1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <dev/drm2/drmP.h> 35 #include <dev/drm2/ttm/ttm_module.h> 36 #include <dev/drm2/ttm/ttm_bo_driver.h> 37 #include <dev/drm2/ttm/ttm_placement.h> 38 39 #define TTM_ASSERT_LOCKED(param) 40 #define TTM_DEBUG(fmt, arg...) 41 #define TTM_BO_HASH_ORDER 13 42 43 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 44 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 45 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob); 46 47 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects"); 48 49 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 50 { 51 int i; 52 53 for (i = 0; i <= TTM_PL_PRIV5; i++) 54 if (flags & (1 << i)) { 55 *mem_type = i; 56 return 0; 57 } 58 return -EINVAL; 59 } 60 61 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 62 { 63 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 64 65 printf(" has_type: %d\n", man->has_type); 66 printf(" use_type: %d\n", man->use_type); 67 printf(" flags: 0x%08X\n", man->flags); 68 printf(" gpu_offset: 0x%08lX\n", man->gpu_offset); 69 printf(" size: %ju\n", (uintmax_t)man->size); 70 printf(" available_caching: 0x%08X\n", man->available_caching); 71 printf(" default_caching: 0x%08X\n", man->default_caching); 72 if (mem_type != TTM_PL_SYSTEM) 73 (*man->func->debug)(man, TTM_PFX); 74 } 75 76 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 77 struct ttm_placement *placement) 78 { 79 int i, ret, mem_type; 80 81 printf("No space for %p (%lu pages, %luK, %luM)\n", 82 bo, bo->mem.num_pages, bo->mem.size >> 10, 83 bo->mem.size >> 20); 84 for (i = 0; i < placement->num_placement; i++) { 85 ret = ttm_mem_type_from_flags(placement->placement[i], 86 &mem_type); 87 if (ret) 88 return; 89 printf(" placement[%d]=0x%08X (%d)\n", 90 i, placement->placement[i], mem_type); 91 ttm_mem_type_debug(bo->bdev, mem_type); 92 } 93 } 94 95 #if 0 96 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob, 97 char *buffer) 98 { 99 100 return snprintf(buffer, PAGE_SIZE, "%lu\n", 101 (unsigned long) atomic_read(&glob->bo_count)); 102 } 103 #endif 104 105 static inline uint32_t ttm_bo_type_flags(unsigned type) 106 { 107 return 1 << (type); 108 } 109 110 static void ttm_bo_release_list(struct ttm_buffer_object *bo) 111 { 112 struct ttm_bo_device *bdev = bo->bdev; 113 size_t acc_size = bo->acc_size; 114 115 MPASS(atomic_read(&bo->list_kref) == 0); 116 MPASS(atomic_read(&bo->kref) == 0); 117 MPASS(atomic_read(&bo->cpu_writers) == 0); 118 MPASS(bo->sync_obj == NULL); 119 MPASS(bo->mem.mm_node == NULL); 120 MPASS(list_empty(&bo->lru)); 121 MPASS(list_empty(&bo->ddestroy)); 122 123 if (bo->ttm) 124 ttm_tt_destroy(bo->ttm); 125 atomic_dec(&bo->glob->bo_count); 126 if (bo->destroy) 127 bo->destroy(bo); 128 else { 129 free(bo, M_TTM_BO); 130 } 131 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 132 } 133 134 static int 135 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible) 136 { 137 const char *wmsg; 138 int flags, ret; 139 140 ret = 0; 141 if (interruptible) { 142 flags = PCATCH; 143 wmsg = "ttbowi"; 144 } else { 145 flags = 0; 146 wmsg = "ttbowu"; 147 } 148 while (ttm_bo_is_reserved(bo)) { 149 ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0); 150 if (ret != 0) 151 break; 152 } 153 return (ret); 154 } 155 156 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 157 { 158 struct ttm_bo_device *bdev = bo->bdev; 159 struct ttm_mem_type_manager *man; 160 161 MPASS(ttm_bo_is_reserved(bo)); 162 163 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 164 165 MPASS(list_empty(&bo->lru)); 166 167 man = &bdev->man[bo->mem.mem_type]; 168 list_add_tail(&bo->lru, &man->lru); 169 refcount_acquire(&bo->list_kref); 170 171 if (bo->ttm != NULL) { 172 list_add_tail(&bo->swap, &bo->glob->swap_lru); 173 refcount_acquire(&bo->list_kref); 174 } 175 } 176 } 177 178 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 179 { 180 int put_count = 0; 181 182 if (!list_empty(&bo->swap)) { 183 list_del_init(&bo->swap); 184 ++put_count; 185 } 186 if (!list_empty(&bo->lru)) { 187 list_del_init(&bo->lru); 188 ++put_count; 189 } 190 191 /* 192 * TODO: Add a driver hook to delete from 193 * driver-specific LRU's here. 194 */ 195 196 return put_count; 197 } 198 199 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo, 200 bool interruptible, 201 bool no_wait, bool use_sequence, uint32_t sequence) 202 { 203 int ret; 204 205 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 206 /** 207 * Deadlock avoidance for multi-bo reserving. 208 */ 209 if (use_sequence && bo->seq_valid) { 210 /** 211 * We've already reserved this one. 212 */ 213 if (unlikely(sequence == bo->val_seq)) 214 return -EDEADLK; 215 /** 216 * Already reserved by a thread that will not back 217 * off for us. We need to back off. 218 */ 219 if (unlikely(sequence - bo->val_seq < (1 << 31))) 220 return -EAGAIN; 221 } 222 223 if (no_wait) 224 return -EBUSY; 225 226 ret = ttm_bo_wait_unreserved_locked(bo, interruptible); 227 228 if (unlikely(ret)) 229 return ret; 230 } 231 232 if (use_sequence) { 233 bool wake_up = false; 234 /** 235 * Wake up waiters that may need to recheck for deadlock, 236 * if we decreased the sequence number. 