xref: /freebsd/sys/dev/drm2/ttm/ttm_bo.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <dev/drm2/drmP.h>
35 #include <dev/drm2/ttm/ttm_module.h>
36 #include <dev/drm2/ttm/ttm_bo_driver.h>
37 #include <dev/drm2/ttm/ttm_placement.h>
38 
39 #define TTM_ASSERT_LOCKED(param)
40 #define TTM_DEBUG(fmt, arg...)
41 #define TTM_BO_HASH_ORDER 13
42 
43 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
44 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
45 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
46 
47 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
48 
49 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
50 {
51 	int i;
52 
53 	for (i = 0; i <= TTM_PL_PRIV5; i++)
54 		if (flags & (1 << i)) {
55 			*mem_type = i;
56 			return 0;
57 		}
58 	return -EINVAL;
59 }
60 
61 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
62 {
63 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
64 
65 	printf("    has_type: %d\n", man->has_type);
66 	printf("    use_type: %d\n", man->use_type);
67 	printf("    flags: 0x%08X\n", man->flags);
68 	printf("    gpu_offset: 0x%08lX\n", man->gpu_offset);
69 	printf("    size: %ju\n", (uintmax_t)man->size);
70 	printf("    available_caching: 0x%08X\n", man->available_caching);
71 	printf("    default_caching: 0x%08X\n", man->default_caching);
72 	if (mem_type != TTM_PL_SYSTEM)
73 		(*man->func->debug)(man, TTM_PFX);
74 }
75 
76 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
77 					struct ttm_placement *placement)
78 {
79 	int i, ret, mem_type;
80 
81 	printf("No space for %p (%lu pages, %luK, %luM)\n",
82 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
83 	       bo->mem.size >> 20);
84 	for (i = 0; i < placement->num_placement; i++) {
85 		ret = ttm_mem_type_from_flags(placement->placement[i],
86 						&mem_type);
87 		if (ret)
88 			return;
89 		printf("  placement[%d]=0x%08X (%d)\n",
90 		       i, placement->placement[i], mem_type);
91 		ttm_mem_type_debug(bo->bdev, mem_type);
92 	}
93 }
94 
95 #if 0
96 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
97     char *buffer)
98 {
99 
100 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
101 			(unsigned long) atomic_read(&glob->bo_count));
102 }
103 #endif
104 
105 static inline uint32_t ttm_bo_type_flags(unsigned type)
106 {
107 	return 1 << (type);
108 }
109 
110 static void ttm_bo_release_list(struct ttm_buffer_object *bo)
111 {
112 	struct ttm_bo_device *bdev = bo->bdev;
113 	size_t acc_size = bo->acc_size;
114 
115 	MPASS(atomic_read(&bo->list_kref) == 0);
116 	MPASS(atomic_read(&bo->kref) == 0);
117 	MPASS(atomic_read(&bo->cpu_writers) == 0);
118 	MPASS(bo->sync_obj == NULL);
119 	MPASS(bo->mem.mm_node == NULL);
120 	MPASS(list_empty(&bo->lru));
121 	MPASS(list_empty(&bo->ddestroy));
122 
123 	if (bo->ttm)
124 		ttm_tt_destroy(bo->ttm);
125 	atomic_dec(&bo->glob->bo_count);
126 	if (bo->destroy)
127 		bo->destroy(bo);
128 	else {
129 		free(bo, M_TTM_BO);
130 	}
131 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
132 }
133 
134 static int
135 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
136 {
137 	const char *wmsg;
138 	int flags, ret;
139 
140 	ret = 0;
141 	if (interruptible) {
142 		flags = PCATCH;
143 		wmsg = "ttbowi";
144 	} else {
145 		flags = 0;
146 		wmsg = "ttbowu";
147 	}
148 	while (ttm_bo_is_reserved(bo)) {
149 		ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0);
150 		if (ret != 0)
151 			break;
152 	}
153 	return (ret);
154 }
155 
156 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
157 {
158 	struct ttm_bo_device *bdev = bo->bdev;
159 	struct ttm_mem_type_manager *man;
160 
161 	MPASS(ttm_bo_is_reserved(bo));
162 
163 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
164 
165 		MPASS(list_empty(&bo->lru));
166 
167 		man = &bdev->man[bo->mem.mem_type];
168 		list_add_tail(&bo->lru, &man->lru);
169 		refcount_acquire(&bo->list_kref);
170 
171 		if (bo->ttm != NULL) {
172 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
173 			refcount_acquire(&bo->list_kref);
174 		}
175 	}
176 }
177 
178 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
179 {
180 	int put_count = 0;
181 
182 	if (!list_empty(&bo->swap)) {
183 		list_del_init(&bo->swap);
184 		++put_count;
185 	}
186 	if (!list_empty(&bo->lru)) {
187 		list_del_init(&bo->lru);
188 		++put_count;
189 	}
190 
191 	/*
192 	 * TODO: Add a driver hook to delete from
193 	 * driver-specific LRU's here.
194 	 */
195 
196 	return put_count;
197 }
198 
199 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
200 			  bool interruptible,
201 			  bool no_wait, bool use_sequence, uint32_t sequence)
202 {
203 	int ret;
204 
205 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
206 		/**
207 		 * Deadlock avoidance for multi-bo reserving.
208 		 */
209 		if (use_sequence && bo->seq_valid) {
210 			/**
211 			 * We've already reserved this one.
212 			 */
213 			if (unlikely(sequence == bo->val_seq))
214 				return -EDEADLK;
215 			/**
216 			 * Already reserved by a thread that will not back
217 			 * off for us. We need to back off.
218 			 */
219 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
220 				return -EAGAIN;
221 		}
222 
223 		if (no_wait)
224 			return -EBUSY;
225 
226 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
227 
228 		if (unlikely(ret))
229 			return ret;
230 	}
231 
232 	if (use_sequence) {
233 		bool wake_up = false;
234 		/**
235 		 * Wake up waiters that may need to recheck for deadlock,
236 		 * if we decreased the sequence number.
