bo_driver.h> 37 #include <dev/drm2/ttm/ttm_placement.h> 38 #include <vm/vm_pageout.h> 39 40 #define TTM_ASSERT_LOCKED(param) 41 #define TTM_DEBUG(fmt, arg...) 42 #define TTM_BO_HASH_ORDER 13 43 44 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 45 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 46 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob); 47 48 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects"); 49 50 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 51 { 52 int i; 53 54 for (i = 0; i <= TTM_PL_PRIV5; i++) 55 if (flags & (1 << i)) { 56 *mem_type = i; 57 return 0; 58 } 59 return -EINVAL; 60 } 61 62 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 63 { 64 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 65 66 printf(" has_type: %d\n", man->has_type); 67 printf(" use_type: %d\n", man->use_type); 68 printf(" flags: 0x%08X\n", man->flags); 69 printf(" gpu_offset: 0x%08lX\n", man->gpu_offset); 70 printf(" size: %ju\n", (uintmax_t)man->size); 71 printf(" available_caching: 0x%08X\n", man->available_caching); 72 printf(" default_caching: 0x%08X\n", man->default_caching); 73 if (mem_type != TTM_PL_SYSTEM) 74 (*man->func->debug)(man, TTM_PFX); 75 } 76 77 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 78 struct ttm_placement *placement) 79 { 80 int i, ret, mem_type; 81 82 printf("No space for %p (%lu pages, %luK, %luM)\n", 83 bo, bo->mem.num_pages, bo->mem.size >> 10, 84 bo->mem.size >> 20); 85 for (i = 0; i < placement->num_placement; i++) { 86 ret = ttm_mem_type_from_flags(placement->placement[i], 87 &mem_type); 88 if (ret) 89 return; 90 printf(" placement[%d]=0x%08X (%d)\n", 91 i, placement->placement[i], mem_type); 92 ttm_mem_type_debug(bo->bdev, mem_type); 93 } 94 } 95 96 #if 0 97 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob, 98 char *buffer) 99 { 100 101 return snprintf(buffer, PAGE_SIZE, "%lu\n", 102 (unsigned long) atomic_read(&glob->bo_count)); 103 } 104 #endif 105 106 static inline uint32_t ttm_bo_type_flags(unsigned type) 107 { 108 return 1 << (type); 109 } 110 111 static void ttm_bo_release_list(struct ttm_buffer_object *bo) 112 { 113 struct ttm_bo_device *bdev = bo->bdev; 114 size_t acc_size = bo->acc_size; 115 116 MPASS(atomic_read(&bo->list_kref) == 0); 117 MPASS(atomic_read(&bo->kref) == 0); 118 MPASS(atomic_read(&bo->cpu_writers) == 0); 119 MPASS(bo->sync_obj == NULL); 120 MPASS(bo->mem.mm_node == NULL); 121 MPASS(list_empty(&bo->lru)); 122 MPASS(list_empty(&bo->ddestroy)); 123 124 if (bo->ttm) 125 ttm_tt_destroy(bo->ttm); 126 atomic_dec(&bo->glob->bo_count); 127 if (bo->destroy) 128 bo->destroy(bo); 129 else { 130 free(bo, M_TTM_BO); 131 } 132 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 133 } 134 135 static int 136 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible) 137 { 138 const char *wmsg; 139 int flags, ret; 140 141 ret = 0; 142 if (interruptible) { 143 flags = PCATCH; 144 wmsg = "ttbowi"; 145 } else { 146 flags = 0; 147 wmsg = "ttbowu"; 148 } 149 while (ttm_bo_is_reserved(bo)) { 150 ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0); 151 if (ret == -EINTR || ret == -ERESTART) 152 ret = -ERESTARTSYS; 153 if (ret != 0) 154 break; 155 } 156 return (ret); 157 } 158 159 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 160 { 161 struct ttm_bo_device *bdev = bo->bdev; 162 struct ttm_mem_type_manager *man; 163 164 MPASS(ttm_bo_is_reserved(bo)); 165 166 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 167 168 MPASS(list_empty(&bo->lru)); 169 170 man = &bdev->man[bo->mem.mem_type]; 171 list_add_tail(&bo->lru, &man->lru); 172 refcount_acquire(&bo->list_kref); 173 174 if (bo->ttm != NULL) { 175 list_add_tail(&bo->swap, &bo->glob->swap_lru); 176 refcount_acquire(&bo->list_kref); 177 } 178 } 179 } 180 181 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 182 { 183 int put_count = 0; 184 185 if (!list_empty(&bo->swap)) { 186 list_del_init(&bo->swap); 187 ++put_count; 188 } 189 if (!list_empty(&bo->lru)) { 190 list_del_init(&bo->lru); 191 ++put_count; 192 } 193 194 /* 195 * TODO: Add a driver hook to delete from 196 * driver-specific LRU's here. 197 */ 198 199 return put_count; 200 } 201 202 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo, 203 bool interruptible, 204 bool no_wait, bool use_sequence, uint32_t sequence) 205 { 206 int ret; 207 208 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 209 /** 210 * Deadlock avoidance for multi-bo reserving. 211 */ 212 if (use_sequence && bo->seq_valid) { 213 /** 214 * We've already reserved this one. 215 */ 216 if (unlikely(sequence == bo->val_seq)) 217 return -EDEADLK; 218 /** 219 * Already reserved by a thread that will not back 220 * off for us. We need to back off. 221 */ 222 if (unlikely(sequence - bo->val_seq < (1U << 31))) 223 return -EAGAIN; 224 } 225 226 if (no_wait) 227 return -EBUSY; 228 229 ret = ttm_bo_wait_unreserved_locked(bo, interruptible); 230 231 if (unlikely(ret)) 232 return ret; 233 } 234 235 if (use_sequence) { 236 bool wake_up = false; 237 /** 238 * Wake up waiters that may need to recheck for deadlock, 239 * if we decreased the sequence number. 240 */ 241 if (unlikely((bo->val_seq - sequence < (1U << 31)) 242 || !bo->seq_valid)) 243 wake_up = true; 244 245 /* 246 * In the worst case with memory ordering these values can be 247 * seen in the wrong order. However since we call wake_up_all 248 * in that case, this will hopefully not pose a problem, 249 * and the worst case would only cause someone to accidentally 250 * hit -EAGAIN in ttm_bo_reserve when they see old value of 251 * val_seq. However this would only happen if seq_valid was 252 * written before val_seq was, and just means some slightly 253 * increased cpu usage 254 */ 255 bo->val_seq = sequence; 256 bo->seq_valid = true; 257 if (wake_up) 258 wakeup(bo); 259 } else { 260 bo->seq_valid = false; 261 } 262 263 return 0; 264 } 265 266 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 267 bool never_free) 268 { 269 u_int old; 270 271 old = atomic_fetchadd_int(&bo->list_kref, -count); 272 if (old <= count) { 273 if (never_free) 274 panic("ttm_bo_ref_buf"); 275 ttm_bo_release_list(bo); 