1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/drm2/drmP.h> 35 #include <dev/drm2/ttm/ttm_module.h> 36 #include <dev/drm2/ttm/ttm_bo_driver.h> 37 #include <dev/drm2/ttm/ttm_placement.h> 38 #include <vm/vm_pageout.h> 39 40 #define TTM_ASSERT_LOCKED(param) 41 #define TTM_DEBUG(fmt, arg...) 42 #define TTM_BO_HASH_ORDER 13 43 44 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 45 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 46 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob); 47 48 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects"); 49 50 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 51 { 52 int i; 53 54 for (i = 0; i <= TTM_PL_PRIV5; i++) 55 if (flags & (1 << i)) { 56 *mem_type = i; 57 return 0; 58 } 59 return -EINVAL; 60 } 61 62 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 63 { 64 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 65 66 printf(" has_type: %d\n", man->has_type); 67 printf(" use_type: %d\n", man->use_type); 68 printf(" flags: 0x%08X\n", man->flags); 69 printf(" gpu_offset: 0x%08lX\n", man->gpu_offset); 70 printf(" size: %ju\n", (uintmax_t)man->size); 71 printf(" available_caching: 0x%08X\n", man->available_caching); 72 printf(" default_caching: 0x%08X\n", man->default_caching); 73 if (mem_type != TTM_PL_SYSTEM) 74 (*man->func->debug)(man, TTM_PFX); 75 } 76 77 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 78 struct ttm_placement *placement) 79 { 80 int i, ret, mem_type; 81 82 printf("No space for %p (%lu pages, %luK, %luM)\n", 83 bo, bo->mem.num_pages, bo->mem.size >> 10, 84 bo->mem.size >> 20); 85 for (i = 0; i < placement->num_placement; i++) { 86 ret = ttm_mem_type_from_flags(placement->placement[i], 87 &mem_type); 88 if (ret) 89 return; 90 printf(" placement[%d]=0x%08X (%d)\n", 91 i, placement->placement[i], mem_type); 92 ttm_mem_type_debug(bo->bdev, mem_type); 93 } 94 } 95 96 #if 0 97 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob, 98 char *buffer) 99 { 100 101 return snprintf(buffer, PAGE_SIZE, "%lu\n", 102 (unsigned long) atomic_read(&glob->bo_count)); 103 } 104 #endif 105 106 static inline uint32_t ttm_bo_type_flags(unsigned type) 107 { 108 return 1 << (type); 109 } 110 111 static void ttm_bo_release_list(struct ttm_buffer_object *bo) 112 { 113 struct ttm_bo_device *bdev = bo->bdev; 114 size_t acc_size = bo->acc_size; 115 116 MPASS(atomic_read(&bo->list_kref) == 0); 117 MPASS(atomic_read(&bo->kref) == 0); 118 MPASS(atomic_read(&bo->cpu_writers) == 0); 119 MPASS(bo->sync_obj == NULL); 120 MPASS(bo->mem.mm_node == NULL); 121 MPASS(list_empty(&bo->lru)); 122 MPASS(list_empty(&bo->ddestroy)); 123 124 if (bo->ttm) 125 ttm_tt_destroy(bo->ttm); 126 atomic_dec(&bo->glob->bo_count); 127 if (bo->destroy) 128 bo->destroy(bo); 129 else { 130 free(bo, M_TTM_BO); 131 } 132 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 133 } 134 135 static int 136 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible) 137 { 138 const char *wmsg; 139 int flags, ret; 140 141 ret = 0; 142 if (interruptible) { 143 flags = PCATCH; 144 wmsg = "ttbowi"; 145 } else { 146 flags = 0; 147 wmsg = "ttbowu"; 148 } 149 while (ttm_bo_is_reserved(bo)) { 150 ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0); 151 if (ret == -EINTR) 152 ret = -ERESTARTSYS; 153 if (ret != 0) 154 break; 155 } 156 return (ret); 157 } 158 159 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 160 { 161 struct ttm_bo_device *bdev = bo->bdev; 162 struct ttm_mem_type_manager *man; 163 164 MPASS(ttm_bo_is_reserved(bo)); 165 166 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 167 168 MPASS(list_empty(&bo->lru)); 169 170 man = &bdev->man[bo->mem.mem_type]; 171 list_add_tail(&bo->lru, &man->lru); 172 refcount_acquire(&bo->list_kref); 173 174 if (bo->ttm != NULL) { 175 list_add_tail(&bo->swap, &bo->glob->swap_lru); 176 refcount_acquire(&bo->list_kref); 177 } 178 } 179 } 180 181 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 182 { 183 int put_count = 0; 184 185 if (!list_empty(&bo->swap)) { 186 list_del_init(&bo->swap); 187 ++put_count; 188 } 189 if (!list_empty(&bo->lru)) { 190 list_del_init(&bo->lru); 191 ++put_count; 192 } 193 194 /* 195 * TODO: Add a driver hook to delete from 196 * driver-specific LRU's here. 197 */ 198 199 return put_count; 200 } 201 202 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo, 203 bool interruptible, 204 bool no_wait, bool use_sequence, uint32_t sequence) 205 { 206 int ret; 207 208 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 209 /** 210 * Deadlock avoidance for multi-bo reserving. 211 */ 212 if (use_sequence && bo->seq_valid) { 213 /** 214 * We've already reserved this one. 215 */ 216 if (unlikely(sequence == bo->val_seq)) 217 return -EDEADLK; 218 /** 219 * Already reserved by a thread that will not back 220 * off for us. We need to back off. 221 */ 222 if (unlikely(sequence - bo->val_seq < (1U << 31))) 223 return -EAGAIN; 224 } 225 226 if (no_wait) 227 return -EBUSY; 228 229 ret = ttm_bo_wait_unreserved_locked(bo, interruptible); 230 231 if (unlikely(ret)) 232 return ret; 233 } 234 235 if (use_sequence) { 236 bool wake_up = false; 237 /** 238 * Wake up waiters that may need to recheck for deadlock, 239 * if we decreased the sequence number. 