237 */ 238 if (unlikely((bo->val_seq - sequence < (1 << 31)) 239 || !bo->seq_valid)) 240 wake_up = true; 241 242 /* 243 * In the worst case with memory ordering these values can be 244 * seen in the wrong order. However since we call wake_up_all 245 * in that case, this will hopefully not pose a problem, 246 * and the worst case would only cause someone to accidentally 247 * hit -EAGAIN in ttm_bo_reserve when they see old value of 248 * val_seq. However this would only happen if seq_valid was 249 * written before val_seq was, and just means some slightly 250 * increased cpu usage 251 */ 252 bo->val_seq = sequence; 253 bo->seq_valid = true; 254 if (wake_up) 255 wakeup(bo); 256 } else { 257 bo->seq_valid = false; 258 } 259 260 return 0; 261 } 262 263 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 264 bool never_free) 265 { 266 u_int old; 267 268 old = atomic_fetchadd_int(&bo->list_kref, -count); 269 if (old <= count) { 270 if (never_free) 271 panic("ttm_bo_ref_buf"); 272 ttm_bo_release_list(bo); 273 } 274 } 275 276 int ttm_bo_reserve(struct ttm_buffer_object *bo, 277 bool interruptible, 278 bool no_wait, bool use_sequence, uint32_t sequence) 279 { 280 struct ttm_bo_global *glob = bo->glob; 281 int put_count = 0; 282 int ret; 283 284 mtx_lock(&bo->glob->lru_lock); 285 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence, 286 sequence); 287 if (likely(ret == 0)) { 288 put_count = ttm_bo_del_from_lru(bo); 289 mtx_unlock(&glob->lru_lock); 290 ttm_bo_list_ref_sub(bo, put_count, true); 291 } else 292 mtx_unlock(&bo->glob->lru_lock); 293 294 return ret; 295 } 296 297 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo, 298 bool interruptible, uint32_t sequence) 299 { 300 bool wake_up = false; 301 int ret; 302 303 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 304 if (bo->seq_valid && sequence == bo->val_seq) { 305 DRM_ERROR( 306 "%s: bo->seq_valid && sequence == bo->val_seq", 307 __func__); 308 } 309 310 ret = ttm_bo_wait_unreserved_locked(bo, interruptible); 311 312 if (unlikely(ret)) 313 return ret; 314 } 315 316 if ((bo->val_seq - sequence < (1 << 31)) || !bo->seq_valid) 317 wake_up = true; 318 319 /** 320 * Wake up waiters that may need to recheck for deadlock, 321 * if we decreased the sequence number. 322 */ 323 bo->val_seq = sequence; 324 bo->seq_valid = true; 325 if (wake_up) 326 wakeup(bo); 327 328 return 0; 329 } 330 331 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, 332 bool interruptible, uint32_t sequence) 333 { 334 struct ttm_bo_global *glob = bo->glob; 335 int put_count, ret; 336 337 mtx_lock(&glob->lru_lock); 338 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence); 339 if (likely(!ret)) { 340 put_count = ttm_bo_del_from_lru(bo); 341 mtx_unlock(&glob->lru_lock); 342 ttm_bo_list_ref_sub(bo, put_count, true); 343 } else 344 mtx_unlock(&glob->lru_lock); 345 return ret; 346 } 347 348 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 349 { 350 ttm_bo_add_to_lru(bo); 351 atomic_set(&bo->reserved, 0); 352 wakeup(bo); 353 } 354 355 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 356 { 357 struct ttm_bo_global *glob = bo->glob; 358 359 mtx_lock(&glob->lru_lock); 360 ttm_bo_unreserve_locked(bo); 361 mtx_unlock(&glob->lru_lock); 362 } 363 364 /* 365 * Call bo->mutex locked. 366 */ 367 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 368 { 369 struct ttm_bo_device *bdev = bo->bdev; 370 struct ttm_bo_global *glob = bo->glob; 371 int ret = 0; 372 uint32_t page_flags = 0; 373 374 TTM_ASSERT_LOCKED(&bo->mutex); 375 bo->ttm = NULL; 376 377 if (bdev->need_dma32) 378 page_flags |= TTM_PAGE_FLAG_DMA32; 379 380 switch (bo->type) { 381 case ttm_bo_type_device: 382 if (zero_alloc) 383 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 384 case ttm_bo_type_kernel: 385 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 386 page_flags, glob->dummy_read_page); 387 if (unlikely(bo->ttm == NULL)) 388 ret = -ENOMEM; 389 break; 390 case ttm_bo_type_sg: 391 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 392 page_flags | TTM_PAGE_FLAG_SG, 393 glob->dummy_read_page); 394 if (unlikely(bo->ttm == NULL)) { 395 ret = -ENOMEM; 396 break; 397 } 398 bo->ttm->sg = bo->sg; 399 break; 400 default: 401 printf("[TTM] Illegal buffer object type\n"); 402 ret = -EINVAL; 403 break; 404 } 405 406 return ret; 407 } 408 409 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 410 struct ttm_mem_reg *mem, 411 bool evict, bool interruptible, 412 bool no_wait_gpu) 413 { 414 struct ttm_bo_device *bdev = bo->bdev; 415 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 416 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 417 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 418 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 419 int ret = 0; 420 421 if (old_is_pci || new_is_pci || 422 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 423 ret = ttm_mem_io_lock(old_man, true); 424 if (unlikely(ret != 0)) 425 goto out_err; 426 ttm_bo_unmap_virtual_locked(bo); 427 ttm_mem_io_unlock(old_man); 428 } 429 430 /* 431 * Create and bind a ttm if required. 432 */ 433 434 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 435 if (bo->ttm == NULL) { 436 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 437 ret = ttm_bo_add_ttm(bo, zero); 438 if (ret) 439 goto out_err; 440 } 441 442 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 443 if (ret) 444 goto out_err; 445 446 if (mem->mem_type != TTM_PL_SYSTEM) { 447 ret = ttm_tt_bind(bo->ttm, mem); 448 if (ret) 449 goto out_err; 450 } 451 452 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 453 if (bdev->driver->move_notify) 454 bdev->driver->move_notify(bo, mem); 455 bo->mem = *mem; 456 mem->mm_node = NULL; 457 goto moved; 458 } 459 } 460 461 if (bdev->driver->move_notify) 462 bdev->driver->move_notify(bo, mem); 463 464 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 465 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 466 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 467 else if (bdev->driver->move) 468 ret = bdev->driver->move(bo, evict, interruptible, 469 no_wait_gpu, mem); 470 else 471 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 472 473 if (ret) { 474 if (bdev->driver->move_notify) { 475 struct ttm_mem_reg tmp_mem = *mem; 476 *mem = bo->mem; 477 bo->mem = tmp_mem; 478 bdev->driver->move_notify(bo, mem); 479 bo->mem = *mem; 480 *mem = tmp_mem; 481 } 482 483 goto out_err; 484 } 485 486 moved: 487 if (bo->evicted) { 488 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 489 if (ret) 490 printf("[TTM] Can not flush read caches\n"); 491 bo->evicted = false; 492 } 493 494 if (bo->mem.mm_node) { 495 bo->offset = (bo->mem.start << PAGE_SHIFT) + 496 bdev->man[bo->mem.mem_type].gpu_offset; 497 bo->cur_placement = bo->mem.placement; 498 } else 499 bo->offset = 0; 500 501 return 0; 502 503 out_err: 504 new_man = &bdev->man[bo->mem.mem_type]; 505 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 506 ttm_tt_unbind(bo->ttm); 507 ttm_tt_destroy(bo->ttm); 508 bo->ttm = NULL; 509 } 510 511 return ret; 512 } 513 514 /** 515 * Call bo::reserved. 