276 } 277 } 278 279 int ttm_bo_reserve(struct ttm_buffer_object *bo, 280 bool interruptible, 281 bool no_wait, bool use_sequence, uint32_t sequence) 282 { 283 struct ttm_bo_global *glob = bo->glob; 284 int put_count = 0; 285 int ret; 286 287 mtx_lock(&bo->glob->lru_lock); 288 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence, 289 sequence); 290 if (likely(ret == 0)) { 291 put_count = ttm_bo_del_from_lru(bo); 292 mtx_unlock(&glob->lru_lock); 293 ttm_bo_list_ref_sub(bo, put_count, true); 294 } else 295 mtx_unlock(&bo->glob->lru_lock); 296 297 return ret; 298 } 299 300 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo, 301 bool interruptible, uint32_t sequence) 302 { 303 bool wake_up = false; 304 int ret; 305 306 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 307 if (bo->seq_valid && sequence == bo->val_seq) { 308 DRM_ERROR( 309 "%s: bo->seq_valid && sequence == bo->val_seq", 310 __func__); 311 } 312 313 ret = ttm_bo_wait_unreserved_locked(bo, interruptible); 314 315 if (unlikely(ret)) 316 return ret; 317 } 318 319 if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid) 320 wake_up = true; 321 322 /** 323 * Wake up waiters that may need to recheck for deadlock, 324 * if we decreased the sequence number. 325 */ 326 bo->val_seq = sequence; 327 bo->seq_valid = true; 328 if (wake_up) 329 wakeup(bo); 330 331 return 0; 332 } 333 334 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, 335 bool interruptible, uint32_t sequence) 336 { 337 struct ttm_bo_global *glob = bo->glob; 338 int put_count, ret; 339 340 mtx_lock(&glob->lru_lock); 341 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence); 342 if (likely(!ret)) { 343 put_count = ttm_bo_del_from_lru(bo); 344 mtx_unlock(&glob->lru_lock); 345 ttm_bo_list_ref_sub(bo, put_count, true); 346 } else 347 mtx_unlock(&glob->lru_lock); 348 return ret; 349 } 350 351 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 352 { 353 ttm_bo_add_to_lru(bo); 354 atomic_set(&bo->reserved, 0); 355 wakeup(bo); 356 } 357 358 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 359 { 360 struct ttm_bo_global *glob = bo->glob; 361 362 mtx_lock(&glob->lru_lock); 363 ttm_bo_unreserve_locked(bo); 364 mtx_unlock(&glob->lru_lock); 365 } 366 367 /* 368 * Call bo->mutex locked. 369 */ 370 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 371 { 372 struct ttm_bo_device *bdev = bo->bdev; 373 struct ttm_bo_global *glob = bo->glob; 374 int ret = 0; 375 uint32_t page_flags = 0; 376 377 TTM_ASSERT_LOCKED(&bo->mutex); 378 bo->ttm = NULL; 379 380 if (bdev->need_dma32) 381 page_flags |= TTM_PAGE_FLAG_DMA32; 382 383 switch (bo->type) { 384 case ttm_bo_type_device: 385 if (zero_alloc) 386 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 387 case ttm_bo_type_kernel: 388 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 389 page_flags, glob->dummy_read_page); 390 if (unlikely(bo->ttm == NULL)) 391 ret = -ENOMEM; 392 break; 393 case ttm_bo_type_sg: 394 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 395 page_flags | TTM_PAGE_FLAG_SG, 396 glob->dummy_read_page); 397 if (unlikely(bo->ttm == NULL)) { 398 ret = -ENOMEM; 399 break; 400 } 401 bo->ttm->sg = bo->sg; 402 break; 403 default: 404 printf("[TTM] Illegal buffer object type\n"); 405 ret = -EINVAL; 406 break; 407 } 408 409 return ret; 410 } 411 412 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 413 struct ttm_mem_reg *mem, 414 bool evict, bool interruptible, 415 bool no_wait_gpu) 416 { 417 struct ttm_bo_device *bdev = bo->bdev; 418 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 419 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 420 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 421 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 422 int ret = 0; 423 424 if (old_is_pci || new_is_pci || 425 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 426 ret = ttm_mem_io_lock(old_man, true); 427 if (unlikely(ret != 0)) 428 goto out_err; 429 ttm_bo_unmap_virtual_locked(bo); 430 ttm_mem_io_unlock(old_man); 431 } 432 433 /* 434 * Create and bind a ttm if required. 435 */ 436 437 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 438 if (bo->ttm == NULL) { 439 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 440 ret = ttm_bo_add_ttm(bo, zero); 441 if (ret) 442 goto out_err; 443 } 444 445 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 446 if (ret) 447 goto out_err; 448 449 if (mem->mem_type != TTM_PL_SYSTEM) { 450 ret = ttm_tt_bind(bo->ttm, mem); 451 if (ret) 452 goto out_err; 453 } 454 455 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 456 if (bdev->driver->move_notify) 457 bdev->driver->move_notify(bo, mem); 458 bo->mem = *mem; 459 mem->mm_node = NULL; 460 goto moved; 461 } 462 } 463 464 if (bdev->driver->move_notify) 465 bdev->driver->move_notify(bo, mem); 466 467 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 468 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 469 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 470 else if (bdev->driver->move) 471 ret = bdev->driver->move(bo, evict, interruptible, 472 no_wait_gpu, mem); 473 else 474 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 475 476 if (ret) { 477 if (bdev->driver->move_notify) { 478 struct ttm_mem_reg tmp_mem = *mem; 479 *mem = bo->mem; 480 bo->mem = tmp_mem; 481 bdev->driver->move_notify(bo, mem); 482 bo->mem = *mem; 483 *mem = tmp_mem; 484 } 485 486 goto out_err; 487 } 488 489 moved: 490 if (bo->evicted) { 491 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 492 if (ret) 493 printf("[TTM] Can not flush read caches\n"); 494 bo->evicted = false; 495 } 496 497 if (bo->mem.mm_node) { 498 bo->offset = (bo->mem.start << PAGE_SHIFT) + 499 bdev->man[bo->mem.mem_type].gpu_offset; 500 bo->cur_placement = bo->mem.placement; 501 } else 502 bo->offset = 0; 503 504 return 0; 505 506 out_err: 507 new_man = &bdev->man[bo->mem.mem_type]; 508 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 509 ttm_tt_unbind(bo->ttm); 510 ttm_tt_destroy(bo->ttm); 511 bo->ttm = NULL; 512 } 513 514 return ret; 515 } 516 517 /** 518 * Call bo::reserved. 519 * Will release GPU memory type usage on destruction. 