237 		 */
238 		if (unlikely((bo->val_seq - sequence < (1 << 31))
239 			     || !bo->seq_valid))
240 			wake_up = true;
241 
242 		/*
243 		 * In the worst case with memory ordering these values can be
244 		 * seen in the wrong order. However since we call wake_up_all
245 		 * in that case, this will hopefully not pose a problem,
246 		 * and the worst case would only cause someone to accidentally
247 		 * hit -EAGAIN in ttm_bo_reserve when they see old value of
248 		 * val_seq. However this would only happen if seq_valid was
249 		 * written before val_seq was, and just means some slightly
250 		 * increased cpu usage
251 		 */
252 		bo->val_seq = sequence;
253 		bo->seq_valid = true;
254 		if (wake_up)
255 			wakeup(bo);
256 	} else {
257 		bo->seq_valid = false;
258 	}
259 
260 	return 0;
261 }
262 
263 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
264 			 bool never_free)
265 {
266 	u_int old;
267 
268 	old = atomic_fetchadd_int(&bo->list_kref, -count);
269 	if (old <= count) {
270 		if (never_free)
271 			panic("ttm_bo_ref_buf");
272 		ttm_bo_release_list(bo);
273 	}
274 }
275 
276 int ttm_bo_reserve(struct ttm_buffer_object *bo,
277 		   bool interruptible,
278 		   bool no_wait, bool use_sequence, uint32_t sequence)
279 {
280 	struct ttm_bo_global *glob = bo->glob;
281 	int put_count = 0;
282 	int ret;
283 
284 	mtx_lock(&bo->glob->lru_lock);
285 	ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
286 				   sequence);
287 	if (likely(ret == 0)) {
288 		put_count = ttm_bo_del_from_lru(bo);
289 		mtx_unlock(&glob->lru_lock);
290 		ttm_bo_list_ref_sub(bo, put_count, true);
291 	} else
292 		mtx_unlock(&bo->glob->lru_lock);
293 
294 	return ret;
295 }
296 
297 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
298 				  bool interruptible, uint32_t sequence)
299 {
300 	bool wake_up = false;
301 	int ret;
302 
303 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
304 		if (bo->seq_valid && sequence == bo->val_seq) {
305 			DRM_ERROR(
306 			    "%s: bo->seq_valid && sequence == bo->val_seq",
307 			    __func__);
308 		}
309 
310 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
311 
312 		if (unlikely(ret))
313 			return ret;
314 	}
315 
316 	if ((bo->val_seq - sequence < (1 << 31)) || !bo->seq_valid)
317 		wake_up = true;
318 
319 	/**
320 	 * Wake up waiters that may need to recheck for deadlock,
321 	 * if we decreased the sequence number.
322 	 */
323 	bo->val_seq = sequence;
324 	bo->seq_valid = true;
325 	if (wake_up)
326 		wakeup(bo);
327 
328 	return 0;
329 }
330 
331 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
332 			    bool interruptible, uint32_t sequence)
333 {
334 	struct ttm_bo_global *glob = bo->glob;
335 	int put_count, ret;
336 
337 	mtx_lock(&glob->lru_lock);
338 	ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
339 	if (likely(!ret)) {
340 		put_count = ttm_bo_del_from_lru(bo);
341 		mtx_unlock(&glob->lru_lock);
342 		ttm_bo_list_ref_sub(bo, put_count, true);
343 	} else
344 		mtx_unlock(&glob->lru_lock);
345 	return ret;
346 }
347 
348 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
349 {
350 	ttm_bo_add_to_lru(bo);
351 	atomic_set(&bo->reserved, 0);
352 	wakeup(bo);
353 }
354 
355 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
356 {
357 	struct ttm_bo_global *glob = bo->glob;
358 
359 	mtx_lock(&glob->lru_lock);
360 	ttm_bo_unreserve_locked(bo);
361 	mtx_unlock(&glob->lru_lock);
362 }
363 
364 /*
365  * Call bo->mutex locked.
366  */
367 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
368 {
369 	struct ttm_bo_device *bdev = bo->bdev;
370 	struct ttm_bo_global *glob = bo->glob;
371 	int ret = 0;
372 	uint32_t page_flags = 0;
373 
374 	TTM_ASSERT_LOCKED(&bo->mutex);
375 	bo->ttm = NULL;
376 
377 	if (bdev->need_dma32)
378 		page_flags |= TTM_PAGE_FLAG_DMA32;
379 
380 	switch (bo->type) {
381 	case ttm_bo_type_device:
382 		if (zero_alloc)
383 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
384 	case ttm_bo_type_kernel:
385 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
386 						      page_flags, glob->dummy_read_page);
387 		if (unlikely(bo->ttm == NULL))
388 			ret = -ENOMEM;
389 		break;
390 	case ttm_bo_type_sg:
391 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
392 						      page_flags | TTM_PAGE_FLAG_SG,
393 						      glob->dummy_read_page);
394 		if (unlikely(bo->ttm == NULL)) {
395 			ret = -ENOMEM;
396 			break;
397 		}
398 		bo->ttm->sg = bo->sg;
399 		break;
400 	default:
401 		printf("[TTM] Illegal buffer object type\n");
402 		ret = -EINVAL;
403 		break;
404 	}
405 
406 	return ret;
407 }
408 
409 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
410 				  struct ttm_mem_reg *mem,
411 				  bool evict, bool interruptible,
412 				  bool no_wait_gpu)
413 {
414 	struct ttm_bo_device *bdev = bo->bdev;
415 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
416 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
417 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
418 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
419 	int ret = 0;
420 
421 	if (old_is_pci || new_is_pci ||
422 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
423 		ret = ttm_mem_io_lock(old_man, true);
424 		if (unlikely(ret != 0))
425 			goto out_err;
426 		ttm_bo_unmap_virtual_locked(bo);
427 		ttm_mem_io_unlock(old_man);
428 	}
429 
430 	/*
431 	 * Create and bind a ttm if required.
432 	 */
433 
434 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
435 		if (bo->ttm == NULL) {
436 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
437 			ret = ttm_bo_add_ttm(bo, zero);
438 			if (ret)
439 				goto out_err;
440 		}
441 
442 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
443 		if (ret)
444 			goto out_err;
445 
446 		if (mem->mem_type != TTM_PL_SYSTEM) {
447 			ret = ttm_tt_bind(bo->ttm, mem);
448 			if (ret)
449 				goto out_err;
450 		}
451 
452 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
453 			if (bdev->driver->move_notify)
454 				bdev->driver->move_notify(bo, mem);
455 			bo->mem = *mem;
456 			mem->mm_node = NULL;
457 			goto moved;
458 		}
459 	}
460 
461 	if (bdev->driver->move_notify)
462 		bdev->driver->move_notify(bo, mem);
463 
464 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
465 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
466 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
467 	else if (bdev->driver->move)
468 		ret = bdev->driver->move(bo, evict, interruptible,
469 					 no_wait_gpu, mem);
470 	else
471 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
472 
473 	if (ret) {
474 		if (bdev->driver->move_notify) {
475 			struct ttm_mem_reg tmp_mem = *mem;
476 			*mem = bo->mem;
477 			bo->mem = tmp_mem;
478 			bdev->driver->move_notify(bo, mem);
479 			bo->mem = *mem;
480 			*mem = tmp_mem;
481 		}
482 
483 		goto out_err;
484 	}
485 
486 moved:
487 	if (bo->evicted) {
488 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
489 		if (ret)
490 			printf("[TTM] Can not flush read caches\n");
491 		bo->evicted = false;
492 	}
493 
494 	if (bo->mem.mm_node) {
495 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
496 		    bdev->man[bo->mem.mem_type].gpu_offset;
497 		bo->cur_placement = bo->mem.placement;
498 	} else
499 		bo->offset = 0;
500 
501 	return 0;
502 
503 out_err:
504 	new_man = &bdev->man[bo->mem.mem_type];
505 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
506 		ttm_tt_unbind(bo->ttm);
507 		ttm_tt_destroy(bo->ttm);
508 		bo->ttm = NULL;
509 	}
510 
511 	return ret;
512 }
513 
514 /**
515  * Call bo::reserved.
516  * Will release GPU memory type usage on destruction.
517  * This is the place to put in driver specific hooks to release
518  * driver private resources.