516 * Will release GPU memory type usage on destruction. 517 * This is the place to put in driver specific hooks to release 518 * driver private resources. 519 * Will release the bo::reserved lock. 520 */ 521 522 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 523 { 524 if (bo->bdev->driver->move_notify) 525 bo->bdev->driver->move_notify(bo, NULL); 526 527 if (bo->ttm) { 528 ttm_tt_unbind(bo->ttm); 529 ttm_tt_destroy(bo->ttm); 530 bo->ttm = NULL; 531 } 532 ttm_bo_mem_put(bo, &bo->mem); 533 534 atomic_set(&bo->reserved, 0); 535 wakeup(&bo); 536 537 /* 538 * Since the final reference to this bo may not be dropped by 539 * the current task we have to put a memory barrier here to make 540 * sure the changes done in this function are always visible. 541 * 542 * This function only needs protection against the final kref_put. 543 */ 544 mb(); 545 } 546 547 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 548 { 549 struct ttm_bo_device *bdev = bo->bdev; 550 struct ttm_bo_global *glob = bo->glob; 551 struct ttm_bo_driver *driver = bdev->driver; 552 void *sync_obj = NULL; 553 int put_count; 554 int ret; 555 556 mtx_lock(&glob->lru_lock); 557 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 558 559 mtx_lock(&bdev->fence_lock); 560 (void) ttm_bo_wait(bo, false, false, true); 561 if (!ret && !bo->sync_obj) { 562 mtx_unlock(&bdev->fence_lock); 563 put_count = ttm_bo_del_from_lru(bo); 564 565 mtx_unlock(&glob->lru_lock); 566 ttm_bo_cleanup_memtype_use(bo); 567 568 ttm_bo_list_ref_sub(bo, put_count, true); 569 570 return; 571 } 572 if (bo->sync_obj) 573 sync_obj = driver->sync_obj_ref(bo->sync_obj); 574 mtx_unlock(&bdev->fence_lock); 575 576 if (!ret) { 577 atomic_set(&bo->reserved, 0); 578 wakeup(bo); 579 } 580 581 refcount_acquire(&bo->list_kref); 582 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 583 mtx_unlock(&glob->lru_lock); 584 585 if (sync_obj) { 586 driver->sync_obj_flush(sync_obj); 587 driver->sync_obj_unref(&sync_obj); 588 } 589 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 590 ((hz / 100) < 1) ? 1 : hz / 100); 591 } 592 593 /** 594 * function ttm_bo_cleanup_refs_and_unlock 595 * If bo idle, remove from delayed- and lru lists, and unref. 596 * If not idle, do nothing. 597 * 598 * Must be called with lru_lock and reservation held, this function 599 * will drop both before returning. 600 * 601 * @interruptible Any sleeps should occur interruptibly. 602 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 603 */ 604 605 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 606 bool interruptible, 607 bool no_wait_gpu) 608 { 609 struct ttm_bo_device *bdev = bo->bdev; 610 struct ttm_bo_driver *driver = bdev->driver; 611 struct ttm_bo_global *glob = bo->glob; 612 int put_count; 613 int ret; 614 615 mtx_lock(&bdev->fence_lock); 616 ret = ttm_bo_wait(bo, false, false, true); 617 618 if (ret && !no_wait_gpu) { 619 void *sync_obj; 620 621 /* 622 * Take a reference to the fence and unreserve, 623 * at this point the buffer should be dead, so 624 * no new sync objects can be attached. 625 */ 626 sync_obj = driver->sync_obj_ref(bo->sync_obj); 627 mtx_unlock(&bdev->fence_lock); 628 629 atomic_set(&bo->reserved, 0); 630 wakeup(bo); 631 mtx_unlock(&glob->lru_lock); 632 633 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 634 driver->sync_obj_unref(&sync_obj); 635 if (ret) 636 return ret; 637 638 /* 639 * remove sync_obj with ttm_bo_wait, the wait should be 640 * finished, and no new wait object should have been added. 641 */ 642 mtx_lock(&bdev->fence_lock); 643 ret = ttm_bo_wait(bo, false, false, true); 644 mtx_unlock(&bdev->fence_lock); 645 if (ret) 646 return ret; 647 648 mtx_lock(&glob->lru_lock); 649 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 650 651 /* 652 * We raced, and lost, someone else holds the reservation now, 653 * and is probably busy in ttm_bo_cleanup_memtype_use. 654 * 655 * Even if it's not the case, because we finished waiting any 656 * delayed destruction would succeed, so just return success 657 * here. 658 */ 659 if (ret) { 660 mtx_unlock(&glob->lru_lock); 661 return 0; 662 } 663 } else 664 mtx_unlock(&bdev->fence_lock); 665 666 if (ret || unlikely(list_empty(&bo->ddestroy))) { 667 atomic_set(&bo->reserved, 0); 668 wakeup(bo); 669 mtx_unlock(&glob->lru_lock); 670 return ret; 671 } 672 673 put_count = ttm_bo_del_from_lru(bo); 674 list_del_init(&bo->ddestroy); 675 ++put_count; 676 677 mtx_unlock(&glob->lru_lock); 678 ttm_bo_cleanup_memtype_use(bo); 679 680 ttm_bo_list_ref_sub(bo, put_count, true); 681 682 return 0; 683 } 684 685 /** 686 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 687 * encountered buffers. 688 */ 689 690 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 691 { 692 struct ttm_bo_global *glob = bdev->glob; 693 struct ttm_buffer_object *entry = NULL; 694 int ret = 0; 695 696 mtx_lock(&glob->lru_lock); 697 if (list_empty(&bdev->ddestroy)) 698 goto out_unlock; 699 700 entry = list_first_entry(&bdev->ddestroy, 701 struct ttm_buffer_object, ddestroy); 702 refcount_acquire(&entry->list_kref); 703 704 for (;;) { 705 struct ttm_buffer_object *nentry = NULL; 706 707 if (entry->ddestroy.next != &bdev->ddestroy) { 708 nentry = list_first_entry(&entry->ddestroy, 709 struct ttm_buffer_object, ddestroy); 710 refcount_acquire(&nentry->list_kref); 711 } 712 713 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 714 if (remove_all && ret) { 715 ret = ttm_bo_reserve_nolru(entry, false, false, 716 false, 0); 717 } 718 719 if (!ret) 720 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 721 !remove_all); 722 else 723 mtx_unlock(&glob->lru_lock); 724 725 if (refcount_release(&entry->list_kref)) 726 ttm_bo_release_list(entry); 727 entry = nentry; 728 729 if (ret || !entry) 730 goto out; 731 732 mtx_lock(&glob->lru_lock); 733 if (list_empty(&entry->ddestroy)) 734 break; 735 } 736 737 out_unlock: 738 mtx_unlock(&glob->lru_lock); 739 out: 740 if (entry && refcount_release(&entry->list_kref)) 741 ttm_bo_release_list(entry); 742 return ret; 743 } 744 745 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused) 746 { 747 struct ttm_bo_device *bdev = arg; 748 749 if (ttm_bo_delayed_delete(bdev, false)) { 750 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 751 ((hz / 100) < 1) ? 