520 * This is the place to put in driver specific hooks to release 521 * driver private resources. 522 * Will release the bo::reserved lock. 523 */ 524 525 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 526 { 527 if (bo->bdev->driver->move_notify) 528 bo->bdev->driver->move_notify(bo, NULL); 529 530 if (bo->ttm) { 531 ttm_tt_unbind(bo->ttm); 532 ttm_tt_destroy(bo->ttm); 533 bo->ttm = NULL; 534 } 535 ttm_bo_mem_put(bo, &bo->mem); 536 537 atomic_set(&bo->reserved, 0); 538 wakeup(&bo); 539 540 /* 541 * Since the final reference to this bo may not be dropped by 542 * the current task we have to put a memory barrier here to make 543 * sure the changes done in this function are always visible. 544 * 545 * This function only needs protection against the final kref_put. 546 */ 547 mb(); 548 } 549 550 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 551 { 552 struct ttm_bo_device *bdev = bo->bdev; 553 struct ttm_bo_global *glob = bo->glob; 554 struct ttm_bo_driver *driver = bdev->driver; 555 void *sync_obj = NULL; 556 int put_count; 557 int ret; 558 559 mtx_lock(&glob->lru_lock); 560 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 561 562 mtx_lock(&bdev->fence_lock); 563 (void) ttm_bo_wait(bo, false, false, true); 564 if (!ret && !bo->sync_obj) { 565 mtx_unlock(&bdev->fence_lock); 566 put_count = ttm_bo_del_from_lru(bo); 567 568 mtx_unlock(&glob->lru_lock); 569 ttm_bo_cleanup_memtype_use(bo); 570 571 ttm_bo_list_ref_sub(bo, put_count, true); 572 573 return; 574 } 575 if (bo->sync_obj) 576 sync_obj = driver->sync_obj_ref(bo->sync_obj); 577 mtx_unlock(&bdev->fence_lock); 578 579 if (!ret) { 580 atomic_set(&bo->reserved, 0); 581 wakeup(bo); 582 } 583 584 refcount_acquire(&bo->list_kref); 585 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 586 mtx_unlock(&glob->lru_lock); 587 588 if (sync_obj) { 589 driver->sync_obj_flush(sync_obj); 590 driver->sync_obj_unref(&sync_obj); 591 } 592 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 593 ((hz / 100) < 1) ? 1 : hz / 100); 594 } 595 596 /** 597 * function ttm_bo_cleanup_refs_and_unlock 598 * If bo idle, remove from delayed- and lru lists, and unref. 599 * If not idle, do nothing. 600 * 601 * Must be called with lru_lock and reservation held, this function 602 * will drop both before returning. 603 * 604 * @interruptible Any sleeps should occur interruptibly. 605 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 606 */ 607 608 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 609 bool interruptible, 610 bool no_wait_gpu) 611 { 612 struct ttm_bo_device *bdev = bo->bdev; 613 struct ttm_bo_driver *driver = bdev->driver; 614 struct ttm_bo_global *glob = bo->glob; 615 int put_count; 616 int ret; 617 618 mtx_lock(&bdev->fence_lock); 619 ret = ttm_bo_wait(bo, false, false, true); 620 621 if (ret && !no_wait_gpu) { 622 void *sync_obj; 623 624 /* 625 * Take a reference to the fence and unreserve, 626 * at this point the buffer should be dead, so 627 * no new sync objects can be attached. 628 */ 629 sync_obj = driver->sync_obj_ref(bo->sync_obj); 630 mtx_unlock(&bdev->fence_lock); 631 632 atomic_set(&bo->reserved, 0); 633 wakeup(bo); 634 mtx_unlock(&glob->lru_lock); 635 636 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 637 driver->sync_obj_unref(&sync_obj); 638 if (ret) 639 return ret; 640 641 /* 642 * remove sync_obj with ttm_bo_wait, the wait should be 643 * finished, and no new wait object should have been added. 644 */ 645 mtx_lock(&bdev->fence_lock); 646 ret = ttm_bo_wait(bo, false, false, true); 647 mtx_unlock(&bdev->fence_lock); 648 if (ret) 649 return ret; 650 651 mtx_lock(&glob->lru_lock); 652 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 653 654 /* 655 * We raced, and lost, someone else holds the reservation now, 656 * and is probably busy in ttm_bo_cleanup_memtype_use. 657 * 658 * Even if it's not the case, because we finished waiting any 659 * delayed destruction would succeed, so just return success 660 * here. 661 */ 662 if (ret) { 663 mtx_unlock(&glob->lru_lock); 664 return 0; 665 } 666 } else 667 mtx_unlock(&bdev->fence_lock); 668 669 if (ret || unlikely(list_empty(&bo->ddestroy))) { 670 atomic_set(&bo->reserved, 0); 671 wakeup(bo); 672 mtx_unlock(&glob->lru_lock); 673 return ret; 674 } 675 676 put_count = ttm_bo_del_from_lru(bo); 677 list_del_init(&bo->ddestroy); 678 ++put_count; 679 680 mtx_unlock(&glob->lru_lock); 681 ttm_bo_cleanup_memtype_use(bo); 682 683 ttm_bo_list_ref_sub(bo, put_count, true); 684 685 return 0; 686 } 687 688 /** 689 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 690 * encountered buffers. 691 */ 692 693 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 694 { 695 struct ttm_bo_global *glob = bdev->glob; 696 struct ttm_buffer_object *entry = NULL; 697 int ret = 0; 698 699 mtx_lock(&glob->lru_lock); 700 if (list_empty(&bdev->ddestroy)) 701 goto out_unlock; 702 703 entry = list_first_entry(&bdev->ddestroy, 704 struct ttm_buffer_object, ddestroy); 705 refcount_acquire(&entry->list_kref); 706 707 for (;;) { 708 struct ttm_buffer_object *nentry = NULL; 709 710 if (entry->ddestroy.next != &bdev->ddestroy) { 711 nentry = list_first_entry(&entry->ddestroy, 712 struct ttm_buffer_object, ddestroy); 713 refcount_acquire(&nentry->list_kref); 714 } 715 716 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 717 if (remove_all && ret) { 718 ret = ttm_bo_reserve_nolru(entry, false, false, 719 false, 0); 720 } 721 722 if (!ret) 723 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 724 !remove_all); 725 else 726 mtx_unlock(&glob->lru_lock); 727 728 if (refcount_release(&entry->list_kref)) 729 ttm_bo_release_list(entry); 730 entry = nentry; 731 732 if (ret || !entry) 733 goto out; 734 735 mtx_lock(&glob->lru_lock); 736 if (list_empty(&entry->ddestroy)) 737 break; 738 } 739 740 out_unlock: 741 mtx_unlock(&glob->lru_lock); 742 out: 743 if (entry && refcount_release(&entry->list_kref)) 744 ttm_bo_release_list(entry); 745 return ret; 746 } 747 748 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused) 749 { 750 struct ttm_bo_device *bdev = arg; 751 752 if (ttm_bo_delayed_delete(bdev, false)) { 753 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 754 ((hz / 100) < 1) ? 