240 */ 241 if (unlikely((bo->val_seq - sequence < (1U << 31)) 242 || !bo->seq_valid)) 243 wake_up = true; 244 245 /* 246 * In the worst case with memory ordering these values can be 247 * seen in the wrong order. However since we call wake_up_all 248 * in that case, this will hopefully not pose a problem, 249 * and the worst case would only cause someone to accidentally 250 * hit -EAGAIN in ttm_bo_reserve when they see old value of 251 * val_seq. However this would only happen if seq_valid was 252 * written before val_seq was, and just means some slightly 253 * increased cpu usage 254 */ 255 bo->val_seq = sequence; 256 bo->seq_valid = true; 257 if (wake_up) 258 wakeup(bo); 259 } else { 260 bo->seq_valid = false; 261 } 262 263 return 0; 264 } 265 266 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 267 bool never_free) 268 { 269 u_int old; 270 271 old = atomic_fetchadd_int(&bo->list_kref, -count); 272 if (old <= count) { 273 if (never_free) 274 panic("ttm_bo_ref_buf"); 275 ttm_bo_release_list(bo); 276 } 277 } 278 279 int ttm_bo_reserve(struct ttm_buffer_object *bo, 280 bool interruptible, 281 bool no_wait, bool use_sequence, uint32_t sequence) 282 { 283 struct ttm_bo_global *glob = bo->glob; 284 int put_count = 0; 285 int ret; 286 287 mtx_lock(&bo->glob->lru_lock); 288 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence, 289 sequence); 290 if (likely(ret == 0)) { 291 put_count = ttm_bo_del_from_lru(bo); 292 mtx_unlock(&glob->lru_lock); 293 ttm_bo_list_ref_sub(bo, put_count, true); 294 } else 295 mtx_unlock(&bo->glob->lru_lock); 296 297 return ret; 298 } 299 300 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo, 301 bool interruptible, uint32_t sequence) 302 { 303 bool wake_up = false; 304 int ret; 305 306 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 307 if (bo->seq_valid && sequence == bo->val_seq) { 308 DRM_ERROR( 309 "%s: bo->seq_valid && sequence == bo->val_seq", 310 __func__); 311 } 312 313 ret = ttm_bo_wait_unreserved_locked(bo, interruptible); 314 315 if (unlikely(ret)) 316 return ret; 317 } 318 319 if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid) 320 wake_up = true; 321 322 /** 323 * Wake up waiters that may need to recheck for deadlock, 324 * if we decreased the sequence number. 325 */ 326 bo->val_seq = sequence; 327 bo->seq_valid = true; 328 if (wake_up) 329 wakeup(bo); 330 331 return 0; 332 } 333 334 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, 335 bool interruptible, uint32_t sequence) 336 { 337 struct ttm_bo_global *glob = bo->glob; 338 int put_count, ret; 339 340 mtx_lock(&glob->lru_lock); 341 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence); 342 if (likely(!ret)) { 343 put_count = ttm_bo_del_from_lru(bo); 344 mtx_unlock(&glob->lru_lock); 345 ttm_bo_list_ref_sub(bo, put_count, true); 346 } else 347 mtx_unlock(&glob->lru_lock); 348 return ret; 349 } 350 351 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 352 { 353 ttm_bo_add_to_lru(bo); 354 atomic_set(&bo->reserved, 0); 355 wakeup(bo); 356 } 357 358 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 359 { 360 struct ttm_bo_global *glob = bo->glob; 361 362 mtx_lock(&glob->lru_lock); 363 ttm_bo_unreserve_locked(bo); 364 mtx_unlock(&glob->lru_lock); 365 } 366 367 /* 368 * Call bo->mutex locked. 369 */ 370 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 371 { 372 struct ttm_bo_device *bdev = bo->bdev; 373 struct ttm_bo_global *glob = bo->glob; 374 int ret = 0; 375 uint32_t page_flags = 0; 376 377 TTM_ASSERT_LOCKED(&bo->mutex); 378 bo->ttm = NULL; 379 380 if (bdev->need_dma32) 381 page_flags |= TTM_PAGE_FLAG_DMA32; 382 383 switch (bo->type) { 384 case ttm_bo_type_device: 385 if (zero_alloc) 386 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 387 case ttm_bo_type_kernel: 388 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 389 page_flags, glob->dummy_read_page); 390 if (unlikely(bo->ttm == NULL)) 391 ret = -ENOMEM; 392 break; 393 case ttm_bo_type_sg: 394 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 395 page_flags | TTM_PAGE_FLAG_SG, 396 glob->dummy_read_page); 397 if (unlikely(bo->ttm == NULL)) { 398 ret = -ENOMEM; 399 break; 400 } 401 bo->ttm->sg = bo->sg; 402 break; 403 default: 404 printf("[TTM] Illegal buffer object type\n"); 405 ret = -EINVAL; 406 break; 407 } 408 409 return ret; 410 } 411 412 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 413 struct ttm_mem_reg *mem, 414 bool evict, bool interruptible, 415 bool no_wait_gpu) 416 { 417 struct ttm_bo_device *bdev = bo->bdev; 418 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 419 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 420 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 421 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 422 int ret = 0; 423 424 if (old_is_pci || new_is_pci || 425 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 426 ret = ttm_mem_io_lock(old_man, true); 427 if (unlikely(ret != 0)) 428 goto out_err; 429 ttm_bo_unmap_virtual_locked(bo); 430 ttm_mem_io_unlock(old_man); 431 } 432 433 /* 434 * Create and bind a ttm if required. 435 */ 436 437 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 438 if (bo->ttm == NULL) { 439 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 440 ret = ttm_bo_add_ttm(bo, zero); 441 if (ret) 442 goto out_err; 443 } 444 445 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 446 if (ret) 447 goto out_err; 448 449 if (mem->mem_type != TTM_PL_SYSTEM) { 450 ret = ttm_tt_bind(bo->ttm, mem); 451 if (ret) 452 goto out_err; 453 } 454 455 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 456 if (bdev->driver->move_notify) 457 bdev->driver->move_notify(bo, mem); 458 bo->mem = *mem; 459 mem->mm_node = NULL; 460 goto moved; 461 } 462 } 463 464 if (bdev->driver->move_notify) 465 bdev->driver->move_notify(bo, mem); 466 467 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 468 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 469 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 470 else if (bdev->driver->move) 471 ret = bdev->driver->move(bo, evict, interruptible, 472 no_wait_gpu, mem); 473 else 474 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 475 476 if (ret) { 477 if (bdev->driver->move_notify) { 478 struct ttm_mem_reg tmp_mem = *mem; 479 *mem = bo->mem; 480 bo->mem = tmp_mem; 481 bdev->driver->move_notify(bo, mem); 482 bo->mem = *mem; 483 *mem = tmp_mem; 484 } 485 486 goto out_err; 487 } 488 489 moved: 490 if (bo->evicted) { 491 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 492 if (ret) 493 printf("[TTM] Can not flush read caches\n"); 494 bo->evicted = false; 495 } 496 497 if (bo->mem.mm_node) { 498 bo->offset = (bo->mem.start << PAGE_SHIFT) + 499 bdev->man[bo->mem.mem_type].gpu_offset; 500 bo->cur_placement = bo->mem.placement; 501 } else 502 bo->offset = 0; 503 504 return 0; 505 506 out_err: 507 new_man = &bdev->man[bo->mem.mem_type]; 508 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 509 ttm_tt_unbind(bo->ttm); 510 ttm_tt_destroy(bo->ttm); 511 bo->ttm = NULL; 512 } 513 514 return ret; 515 } 516 517 /** 518 * Call bo::reserved. 