1 : hz / 100); 752 } 753 } 754 755 static void ttm_bo_release(struct ttm_buffer_object *bo) 756 { 757 struct ttm_bo_device *bdev = bo->bdev; 758 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 759 760 rw_wlock(&bdev->vm_lock); 761 if (likely(bo->vm_node != NULL)) { 762 RB_REMOVE(ttm_bo_device_buffer_objects, 763 &bdev->addr_space_rb, bo); 764 drm_mm_put_block(bo->vm_node); 765 bo->vm_node = NULL; 766 } 767 rw_wunlock(&bdev->vm_lock); 768 ttm_mem_io_lock(man, false); 769 ttm_mem_io_free_vm(bo); 770 ttm_mem_io_unlock(man); 771 ttm_bo_cleanup_refs_or_queue(bo); 772 if (refcount_release(&bo->list_kref)) 773 ttm_bo_release_list(bo); 774 } 775 776 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 777 { 778 struct ttm_buffer_object *bo = *p_bo; 779 780 *p_bo = NULL; 781 if (refcount_release(&bo->kref)) 782 ttm_bo_release(bo); 783 } 784 785 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 786 { 787 int pending; 788 789 taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending); 790 if (pending) 791 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq); 792 return (pending); 793 } 794 795 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 796 { 797 if (resched) { 798 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq, 799 ((hz / 100) < 1) ? 1 : hz / 100); 800 } 801 } 802 803 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 804 bool no_wait_gpu) 805 { 806 struct ttm_bo_device *bdev = bo->bdev; 807 struct ttm_mem_reg evict_mem; 808 struct ttm_placement placement; 809 int ret = 0; 810 811 mtx_lock(&bdev->fence_lock); 812 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 813 mtx_unlock(&bdev->fence_lock); 814 815 if (unlikely(ret != 0)) { 816 if (ret != -ERESTART) { 817 printf("[TTM] Failed to expire sync object before buffer eviction\n"); 818 } 819 goto out; 820 } 821 822 MPASS(ttm_bo_is_reserved(bo)); 823 824 evict_mem = bo->mem; 825 evict_mem.mm_node = NULL; 826 evict_mem.bus.io_reserved_vm = false; 827 evict_mem.bus.io_reserved_count = 0; 828 829 placement.fpfn = 0; 830 placement.lpfn = 0; 831 placement.num_placement = 0; 832 placement.num_busy_placement = 0; 833 bdev->driver->evict_flags(bo, &placement); 834 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 835 no_wait_gpu); 836 if (ret) { 837 if (ret != -ERESTART) { 838 printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n", 839 bo); 840 ttm_bo_mem_space_debug(bo, &placement); 841 } 842 goto out; 843 } 844 845 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 846 no_wait_gpu); 847 if (ret) { 848 if (ret != -ERESTART) 849 printf("[TTM] Buffer eviction failed\n"); 850 ttm_bo_mem_put(bo, &evict_mem); 851 goto out; 852 } 853 bo->evicted = true; 854 out: 855 return ret; 856 } 857 858 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 859 uint32_t mem_type, 860 bool interruptible, 861 bool no_wait_gpu) 862 { 863 struct ttm_bo_global *glob = bdev->glob; 864 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 865 struct ttm_buffer_object *bo; 866 int ret = -EBUSY, put_count; 867 868 mtx_lock(&glob->lru_lock); 869 list_for_each_entry(bo, &man->lru, lru) { 870 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 871 if (!ret) 872 break; 873 } 874 875 if (ret) { 876 mtx_unlock(&glob->lru_lock); 877 return ret; 878 } 879 880 refcount_acquire(&bo->list_kref); 881 882 if (!list_empty(&bo->ddestroy)) { 883 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 884 no_wait_gpu); 885 if (refcount_release(&bo->list_kref)) 886 ttm_bo_release_list(bo); 887 return ret; 888 } 889 890 put_count = ttm_bo_del_from_lru(bo); 891 mtx_unlock(&glob->lru_lock); 892 893 MPASS(ret == 0); 894 895 ttm_bo_list_ref_sub(bo, put_count, true); 896 897 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 898 ttm_bo_unreserve(bo); 899 900 if (refcount_release(&bo->list_kref)) 901 ttm_bo_release_list(bo); 902 return ret; 903 } 904 905 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 906 { 907 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 908 909 if (mem->mm_node) 910 (*man->func->put_node)(man, mem); 911 } 912 913 /** 914 * Repeatedly evict memory from the LRU for @mem_type until we create enough 915 * space, or we've evicted everything and there isn't enough space. 916 */ 917 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 918 uint32_t mem_type, 919 struct ttm_placement *placement, 920 struct ttm_mem_reg *mem, 921 bool interruptible, 922 bool no_wait_gpu) 923 { 924 struct ttm_bo_device *bdev = bo->bdev; 925 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 926 int ret; 927 928 do { 929 ret = (*man->func->get_node)(man, bo, placement, mem); 930 if (unlikely(ret != 0)) 931 return ret; 932 if (mem->mm_node) 933 break; 934 ret = ttm_mem_evict_first(bdev, mem_type, 935 interruptible, no_wait_gpu); 936 if (unlikely(ret != 0)) 937 return ret; 938 } while (1); 939 if (mem->mm_node == NULL) 940 return -ENOMEM; 941 mem->mem_type = mem_type; 942 return 0; 943 } 944 945 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 946 uint32_t cur_placement, 947 uint32_t proposed_placement) 948 { 949 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 950 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 951 952 /** 953 * Keep current caching if possible. 