1 : hz / 100); 755 } 756 } 757 758 static void ttm_bo_release(struct ttm_buffer_object *bo) 759 { 760 struct ttm_bo_device *bdev = bo->bdev; 761 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 762 763 rw_wlock(&bdev->vm_lock); 764 if (likely(bo->vm_node != NULL)) { 765 RB_REMOVE(ttm_bo_device_buffer_objects, 766 &bdev->addr_space_rb, bo); 767 drm_mm_put_block(bo->vm_node); 768 bo->vm_node = NULL; 769 } 770 rw_wunlock(&bdev->vm_lock); 771 ttm_mem_io_lock(man, false); 772 ttm_mem_io_free_vm(bo); 773 ttm_mem_io_unlock(man); 774 ttm_bo_cleanup_refs_or_queue(bo); 775 if (refcount_release(&bo->list_kref)) 776 ttm_bo_release_list(bo); 777 } 778 779 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 780 { 781 struct ttm_buffer_object *bo = *p_bo; 782 783 *p_bo = NULL; 784 if (refcount_release(&bo->kref)) 785 ttm_bo_release(bo); 786 } 787 788 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 789 { 790 int pending; 791 792 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending)) 793 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq); 794 return (pending); 795 } 796 797 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 798 { 799 if (resched) { 800 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 801 ((hz / 100) < 1) ? 1 : hz / 100); 802 } 803 } 804 805 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 806 bool no_wait_gpu) 807 { 808 struct ttm_bo_device *bdev = bo->bdev; 809 struct ttm_mem_reg evict_mem; 810 struct ttm_placement placement; 811 int ret = 0; 812 813 mtx_lock(&bdev->fence_lock); 814 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 815 mtx_unlock(&bdev->fence_lock); 816 817 if (unlikely(ret != 0)) { 818 if (ret != -ERESTARTSYS) { 819 printf("[TTM] Failed to expire sync object before buffer eviction\n"); 820 } 821 goto out; 822 } 823 824 MPASS(ttm_bo_is_reserved(bo)); 825 826 evict_mem = bo->mem; 827 evict_mem.mm_node = NULL; 828 evict_mem.bus.io_reserved_vm = false; 829 evict_mem.bus.io_reserved_count = 0; 830 831 placement.fpfn = 0; 832 placement.lpfn = 0; 833 placement.num_placement = 0; 834 placement.num_busy_placement = 0; 835 bdev->driver->evict_flags(bo, &placement); 836 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 837 no_wait_gpu); 838 if (ret) { 839 if (ret != -ERESTARTSYS) { 840 printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n", 841 bo); 842 ttm_bo_mem_space_debug(bo, &placement); 843 } 844 goto out; 845 } 846 847 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 848 no_wait_gpu); 849 if (ret) { 850 if (ret != -ERESTARTSYS) 851 printf("[TTM] Buffer eviction failed\n"); 852 ttm_bo_mem_put(bo, &evict_mem); 853 goto out; 854 } 855 bo->evicted = true; 856 out: 857 return ret; 858 } 859 860 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 861 uint32_t mem_type, 862 bool interruptible, 863 bool no_wait_gpu) 864 { 865 struct ttm_bo_global *glob = bdev->glob; 866 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 867 struct ttm_buffer_object *bo; 868 int ret = -EBUSY, put_count; 869 870 mtx_lock(&glob->lru_lock); 871 list_for_each_entry(bo, &man->lru, lru) { 872 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 873 if (!ret) 874 break; 875 } 876 877 if (ret) { 878 mtx_unlock(&glob->lru_lock); 879 return ret; 880 } 881 882 refcount_acquire(&bo->list_kref); 883 884 if (!list_empty(&bo->ddestroy)) { 885 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 886 no_wait_gpu); 887 if (refcount_release(&bo->list_kref)) 888 ttm_bo_release_list(bo); 889 return ret; 890 } 891 892 put_count = ttm_bo_del_from_lru(bo); 893 mtx_unlock(&glob->lru_lock); 894 895 MPASS(ret == 0); 896 897 ttm_bo_list_ref_sub(bo, put_count, true); 898 899 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 900 ttm_bo_unreserve(bo); 901 902 if (refcount_release(&bo->list_kref)) 903 ttm_bo_release_list(bo); 904 return ret; 905 } 906 907 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 908 { 909 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 910 911 if (mem->mm_node) 912 (*man->func->put_node)(man, mem); 913 } 914 915 /** 916 * Repeatedly evict memory from the LRU for @mem_type until we create enough 917 * space, or we've evicted everything and there isn't enough space. 918 */ 919 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 920 uint32_t mem_type, 921 struct ttm_placement *placement, 922 struct ttm_mem_reg *mem, 923 bool interruptible, 924 bool no_wait_gpu) 925 { 926 struct ttm_bo_device *bdev = bo->bdev; 927 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 928 int ret; 929 930 do { 931 ret = (*man->func->get_node)(man, bo, placement, mem); 932 if (unlikely(ret != 0)) 933 return ret; 934 if (mem->mm_node) 935 break; 936 ret = ttm_mem_evict_first(bdev, mem_type, 937 interruptible, no_wait_gpu); 938 if (unlikely(ret != 0)) 939 return ret; 940 } while (1); 941 if (mem->mm_node == NULL) 942 return -ENOMEM; 943 mem->mem_type = mem_type; 944 return 0; 945 } 946 947 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 948 uint32_t cur_placement, 949 uint32_t proposed_placement) 950 { 951 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 952 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 953 954 /** 955 * Keep current caching if possible. 956 */ 957 958 if ((cur_placement & caching) != 0) 959 result |= (cur_placement & caching); 960 else if ((man->default_caching & caching) != 0) 961 result |= man->default_caching; 962 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 963 result |= TTM_PL_FLAG_CACHED; 964 else if ((TTM_PL_FLAG_WC & caching) != 0) 965 result |= TTM_PL_FLAG_WC; 966 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 967 result |= TTM_PL_FLAG_UNCACHED; 968 969 return result; 970 } 971 972 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 973 uint32_t mem_type, 974 uint32_t proposed_placement, 975 uint32_t *masked_placement) 976 { 977 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 978 979 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 980 return false; 981 982 if ((proposed_placement & man->available_caching) == 0) 983 return false; 984 985 cur_flags |= (proposed_placement & man->available_caching); 986 987 *masked_placement = cur_flags; 988 return true; 989 } 990 991 /** 992 * Creates space for memory region @mem according to its type. 993 * 994 * This function first searches for free space in compatible memory types in 995 * the priority order defined by the driver. If free space isn't found, then 996 * ttm_bo_mem_force_space is attempted in priority order to evict and find 997 * space. 