519 * Will release GPU memory type usage on destruction. 520 * This is the place to put in driver specific hooks to release 521 * driver private resources. 522 * Will release the bo::reserved lock. 523 */ 524 525 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 526 { 527 if (bo->bdev->driver->move_notify) 528 bo->bdev->driver->move_notify(bo, NULL); 529 530 if (bo->ttm) { 531 ttm_tt_unbind(bo->ttm); 532 ttm_tt_destroy(bo->ttm); 533 bo->ttm = NULL; 534 } 535 ttm_bo_mem_put(bo, &bo->mem); 536 537 atomic_set(&bo->reserved, 0); 538 wakeup(&bo); 539 540 /* 541 * Since the final reference to this bo may not be dropped by 542 * the current task we have to put a memory barrier here to make 543 * sure the changes done in this function are always visible. 544 * 545 * This function only needs protection against the final kref_put. 546 */ 547 mb(); 548 } 549 550 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 551 { 552 struct ttm_bo_device *bdev = bo->bdev; 553 struct ttm_bo_global *glob = bo->glob; 554 struct ttm_bo_driver *driver = bdev->driver; 555 void *sync_obj = NULL; 556 int put_count; 557 int ret; 558 559 mtx_lock(&glob->lru_lock); 560 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 561 562 mtx_lock(&bdev->fence_lock); 563 (void) ttm_bo_wait(bo, false, false, true); 564 if (!ret && !bo->sync_obj) { 565 mtx_unlock(&bdev->fence_lock); 566 put_count = ttm_bo_del_from_lru(bo); 567 568 mtx_unlock(&glob->lru_lock); 569 ttm_bo_cleanup_memtype_use(bo); 570 571 ttm_bo_list_ref_sub(bo, put_count, true); 572 573 return; 574 } 575 if (bo->sync_obj) 576 sync_obj = driver->sync_obj_ref(bo->sync_obj); 577 mtx_unlock(&bdev->fence_lock); 578 579 if (!ret) { 580 atomic_set(&bo->reserved, 0); 581 wakeup(bo); 582 } 583 584 refcount_acquire(&bo->list_kref); 585 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 586 mtx_unlock(&glob->lru_lock); 587 588 if (sync_obj) { 589 driver->sync_obj_flush(sync_obj); 590 driver->sync_obj_unref(&sync_obj); 591 } 592 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 593 ((hz / 100) < 1) ? 1 : hz / 100); 594 } 595 596 /** 597 * function ttm_bo_cleanup_refs_and_unlock 598 * If bo idle, remove from delayed- and lru lists, and unref. 599 * If not idle, do nothing. 600 * 601 * Must be called with lru_lock and reservation held, this function 602 * will drop both before returning. 603 * 604 * @interruptible Any sleeps should occur interruptibly. 605 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 606 */ 607 608 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 609 bool interruptible, 610 bool no_wait_gpu) 611 { 612 struct ttm_bo_device *bdev = bo->bdev; 613 struct ttm_bo_driver *driver = bdev->driver; 614 struct ttm_bo_global *glob = bo->glob; 615 int put_count; 616 int ret; 617 618 mtx_lock(&bdev->fence_lock); 619 ret = ttm_bo_wait(bo, false, false, true); 620 621 if (ret && !no_wait_gpu) { 622 void *sync_obj; 623 624 /* 625 * Take a reference to the fence and unreserve, 626 * at this point the buffer should be dead, so 627 * no new sync objects can be attached. 628 */ 629 sync_obj = driver->sync_obj_ref(bo->sync_obj); 630 mtx_unlock(&bdev->fence_lock); 631 632 atomic_set(&bo->reserved, 0); 633 wakeup(bo); 634 mtx_unlock(&glob->lru_lock); 635 636 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 637 driver->sync_obj_unref(&sync_obj); 638 if (ret) 639 return ret; 640 641 /* 642 * remove sync_obj with ttm_bo_wait, the wait should be 643 * finished, and no new wait object should have been added. 644 */ 645 mtx_lock(&bdev->fence_lock); 646 ret = ttm_bo_wait(bo, false, false, true); 647 mtx_unlock(&bdev->fence_lock); 648 if (ret) 649 return ret; 650 651 mtx_lock(&glob->lru_lock); 652 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 653 654 /* 655 * We raced, and lost, someone else holds the reservation now, 656 * and is probably busy in ttm_bo_cleanup_memtype_use. 657 * 658 * Even if it's not the case, because we finished waiting any 659 * delayed destruction would succeed, so just return success 660 * here. 661 */ 662 if (ret) { 663 mtx_unlock(&glob->lru_lock); 664 return 0; 665 } 666 } else 667 mtx_unlock(&bdev->fence_lock); 668 669 if (ret || unlikely(list_empty(&bo->ddestroy))) { 670 atomic_set(&bo->reserved, 0); 671 wakeup(bo); 672 mtx_unlock(&glob->lru_lock); 673 return ret; 674 } 675 676 put_count = ttm_bo_del_from_lru(bo); 677 list_del_init(&bo->ddestroy); 678 ++put_count; 679 680 mtx_unlock(&glob->lru_lock); 681 ttm_bo_cleanup_memtype_use(bo); 682 683 ttm_bo_list_ref_sub(bo, put_count, true); 684 685 return 0; 686 } 687 688 /** 689 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 690 * encountered buffers. 691 */ 692 693 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 694 { 695 struct ttm_bo_global *glob = bdev->glob; 696 struct ttm_buffer_object *entry = NULL; 697 int ret = 0; 698 699 mtx_lock(&glob->lru_lock); 700 if (list_empty(&bdev->ddestroy)) 701 goto out_unlock; 702 703 entry = list_first_entry(&bdev->ddestroy, 704 struct ttm_buffer_object, ddestroy); 705 refcount_acquire(&entry->list_kref); 706 707 for (;;) { 708 struct ttm_buffer_object *nentry = NULL; 709 710 if (entry->ddestroy.next != &bdev->ddestroy) { 711 nentry = list_first_entry(&entry->ddestroy, 712 struct ttm_buffer_object, ddestroy); 713 refcount_acquire(&nentry->list_kref); 714 } 715 716 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 717 if (remove_all && ret) { 718 ret = ttm_bo_reserve_nolru(entry, false, false, 719 false, 0); 720 } 721 722 if (!ret) 723 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 724 !remove_all); 725 else 726 mtx_unlock(&glob->lru_lock); 727 728 if (refcount_release(&entry->list_kref)) 729 ttm_bo_release_list(entry); 730 entry = nentry; 731 732 if (ret || !entry) 733 goto out; 734 735 mtx_lock(&glob->lru_lock); 736 if (list_empty(&entry->ddestroy)) 737 break; 738 } 739 740 out_unlock: 741 mtx_unlock(&glob->lru_lock); 742 out: 743 if (entry && refcount_release(&entry->list_kref)) 744 ttm_bo_release_list(entry); 745 return ret; 746 } 747 748 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused) 749 { 750 struct ttm_bo_device *bdev = arg; 751 752 if (ttm_bo_delayed_delete(bdev, false)) { 753 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 754 ((hz / 100) < 1) ? 