519  * Will release the bo::reserved lock.
520  */
521 
522 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
523 {
524 	if (bo->bdev->driver->move_notify)
525 		bo->bdev->driver->move_notify(bo, NULL);
526 
527 	if (bo->ttm) {
528 		ttm_tt_unbind(bo->ttm);
529 		ttm_tt_destroy(bo->ttm);
530 		bo->ttm = NULL;
531 	}
532 	ttm_bo_mem_put(bo, &bo->mem);
533 
534 	atomic_set(&bo->reserved, 0);
535 	wakeup(&bo);
536 
537 	/*
538 	 * Since the final reference to this bo may not be dropped by
539 	 * the current task we have to put a memory barrier here to make
540 	 * sure the changes done in this function are always visible.
541 	 *
542 	 * This function only needs protection against the final kref_put.
543 	 */
544 	mb();
545 }
546 
547 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
548 {
549 	struct ttm_bo_device *bdev = bo->bdev;
550 	struct ttm_bo_global *glob = bo->glob;
551 	struct ttm_bo_driver *driver = bdev->driver;
552 	void *sync_obj = NULL;
553 	int put_count;
554 	int ret;
555 
556 	mtx_lock(&glob->lru_lock);
557 	ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
558 
559 	mtx_lock(&bdev->fence_lock);
560 	(void) ttm_bo_wait(bo, false, false, true);
561 	if (!ret && !bo->sync_obj) {
562 		mtx_unlock(&bdev->fence_lock);
563 		put_count = ttm_bo_del_from_lru(bo);
564 
565 		mtx_unlock(&glob->lru_lock);
566 		ttm_bo_cleanup_memtype_use(bo);
567 
568 		ttm_bo_list_ref_sub(bo, put_count, true);
569 
570 		return;
571 	}
572 	if (bo->sync_obj)
573 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
574 	mtx_unlock(&bdev->fence_lock);
575 
576 	if (!ret) {
577 		atomic_set(&bo->reserved, 0);
578 		wakeup(bo);
579 	}
580 
581 	refcount_acquire(&bo->list_kref);
582 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
583 	mtx_unlock(&glob->lru_lock);
584 
585 	if (sync_obj) {
586 		driver->sync_obj_flush(sync_obj);
587 		driver->sync_obj_unref(&sync_obj);
588 	}
589 	taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
590 	    ((hz / 100) < 1) ? 1 : hz / 100);
591 }
592 
593 /**
594  * function ttm_bo_cleanup_refs_and_unlock
595  * If bo idle, remove from delayed- and lru lists, and unref.
596  * If not idle, do nothing.
597  *
598  * Must be called with lru_lock and reservation held, this function
599  * will drop both before returning.
600  *
601  * @interruptible         Any sleeps should occur interruptibly.
602  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
603  */
604 
605 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
606 					  bool interruptible,
607 					  bool no_wait_gpu)
608 {
609 	struct ttm_bo_device *bdev = bo->bdev;
610 	struct ttm_bo_driver *driver = bdev->driver;
611 	struct ttm_bo_global *glob = bo->glob;
612 	int put_count;
613 	int ret;
614 
615 	mtx_lock(&bdev->fence_lock);
616 	ret = ttm_bo_wait(bo, false, false, true);
617 
618 	if (ret && !no_wait_gpu) {
619 		void *sync_obj;
620 
621 		/*
622 		 * Take a reference to the fence and unreserve,
623 		 * at this point the buffer should be dead, so
624 		 * no new sync objects can be attached.
625 		 */
626 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
627 		mtx_unlock(&bdev->fence_lock);
628 
629 		atomic_set(&bo->reserved, 0);
630 		wakeup(bo);
631 		mtx_unlock(&glob->lru_lock);
632 
633 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
634 		driver->sync_obj_unref(&sync_obj);
635 		if (ret)
636 			return ret;
637 
638 		/*
639 		 * remove sync_obj with ttm_bo_wait, the wait should be
640 		 * finished, and no new wait object should have been added.
641 		 */
642 		mtx_lock(&bdev->fence_lock);
643 		ret = ttm_bo_wait(bo, false, false, true);
644 		mtx_unlock(&bdev->fence_lock);
645 		if (ret)
646 			return ret;
647 
648 		mtx_lock(&glob->lru_lock);
649 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
650 
651 		/*
652 		 * We raced, and lost, someone else holds the reservation now,
653 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
654 		 *
655 		 * Even if it's not the case, because we finished waiting any
656 		 * delayed destruction would succeed, so just return success
657 		 * here.
658 		 */
659 		if (ret) {
660 			mtx_unlock(&glob->lru_lock);
661 			return 0;
662 		}
663 	} else
664 		mtx_unlock(&bdev->fence_lock);
665 
666 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
667 		atomic_set(&bo->reserved, 0);
668 		wakeup(bo);
669 		mtx_unlock(&glob->lru_lock);
670 		return ret;
671 	}
672 
673 	put_count = ttm_bo_del_from_lru(bo);
674 	list_del_init(&bo->ddestroy);
675 	++put_count;
676 
677 	mtx_unlock(&glob->lru_lock);
678 	ttm_bo_cleanup_memtype_use(bo);
679 
680 	ttm_bo_list_ref_sub(bo, put_count, true);
681 
682 	return 0;
683 }
684 
685 /**
686  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
687  * encountered buffers.