954 */ 955 956 if ((cur_placement & caching) != 0) 957 result |= (cur_placement & caching); 958 else if ((man->default_caching & caching) != 0) 959 result |= man->default_caching; 960 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 961 result |= TTM_PL_FLAG_CACHED; 962 else if ((TTM_PL_FLAG_WC & caching) != 0) 963 result |= TTM_PL_FLAG_WC; 964 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 965 result |= TTM_PL_FLAG_UNCACHED; 966 967 return result; 968 } 969 970 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 971 uint32_t mem_type, 972 uint32_t proposed_placement, 973 uint32_t *masked_placement) 974 { 975 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 976 977 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 978 return false; 979 980 if ((proposed_placement & man->available_caching) == 0) 981 return false; 982 983 cur_flags |= (proposed_placement & man->available_caching); 984 985 *masked_placement = cur_flags; 986 return true; 987 } 988 989 /** 990 * Creates space for memory region @mem according to its type. 991 * 992 * This function first searches for free space in compatible memory types in 993 * the priority order defined by the driver. If free space isn't found, then 994 * ttm_bo_mem_force_space is attempted in priority order to evict and find 995 * space. 996 */ 997 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 998 struct ttm_placement *placement, 999 struct ttm_mem_reg *mem, 1000 bool interruptible, 1001 bool no_wait_gpu) 1002 { 1003 struct ttm_bo_device *bdev = bo->bdev; 1004 struct ttm_mem_type_manager *man; 1005 uint32_t mem_type = TTM_PL_SYSTEM; 1006 uint32_t cur_flags = 0; 1007 bool type_found = false; 1008 bool type_ok = false; 1009 bool has_erestartsys = false; 1010 int i, ret; 1011 1012 mem->mm_node = NULL; 1013 for (i = 0; i < placement->num_placement; ++i) { 1014 ret = ttm_mem_type_from_flags(placement->placement[i], 1015 &mem_type); 1016 if (ret) 1017 return ret; 1018 man = &bdev->man[mem_type]; 1019 1020 type_ok = ttm_bo_mt_compatible(man, 1021 mem_type, 1022 placement->placement[i], 1023 &cur_flags); 1024 1025 if (!type_ok) 1026 continue; 1027 1028 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1029 cur_flags); 1030 /* 1031 * Use the access and other non-mapping-related flag bits from 1032 * the memory placement flags to the current flags 1033 */ 1034 ttm_flag_masked(&cur_flags, placement->placement[i], 1035 ~TTM_PL_MASK_MEMTYPE); 1036 1037 if (mem_type == TTM_PL_SYSTEM) 1038 break; 1039 1040 if (man->has_type && man->use_type) { 1041 type_found = true; 1042 ret = (*man->func->get_node)(man, bo, placement, mem); 1043 if (unlikely(ret)) 1044 return ret; 1045 } 1046 if (mem->mm_node) 1047 break; 1048 } 1049 1050 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1051 mem->mem_type = mem_type; 1052 mem->placement = cur_flags; 1053 return 0; 1054 } 1055 1056 if (!type_found) 1057 return -EINVAL; 1058 1059 for (i = 0; i < placement->num_busy_placement; ++i) { 1060 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1061 &mem_type); 1062 if (ret) 1063 return ret; 1064 man = &bdev->man[mem_type]; 1065 if (!man->has_type) 1066 continue; 1067 if (!ttm_bo_mt_compatible(man, 1068 mem_type, 1069 placement->busy_placement[i], 1070 &cur_flags)) 1071 continue; 1072 1073 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1074 cur_flags); 1075 /* 1076 * Use the access and other non-mapping-related flag bits from 1077 * the memory placement flags to the current flags 1078 */ 1079 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1080 ~TTM_PL_MASK_MEMTYPE); 1081 1082 1083 if (mem_type == TTM_PL_SYSTEM) { 1084 mem->mem_type = mem_type; 1085 mem->placement = cur_flags; 1086 mem->mm_node = NULL; 1087 return 0; 1088 } 1089 1090 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1091 interruptible, no_wait_gpu); 1092 if (ret == 0 && mem->mm_node) { 1093 mem->placement = cur_flags; 1094 return 0; 1095 } 1096 if (ret == -ERESTART) 1097 has_erestartsys = true; 1098 } 1099 ret = (has_erestartsys) ? -ERESTART : -ENOMEM; 1100 return ret; 1101 } 1102 1103 static 1104 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1105 struct ttm_placement *placement, 1106 bool interruptible, 1107 bool no_wait_gpu) 1108 { 1109 int ret = 0; 1110 struct ttm_mem_reg mem; 1111 struct ttm_bo_device *bdev = bo->bdev; 1112 1113 MPASS(ttm_bo_is_reserved(bo)); 1114 1115 /* 1116 * FIXME: It's possible to pipeline buffer moves. 1117 * Have the driver move function wait for idle when necessary, 1118 * instead of doing it here. 1119 */ 1120 mtx_lock(&bdev->fence_lock); 1121 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1122 mtx_unlock(&bdev->fence_lock); 1123 if (ret) 1124 return ret; 1125 mem.num_pages = bo->num_pages; 1126 mem.size = mem.num_pages << PAGE_SHIFT; 1127 mem.page_alignment = bo->mem.page_alignment; 1128 mem.bus.io_reserved_vm = false; 1129 mem.bus.io_reserved_count = 0; 1130 /* 1131 * Determine where to move the buffer. 1132 */ 1133 ret = ttm_bo_mem_space(bo, placement, &mem, 1134 interruptible, no_wait_gpu); 1135 if (ret) 1136 goto out_unlock; 1137 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1138 interruptible, no_wait_gpu); 1139 out_unlock: 1140 if (ret && mem.mm_node) 1141 ttm_bo_mem_put(bo, &mem); 1142 return ret; 1143 } 1144 1145 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1146 struct ttm_mem_reg *mem) 1147 { 1148 int i; 1149 1150 if (mem->mm_node && placement->lpfn != 0 && 1151 (mem->start < placement->fpfn || 1152 mem->start + mem->num_pages > placement->lpfn)) 1153 return -1; 1154 1155 for (i = 0; i < placement->num_placement; i++) { 1156 if ((placement->placement[i] & mem->placement & 1157 TTM_PL_MASK_CACHING) && 1158 (placement->placement[i] & mem->placement & 1159 TTM_PL_MASK_MEM)) 1160 return i; 1161 } 1162 return -1; 1163 } 1164 1165 int ttm_bo_validate(struct ttm_buffer_object *bo, 1166 struct ttm_placement *placement, 1167 bool interruptible, 1168 bool no_wait_gpu) 1169 { 1170 int ret; 1171 1172 MPASS(ttm_bo_is_reserved(bo)); 1173 /* Check that range is valid */ 1174 if (placement->lpfn || placement->fpfn) 1175 if (placement->fpfn > placement->lpfn || 1176 (placement->lpfn - placement->fpfn) < bo->num_pages) 1177 return -EINVAL; 1178 /* 1179 * Check whether we need to move buffer. 