1 : hz / 100); 755 } 756 } 757 758 static void ttm_bo_release(struct ttm_buffer_object *bo) 759 { 760 struct ttm_bo_device *bdev = bo->bdev; 761 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 762 763 rw_wlock(&bdev->vm_lock); 764 if (likely(bo->vm_node != NULL)) { 765 RB_REMOVE(ttm_bo_device_buffer_objects, 766 &bdev->addr_space_rb, bo); 767 drm_mm_put_block(bo->vm_node); 768 bo->vm_node = NULL; 769 } 770 rw_wunlock(&bdev->vm_lock); 771 ttm_mem_io_lock(man, false); 772 ttm_mem_io_free_vm(bo); 773 ttm_mem_io_unlock(man); 774 ttm_bo_cleanup_refs_or_queue(bo); 775 if (refcount_release(&bo->list_kref)) 776 ttm_bo_release_list(bo); 777 } 778 779 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 780 { 781 struct ttm_buffer_object *bo = *p_bo; 782 783 *p_bo = NULL; 784 if (refcount_release(&bo->kref)) 785 ttm_bo_release(bo); 786 } 787 788 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 789 { 790 int pending; 791 792 taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending); 793 if (pending) 794 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq); 795 return (pending); 796 } 797 798 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 799 { 800 if (resched) { 801 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 802 ((hz / 100) < 1) ? 1 : hz / 100); 803 } 804 } 805 806 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 807 bool no_wait_gpu) 808 { 809 struct ttm_bo_device *bdev = bo->bdev; 810 struct ttm_mem_reg evict_mem; 811 struct ttm_placement placement; 812 int ret = 0; 813 814 mtx_lock(&bdev->fence_lock); 815 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 816 mtx_unlock(&bdev->fence_lock); 817 818 if (unlikely(ret != 0)) { 819 if (ret != -ERESTART) { 820 printf("[TTM] Failed to expire sync object before buffer eviction\n"); 821 } 822 goto out; 823 } 824 825 MPASS(ttm_bo_is_reserved(bo)); 826 827 evict_mem = bo->mem; 828 evict_mem.mm_node = NULL; 829 evict_mem.bus.io_reserved_vm = false; 830 evict_mem.bus.io_reserved_count = 0; 831 832 placement.fpfn = 0; 833 placement.lpfn = 0; 834 placement.num_placement = 0; 835 placement.num_busy_placement = 0; 836 bdev->driver->evict_flags(bo, &placement); 837 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 838 no_wait_gpu); 839 if (ret) { 840 if (ret != -ERESTART) { 841 printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n", 842 bo); 843 ttm_bo_mem_space_debug(bo, &placement); 844 } 845 goto out; 846 } 847 848 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 849 no_wait_gpu); 850 if (ret) { 851 if (ret != -ERESTART) 852 printf("[TTM] Buffer eviction failed\n"); 853 ttm_bo_mem_put(bo, &evict_mem); 854 goto out; 855 } 856 bo->evicted = true; 857 out: 858 return ret; 859 } 860 861 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 862 uint32_t mem_type, 863 bool interruptible, 864 bool no_wait_gpu) 865 { 866 struct ttm_bo_global *glob = bdev->glob; 867 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 868 struct ttm_buffer_object *bo; 869 int ret = -EBUSY, put_count; 870 871 mtx_lock(&glob->lru_lock); 872 list_for_each_entry(bo, &man->lru, lru) { 873 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 874 if (!ret) 875 break; 876 } 877 878 if (ret) { 879 mtx_unlock(&glob->lru_lock); 880 return ret; 881 } 882 883 refcount_acquire(&bo->list_kref); 884 885 if (!list_empty(&bo->ddestroy)) { 886 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 887 no_wait_gpu); 888 if (refcount_release(&bo->list_kref)) 889 ttm_bo_release_list(bo); 890 return ret; 891 } 892 893 put_count = ttm_bo_del_from_lru(bo); 894 mtx_unlock(&glob->lru_lock); 895 896 MPASS(ret == 0); 897 898 ttm_bo_list_ref_sub(bo, put_count, true); 899 900 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 901 ttm_bo_unreserve(bo); 902 903 if (refcount_release(&bo->list_kref)) 904 ttm_bo_release_list(bo); 905 return ret; 906 } 907 908 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 909 { 910 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 911 912 if (mem->mm_node) 913 (*man->func->put_node)(man, mem); 914 } 915 916 /** 917 * Repeatedly evict memory from the LRU for @mem_type until we create enough 918 * space, or we've evicted everything and there isn't enough space. 919 */ 920 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 921 uint32_t mem_type, 922 struct ttm_placement *placement, 923 struct ttm_mem_reg *mem, 924 bool interruptible, 925 bool no_wait_gpu) 926 { 927 struct ttm_bo_device *bdev = bo->bdev; 928 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 929 int ret; 930 931 do { 932 ret = (*man->func->get_node)(man, bo, placement, mem); 933 if (unlikely(ret != 0)) 934 return ret; 935 if (mem->mm_node) 936 break; 937 ret = ttm_mem_evict_first(bdev, mem_type, 938 interruptible, no_wait_gpu); 939 if (unlikely(ret != 0)) 940 return ret; 941 } while (1); 942 if (mem->mm_node == NULL) 943 return -ENOMEM; 944 mem->mem_type = mem_type; 945 return 0; 946 } 947 948 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 949 uint32_t cur_placement, 950 uint32_t proposed_placement) 951 { 952 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 953 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 954 955 /** 956 * Keep current caching if possible. 957 */ 958 959 if ((cur_placement & caching) != 0) 960 result |= (cur_placement & caching); 961 else if ((man->default_caching & caching) != 0) 962 result |= man->default_caching; 963 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 964 result |= TTM_PL_FLAG_CACHED; 965 else if ((TTM_PL_FLAG_WC & caching) != 0) 966 result |= TTM_PL_FLAG_WC; 967 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 968 result |= TTM_PL_FLAG_UNCACHED; 969 970 return result; 971 } 972 973 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 974 uint32_t mem_type, 975 uint32_t proposed_placement, 976 uint32_t *masked_placement) 977 { 978 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 979 980 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 981 return false; 982 983 if ((proposed_placement & man->available_caching) == 0) 984 return false; 985 986 cur_flags |= (proposed_placement & man->available_caching); 987 988 *masked_placement = cur_flags; 989 return true; 990 } 991 992 /** 993 * Creates space for memory region @mem according to its type. 994 * 995 * This function first searches for free space in compatible memory types in 996 * the priority order defined by the driver. If free space isn't found, then 997 * ttm_bo_mem_force_space is attempted in priority order to evict and find 998 * space. 