998 */ 999 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1000 struct ttm_placement *placement, 1001 struct ttm_mem_reg *mem, 1002 bool interruptible, 1003 bool no_wait_gpu) 1004 { 1005 struct ttm_bo_device *bdev = bo->bdev; 1006 struct ttm_mem_type_manager *man; 1007 uint32_t mem_type = TTM_PL_SYSTEM; 1008 uint32_t cur_flags = 0; 1009 bool type_found = false; 1010 bool type_ok = false; 1011 bool has_erestartsys = false; 1012 int i, ret; 1013 1014 mem->mm_node = NULL; 1015 for (i = 0; i < placement->num_placement; ++i) { 1016 ret = ttm_mem_type_from_flags(placement->placement[i], 1017 &mem_type); 1018 if (ret) 1019 return ret; 1020 man = &bdev->man[mem_type]; 1021 1022 type_ok = ttm_bo_mt_compatible(man, 1023 mem_type, 1024 placement->placement[i], 1025 &cur_flags); 1026 1027 if (!type_ok) 1028 continue; 1029 1030 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1031 cur_flags); 1032 /* 1033 * Use the access and other non-mapping-related flag bits from 1034 * the memory placement flags to the current flags 1035 */ 1036 ttm_flag_masked(&cur_flags, placement->placement[i], 1037 ~TTM_PL_MASK_MEMTYPE); 1038 1039 if (mem_type == TTM_PL_SYSTEM) 1040 break; 1041 1042 if (man->has_type && man->use_type) { 1043 type_found = true; 1044 ret = (*man->func->get_node)(man, bo, placement, mem); 1045 if (unlikely(ret)) 1046 return ret; 1047 } 1048 if (mem->mm_node) 1049 break; 1050 } 1051 1052 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1053 mem->mem_type = mem_type; 1054 mem->placement = cur_flags; 1055 return 0; 1056 } 1057 1058 if (!type_found) 1059 return -EINVAL; 1060 1061 for (i = 0; i < placement->num_busy_placement; ++i) { 1062 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1063 &mem_type); 1064 if (ret) 1065 return ret; 1066 man = &bdev->man[mem_type]; 1067 if (!man->has_type) 1068 continue; 1069 if (!ttm_bo_mt_compatible(man, 1070 mem_type, 1071 placement->busy_placement[i], 1072 &cur_flags)) 1073 continue; 1074 1075 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1076 cur_flags); 1077 /* 1078 * Use the access and other non-mapping-related flag bits from 1079 * the memory placement flags to the current flags 1080 */ 1081 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1082 ~TTM_PL_MASK_MEMTYPE); 1083 1084 1085 if (mem_type == TTM_PL_SYSTEM) { 1086 mem->mem_type = mem_type; 1087 mem->placement = cur_flags; 1088 mem->mm_node = NULL; 1089 return 0; 1090 } 1091 1092 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1093 interruptible, no_wait_gpu); 1094 if (ret == 0 && mem->mm_node) { 1095 mem->placement = cur_flags; 1096 return 0; 1097 } 1098 if (ret == -ERESTARTSYS) 1099 has_erestartsys = true; 1100 } 1101 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1102 return ret; 1103 } 1104 1105 static 1106 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1107 struct ttm_placement *placement, 1108 bool interruptible, 1109 bool no_wait_gpu) 1110 { 1111 int ret = 0; 1112 struct ttm_mem_reg mem; 1113 struct ttm_bo_device *bdev = bo->bdev; 1114 1115 MPASS(ttm_bo_is_reserved(bo)); 1116 1117 /* 1118 * FIXME: It's possible to pipeline buffer moves. 1119 * Have the driver move function wait for idle when necessary, 1120 * instead of doing it here. 1121 */ 1122 mtx_lock(&bdev->fence_lock); 1123 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1124 mtx_unlock(&bdev->fence_lock); 1125 if (ret) 1126 return ret; 1127 mem.num_pages = bo->num_pages; 1128 mem.size = mem.num_pages << PAGE_SHIFT; 1129 mem.page_alignment = bo->mem.page_alignment; 1130 mem.bus.io_reserved_vm = false; 1131 mem.bus.io_reserved_count = 0; 1132 /* 1133 * Determine where to move the buffer. 1134 */ 1135 ret = ttm_bo_mem_space(bo, placement, &mem, 1136 interruptible, no_wait_gpu); 1137 if (ret) 1138 goto out_unlock; 1139 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1140 interruptible, no_wait_gpu); 1141 out_unlock: 1142 if (ret && mem.mm_node) 1143 ttm_bo_mem_put(bo, &mem); 1144 return ret; 1145 } 1146 1147 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1148 struct ttm_mem_reg *mem) 1149 { 1150 int i; 1151 1152 if (mem->mm_node && placement->lpfn != 0 && 1153 (mem->start < placement->fpfn || 1154 mem->start + mem->num_pages > placement->lpfn)) 1155 return -1; 1156 1157 for (i = 0; i < placement->num_placement; i++) { 1158 if ((placement->placement[i] & mem->placement & 1159 TTM_PL_MASK_CACHING) && 1160 (placement->placement[i] & mem->placement & 1161 TTM_PL_MASK_MEM)) 1162 return i; 1163 } 1164 return -1; 1165 } 1166 1167 int ttm_bo_validate(struct ttm_buffer_object *bo, 1168 struct ttm_placement *placement, 1169 bool interruptible, 1170 bool no_wait_gpu) 1171 { 1172 int ret; 1173 1174 MPASS(ttm_bo_is_reserved(bo)); 1175 /* Check that range is valid */ 1176 if (placement->lpfn || placement->fpfn) 1177 if (placement->fpfn > placement->lpfn || 1178 (placement->lpfn - placement->fpfn) < bo->num_pages) 1179 return -EINVAL; 1180 /* 1181 * Check whether we need to move buffer. 1182 */ 1183 ret = ttm_bo_mem_compat(placement, &bo->mem); 1184 if (ret < 0) { 1185 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1186 no_wait_gpu); 1187 if (ret) 1188 return ret; 1189 } else { 1190 /* 1191 * Use the access and other non-mapping-related flag bits from 1192 * the compatible memory placement flags to the active flags 1193 */ 1194 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1195 ~TTM_PL_MASK_MEMTYPE); 1196 } 1197 /* 1198 * We might need to add a TTM. 1199 */ 1200 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1201 ret = ttm_bo_add_ttm(bo, true); 1202 if (ret) 1203 return ret; 1204 } 1205 return 0; 1206 } 1207 1208 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1209 struct ttm_placement *placement) 1210 { 1211 MPASS(!