688  */
689 
690 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
691 {
692 	struct ttm_bo_global *glob = bdev->glob;
693 	struct ttm_buffer_object *entry = NULL;
694 	int ret = 0;
695 
696 	mtx_lock(&glob->lru_lock);
697 	if (list_empty(&bdev->ddestroy))
698 		goto out_unlock;
699 
700 	entry = list_first_entry(&bdev->ddestroy,
701 		struct ttm_buffer_object, ddestroy);
702 	refcount_acquire(&entry->list_kref);
703 
704 	for (;;) {
705 		struct ttm_buffer_object *nentry = NULL;
706 
707 		if (entry->ddestroy.next != &bdev->ddestroy) {
708 			nentry = list_first_entry(&entry->ddestroy,
709 				struct ttm_buffer_object, ddestroy);
710 			refcount_acquire(&nentry->list_kref);
711 		}
712 
713 		ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
714 		if (remove_all && ret) {
715 			ret = ttm_bo_reserve_nolru(entry, false, false,
716 						   false, 0);
717 		}
718 
719 		if (!ret)
720 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
721 							     !remove_all);
722 		else
723 			mtx_unlock(&glob->lru_lock);
724 
725 		if (refcount_release(&entry->list_kref))
726 			ttm_bo_release_list(entry);
727 		entry = nentry;
728 
729 		if (ret || !entry)
730 			goto out;
731 
732 		mtx_lock(&glob->lru_lock);
733 		if (list_empty(&entry->ddestroy))
734 			break;
735 	}
736 
737 out_unlock:
738 	mtx_unlock(&glob->lru_lock);
739 out:
740 	if (entry && refcount_release(&entry->list_kref))
741 		ttm_bo_release_list(entry);
742 	return ret;
743 }
744 
745 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
746 {
747 	struct ttm_bo_device *bdev = arg;
748 
749 	if (ttm_bo_delayed_delete(bdev, false)) {
750 		taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
751 		    ((hz / 100) < 1) ? 1 : hz / 100);
752 	}
753 }
754 
755 static void ttm_bo_release(struct ttm_buffer_object *bo)
756 {
757 	struct ttm_bo_device *bdev = bo->bdev;
758 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
759 
760 	rw_wlock(&bdev->vm_lock);
761 	if (likely(bo->vm_node != NULL)) {
762 		RB_REMOVE(ttm_bo_device_buffer_objects,
763 		    &bdev->addr_space_rb, bo);
764 		drm_mm_put_block(bo->vm_node);
765 		bo->vm_node = NULL;
766 	}
767 	rw_wunlock(&bdev->vm_lock);
768 	ttm_mem_io_lock(man, false);
769 	ttm_mem_io_free_vm(bo);
770 	ttm_mem_io_unlock(man);
771 	ttm_bo_cleanup_refs_or_queue(bo);
772 	if (refcount_release(&bo->list_kref))
773 		ttm_bo_release_list(bo);
774 }
775 
776 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
777 {
778 	struct ttm_buffer_object *bo = *p_bo;
779 
780 	*p_bo = NULL;
781 	if (refcount_release(&bo->kref))
782 		ttm_bo_release(bo);
783 }
784 
785 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
786 {
787 	int pending;
788 
789 	taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending);
790 	if (pending)
791 		taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
792 	return (pending);
793 }
794 
795 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
796 {
797 	if (resched) {
798 		taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
799 		    ((hz / 100) < 1) ? 1 : hz / 100);
800 	}
801 }
802 
803 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
804 			bool no_wait_gpu)
805 {
806 	struct ttm_bo_device *bdev = bo->bdev;
807 	struct ttm_mem_reg evict_mem;
808 	struct ttm_placement placement;
809 	int ret = 0;
810 
811 	mtx_lock(&bdev->fence_lock);
812 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
813 	mtx_unlock(&bdev->fence_lock);
814 
815 	if (unlikely(ret != 0)) {
816 		if (ret != -ERESTART) {
817 			printf("[TTM] Failed to expire sync object before buffer eviction\n");
818 		}
819 		goto out;
820 	}
821 
822 	MPASS(ttm_bo_is_reserved(bo));
823 
824 	evict_mem = bo->mem;
825 	evict_mem.mm_node = NULL;
826 	evict_mem.bus.io_reserved_vm = false;
827 	evict_mem.bus.io_reserved_count = 0;
828 
829 	placement.fpfn = 0;
830 	placement.lpfn = 0;
831 	placement.num_placement = 0;
832 	placement.num_busy_placement = 0;
833 	bdev->driver->evict_flags(bo, &placement);
834 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
835 				no_wait_gpu);
836 	if (ret) {
837 		if (ret != -ERESTART) {
838 			printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
839 			       bo);
840 			ttm_bo_mem_space_debug(bo, &placement);
841 		}
842 		goto out;
843 	}
844 
845 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
846 				     no_wait_gpu);
847 	if (ret) {
848 		if (ret != -ERESTART)
849 			printf("[TTM] Buffer eviction failed\n");
850 		ttm_bo_mem_put(bo, &evict_mem);
851 		goto out;
852 	}
853 	bo->evicted = true;
854 out:
855 	return ret;
856 }
857 
858 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
859 				uint32_t mem_type,
860 				bool interruptible,
861 				bool no_wait_gpu)
862 {
863 	struct ttm_bo_global *glob = bdev->glob;
864 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
865 	struct ttm_buffer_object *bo;
866 	int ret = -EBUSY, put_count;
867 
868 	mtx_lock(&glob->lru_lock);
869 	list_for_each_entry(bo, &man->lru, lru) {
870 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
871 		if (!ret)
872 			break;
873 	}
874 
875 	if (ret) {
876 		mtx_unlock(&glob->lru_lock);
877 		return ret;
878 	}
879 
880 	refcount_acquire(&bo->list_kref);
881 
882 	if (!list_empty(&bo->ddestroy)) {
883 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
884 						     no_wait_gpu);
885 		if (refcount_release(&bo->list_kref))
886 			ttm_bo_release_list(bo);
887 		return ret;
888 	}
889 
890 	put_count = ttm_bo_del_from_lru(bo);
891 	mtx_unlock(&glob->lru_lock);
892 
893 	MPASS(ret == 0);
894 
895 	ttm_bo_list_ref_sub(bo, put_count, true);
896 
897 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
898 	ttm_bo_unreserve(bo);
899 
900 	if (refcount_release(&bo->list_kref))
901 		ttm_bo_release_list(bo);
902 	return ret;
903 }
904 
905 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
906 {
907 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
908 
909 	if (mem->mm_node)
910 		(*man->func->put_node)(man, mem);
911 }
912 
913 /**
914  * Repeatedly evict memory from the LRU for @mem_type until we create enough
915  * space, or we've evicted everything and there isn't enough space.
916  */
917 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
918 					uint32_t mem_type,
919 					struct ttm_placement *placement,
920 					struct ttm_mem_reg *mem,
921 					bool interruptible,
922 					bool no_wait_gpu)
923 {
924 	struct ttm_bo_device *bdev = bo->bdev;
925 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
926 	int ret;
927 
928 	do {
929 		ret = (*man->func->get_node)(man, bo, placement, mem);
930 		if (unlikely(ret != 0))
931 			return ret;
932 		if (mem->mm_node)
933 			break;
934 		ret = ttm_mem_evict_first(bdev, mem_type,
935 					  interruptible, no_wait_gpu);
936 		if (unlikely(ret != 0))
937 			return ret;
938 	} while (1);
939 	if (mem->mm_node == NULL)
940 		return -ENOMEM;
941 	mem->mem_type = mem_type;
942 	return 0;
943 }
944 
945 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
946 				      uint32_t cur_placement,
947 				      uint32_t proposed_placement)
948 {
949 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
950 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
951 
952 	/**
953 	 * Keep current caching if possible.
954 	 */
955 
956 	if ((cur_placement & caching) != 0)
957 		result |= (cur_placement & caching);
958 	else if ((man->default_caching & caching) != 0)
959 		result |= man->default_caching;
960 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
961 		result |= TTM_PL_FLAG_CACHED;
962 	else if ((TTM_PL_FLAG_WC & caching) != 0)
963 		result |= TTM_PL_FLAG_WC;
964 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
965 		result |= TTM_PL_FLAG_UNCACHED;
966 
967 	return result;
968 }
969 
970 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
971 				 uint32_t mem_type,
972 				 uint32_t proposed_placement,
973 				 uint32_t *masked_placement)
974 {
975 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
976 
977 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
978 		return false;
979 
980 	if ((proposed_placement & man->available_caching) == 0)
981 		return false;
982 
983 	cur_flags |= (proposed_placement & man->available_caching);
984 
985 	*masked_placement = cur_flags;
986 	return true;
987 }
988 
989 /**
990  * Creates space for memory region @mem according to its type.
991  *
992  * This function first searches for free space in compatible memory types in
993  * the priority order defined by the driver.  If free space isn't found, then
994  * ttm_bo_mem_force_space is attempted in priority order to evict and find
995  * space.