999 */ 1000 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1001 struct ttm_placement *placement, 1002 struct ttm_mem_reg *mem, 1003 bool interruptible, 1004 bool no_wait_gpu) 1005 { 1006 struct ttm_bo_device *bdev = bo->bdev; 1007 struct ttm_mem_type_manager *man; 1008 uint32_t mem_type = TTM_PL_SYSTEM; 1009 uint32_t cur_flags = 0; 1010 bool type_found = false; 1011 bool type_ok = false; 1012 bool has_erestartsys = false; 1013 int i, ret; 1014 1015 mem->mm_node = NULL; 1016 for (i = 0; i < placement->num_placement; ++i) { 1017 ret = ttm_mem_type_from_flags(placement->placement[i], 1018 &mem_type); 1019 if (ret) 1020 return ret; 1021 man = &bdev->man[mem_type]; 1022 1023 type_ok = ttm_bo_mt_compatible(man, 1024 mem_type, 1025 placement->placement[i], 1026 &cur_flags); 1027 1028 if (!type_ok) 1029 continue; 1030 1031 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1032 cur_flags); 1033 /* 1034 * Use the access and other non-mapping-related flag bits from 1035 * the memory placement flags to the current flags 1036 */ 1037 ttm_flag_masked(&cur_flags, placement->placement[i], 1038 ~TTM_PL_MASK_MEMTYPE); 1039 1040 if (mem_type == TTM_PL_SYSTEM) 1041 break; 1042 1043 if (man->has_type && man->use_type) { 1044 type_found = true; 1045 ret = (*man->func->get_node)(man, bo, placement, mem); 1046 if (unlikely(ret)) 1047 return ret; 1048 } 1049 if (mem->mm_node) 1050 break; 1051 } 1052 1053 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1054 mem->mem_type = mem_type; 1055 mem->placement = cur_flags; 1056 return 0; 1057 } 1058 1059 if (!type_found) 1060 return -EINVAL; 1061 1062 for (i = 0; i < placement->num_busy_placement; ++i) { 1063 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1064 &mem_type); 1065 if (ret) 1066 return ret; 1067 man = &bdev->man[mem_type]; 1068 if (!man->has_type) 1069 continue; 1070 if (!ttm_bo_mt_compatible(man, 1071 mem_type, 1072 placement->busy_placement[i], 1073 &cur_flags)) 1074 continue; 1075 1076 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1077 cur_flags); 1078 /* 1079 * Use the access and other non-mapping-related flag bits from 1080 * the memory placement flags to the current flags 1081 */ 1082 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1083 ~TTM_PL_MASK_MEMTYPE); 1084 1085 1086 if (mem_type == TTM_PL_SYSTEM) { 1087 mem->mem_type = mem_type; 1088 mem->placement = cur_flags; 1089 mem->mm_node = NULL; 1090 return 0; 1091 } 1092 1093 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1094 interruptible, no_wait_gpu); 1095 if (ret == 0 && mem->mm_node) { 1096 mem->placement = cur_flags; 1097 return 0; 1098 } 1099 if (ret == -ERESTART) 1100 has_erestartsys = true; 1101 } 1102 ret = (has_erestartsys) ? -ERESTART : -ENOMEM; 1103 return ret; 1104 } 1105 1106 static 1107 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1108 struct ttm_placement *placement, 1109 bool interruptible, 1110 bool no_wait_gpu) 1111 { 1112 int ret = 0; 1113 struct ttm_mem_reg mem; 1114 struct ttm_bo_device *bdev = bo->bdev; 1115 1116 MPASS(ttm_bo_is_reserved(bo)); 1117 1118 /* 1119 * FIXME: It's possible to pipeline buffer moves. 1120 * Have the driver move function wait for idle when necessary, 1121 * instead of doing it here. 1122 */ 1123 mtx_lock(&bdev->fence_lock); 1124 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1125 mtx_unlock(&bdev->fence_lock); 1126 if (ret) 1127 return ret; 1128 mem.num_pages = bo->num_pages; 1129 mem.size = mem.num_pages << PAGE_SHIFT; 1130 mem.page_alignment = bo->mem.page_alignment; 1131 mem.bus.io_reserved_vm = false; 1132 mem.bus.io_reserved_count = 0; 1133 /* 1134 * Determine where to move the buffer. 1135 */ 1136 ret = ttm_bo_mem_space(bo, placement, &mem, 1137 interruptible, no_wait_gpu); 1138 if (ret) 1139 goto out_unlock; 1140 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1141 interruptible, no_wait_gpu); 1142 out_unlock: 1143 if (ret && mem.mm_node) 1144 ttm_bo_mem_put(bo, &mem); 1145 return ret; 1146 } 1147 1148 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1149 struct ttm_mem_reg *mem) 1150 { 1151 int i; 1152 1153 if (mem->mm_node && placement->lpfn != 0 && 1154 (mem->start < placement->fpfn || 1155 mem->start + mem->num_pages > placement->lpfn)) 1156 return -1; 1157 1158 for (i = 0; i < placement->num_placement; i++) { 1159 if ((placement->placement[i] & mem->placement & 1160 TTM_PL_MASK_CACHING) && 1161 (placement->placement[i] & mem->placement & 1162 TTM_PL_MASK_MEM)) 1163 return i; 1164 } 1165 return -1; 1166 } 1167 1168 int ttm_bo_validate(struct ttm_buffer_object *bo, 1169 struct ttm_placement *placement, 1170 bool interruptible, 1171 bool no_wait_gpu) 1172 { 1173 int ret; 1174 1175 MPASS(ttm_bo_is_reserved(bo)); 1176 /* Check that range is valid */ 1177 if (placement->lpfn || placement->fpfn) 1178 if (placement->fpfn > placement->lpfn || 1179 (placement->lpfn - placement->fpfn) < bo->num_pages) 1180 return -EINVAL; 1181 /* 1182 * Check whether we need to move buffer. 1183 */ 1184 ret = ttm_bo_mem_compat(placement, &bo->mem); 1185 if (ret < 0) { 1186 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1187 no_wait_gpu); 1188 if (ret) 1189 return ret; 1190 } else { 1191 /* 1192 * Use the access and other non-mapping-related flag bits from 1193 * the compatible memory placement flags to the active flags 1194 */ 1195 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1196 ~TTM_PL_MASK_MEMTYPE); 1197 } 1198 /* 1199 * We might need to add a TTM. 1200 */ 1201 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1202 ret = ttm_bo_add_ttm(bo, true); 1203 if (ret) 1204 return ret; 1205 } 1206 return 0; 1207 } 1208 1209 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1210 struct ttm_placement *placement) 1211 { 1212 MPASS(!