((placement->fpfn || placement->lpfn) && 1212 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)))); 1213 1214 return 0; 1215 } 1216 1217 int ttm_bo_init(struct ttm_bo_device *bdev, 1218 struct ttm_buffer_object *bo, 1219 unsigned long size, 1220 enum ttm_bo_type type, 1221 struct ttm_placement *placement, 1222 uint32_t page_alignment, 1223 bool interruptible, 1224 struct vm_object *persistent_swap_storage, 1225 size_t acc_size, 1226 struct sg_table *sg, 1227 void (*destroy) (struct ttm_buffer_object *)) 1228 { 1229 int ret = 0; 1230 unsigned long num_pages; 1231 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1232 1233 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1234 if (ret) { 1235 printf("[TTM] Out of kernel memory\n"); 1236 if (destroy) 1237 (*destroy)(bo); 1238 else 1239 free(bo, M_TTM_BO); 1240 return -ENOMEM; 1241 } 1242 1243 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1244 if (num_pages == 0) { 1245 printf("[TTM] Illegal buffer object size\n"); 1246 if (destroy) 1247 (*destroy)(bo); 1248 else 1249 free(bo, M_TTM_BO); 1250 ttm_mem_global_free(mem_glob, acc_size); 1251 return -EINVAL; 1252 } 1253 bo->destroy = destroy; 1254 1255 refcount_init(&bo->kref, 1); 1256 refcount_init(&bo->list_kref, 1); 1257 atomic_set(&bo->cpu_writers, 0); 1258 atomic_set(&bo->reserved, 1); 1259 INIT_LIST_HEAD(&bo->lru); 1260 INIT_LIST_HEAD(&bo->ddestroy); 1261 INIT_LIST_HEAD(&bo->swap); 1262 INIT_LIST_HEAD(&bo->io_reserve_lru); 1263 bo->bdev = bdev; 1264 bo->glob = bdev->glob; 1265 bo->type = type; 1266 bo->num_pages = num_pages; 1267 bo->mem.size = num_pages << PAGE_SHIFT; 1268 bo->mem.mem_type = TTM_PL_SYSTEM; 1269 bo->mem.num_pages = bo->num_pages; 1270 bo->mem.mm_node = NULL; 1271 bo->mem.page_alignment = page_alignment; 1272 bo->mem.bus.io_reserved_vm = false; 1273 bo->mem.bus.io_reserved_count = 0; 1274 bo->priv_flags = 0; 1275 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1276 bo->seq_valid = false; 1277 bo->persistent_swap_storage = persistent_swap_storage; 1278 bo->acc_size = acc_size; 1279 bo->sg = sg; 1280 atomic_inc(&bo->glob->bo_count); 1281 1282 ret = ttm_bo_check_placement(bo, placement); 1283 if (unlikely(ret != 0)) 1284 goto out_err; 1285 1286 /* 1287 * For ttm_bo_type_device buffers, allocate 1288 * address space from the device. 1289 */ 1290 if (bo->type == ttm_bo_type_device || 1291 bo->type == ttm_bo_type_sg) { 1292 ret = ttm_bo_setup_vm(bo); 1293 if (ret) 1294 goto out_err; 1295 } 1296 1297 ret = ttm_bo_validate(bo, placement, interruptible, false); 1298 if (ret) 1299 goto out_err; 1300 1301 ttm_bo_unreserve(bo); 1302 return 0; 1303 1304 out_err: 1305 ttm_bo_unreserve(bo); 1306 ttm_bo_unref(&bo); 1307 1308 return ret; 1309 } 1310 1311 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1312 unsigned long bo_size, 1313 unsigned struct_size) 1314 { 1315 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1316 size_t size = 0; 1317 1318 size += ttm_round_pot(struct_size); 1319 size += PAGE_ALIGN(npages * sizeof(void *)); 1320 size += ttm_round_pot(sizeof(struct ttm_tt)); 1321 return size; 1322 } 1323 1324 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1325 unsigned long bo_size, 1326 unsigned struct_size) 1327 { 1328 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1329 size_t size = 0; 1330 1331 size += ttm_round_pot(struct_size); 1332 size += PAGE_ALIGN(npages * sizeof(void *)); 1333 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1334 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1335 return size; 1336 } 1337 1338 int ttm_bo_create(struct ttm_bo_device *bdev, 1339 unsigned long size, 1340 enum ttm_bo_type type, 1341 struct ttm_placement *placement, 1342 uint32_t page_alignment, 1343 bool interruptible, 1344 struct vm_object *persistent_swap_storage, 1345 struct ttm_buffer_object **p_bo) 1346 { 1347 struct ttm_buffer_object *bo; 1348 size_t acc_size; 1349 int ret; 1350 1351 bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO); 1352 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1353 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1354 interruptible, persistent_swap_storage, acc_size, 1355 NULL, NULL); 1356 if (likely(ret == 0)) 1357 *p_bo = bo; 1358 1359 return ret; 1360 } 1361 1362 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1363 unsigned mem_type, bool allow_errors) 1364 { 1365 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1366 struct ttm_bo_global *glob = bdev->glob; 1367 int ret; 1368 1369 /* 1370 * Can't use standard list traversal since we're unlocking. 1371 */ 1372 1373 mtx_lock(&glob->lru_lock); 1374 while (!list_empty(&man->lru)) { 1375 mtx_unlock(&glob->lru_lock); 1376 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1377 if (ret) { 1378 if (allow_errors) { 1379 return ret; 1380 } else { 1381 printf("[TTM] Cleanup eviction failed\n"); 1382 } 1383 } 1384 mtx_lock(&glob->lru_lock); 1385 } 1386 mtx_unlock(&glob->lru_lock); 1387 return 0; 1388 } 1389 1390 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1391 { 1392 struct ttm_mem_type_manager *man; 1393 int ret = -EINVAL; 1394 1395 if (mem_type >= TTM_NUM_MEM_TYPES) { 1396 printf("[TTM] Illegal memory type %d\n", mem_type); 1397 return ret; 1398 } 1399 man = &bdev->man[mem_type]; 1400 1401 if (!man->has_type) { 1402 printf("[TTM] Trying to take down uninitialized memory manager type %u\n", 1403 mem_type); 1404 return ret; 1405 } 1406 1407 man->use_type = false; 1408 man->has_type = false; 1409 1410 ret = 0; 1411 if (mem_type > 0) { 1412 ttm_bo_force_list_clean(bdev, mem_type, false); 1413 1414 ret = (*man->func->takedown)(man); 1415 } 1416 1417 return ret; 1418 } 1419 1420 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1421 { 1422 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1423 1424 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1425 printf("[TTM] Illegal memory manager memory type %u\n", mem_type); 1426 return -EINVAL; 1427 } 1428 1429 if (!man->has_type) { 1430 printf("[TTM] Memory type %u has not been initialized\n", mem_type); 1431 return 0; 1432 } 1433 1434 return ttm_bo_force_list_clean(bdev, mem_type, true); 