996  */
997 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
998 			struct ttm_placement *placement,
999 			struct ttm_mem_reg *mem,
1000 			bool interruptible,
1001 			bool no_wait_gpu)
1002 {
1003 	struct ttm_bo_device *bdev = bo->bdev;
1004 	struct ttm_mem_type_manager *man;
1005 	uint32_t mem_type = TTM_PL_SYSTEM;
1006 	uint32_t cur_flags = 0;
1007 	bool type_found = false;
1008 	bool type_ok = false;
1009 	bool has_erestartsys = false;
1010 	int i, ret;
1011 
1012 	mem->mm_node = NULL;
1013 	for (i = 0; i < placement->num_placement; ++i) {
1014 		ret = ttm_mem_type_from_flags(placement->placement[i],
1015 						&mem_type);
1016 		if (ret)
1017 			return ret;
1018 		man = &bdev->man[mem_type];
1019 
1020 		type_ok = ttm_bo_mt_compatible(man,
1021 						mem_type,
1022 						placement->placement[i],
1023 						&cur_flags);
1024 
1025 		if (!type_ok)
1026 			continue;
1027 
1028 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1029 						  cur_flags);
1030 		/*
1031 		 * Use the access and other non-mapping-related flag bits from
1032 		 * the memory placement flags to the current flags
1033 		 */
1034 		ttm_flag_masked(&cur_flags, placement->placement[i],
1035 				~TTM_PL_MASK_MEMTYPE);
1036 
1037 		if (mem_type == TTM_PL_SYSTEM)
1038 			break;
1039 
1040 		if (man->has_type && man->use_type) {
1041 			type_found = true;
1042 			ret = (*man->func->get_node)(man, bo, placement, mem);
1043 			if (unlikely(ret))
1044 				return ret;
1045 		}
1046 		if (mem->mm_node)
1047 			break;
1048 	}
1049 
1050 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1051 		mem->mem_type = mem_type;
1052 		mem->placement = cur_flags;
1053 		return 0;
1054 	}
1055 
1056 	if (!type_found)
1057 		return -EINVAL;
1058 
1059 	for (i = 0; i < placement->num_busy_placement; ++i) {
1060 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1061 						&mem_type);
1062 		if (ret)
1063 			return ret;
1064 		man = &bdev->man[mem_type];
1065 		if (!man->has_type)
1066 			continue;
1067 		if (!ttm_bo_mt_compatible(man,
1068 						mem_type,
1069 						placement->busy_placement[i],
1070 						&cur_flags))
1071 			continue;
1072 
1073 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1074 						  cur_flags);
1075 		/*
1076 		 * Use the access and other non-mapping-related flag bits from
1077 		 * the memory placement flags to the current flags
1078 		 */
1079 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1080 				~TTM_PL_MASK_MEMTYPE);
1081 
1082 
1083 		if (mem_type == TTM_PL_SYSTEM) {
1084 			mem->mem_type = mem_type;
1085 			mem->placement = cur_flags;
1086 			mem->mm_node = NULL;
1087 			return 0;
1088 		}
1089 
1090 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1091 						interruptible, no_wait_gpu);
1092 		if (ret == 0 && mem->mm_node) {
1093 			mem->placement = cur_flags;
1094 			return 0;
1095 		}
1096 		if (ret == -ERESTART)
1097 			has_erestartsys = true;
1098 	}
1099 	ret = (has_erestartsys) ? -ERESTART : -ENOMEM;
1100 	return ret;
1101 }
1102 
1103 static
1104 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1105 			struct ttm_placement *placement,
1106 			bool interruptible,
1107 			bool no_wait_gpu)
1108 {
1109 	int ret = 0;
1110 	struct ttm_mem_reg mem;
1111 	struct ttm_bo_device *bdev = bo->bdev;
1112 
1113 	MPASS(ttm_bo_is_reserved(bo));
1114 
1115 	/*
1116 	 * FIXME: It's possible to pipeline buffer moves.
1117 	 * Have the driver move function wait for idle when necessary,
1118 	 * instead of doing it here.
1119 	 */
1120 	mtx_lock(&bdev->fence_lock);
1121 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1122 	mtx_unlock(&bdev->fence_lock);
1123 	if (ret)
1124 		return ret;
1125 	mem.num_pages = bo->num_pages;
1126 	mem.size = mem.num_pages << PAGE_SHIFT;
1127 	mem.page_alignment = bo->mem.page_alignment;
1128 	mem.bus.io_reserved_vm = false;
1129 	mem.bus.io_reserved_count = 0;
1130 	/*
1131 	 * Determine where to move the buffer.
1132 	 */
1133 	ret = ttm_bo_mem_space(bo, placement, &mem,
1134 			       interruptible, no_wait_gpu);
1135 	if (ret)
1136 		goto out_unlock;
1137 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1138 				     interruptible, no_wait_gpu);
1139 out_unlock:
1140 	if (ret && mem.mm_node)
1141 		ttm_bo_mem_put(bo, &mem);
1142 	return ret;
1143 }
1144 
1145 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1146 			     struct ttm_mem_reg *mem)
1147 {
1148 	int i;
1149 
1150 	if (mem->mm_node && placement->lpfn != 0 &&
1151 	    (mem->start < placement->fpfn ||
1152 	     mem->start + mem->num_pages > placement->lpfn))
1153 		return -1;
1154 
1155 	for (i = 0; i < placement->num_placement; i++) {
1156 		if ((placement->placement[i] & mem->placement &
1157 			TTM_PL_MASK_CACHING) &&
1158 			(placement->placement[i] & mem->placement &
1159 			TTM_PL_MASK_MEM))
1160 			return i;
1161 	}
1162 	return -1;
1163 }
1164 
1165 int ttm_bo_validate(struct ttm_buffer_object *bo,
1166 			struct ttm_placement *placement,
1167 			bool interruptible,
1168 			bool no_wait_gpu)
1169 {
1170 	int ret;
1171 
1172 	MPASS(ttm_bo_is_reserved(bo));
1173 	/* Check that range is valid */
1174 	if (placement->lpfn || placement->fpfn)
1175 		if (placement->fpfn > placement->lpfn ||
1176 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1177 			return -EINVAL;
1178 	/*
1179 	 * Check whether we need to move buffer.
1180 	 */
1181 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1182 	if (ret < 0) {
1183 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1184 					 no_wait_gpu);
1185 		if (ret)
1186 			return ret;
1187 	} else {
1188 		/*
1189 		 * Use the access and other non-mapping-related flag bits from
1190 		 * the compatible memory placement flags to the active flags
1191 		 */
1192 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1193 				~TTM_PL_MASK_MEMTYPE);
1194 	}
1195 	/*
1196 	 * We might need to add a TTM.