1180 */ 1181 ret = ttm_bo_mem_compat(placement, &bo->mem); 1182 if (ret < 0) { 1183 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1184 no_wait_gpu); 1185 if (ret) 1186 return ret; 1187 } else { 1188 /* 1189 * Use the access and other non-mapping-related flag bits from 1190 * the compatible memory placement flags to the active flags 1191 */ 1192 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1193 ~TTM_PL_MASK_MEMTYPE); 1194 } 1195 /* 1196 * We might need to add a TTM. 1197 */ 1198 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1199 ret = ttm_bo_add_ttm(bo, true); 1200 if (ret) 1201 return ret; 1202 } 1203 return 0; 1204 } 1205 1206 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1207 struct ttm_placement *placement) 1208 { 1209 MPASS(!((placement->fpfn || placement->lpfn) && 1210 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)))); 1211 1212 return 0; 1213 } 1214 1215 int ttm_bo_init(struct ttm_bo_device *bdev, 1216 struct ttm_buffer_object *bo, 1217 unsigned long size, 1218 enum ttm_bo_type type, 1219 struct ttm_placement *placement, 1220 uint32_t page_alignment, 1221 bool interruptible, 1222 struct vm_object *persistent_swap_storage, 1223 size_t acc_size, 1224 struct sg_table *sg, 1225 void (*destroy) (struct ttm_buffer_object *)) 1226 { 1227 int ret = 0; 1228 unsigned long num_pages; 1229 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1230 1231 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1232 if (ret) { 1233 printf("[TTM] Out of kernel memory\n"); 1234 if (destroy) 1235 (*destroy)(bo); 1236 else 1237 free(bo, M_TTM_BO); 1238 return -ENOMEM; 1239 } 1240 1241 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1242 if (num_pages == 0) { 1243 printf("[TTM] Illegal buffer object size\n"); 1244 if (destroy) 1245 (*destroy)(bo); 1246 else 1247 free(bo, M_TTM_BO); 1248 ttm_mem_global_free(mem_glob, acc_size); 1249 return -EINVAL; 1250 } 1251 bo->destroy = destroy; 1252 1253 refcount_init(&bo->kref, 1); 1254 refcount_init(&bo->list_kref, 1); 1255 atomic_set(&bo->cpu_writers, 0); 1256 atomic_set(&bo->reserved, 1); 1257 INIT_LIST_HEAD(&bo->lru); 1258 INIT_LIST_HEAD(&bo->ddestroy); 1259 INIT_LIST_HEAD(&bo->swap); 1260 INIT_LIST_HEAD(&bo->io_reserve_lru); 1261 bo->bdev = bdev; 1262 bo->glob = bdev->glob; 1263 bo->type = type; 1264 bo->num_pages = num_pages; 1265 bo->mem.size = num_pages << PAGE_SHIFT; 1266 bo->mem.mem_type = TTM_PL_SYSTEM; 1267 bo->mem.num_pages = bo->num_pages; 1268 bo->mem.mm_node = NULL; 1269 bo->mem.page_alignment = page_alignment; 1270 bo->mem.bus.io_reserved_vm = false; 1271 bo->mem.bus.io_reserved_count = 0; 1272 bo->priv_flags = 0; 1273 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1274 bo->seq_valid = false; 1275 bo->persistent_swap_storage = persistent_swap_storage; 1276 bo->acc_size = acc_size; 1277 bo->sg = sg; 1278 atomic_inc(&bo->glob->bo_count); 1279 1280 ret = ttm_bo_check_placement(bo, placement); 1281 if (unlikely(ret != 0)) 1282 goto out_err; 1283 1284 /* 1285 * For ttm_bo_type_device buffers, allocate 1286 * address space from the device. 1287 */ 1288 if (bo->type == ttm_bo_type_device || 1289 bo->type == ttm_bo_type_sg) { 1290 ret = ttm_bo_setup_vm(bo); 1291 if (ret) 1292 goto out_err; 1293 } 1294 1295 ret = ttm_bo_validate(bo, placement, interruptible, false); 1296 if (ret) 1297 goto out_err; 1298 1299 ttm_bo_unreserve(bo); 1300 return 0; 1301 1302 out_err: 1303 ttm_bo_unreserve(bo); 1304 ttm_bo_unref(&bo); 1305 1306 return ret; 1307 } 1308 1309 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1310 unsigned long bo_size, 1311 unsigned struct_size) 1312 { 1313 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1314 size_t size = 0; 1315 1316 size += ttm_round_pot(struct_size); 1317 size += PAGE_ALIGN(npages * sizeof(void *)); 1318 size += ttm_round_pot(sizeof(struct ttm_tt)); 1319 return size; 1320 } 1321 1322 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1323 unsigned long bo_size, 1324 unsigned struct_size) 1325 { 1326 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1327 size_t size = 0; 1328 1329 size += ttm_round_pot(struct_size); 1330 size += PAGE_ALIGN(npages * sizeof(void *)); 1331 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1332 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1333 return size; 1334 } 1335 1336 int ttm_bo_create(struct ttm_bo_device *bdev, 1337 unsigned long size, 1338 enum ttm_bo_type type, 1339 struct ttm_placement *placement, 1340 uint32_t page_alignment, 1341 bool interruptible, 1342 struct vm_object *persistent_swap_storage, 1343 struct ttm_buffer_object **p_bo) 1344 { 1345 struct ttm_buffer_object *bo; 1346 size_t acc_size; 1347 int ret; 1348 1349 bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO); 1350 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1351 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1352 interruptible, persistent_swap_storage, acc_size, 1353 NULL, NULL); 1354 if (likely(ret == 0)) 1355 *p_bo = bo; 1356 1357 return ret; 1358 } 1359 1360 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1361 unsigned mem_type, bool allow_errors) 1362 { 1363 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1364 struct ttm_bo_global *glob = bdev->glob; 1365 int ret; 1366 1367 /* 1368 * Can't use standard list traversal since we're unlocking. 