((placement->fpfn || placement->lpfn) && 1213 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)))); 1214 1215 return 0; 1216 } 1217 1218 int ttm_bo_init(struct ttm_bo_device *bdev, 1219 struct ttm_buffer_object *bo, 1220 unsigned long size, 1221 enum ttm_bo_type type, 1222 struct ttm_placement *placement, 1223 uint32_t page_alignment, 1224 bool interruptible, 1225 struct vm_object *persistent_swap_storage, 1226 size_t acc_size, 1227 struct sg_table *sg, 1228 void (*destroy) (struct ttm_buffer_object *)) 1229 { 1230 int ret = 0; 1231 unsigned long num_pages; 1232 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1233 1234 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1235 if (ret) { 1236 printf("[TTM] Out of kernel memory\n"); 1237 if (destroy) 1238 (*destroy)(bo); 1239 else 1240 free(bo, M_TTM_BO); 1241 return -ENOMEM; 1242 } 1243 1244 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1245 if (num_pages == 0) { 1246 printf("[TTM] Illegal buffer object size\n"); 1247 if (destroy) 1248 (*destroy)(bo); 1249 else 1250 free(bo, M_TTM_BO); 1251 ttm_mem_global_free(mem_glob, acc_size); 1252 return -EINVAL; 1253 } 1254 bo->destroy = destroy; 1255 1256 refcount_init(&bo->kref, 1); 1257 refcount_init(&bo->list_kref, 1); 1258 atomic_set(&bo->cpu_writers, 0); 1259 atomic_set(&bo->reserved, 1); 1260 INIT_LIST_HEAD(&bo->lru); 1261 INIT_LIST_HEAD(&bo->ddestroy); 1262 INIT_LIST_HEAD(&bo->swap); 1263 INIT_LIST_HEAD(&bo->io_reserve_lru); 1264 bo->bdev = bdev; 1265 bo->glob = bdev->glob; 1266 bo->type = type; 1267 bo->num_pages = num_pages; 1268 bo->mem.size = num_pages << PAGE_SHIFT; 1269 bo->mem.mem_type = TTM_PL_SYSTEM; 1270 bo->mem.num_pages = bo->num_pages; 1271 bo->mem.mm_node = NULL; 1272 bo->mem.page_alignment = page_alignment; 1273 bo->mem.bus.io_reserved_vm = false; 1274 bo->mem.bus.io_reserved_count = 0; 1275 bo->priv_flags = 0; 1276 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1277 bo->seq_valid = false; 1278 bo->persistent_swap_storage = persistent_swap_storage; 1279 bo->acc_size = acc_size; 1280 bo->sg = sg; 1281 atomic_inc(&bo->glob->bo_count); 1282 1283 ret = ttm_bo_check_placement(bo, placement); 1284 if (unlikely(ret != 0)) 1285 goto out_err; 1286 1287 /* 1288 * For ttm_bo_type_device buffers, allocate 1289 * address space from the device. 1290 */ 1291 if (bo->type == ttm_bo_type_device || 1292 bo->type == ttm_bo_type_sg) { 1293 ret = ttm_bo_setup_vm(bo); 1294 if (ret) 1295 goto out_err; 1296 } 1297 1298 ret = ttm_bo_validate(bo, placement, interruptible, false); 1299 if (ret) 1300 goto out_err; 1301 1302 ttm_bo_unreserve(bo); 1303 return 0; 1304 1305 out_err: 1306 ttm_bo_unreserve(bo); 1307 ttm_bo_unref(&bo); 1308 1309 return ret; 1310 } 1311 1312 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1313 unsigned long bo_size, 1314 unsigned struct_size) 1315 { 1316 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1317 size_t size = 0; 1318 1319 size += ttm_round_pot(struct_size); 1320 size += PAGE_ALIGN(npages * sizeof(void *)); 1321 size += ttm_round_pot(sizeof(struct ttm_tt)); 1322 return size; 1323 } 1324 1325 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1326 unsigned long bo_size, 1327 unsigned struct_size) 1328 { 1329 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1330 size_t size = 0; 1331 1332 size += ttm_round_pot(struct_size); 1333 size += PAGE_ALIGN(npages * sizeof(void *)); 1334 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1335 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1336 return size; 1337 } 1338 1339 int ttm_bo_create(struct ttm_bo_device *bdev, 1340 unsigned long size, 1341 enum ttm_bo_type type, 1342 struct ttm_placement *placement, 1343 uint32_t page_alignment, 1344 bool interruptible, 1345 struct vm_object *persistent_swap_storage, 1346 struct ttm_buffer_object **p_bo) 1347 { 1348 struct ttm_buffer_object *bo; 1349 size_t acc_size; 1350 int ret; 1351 1352 bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO); 1353 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1354 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1355 interruptible, persistent_swap_storage, acc_size, 1356 NULL, NULL); 1357 if (likely(ret == 0)) 1358 *p_bo = bo; 1359 1360 return ret; 1361 } 1362 1363 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1364 unsigned mem_type, bool allow_errors) 1365 { 1366 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1367 struct ttm_bo_global *glob = bdev->glob; 1368 int ret; 1369 1370 /* 1371 * Can't use standard list traversal since we're unlocking. 1372 */ 1373 1374 mtx_lock(&glob->lru_lock); 1375 while (!list_empty(&man->lru)) { 1376 mtx_unlock(&glob->lru_lock); 1377 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1378 if (ret) { 1379 if (allow_errors) { 1380 return ret; 1381 } else { 1382 printf("[TTM] Cleanup eviction failed\n"); 1383 } 1384 } 1385 mtx_lock(&glob->lru_lock); 1386 } 1387 mtx_unlock(&glob->lru_lock); 1388 return 0; 1389 } 1390 1391 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1392 { 1393 struct ttm_mem_type_manager *man; 1394 int ret = -EINVAL; 1395 1396 if (mem_type >= TTM_NUM_MEM_TYPES) { 1397 printf("[TTM] Illegal memory type %d\n", mem_type); 1398 return ret; 1399 } 1400 man = &bdev->man[mem_type]; 1401 1402 if (!man->has_type) { 1403 printf("[TTM] Trying to take down uninitialized memory manager type %u\n", 1404 mem_type); 1405 return ret; 1406 } 1407 1408 man->use_type = false; 1409 man->has_type = false; 1410 1411 ret = 0; 1412 if (mem_type > 0) { 1413 ttm_bo_force_list_clean(bdev, mem_type, false); 1414 1415 ret = (*man->func->takedown)(man); 1416 } 1417 1418 return ret; 1419 } 1420 1421 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1422 { 1423 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1424 1425 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1426 printf("[TTM] Illegal memory manager memory type %u\n", mem_type); 1427 return -EINVAL; 1428 } 1429 1430 if (!man->has_type) { 1431 printf("[TTM] Memory type %u has not been initialized\n", mem_type); 1432 return 0; 1433 } 1434 1435 return ttm_bo_force_list_clean(bdev, mem_type, true); 