1435 } 1436 1437 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1438 unsigned long p_size) 1439 { 1440 int ret = -EINVAL; 1441 struct ttm_mem_type_manager *man; 1442 1443 MPASS(type < TTM_NUM_MEM_TYPES); 1444 man = &bdev->man[type]; 1445 MPASS(!man->has_type); 1446 man->io_reserve_fastpath = true; 1447 man->use_io_reserve_lru = false; 1448 sx_init(&man->io_reserve_mutex, "ttmman"); 1449 INIT_LIST_HEAD(&man->io_reserve_lru); 1450 1451 ret = bdev->driver->init_mem_type(bdev, type, man); 1452 if (ret) 1453 return ret; 1454 man->bdev = bdev; 1455 1456 ret = 0; 1457 if (type != TTM_PL_SYSTEM) { 1458 ret = (*man->func->init)(man, p_size); 1459 if (ret) 1460 return ret; 1461 } 1462 man->has_type = true; 1463 man->use_type = true; 1464 man->size = p_size; 1465 1466 INIT_LIST_HEAD(&man->lru); 1467 1468 return 0; 1469 } 1470 1471 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob) 1472 { 1473 1474 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1475 vm_page_free(glob->dummy_read_page); 1476 } 1477 1478 void ttm_bo_global_release(struct drm_global_reference *ref) 1479 { 1480 struct ttm_bo_global *glob = ref->object; 1481 1482 if (refcount_release(&glob->kobj_ref)) 1483 ttm_bo_global_kobj_release(glob); 1484 } 1485 1486 int ttm_bo_global_init(struct drm_global_reference *ref) 1487 { 1488 struct ttm_bo_global_ref *bo_ref = 1489 container_of(ref, struct ttm_bo_global_ref, ref); 1490 struct ttm_bo_global *glob = ref->object; 1491 int ret; 1492 int tries; 1493 1494 sx_init(&glob->device_list_mutex, "ttmdlm"); 1495 mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF); 1496 glob->mem_glob = bo_ref->mem_glob; 1497 tries = 0; 1498 retry: 1499 glob->dummy_read_page = vm_page_alloc_noobj_contig(0, 1, 0, 1500 VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE); 1501 1502 if (unlikely(glob->dummy_read_page == NULL)) { 1503 if (tries < 1 && vm_page_reclaim_contig(0, 1, 0, 1504 VM_MAX_ADDRESS, PAGE_SIZE, 0)) { 1505 tries++; 1506 goto retry; 1507 } 1508 ret = -ENOMEM; 1509 goto out_no_drp; 1510 } 1511 1512 INIT_LIST_HEAD(&glob->swap_lru); 1513 INIT_LIST_HEAD(&glob->device_list); 1514 1515 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1516 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1517 if (unlikely(ret != 0)) { 1518 printf("[TTM] Could not register buffer object swapout\n"); 1519 goto out_no_shrink; 1520 } 1521 1522 atomic_set(&glob->bo_count, 0); 1523 1524 refcount_init(&glob->kobj_ref, 1); 1525 return (0); 1526 1527 out_no_shrink: 1528 vm_page_free(glob->dummy_read_page); 1529 out_no_drp: 1530 free(glob, M_DRM_GLOBAL); 1531 return ret; 1532 } 1533 1534 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1535 { 1536 int ret = 0; 1537 unsigned i = TTM_NUM_MEM_TYPES; 1538 struct ttm_mem_type_manager *man; 1539 struct ttm_bo_global *glob = bdev->glob; 1540 1541 while (i--) { 1542 man = &bdev->man[i]; 1543 if (man->has_type) { 1544 man->use_type = false; 1545 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1546 ret = -EBUSY; 1547 printf("[TTM] DRM memory manager type %d is not clean\n", 1548 i); 1549 } 1550 man->has_type = false; 1551 } 1552 } 1553 1554 sx_xlock(&glob->device_list_mutex); 1555 list_del(&bdev->device_list); 1556 sx_xunlock(&glob->device_list_mutex); 1557 1558 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL)) 1559 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq); 1560 1561 while (ttm_bo_delayed_delete(bdev, true)) 1562 ; 1563 1564 mtx_lock(&glob->lru_lock); 1565 if (list_empty(&bdev->ddestroy)) 1566 TTM_DEBUG("Delayed destroy list was clean\n"); 1567 1568 if (list_empty(&bdev->man[0].lru)) 1569 TTM_DEBUG("Swap list was clean\n"); 1570 mtx_unlock(&glob->lru_lock); 1571 1572 MPASS(drm_mm_clean(&bdev->addr_space_mm)); 1573 rw_wlock(&bdev->vm_lock); 1574 drm_mm_takedown(&bdev->addr_space_mm); 1575 rw_wunlock(&bdev->vm_lock); 1576 1577 return ret; 1578 } 1579 1580 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1581 struct ttm_bo_global *glob, 1582 struct ttm_bo_driver *driver, 1583 uint64_t file_page_offset, 1584 bool need_dma32) 1585 { 1586 int ret = -EINVAL; 1587 1588 rw_init(&bdev->vm_lock, "ttmvml"); 1589 bdev->driver = driver; 1590 1591 memset(bdev->man, 0, sizeof(bdev->man)); 1592 1593 /* 1594 * Initialize the system memory buffer type. 1595 * Other types need to be driver / IOCTL initialized. 1596 */ 1597 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1598 if (unlikely(ret != 0)) 1599 goto out_no_sys; 1600 1601 RB_INIT(&bdev->addr_space_rb); 1602 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1603 if (unlikely(ret != 0)) 1604 goto out_no_addr_mm; 1605 1606 TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0, 1607 ttm_bo_delayed_workqueue, bdev); 1608 INIT_LIST_HEAD(&bdev->ddestroy); 1609 bdev->dev_mapping = NULL; 1610 bdev->glob = glob; 1611 bdev->need_dma32 = need_dma32; 1612 bdev->val_seq = 0; 1613 mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF); 1614 sx_xlock(&glob->device_list_mutex); 1615 list_add_tail(&bdev->device_list, &glob->device_list); 1616 sx_xunlock(&glob->device_list_mutex); 1617 1618 return 0; 1619 out_no_addr_mm: 1620 ttm_bo_clean_mm(bdev, 0); 1621 out_no_sys: 1622 return ret; 1623 } 1624 1625 /* 1626 * buffer object vm functions. 1627 */ 1628 1629 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1630 { 1631 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1632 1633 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1634 if (mem->mem_type == TTM_PL_SYSTEM) 1635 return false; 1636 1637 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1638 return false; 1639 1640 if (mem->placement & TTM_PL_FLAG_CACHED) 1641 return false; 1642 } 1643 return true; 1644 } 1645 1646 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1647 { 1648 1649 ttm_bo_release_mmap(bo); 1650 ttm_mem_io_free_vm(bo); 1651 } 1652 1653 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1654 { 1655 struct ttm_bo_device *bdev = bo->bdev; 1656 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1657 1658 ttm_mem_io_lock(man, false); 1659 ttm_bo_unmap_virtual_locked(bo); 1660 ttm_mem_io_unlock(man); 1661 } 1662 1663 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1664 { 1665 struct ttm_bo_device *bdev = bo->bdev; 1666 1667 /* The caller acquired bdev->vm_lock. */ 1668 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo); 1669 } 1670 1671 /** 1672 * ttm_bo_setup_vm: 1673 * 1674 * @bo: the buffer to allocate address space for 1675 * 1676 * Allocate address space in the drm device so that applications 1677 * can mmap the buffer and access the contents. This only 1678 * applies to ttm_bo_type_device objects as others are not 1679 * placed in the drm device address space. 