1369 */ 1370 1371 mtx_lock(&glob->lru_lock); 1372 while (!list_empty(&man->lru)) { 1373 mtx_unlock(&glob->lru_lock); 1374 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1375 if (ret) { 1376 if (allow_errors) { 1377 return ret; 1378 } else { 1379 printf("[TTM] Cleanup eviction failed\n"); 1380 } 1381 } 1382 mtx_lock(&glob->lru_lock); 1383 } 1384 mtx_unlock(&glob->lru_lock); 1385 return 0; 1386 } 1387 1388 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1389 { 1390 struct ttm_mem_type_manager *man; 1391 int ret = -EINVAL; 1392 1393 if (mem_type >= TTM_NUM_MEM_TYPES) { 1394 printf("[TTM] Illegal memory type %d\n", mem_type); 1395 return ret; 1396 } 1397 man = &bdev->man[mem_type]; 1398 1399 if (!man->has_type) { 1400 printf("[TTM] Trying to take down uninitialized memory manager type %u\n", 1401 mem_type); 1402 return ret; 1403 } 1404 1405 man->use_type = false; 1406 man->has_type = false; 1407 1408 ret = 0; 1409 if (mem_type > 0) { 1410 ttm_bo_force_list_clean(bdev, mem_type, false); 1411 1412 ret = (*man->func->takedown)(man); 1413 } 1414 1415 return ret; 1416 } 1417 1418 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1419 { 1420 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1421 1422 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1423 printf("[TTM] Illegal memory manager memory type %u\n", mem_type); 1424 return -EINVAL; 1425 } 1426 1427 if (!man->has_type) { 1428 printf("[TTM] Memory type %u has not been initialized\n", mem_type); 1429 return 0; 1430 } 1431 1432 return ttm_bo_force_list_clean(bdev, mem_type, true); 1433 } 1434 1435 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1436 unsigned long p_size) 1437 { 1438 int ret = -EINVAL; 1439 struct ttm_mem_type_manager *man; 1440 1441 MPASS(type < TTM_NUM_MEM_TYPES); 1442 man = &bdev->man[type]; 1443 MPASS(!man->has_type); 1444 man->io_reserve_fastpath = true; 1445 man->use_io_reserve_lru = false; 1446 sx_init(&man->io_reserve_mutex, "ttmman"); 1447 INIT_LIST_HEAD(&man->io_reserve_lru); 1448 1449 ret = bdev->driver->init_mem_type(bdev, type, man); 1450 if (ret) 1451 return ret; 1452 man->bdev = bdev; 1453 1454 ret = 0; 1455 if (type != TTM_PL_SYSTEM) { 1456 ret = (*man->func->init)(man, p_size); 1457 if (ret) 1458 return ret; 1459 } 1460 man->has_type = true; 1461 man->use_type = true; 1462 man->size = p_size; 1463 1464 INIT_LIST_HEAD(&man->lru); 1465 1466 return 0; 1467 } 1468 1469 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob) 1470 { 1471 1472 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1473 vm_page_free(glob->dummy_read_page); 1474 } 1475 1476 void ttm_bo_global_release(struct drm_global_reference *ref) 1477 { 1478 struct ttm_bo_global *glob = ref->object; 1479 1480 if (refcount_release(&glob->kobj_ref)) 1481 ttm_bo_global_kobj_release(glob); 1482 } 1483 1484 int ttm_bo_global_init(struct drm_global_reference *ref) 1485 { 1486 struct ttm_bo_global_ref *bo_ref = 1487 container_of(ref, struct ttm_bo_global_ref, ref); 1488 struct ttm_bo_global *glob = ref->object; 1489 int ret; 1490 1491 sx_init(&glob->device_list_mutex, "ttmdlm"); 1492 mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF); 1493 glob->mem_glob = bo_ref->mem_glob; 1494 glob->dummy_read_page = vm_page_alloc_contig(NULL, 0, 1495 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ, 1496 1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE); 1497 1498 if (unlikely(glob->dummy_read_page == NULL)) { 1499 ret = -ENOMEM; 1500 goto out_no_drp; 1501 } 1502 1503 INIT_LIST_HEAD(&glob->swap_lru); 1504 INIT_LIST_HEAD(&glob->device_list); 1505 1506 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1507 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1508 if (unlikely(ret != 0)) { 1509 printf("[TTM] Could not register buffer object swapout\n"); 1510 goto out_no_shrink; 1511 } 1512 1513 atomic_set(&glob->bo_count, 0); 1514 1515 refcount_init(&glob->kobj_ref, 1); 1516 return (0); 1517 1518 out_no_shrink: 1519 vm_page_free(glob->dummy_read_page); 1520 out_no_drp: 1521 free(glob, M_DRM_GLOBAL); 1522 return ret; 1523 } 1524 1525 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1526 { 1527 int ret = 0; 1528 unsigned i = TTM_NUM_MEM_TYPES; 1529 struct ttm_mem_type_manager *man; 1530 struct ttm_bo_global *glob = bdev->glob; 1531 1532 while (i--) { 1533 man = &bdev->man[i]; 1534 if (man->has_type) { 1535 man->use_type = false; 1536 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1537 ret = -EBUSY; 1538 printf("[TTM] DRM memory manager type %d is not clean\n", 1539 i); 1540 } 1541 man->has_type = false; 1542 } 1543 } 1544 1545 sx_xlock(&glob->device_list_mutex); 1546 list_del(&bdev->device_list); 1547 sx_xunlock(&glob->device_list_mutex); 1548 1549 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL)) 1550 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq); 1551 1552 while (ttm_bo_delayed_delete(bdev, true)) 1553 ; 1554 1555 mtx_lock(&glob->lru_lock); 1556 if (list_empty(&bdev->ddestroy)) 1557 TTM_DEBUG("Delayed destroy list was clean\n"); 1558 1559 if (list_empty(&bdev->man[0].lru)) 1560 TTM_DEBUG("Swap list was clean\n"); 1561 mtx_unlock(&glob->lru_lock); 1562 1563 MPASS(drm_mm_clean(&bdev->addr_space_mm)); 1564 rw_wlock(&bdev->vm_lock); 1565 drm_mm_takedown(&bdev->addr_space_mm); 1566 rw_wunlock(&bdev->vm_lock); 1567 1568 return ret; 1569 } 1570 1571 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1572 struct ttm_bo_global *glob, 1573 struct ttm_bo_driver *driver, 1574 uint64_t file_page_offset, 1575 bool need_dma32) 1576 { 1577 int ret = -EINVAL; 1578 1579 rw_init(&bdev->vm_lock, "ttmvml"); 1580 bdev->driver = driver; 1581 1582 memset(bdev->man, 0, sizeof(bdev->man)); 1583 1584 /* 1585 * Initialize the system memory buffer type. 1586 * Other types need to be driver / IOCTL initialized. 1587 */ 1588 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1589 if (unlikely(ret != 0)) 1590 goto out_no_sys; 1591 1592 RB_INIT(&bdev->addr_space_rb); 1593 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1594 if (unlikely(ret != 0)) 1595 goto out_no_addr_mm; 1596 1597 TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0, 1598 ttm_bo_delayed_workqueue, bdev); 1599 INIT_LIST_HEAD(&bdev->ddestroy); 1600 bdev->dev_mapping = NULL; 1601 bdev->glob = glob; 1602 bdev->need_dma32 = need_dma32; 1603 bdev->val_seq = 0; 1604 mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF); 1605 sx_xlock(&glob->device_list_mutex); 1606 list_add_tail(&bdev->device_list, &glob->device_list); 1607 sx_xunlock(&glob->device_list_mutex); 1608 1609 return 0; 1610 out_no_addr_mm: 1611 ttm_bo_clean_mm(bdev, 0); 1612 out_no_sys: 1613 return ret; 1614 } 1615 1616 /* 1617 * buffer object vm functions. 