1436 } 1437 1438 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1439 unsigned long p_size) 1440 { 1441 int ret = -EINVAL; 1442 struct ttm_mem_type_manager *man; 1443 1444 MPASS(type < TTM_NUM_MEM_TYPES); 1445 man = &bdev->man[type]; 1446 MPASS(!man->has_type); 1447 man->io_reserve_fastpath = true; 1448 man->use_io_reserve_lru = false; 1449 sx_init(&man->io_reserve_mutex, "ttmman"); 1450 INIT_LIST_HEAD(&man->io_reserve_lru); 1451 1452 ret = bdev->driver->init_mem_type(bdev, type, man); 1453 if (ret) 1454 return ret; 1455 man->bdev = bdev; 1456 1457 ret = 0; 1458 if (type != TTM_PL_SYSTEM) { 1459 ret = (*man->func->init)(man, p_size); 1460 if (ret) 1461 return ret; 1462 } 1463 man->has_type = true; 1464 man->use_type = true; 1465 man->size = p_size; 1466 1467 INIT_LIST_HEAD(&man->lru); 1468 1469 return 0; 1470 } 1471 1472 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob) 1473 { 1474 1475 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1476 vm_page_free(glob->dummy_read_page); 1477 } 1478 1479 void ttm_bo_global_release(struct drm_global_reference *ref) 1480 { 1481 struct ttm_bo_global *glob = ref->object; 1482 1483 if (refcount_release(&glob->kobj_ref)) 1484 ttm_bo_global_kobj_release(glob); 1485 } 1486 1487 int ttm_bo_global_init(struct drm_global_reference *ref) 1488 { 1489 struct ttm_bo_global_ref *bo_ref = 1490 container_of(ref, struct ttm_bo_global_ref, ref); 1491 struct ttm_bo_global *glob = ref->object; 1492 int ret; 1493 int tries; 1494 1495 sx_init(&glob->device_list_mutex, "ttmdlm"); 1496 mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF); 1497 glob->mem_glob = bo_ref->mem_glob; 1498 tries = 0; 1499 retry: 1500 glob->dummy_read_page = vm_page_alloc_contig(NULL, 0, 1501 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ, 1502 1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE); 1503 1504 if (unlikely(glob->dummy_read_page == NULL)) { 1505 if (tries < 1) { 1506 vm_pageout_grow_cache(tries, 0, VM_MAX_ADDRESS); 1507 tries++; 1508 goto retry; 1509 } 1510 ret = -ENOMEM; 1511 goto out_no_drp; 1512 } 1513 1514 INIT_LIST_HEAD(&glob->swap_lru); 1515 INIT_LIST_HEAD(&glob->device_list); 1516 1517 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1518 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1519 if (unlikely(ret != 0)) { 1520 printf("[TTM] Could not register buffer object swapout\n"); 1521 goto out_no_shrink; 1522 } 1523 1524 atomic_set(&glob->bo_count, 0); 1525 1526 refcount_init(&glob->kobj_ref, 1); 1527 return (0); 1528 1529 out_no_shrink: 1530 vm_page_free(glob->dummy_read_page); 1531 out_no_drp: 1532 free(glob, M_DRM_GLOBAL); 1533 return ret; 1534 } 1535 1536 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1537 { 1538 int ret = 0; 1539 unsigned i = TTM_NUM_MEM_TYPES; 1540 struct ttm_mem_type_manager *man; 1541 struct ttm_bo_global *glob = bdev->glob; 1542 1543 while (i--) { 1544 man = &bdev->man[i]; 1545 if (man->has_type) { 1546 man->use_type = false; 1547 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1548 ret = -EBUSY; 1549 printf("[TTM] DRM memory manager type %d is not clean\n", 1550 i); 1551 } 1552 man->has_type = false; 1553 } 1554 } 1555 1556 sx_xlock(&glob->device_list_mutex); 1557 list_del(&bdev->device_list); 1558 sx_xunlock(&glob->device_list_mutex); 1559 1560 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL)) 1561 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq); 1562 1563 while (ttm_bo_delayed_delete(bdev, true)) 1564 ; 1565 1566 mtx_lock(&glob->lru_lock); 1567 if (list_empty(&bdev->ddestroy)) 1568 TTM_DEBUG("Delayed destroy list was clean\n"); 1569 1570 if (list_empty(&bdev->man[0].lru)) 1571 TTM_DEBUG("Swap list was clean\n"); 1572 mtx_unlock(&glob->lru_lock); 1573 1574 MPASS(drm_mm_clean(&bdev->addr_space_mm)); 1575 rw_wlock(&bdev->vm_lock); 1576 drm_mm_takedown(&bdev->addr_space_mm); 1577 rw_wunlock(&bdev->vm_lock); 1578 1579 return ret; 1580 } 1581 1582 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1583 struct ttm_bo_global *glob, 1584 struct ttm_bo_driver *driver, 1585 uint64_t file_page_offset, 1586 bool need_dma32) 1587 { 1588 int ret = -EINVAL; 1589 1590 rw_init(&bdev->vm_lock, "ttmvml"); 1591 bdev->driver = driver; 1592 1593 memset(bdev->man, 0, sizeof(bdev->man)); 1594 1595 /* 1596 * Initialize the system memory buffer type. 1597 * Other types need to be driver / IOCTL initialized. 1598 */ 1599 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1600 if (unlikely(ret != 0)) 1601 goto out_no_sys; 1602 1603 RB_INIT(&bdev->addr_space_rb); 1604 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1605 if (unlikely(ret != 0)) 1606 goto out_no_addr_mm; 1607 1608 TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0, 1609 ttm_bo_delayed_workqueue, bdev); 1610 INIT_LIST_HEAD(&bdev->ddestroy); 1611 bdev->dev_mapping = NULL; 1612 bdev->glob = glob; 1613 bdev->need_dma32 = need_dma32; 1614 bdev->val_seq = 0; 1615 mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF); 1616 sx_xlock(&glob->device_list_mutex); 1617 list_add_tail(&bdev->device_list, &glob->device_list); 1618 sx_xunlock(&glob->device_list_mutex); 1619 1620 return 0; 1621 out_no_addr_mm: 1622 ttm_bo_clean_mm(bdev, 0); 1623 out_no_sys: 1624 return ret; 1625 } 1626 1627 /* 1628 * buffer object vm functions. 1629 */ 1630 1631 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1632 { 1633 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1634 1635 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1636 if (mem->mem_type == TTM_PL_SYSTEM) 1637 return false; 1638 1639 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1640 return false; 1641 1642 if (mem->placement & TTM_PL_FLAG_CACHED) 1643 return false; 1644 } 1645 return true; 1646 } 1647 1648 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1649 { 1650 1651 ttm_bo_release_mmap(bo); 1652 ttm_mem_io_free_vm(bo); 1653 } 1654 1655 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1656 { 1657 struct ttm_bo_device *bdev = bo->bdev; 1658 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1659 1660 ttm_mem_io_lock(man, false); 1661 ttm_bo_unmap_virtual_locked(bo); 1662 ttm_mem_io_unlock(man); 1663 } 1664 1665 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1666 { 1667 struct ttm_bo_device *bdev = bo->bdev; 1668 1669 /* The caller acquired bdev->vm_lock. */ 1670 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo); 1671 } 1672 1673 /** 1674 * ttm_bo_setup_vm: 1675 * 1676 * @bo: the buffer to allocate address space for 1677 * 1678 * Allocate address space in the drm device so that applications 1679 * can mmap the buffer and access the contents. This only 1680 * applies to ttm_bo_type_device objects as others are not 1681 * placed in the drm device address space. 