1197 	 */
1198 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1199 		ret = ttm_bo_add_ttm(bo, true);
1200 		if (ret)
1201 			return ret;
1202 	}
1203 	return 0;
1204 }
1205 
1206 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1207 				struct ttm_placement *placement)
1208 {
1209 	MPASS(!((placement->fpfn || placement->lpfn) &&
1210 	    (bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
1211 
1212 	return 0;
1213 }
1214 
1215 int ttm_bo_init(struct ttm_bo_device *bdev,
1216 		struct ttm_buffer_object *bo,
1217 		unsigned long size,
1218 		enum ttm_bo_type type,
1219 		struct ttm_placement *placement,
1220 		uint32_t page_alignment,
1221 		bool interruptible,
1222 		struct vm_object *persistent_swap_storage,
1223 		size_t acc_size,
1224 		struct sg_table *sg,
1225 		void (*destroy) (struct ttm_buffer_object *))
1226 {
1227 	int ret = 0;
1228 	unsigned long num_pages;
1229 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1230 
1231 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1232 	if (ret) {
1233 		printf("[TTM] Out of kernel memory\n");
1234 		if (destroy)
1235 			(*destroy)(bo);
1236 		else
1237 			free(bo, M_TTM_BO);
1238 		return -ENOMEM;
1239 	}
1240 
1241 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1242 	if (num_pages == 0) {
1243 		printf("[TTM] Illegal buffer object size\n");
1244 		if (destroy)
1245 			(*destroy)(bo);
1246 		else
1247 			free(bo, M_TTM_BO);
1248 		ttm_mem_global_free(mem_glob, acc_size);
1249 		return -EINVAL;
1250 	}
1251 	bo->destroy = destroy;
1252 
1253 	refcount_init(&bo->kref, 1);
1254 	refcount_init(&bo->list_kref, 1);
1255 	atomic_set(&bo->cpu_writers, 0);
1256 	atomic_set(&bo->reserved, 1);
1257 	INIT_LIST_HEAD(&bo->lru);
1258 	INIT_LIST_HEAD(&bo->ddestroy);
1259 	INIT_LIST_HEAD(&bo->swap);
1260 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1261 	bo->bdev = bdev;
1262 	bo->glob = bdev->glob;
1263 	bo->type = type;
1264 	bo->num_pages = num_pages;
1265 	bo->mem.size = num_pages << PAGE_SHIFT;
1266 	bo->mem.mem_type = TTM_PL_SYSTEM;
1267 	bo->mem.num_pages = bo->num_pages;
1268 	bo->mem.mm_node = NULL;
1269 	bo->mem.page_alignment = page_alignment;
1270 	bo->mem.bus.io_reserved_vm = false;
1271 	bo->mem.bus.io_reserved_count = 0;
1272 	bo->priv_flags = 0;
1273 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1274 	bo->seq_valid = false;
1275 	bo->persistent_swap_storage = persistent_swap_storage;
1276 	bo->acc_size = acc_size;
1277 	bo->sg = sg;
1278 	atomic_inc(&bo->glob->bo_count);
1279 
1280 	ret = ttm_bo_check_placement(bo, placement);
1281 	if (unlikely(ret != 0))
1282 		goto out_err;
1283 
1284 	/*
1285 	 * For ttm_bo_type_device buffers, allocate
1286 	 * address space from the device.
1287 	 */
1288 	if (bo->type == ttm_bo_type_device ||
1289 	    bo->type == ttm_bo_type_sg) {
1290 		ret = ttm_bo_setup_vm(bo);
1291 		if (ret)
1292 			goto out_err;
1293 	}
1294 
1295 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1296 	if (ret)
1297 		goto out_err;
1298 
1299 	ttm_bo_unreserve(bo);
1300 	return 0;
1301 
1302 out_err:
1303 	ttm_bo_unreserve(bo);
1304 	ttm_bo_unref(&bo);
1305 
1306 	return ret;
1307 }
1308 
1309 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1310 		       unsigned long bo_size,
1311 		       unsigned struct_size)
1312 {
1313 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1314 	size_t size = 0;
1315 
1316 	size += ttm_round_pot(struct_size);
1317 	size += PAGE_ALIGN(npages * sizeof(void *));
1318 	size += ttm_round_pot(sizeof(struct ttm_tt));
1319 	return size;
1320 }
1321 
1322 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1323 			   unsigned long bo_size,
1324 			   unsigned struct_size)
1325 {
1326 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1327 	size_t size = 0;
1328 
1329 	size += ttm_round_pot(struct_size);
1330 	size += PAGE_ALIGN(npages * sizeof(void *));
1331 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1332 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1333 	return size;
1334 }
1335 
1336 int ttm_bo_create(struct ttm_bo_device *bdev,
1337 			unsigned long size,
1338 			enum ttm_bo_type type,
1339 			struct ttm_placement *placement,
1340 			uint32_t page_alignment,
1341 			bool interruptible,
1342 			struct vm_object *persistent_swap_storage,
1343 			struct ttm_buffer_object **p_bo)
1344 {
1345 	struct ttm_buffer_object *bo;
1346 	size_t acc_size;
1347 	int ret;
1348 
1349 	bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
1350 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1351 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1352 			  interruptible, persistent_swap_storage, acc_size,
1353 			  NULL, NULL);
1354 	if (likely(ret == 0))
1355 		*p_bo = bo;
1356 
1357 	return ret;
1358 }
1359 
1360 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1361 					unsigned mem_type, bool allow_errors)
1362 {
1363 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1364 	struct ttm_bo_global *glob = bdev->glob;
1365 	int ret;
1366 
1367 	/*
1368 	 * Can't use standard list traversal since we're unlocking.