1680 */ 1681 1682 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1683 { 1684 struct ttm_bo_device *bdev = bo->bdev; 1685 int ret; 1686 1687 retry_pre_get: 1688 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1689 if (unlikely(ret != 0)) 1690 return ret; 1691 1692 rw_wlock(&bdev->vm_lock); 1693 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1694 bo->mem.num_pages, 0, 0); 1695 1696 if (unlikely(bo->vm_node == NULL)) { 1697 ret = -ENOMEM; 1698 goto out_unlock; 1699 } 1700 1701 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1702 bo->mem.num_pages, 0); 1703 1704 if (unlikely(bo->vm_node == NULL)) { 1705 rw_wunlock(&bdev->vm_lock); 1706 goto retry_pre_get; 1707 } 1708 1709 ttm_bo_vm_insert_rb(bo); 1710 rw_wunlock(&bdev->vm_lock); 1711 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1712 1713 return 0; 1714 out_unlock: 1715 rw_wunlock(&bdev->vm_lock); 1716 return ret; 1717 } 1718 1719 int ttm_bo_wait(struct ttm_buffer_object *bo, 1720 bool lazy, bool interruptible, bool no_wait) 1721 { 1722 struct ttm_bo_driver *driver = bo->bdev->driver; 1723 struct ttm_bo_device *bdev = bo->bdev; 1724 void *sync_obj; 1725 int ret = 0; 1726 1727 if (likely(bo->sync_obj == NULL)) 1728 return 0; 1729 1730 while (bo->sync_obj) { 1731 1732 if (driver->sync_obj_signaled(bo->sync_obj)) { 1733 void *tmp_obj = bo->sync_obj; 1734 bo->sync_obj = NULL; 1735 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1736 mtx_unlock(&bdev->fence_lock); 1737 driver->sync_obj_unref(&tmp_obj); 1738 mtx_lock(&bdev->fence_lock); 1739 continue; 1740 } 1741 1742 if (no_wait) 1743 return -EBUSY; 1744 1745 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1746 mtx_unlock(&bdev->fence_lock); 1747 ret = driver->sync_obj_wait(sync_obj, 1748 lazy, interruptible); 1749 if (unlikely(ret != 0)) { 1750 driver->sync_obj_unref(&sync_obj); 1751 mtx_lock(&bdev->fence_lock); 1752 return ret; 1753 } 1754 mtx_lock(&bdev->fence_lock); 1755 if (likely(bo->sync_obj == sync_obj)) { 1756 void *tmp_obj = bo->sync_obj; 1757 bo->sync_obj = NULL; 1758 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1759 &bo->priv_flags); 1760 mtx_unlock(&bdev->fence_lock); 1761 driver->sync_obj_unref(&sync_obj); 1762 driver->sync_obj_unref(&tmp_obj); 1763 mtx_lock(&bdev->fence_lock); 1764 } else { 1765 mtx_unlock(&bdev->fence_lock); 1766 driver->sync_obj_unref(&sync_obj); 1767 mtx_lock(&bdev->fence_lock); 1768 } 1769 } 1770 return 0; 1771 } 1772 1773 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1774 { 1775 struct ttm_bo_device *bdev = bo->bdev; 1776 int ret = 0; 1777 1778 /* 1779 * Using ttm_bo_reserve makes sure the lru lists are updated. 1780 */ 1781 1782 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1783 if (unlikely(ret != 0)) 1784 return ret; 1785 mtx_lock(&bdev->fence_lock); 1786 ret = ttm_bo_wait(bo, false, true, no_wait); 1787 mtx_unlock(&bdev->fence_lock); 1788 if (likely(ret == 0)) 1789 atomic_inc(&bo->cpu_writers); 1790 ttm_bo_unreserve(bo); 1791 return ret; 1792 } 1793 1794 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1795 { 1796 atomic_dec(&bo->cpu_writers); 1797 } 1798 1799 /** 1800 * A buffer object shrink method that tries to swap out the first 1801 * buffer object on the bo_global::swap_lru list. 1802 */ 1803 1804 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1805 { 1806 struct ttm_bo_global *glob = 1807 container_of(shrink, struct ttm_bo_global, shrink); 1808 struct ttm_buffer_object *bo; 1809 int ret = -EBUSY; 1810 int put_count; 1811 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1812 1813 mtx_lock(&glob->lru_lock); 1814 list_for_each_entry(bo, &glob->swap_lru, swap) { 1815 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1816 if (!ret) 1817 break; 1818 } 1819 1820 if (ret) { 1821 mtx_unlock(&glob->lru_lock); 1822 return ret; 1823 } 1824 1825 refcount_acquire(&bo->list_kref); 1826 1827 if (!list_empty(&bo->ddestroy)) { 1828 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1829 if (refcount_release(&bo->list_kref)) 1830 ttm_bo_release_list(bo); 1831 return ret; 1832 } 1833 1834 put_count = ttm_bo_del_from_lru(bo); 1835 mtx_unlock(&glob->lru_lock); 1836 1837 ttm_bo_list_ref_sub(bo, put_count, true); 1838 1839 /** 1840 * Wait for GPU, then move to system cached. 1841 */ 1842 1843 mtx_lock(&bo->bdev->fence_lock); 1844 ret = ttm_bo_wait(bo, false, false, false); 1845 mtx_unlock(&bo->bdev->fence_lock); 1846 1847 if (unlikely(ret != 0)) 1848 goto out; 1849 1850 if ((bo->mem.placement & swap_placement) != swap_placement) { 1851 struct ttm_mem_reg evict_mem; 1852 1853 evict_mem = bo->mem; 1854 evict_mem.mm_node = NULL; 1855 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1856 evict_mem.mem_type = TTM_PL_SYSTEM; 1857 1858 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1859 false, false); 1860 if (unlikely(ret != 0)) 1861 goto out; 1862 } 1863 1864 ttm_bo_unmap_virtual(bo); 1865 1866 /** 1867 * Swap out. Buffer will be swapped in again as soon as 1868 * anyone tries to access a ttm page. 1869 */ 1870 1871 if (bo->bdev->driver->swap_notify) 1872 bo->bdev->driver->swap_notify(bo); 1873 1874 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1875 out: 1876 1877 /** 1878 * 1879 * Unreserve without putting on LRU to avoid swapping out an 1880 * already swapped buffer. 1881 */ 1882 1883 atomic_set(&bo->reserved, 0); 1884 wakeup(bo); 1885 if (refcount_release(&bo->list_kref)) 1886 ttm_bo_release_list(bo); 1887 return ret; 1888 } 1889 1890 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1891 { 1892 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1893 ; 1894 } 1895