1682 */ 1683 1684 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1685 { 1686 struct ttm_bo_device *bdev = bo->bdev; 1687 int ret; 1688 1689 retry_pre_get: 1690 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1691 if (unlikely(ret != 0)) 1692 return ret; 1693 1694 rw_wlock(&bdev->vm_lock); 1695 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1696 bo->mem.num_pages, 0, 0); 1697 1698 if (unlikely(bo->vm_node == NULL)) { 1699 ret = -ENOMEM; 1700 goto out_unlock; 1701 } 1702 1703 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1704 bo->mem.num_pages, 0); 1705 1706 if (unlikely(bo->vm_node == NULL)) { 1707 rw_wunlock(&bdev->vm_lock); 1708 goto retry_pre_get; 1709 } 1710 1711 ttm_bo_vm_insert_rb(bo); 1712 rw_wunlock(&bdev->vm_lock); 1713 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1714 1715 return 0; 1716 out_unlock: 1717 rw_wunlock(&bdev->vm_lock); 1718 return ret; 1719 } 1720 1721 int ttm_bo_wait(struct ttm_buffer_object *bo, 1722 bool lazy, bool interruptible, bool no_wait) 1723 { 1724 struct ttm_bo_driver *driver = bo->bdev->driver; 1725 struct ttm_bo_device *bdev = bo->bdev; 1726 void *sync_obj; 1727 int ret = 0; 1728 1729 if (likely(bo->sync_obj == NULL)) 1730 return 0; 1731 1732 while (bo->sync_obj) { 1733 1734 if (driver->sync_obj_signaled(bo->sync_obj)) { 1735 void *tmp_obj = bo->sync_obj; 1736 bo->sync_obj = NULL; 1737 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1738 mtx_unlock(&bdev->fence_lock); 1739 driver->sync_obj_unref(&tmp_obj); 1740 mtx_lock(&bdev->fence_lock); 1741 continue; 1742 } 1743 1744 if (no_wait) 1745 return -EBUSY; 1746 1747 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1748 mtx_unlock(&bdev->fence_lock); 1749 ret = driver->sync_obj_wait(sync_obj, 1750 lazy, interruptible); 1751 if (unlikely(ret != 0)) { 1752 driver->sync_obj_unref(&sync_obj); 1753 mtx_lock(&bdev->fence_lock); 1754 return ret; 1755 } 1756 mtx_lock(&bdev->fence_lock); 1757 if (likely(bo->sync_obj == sync_obj)) { 1758 void *tmp_obj = bo->sync_obj; 1759 bo->sync_obj = NULL; 1760 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1761 &bo->priv_flags); 1762 mtx_unlock(&bdev->fence_lock); 1763 driver->sync_obj_unref(&sync_obj); 1764 driver->sync_obj_unref(&tmp_obj); 1765 mtx_lock(&bdev->fence_lock); 1766 } else { 1767 mtx_unlock(&bdev->fence_lock); 1768 driver->sync_obj_unref(&sync_obj); 1769 mtx_lock(&bdev->fence_lock); 1770 } 1771 } 1772 return 0; 1773 } 1774 1775 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1776 { 1777 struct ttm_bo_device *bdev = bo->bdev; 1778 int ret = 0; 1779 1780 /* 1781 * Using ttm_bo_reserve makes sure the lru lists are updated. 1782 */ 1783 1784 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1785 if (unlikely(ret != 0)) 1786 return ret; 1787 mtx_lock(&bdev->fence_lock); 1788 ret = ttm_bo_wait(bo, false, true, no_wait); 1789 mtx_unlock(&bdev->fence_lock); 1790 if (likely(ret == 0)) 1791 atomic_inc(&bo->cpu_writers); 1792 ttm_bo_unreserve(bo); 1793 return ret; 1794 } 1795 1796 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1797 { 1798 atomic_dec(&bo->cpu_writers); 1799 } 1800 1801 /** 1802 * A buffer object shrink method that tries to swap out the first 1803 * buffer object on the bo_global::swap_lru list. 1804 */ 1805 1806 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1807 { 1808 struct ttm_bo_global *glob = 1809 container_of(shrink, struct ttm_bo_global, shrink); 1810 struct ttm_buffer_object *bo; 1811 int ret = -EBUSY; 1812 int put_count; 1813 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1814 1815 mtx_lock(&glob->lru_lock); 1816 list_for_each_entry(bo, &glob->swap_lru, swap) { 1817 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1818 if (!ret) 1819 break; 1820 } 1821 1822 if (ret) { 1823 mtx_unlock(&glob->lru_lock); 1824 return ret; 1825 } 1826 1827 refcount_acquire(&bo->list_kref); 1828 1829 if (!list_empty(&bo->ddestroy)) { 1830 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1831 if (refcount_release(&bo->list_kref)) 1832 ttm_bo_release_list(bo); 1833 return ret; 1834 } 1835 1836 put_count = ttm_bo_del_from_lru(bo); 1837 mtx_unlock(&glob->lru_lock); 1838 1839 ttm_bo_list_ref_sub(bo, put_count, true); 1840 1841 /** 1842 * Wait for GPU, then move to system cached. 1843 */ 1844 1845 mtx_lock(&bo->bdev->fence_lock); 1846 ret = ttm_bo_wait(bo, false, false, false); 1847 mtx_unlock(&bo->bdev->fence_lock); 1848 1849 if (unlikely(ret != 0)) 1850 goto out; 1851 1852 if ((bo->mem.placement & swap_placement) != swap_placement) { 1853 struct ttm_mem_reg evict_mem; 1854 1855 evict_mem = bo->mem; 1856 evict_mem.mm_node = NULL; 1857 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1858 evict_mem.mem_type = TTM_PL_SYSTEM; 1859 1860 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1861 false, false); 1862 if (unlikely(ret != 0)) 1863 goto out; 1864 } 1865 1866 ttm_bo_unmap_virtual(bo); 1867 1868 /** 1869 * Swap out. Buffer will be swapped in again as soon as 1870 * anyone tries to access a ttm page. 1871 */ 1872 1873 if (bo->bdev->driver->swap_notify) 1874 bo->bdev->driver->swap_notify(bo); 1875 1876 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1877 out: 1878 1879 /** 1880 * 1881 * Unreserve without putting on LRU to avoid swapping out an 1882 * already swapped buffer. 1883 */ 1884 1885 atomic_set(&bo->reserved, 0); 1886 wakeup(bo); 1887 if (refcount_release(&bo->list_kref)) 1888 ttm_bo_release_list(bo); 1889 return ret; 1890 } 1891 1892 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1893 { 1894 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1895 ; 1896 } 1897