1369 	 */
1370 
1371 	mtx_lock(&glob->lru_lock);
1372 	while (!list_empty(&man->lru)) {
1373 		mtx_unlock(&glob->lru_lock);
1374 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1375 		if (ret) {
1376 			if (allow_errors) {
1377 				return ret;
1378 			} else {
1379 				printf("[TTM] Cleanup eviction failed\n");
1380 			}
1381 		}
1382 		mtx_lock(&glob->lru_lock);
1383 	}
1384 	mtx_unlock(&glob->lru_lock);
1385 	return 0;
1386 }
1387 
1388 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389 {
1390 	struct ttm_mem_type_manager *man;
1391 	int ret = -EINVAL;
1392 
1393 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1394 		printf("[TTM] Illegal memory type %d\n", mem_type);
1395 		return ret;
1396 	}
1397 	man = &bdev->man[mem_type];
1398 
1399 	if (!man->has_type) {
1400 		printf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1401 		       mem_type);
1402 		return ret;
1403 	}
1404 
1405 	man->use_type = false;
1406 	man->has_type = false;
1407 
1408 	ret = 0;
1409 	if (mem_type > 0) {
1410 		ttm_bo_force_list_clean(bdev, mem_type, false);
1411 
1412 		ret = (*man->func->takedown)(man);
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1419 {
1420 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1421 
1422 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1423 		printf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1424 		return -EINVAL;
1425 	}
1426 
1427 	if (!man->has_type) {
1428 		printf("[TTM] Memory type %u has not been initialized\n", mem_type);
1429 		return 0;
1430 	}
1431 
1432 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1433 }
1434 
1435 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1436 			unsigned long p_size)
1437 {
1438 	int ret = -EINVAL;
1439 	struct ttm_mem_type_manager *man;
1440 
1441 	MPASS(type < TTM_NUM_MEM_TYPES);
1442 	man = &bdev->man[type];
1443 	MPASS(!man->has_type);
1444 	man->io_reserve_fastpath = true;
1445 	man->use_io_reserve_lru = false;
1446 	sx_init(&man->io_reserve_mutex, "ttmman");
1447 	INIT_LIST_HEAD(&man->io_reserve_lru);
1448 
1449 	ret = bdev->driver->init_mem_type(bdev, type, man);
1450 	if (ret)
1451 		return ret;
1452 	man->bdev = bdev;
1453 
1454 	ret = 0;
1455 	if (type != TTM_PL_SYSTEM) {
1456 		ret = (*man->func->init)(man, p_size);
1457 		if (ret)
1458 			return ret;
1459 	}
1460 	man->has_type = true;
1461 	man->use_type = true;
1462 	man->size = p_size;
1463 
1464 	INIT_LIST_HEAD(&man->lru);
1465 
1466 	return 0;
1467 }
1468 
1469 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1470 {
1471 
1472 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1473 	vm_page_free(glob->dummy_read_page);
1474 }
1475 
1476 void ttm_bo_global_release(struct drm_global_reference *ref)
1477 {
1478 	struct ttm_bo_global *glob = ref->object;
1479 
1480 	if (refcount_release(&glob->kobj_ref))
1481 		ttm_bo_global_kobj_release(glob);
1482 }
1483 
1484 int ttm_bo_global_init(struct drm_global_reference *ref)
1485 {
1486 	struct ttm_bo_global_ref *bo_ref =
1487 		container_of(ref, struct ttm_bo_global_ref, ref);
1488 	struct ttm_bo_global *glob = ref->object;
1489 	int ret;
1490 
1491 	sx_init(&glob->device_list_mutex, "ttmdlm");
1492 	mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
1493 	glob->mem_glob = bo_ref->mem_glob;
1494 	glob->dummy_read_page = vm_page_alloc_contig(NULL, 0,
1495 	    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ,
1496 	    1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
1497 
1498 	if (unlikely(glob->dummy_read_page == NULL)) {
1499 		ret = -ENOMEM;
1500 		goto out_no_drp;
1501 	}
1502 
1503 	INIT_LIST_HEAD(&glob->swap_lru);
1504 	INIT_LIST_HEAD(&glob->device_list);
1505 
1506 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1507 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1508 	if (unlikely(ret != 0)) {
1509 		printf("[TTM] Could not register buffer object swapout\n");
1510 		goto out_no_shrink;
1511 	}
1512 
1513 	atomic_set(&glob->bo_count, 0);
1514 
1515 	refcount_init(&glob->kobj_ref, 1);
1516 	return (0);
1517 
1518 out_no_shrink:
1519 	vm_page_free(glob->dummy_read_page);
1520 out_no_drp:
1521 	free(glob, M_DRM_GLOBAL);
1522 	return ret;
1523 }
1524 
1525 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1526 {
1527 	int ret = 0;
1528 	unsigned i = TTM_NUM_MEM_TYPES;
1529 	struct ttm_mem_type_manager *man;
1530 	struct ttm_bo_global *glob = bdev->glob;
1531 
1532 	while (i--) {
1533 		man = &bdev->man[i];
1534 		if (man->has_type) {
1535 			man->use_type = false;
1536 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1537 				ret = -EBUSY;
1538 				printf("[TTM] DRM memory manager type %d is not clean\n",
1539 				       i);
1540 			}
1541 			man->has_type = false;
1542 		}
1543 	}
1544 
1545 	sx_xlock(&glob->device_list_mutex);
1546 	list_del(&bdev->device_list);
1547 	sx_xunlock(&glob->device_list_mutex);
1548 
1549 	if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL))
1550 		taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
1551 
1552 	while (ttm_bo_delayed_delete(bdev, true))
1553 		;
1554 
1555 	mtx_lock(&glob->lru_lock);
1556 	if (list_empty(&bdev->ddestroy))
1557 		TTM_DEBUG("Delayed destroy list was clean\n");
1558 
1559 	if (list_empty(&bdev->man[0].lru))
1560 		TTM_DEBUG("Swap list was clean\n");
1561 	mtx_unlock(&glob->lru_lock);
1562 
1563 	MPASS(drm_mm_clean(&bdev->addr_space_mm));
1564 	rw_wlock(&bdev->vm_lock);
1565 	drm_mm_takedown(&bdev->addr_space_mm);
1566 	rw_wunlock(&bdev->vm_lock);
1567 
1568 	return ret;
1569 }
1570 
1571 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1572 		       struct ttm_bo_global *glob,
1573 		       struct ttm_bo_driver *driver,
1574 		       uint64_t file_page_offset,
1575 		       bool need_dma32)
1576 {
1577 	int ret = -EINVAL;
1578 
1579 	rw_init(&bdev->vm_lock, "ttmvml");
1580 	bdev->driver = driver;
1581 
1582 	memset(bdev->man, 0, sizeof(bdev->man));
1583 
1584 	/*
1585 	 * Initialize the system memory buffer type.
1586 	 * Other types need to be driver / IOCTL initialized.
1587 	 */
1588 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1589 	if (unlikely(ret != 0))
1590 		goto out_no_sys;
1591 
1592 	RB_INIT(&bdev->addr_space_rb);
1593 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1594 	if (unlikely(ret != 0))
1595 		goto out_no_addr_mm;
1596 
1597 	TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0,
1598 	    ttm_bo_delayed_workqueue, bdev);
1599 	INIT_LIST_HEAD(&bdev->ddestroy);
1600 	bdev->dev_mapping = NULL;
1601 	bdev->glob = glob;
1602 	bdev->need_dma32 = need_dma32;
1603 	bdev->val_seq = 0;
1604 	mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF);
1605 	sx_xlock(&glob->device_list_mutex);
1606 	list_add_tail(&bdev->device_list, &glob->device_list);
1607 	sx_xunlock(&glob->device_list_mutex);
1608 
1609 	return 0;
1610 out_no_addr_mm:
1611 	ttm_bo_clean_mm(bdev, 0);
1612 out_no_sys:
1613 	return ret;
1614 }
1615 
1616 /*
1617  * buffer object vm functions.
1618  */
1619 
1620 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1621 {
1622 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1623 
1624 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1625 		if (mem->mem_type == TTM_PL_SYSTEM)
1626 			return false;
1627 
1628 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1629 			return false;
1630 
1631 		if (mem->placement & TTM_PL_FLAG_CACHED)
1632 			return false;
1633 	}
1634 	return true;
1635 }
1636 
1637 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1638 {
1639 
1640 	ttm_bo_release_mmap(bo);
1641 	ttm_mem_io_free_vm(bo);
1642 }
1643 
1644 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1645 {
1646 	struct ttm_bo_device *bdev = bo->bdev;
1647 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1648 
1649 	ttm_mem_io_lock(man, false);
1650 	ttm_bo_unmap_virtual_locked(bo);
1651 	ttm_mem_io_unlock(man);
1652 }
1653 
1654 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1655 {
1656 	struct ttm_bo_device *bdev = bo->bdev;
1657 
1658 	/* The caller acquired bdev->vm_lock. */
1659 	RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1660 }
1661 
1662 /**
1663  * ttm_bo_setup_vm:
1664  *
1665  * @bo: the buffer to allocate address space for
1666  *
1667  * Allocate address space in the drm device so that applications
1668  * can mmap the buffer and access the contents. This only
1669  * applies to ttm_bo_type_device objects as others are not
1670  * placed in the drm device address space.
1671  */
1672 
1673 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1674 {
1675 	struct ttm_bo_device *bdev = bo->bdev;
1676 	int ret;
1677 
1678 retry_pre_get:
1679 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1680 	if (unlikely(ret != 0))
1681 		return ret;
1682 
1683 	rw_wlock(&bdev->vm_lock);
1684 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1685 					 bo->mem.num_pages, 0, 0);
1686 
1687 	if (unlikely(bo->vm_node == NULL)) {
1688 		ret = -ENOMEM;
1689 		goto out_unlock;
1690 	}
1691 
1692 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1693 					      bo->mem.num_pages, 0);
1694 
1695 	if (unlikely(bo->vm_node == NULL)) {
1696 		rw_wunlock(&bdev->vm_lock);
1697 		goto retry_pre_get;
1698 	}
1699 
1700 	ttm_bo_vm_insert_rb(bo);
1701 	rw_wunlock(&bdev->vm_lock);
1702 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1703 
1704 	return 0;
1705 out_unlock:
1706 	rw_wunlock(&bdev->vm_lock);
1707 	return ret;
1708 }
1709 
1710 int ttm_bo_wait(struct ttm_buffer_object *bo,
1711 		bool lazy, bool interruptible, bool no_wait)
1712 {
1713 	struct ttm_bo_driver *driver = bo->bdev->driver;
1714 	struct ttm_bo_device *bdev = bo->bdev;
1715 	void *sync_obj;
1716 	int ret = 0;
1717 
1718 	if (likely(bo->sync_obj == NULL))
1719 		return 0;
1720 
1721 	while (bo->sync_obj) {
1722 
1723 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1724 			void *tmp_obj = bo->sync_obj;
1725 			bo->sync_obj = NULL;
1726 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1727 			mtx_unlock(&bdev->fence_lock);
1728 			driver->sync_obj_unref(&tmp_obj);
1729 			mtx_lock(&bdev->fence_lock);
1730 			continue;
1731 		}
1732 
1733 		if (no_wait)
1734 			return -EBUSY;
1735 
1736 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1737 		mtx_unlock(&bdev->fence_lock);
1738 		ret = driver->sync_obj_wait(sync_obj,
1739 					    lazy, interruptible);
1740 		if (unlikely(ret != 0)) {
1741 			driver->sync_obj_unref(&sync_obj);
1742 			mtx_lock(&bdev->fence_lock);
1743 			return ret;
1744 		}
1745 		mtx_lock(&bdev->fence_lock);
1746 		if (likely(bo->sync_obj == sync_obj)) {
1747 			void *tmp_obj = bo->sync_obj;
1748 			bo->sync_obj = NULL;
1749 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1750 				  &bo->priv_flags);
1751 			mtx_unlock(&bdev->fence_lock);
1752 			driver->sync_obj_unref(&sync_obj);
1753 			driver->sync_obj_unref(&tmp_obj);
1754 			mtx_lock(&bdev->fence_lock);
1755 		} else {
1756 			mtx_unlock(&bdev->fence_lock);
1757 			driver->sync_obj_unref(&sync_obj);
1758 			mtx_lock(&bdev->fence_lock);
1759 		}
1760 	}
1761 	return 0;
1762 }
1763 
1764 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1765 {
1766 	struct ttm_bo_device *bdev = bo->bdev;
1767 	int ret = 0;
1768 
1769 	/*
1770 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1771 	 */
1772 
1773 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1774 	if (unlikely(ret != 0))
1775 		return ret;
1776 	mtx_lock(&bdev->fence_lock);
1777 	ret = ttm_bo_wait(bo, false, true, no_wait);
1778 	mtx_unlock(&bdev->fence_lock);
1779 	if (likely(ret == 0))
1780 		atomic_inc(&bo->cpu_writers);
1781 	ttm_bo_unreserve(bo);
1782 	return ret;
1783 }
1784 
1785 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1786 {
1787 	atomic_dec(&bo->cpu_writers);
1788 }
1789 
1790 /**
1791  * A buffer object shrink method that tries to swap out the first
1792  * buffer object on the bo_global::swap_lru list.
1793  */
1794 
1795 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1796 {
1797 	struct ttm_bo_global *glob =
1798 	    container_of(shrink, struct ttm_bo_global, shrink);
1799 	struct ttm_buffer_object *bo;
1800 	int ret = -EBUSY;
1801 	int put_count;
1802 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1803 
1804 	mtx_lock(&glob->lru_lock);
1805 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1806 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1807 		if (!ret)
1808 			break;
1809 	}
1810 
1811 	if (ret) {
1812 		mtx_unlock(&glob->lru_lock);
1813 		return ret;
1814 	}
1815 
1816 	refcount_acquire(&bo->list_kref);
1817 
1818 	if (!list_empty(&bo->ddestroy)) {
1819 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1820 		if (refcount_release(&bo->list_kref))
1821 			ttm_bo_release_list(bo);
1822 		return ret;
1823 	}
1824 
1825 	put_count = ttm_bo_del_from_lru(bo);
1826 	mtx_unlock(&glob->lru_lock);
1827 
1828 	ttm_bo_list_ref_sub(bo, put_count, true);
1829 
1830 	/**
1831 	 * Wait for GPU, then move to system cached.
1832 	 */
1833 
1834 	mtx_lock(&bo->bdev->fence_lock);
1835 	ret = ttm_bo_wait(bo, false, false, false);
1836 	mtx_unlock(&bo->bdev->fence_lock);
1837 
1838 	if (unlikely(ret != 0))
1839 		goto out;
1840 
1841 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1842 		struct ttm_mem_reg evict_mem;
1843 
1844 		evict_mem = bo->mem;
1845 		evict_mem.mm_node = NULL;
1846 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1847 		evict_mem.mem_type = TTM_PL_SYSTEM;
1848 
1849 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1850 					     false, false);
1851 		if (unlikely(ret != 0))
1852 			goto out;
1853 	}
1854 
1855 	ttm_bo_unmap_virtual(bo);
1856 
1857 	/**
1858 	 * Swap out. Buffer will be swapped in again as soon as
1859 	 * anyone tries to access a ttm page.
1860 	 */
1861 
1862 	if (bo->bdev->driver->swap_notify)
1863 		bo->bdev->driver->swap_notify(bo);
1864 
1865 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1866 out:
1867 
1868 	/**
1869 	 *
1870 	 * Unreserve without putting on LRU to avoid swapping out an
1871 	 * already swapped buffer.
1872 	 */
1873 
1874 	atomic_set(&bo->reserved, 0);
1875 	wakeup(bo);
1876 	if (refcount_release(&bo->list_kref))
1877 		ttm_bo_release_list(bo);
1878 	return ret;
1879 }
1880 
1881 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1882 {
1883 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1884 		;
1885 }
1886