1618 */ 1619 1620 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1621 { 1622 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1623 1624 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1625 if (mem->mem_type == TTM_PL_SYSTEM) 1626 return false; 1627 1628 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1629 return false; 1630 1631 if (mem->placement & TTM_PL_FLAG_CACHED) 1632 return false; 1633 } 1634 return true; 1635 } 1636 1637 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1638 { 1639 1640 ttm_bo_release_mmap(bo); 1641 ttm_mem_io_free_vm(bo); 1642 } 1643 1644 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1645 { 1646 struct ttm_bo_device *bdev = bo->bdev; 1647 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1648 1649 ttm_mem_io_lock(man, false); 1650 ttm_bo_unmap_virtual_locked(bo); 1651 ttm_mem_io_unlock(man); 1652 } 1653 1654 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1655 { 1656 struct ttm_bo_device *bdev = bo->bdev; 1657 1658 /* The caller acquired bdev->vm_lock. */ 1659 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo); 1660 } 1661 1662 /** 1663 * ttm_bo_setup_vm: 1664 * 1665 * @bo: the buffer to allocate address space for 1666 * 1667 * Allocate address space in the drm device so that applications 1668 * can mmap the buffer and access the contents. This only 1669 * applies to ttm_bo_type_device objects as others are not 1670 * placed in the drm device address space. 1671 */ 1672 1673 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1674 { 1675 struct ttm_bo_device *bdev = bo->bdev; 1676 int ret; 1677 1678 retry_pre_get: 1679 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1680 if (unlikely(ret != 0)) 1681 return ret; 1682 1683 rw_wlock(&bdev->vm_lock); 1684 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1685 bo->mem.num_pages, 0, 0); 1686 1687 if (unlikely(bo->vm_node == NULL)) { 1688 ret = -ENOMEM; 1689 goto out_unlock; 1690 } 1691 1692 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1693 bo->mem.num_pages, 0); 1694 1695 if (unlikely(bo->vm_node == NULL)) { 1696 rw_wunlock(&bdev->vm_lock); 1697 goto retry_pre_get; 1698 } 1699 1700 ttm_bo_vm_insert_rb(bo); 1701 rw_wunlock(&bdev->vm_lock); 1702 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1703 1704 return 0; 1705 out_unlock: 1706 rw_wunlock(&bdev->vm_lock); 1707 return ret; 1708 } 1709 1710 int ttm_bo_wait(struct ttm_buffer_object *bo, 1711 bool lazy, bool interruptible, bool no_wait) 1712 { 1713 struct ttm_bo_driver *driver = bo->bdev->driver; 1714 struct ttm_bo_device *bdev = bo->bdev; 1715 void *sync_obj; 1716 int ret = 0; 1717 1718 if (likely(bo->sync_obj == NULL)) 1719 return 0; 1720 1721 while (bo->sync_obj) { 1722 1723 if (driver->sync_obj_signaled(bo->sync_obj)) { 1724 void *tmp_obj = bo->sync_obj; 1725 bo->sync_obj = NULL; 1726 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1727 mtx_unlock(&bdev->fence_lock); 1728 driver->sync_obj_unref(&tmp_obj); 1729 mtx_lock(&bdev->fence_lock); 1730 continue; 1731 } 1732 1733 if (no_wait) 1734 return -EBUSY; 1735 1736 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1737 mtx_unlock(&bdev->fence_lock); 1738 ret = driver->sync_obj_wait(sync_obj, 1739 lazy, interruptible); 1740 if (unlikely(ret != 0)) { 1741 driver->sync_obj_unref(&sync_obj); 1742 mtx_lock(&bdev->fence_lock); 1743 return ret; 1744 } 1745 mtx_lock(&bdev->fence_lock); 1746 if (likely(bo->sync_obj == sync_obj)) { 1747 void *tmp_obj = bo->sync_obj; 1748 bo->sync_obj = NULL; 1749 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1750 &bo->priv_flags); 1751 mtx_unlock(&bdev->fence_lock); 1752 driver->sync_obj_unref(&sync_obj); 1753 driver->sync_obj_unref(&tmp_obj); 1754 mtx_lock(&bdev->fence_lock); 1755 } else { 1756 mtx_unlock(&bdev->fence_lock); 1757 driver->sync_obj_unref(&sync_obj); 1758 mtx_lock(&bdev->fence_lock); 1759 } 1760 } 1761 return 0; 1762 } 1763 1764 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1765 { 1766 struct ttm_bo_device *bdev = bo->bdev; 1767 int ret = 0; 1768 1769 /* 1770 * Using ttm_bo_reserve makes sure the lru lists are updated. 1771 */ 1772 1773 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1774 if (unlikely(ret != 0)) 1775 return ret; 1776 mtx_lock(&bdev->fence_lock); 1777 ret = ttm_bo_wait(bo, false, true, no_wait); 1778 mtx_unlock(&bdev->fence_lock); 1779 if (likely(ret == 0)) 1780 atomic_inc(&bo->cpu_writers); 1781 ttm_bo_unreserve(bo); 1782 return ret; 1783 } 1784 1785 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1786 { 1787 atomic_dec(&bo->cpu_writers); 1788 } 1789 1790 /** 1791 * A buffer object shrink method that tries to swap out the first 1792 * buffer object on the bo_global::swap_lru list. 1793 */ 1794 1795 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1796 { 1797 struct ttm_bo_global *glob = 1798 container_of(shrink, struct ttm_bo_global, shrink); 1799 struct ttm_buffer_object *bo; 1800 int ret = -EBUSY; 1801 int put_count; 1802 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1803 1804 mtx_lock(&glob->lru_lock); 1805 list_for_each_entry(bo, &glob->swap_lru, swap) { 1806 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1807 if (!ret) 1808 break; 1809 } 1810 1811 if (ret) { 1812 mtx_unlock(&glob->lru_lock); 1813 return ret; 1814 } 1815 1816 refcount_acquire(&bo->list_kref); 1817 1818 if (!list_empty(&bo->ddestroy)) { 1819 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1820 if (refcount_release(&bo->list_kref)) 1821 ttm_bo_release_list(bo); 1822 return ret; 1823 } 1824 1825 put_count = ttm_bo_del_from_lru(bo); 1826 mtx_unlock(&glob->lru_lock); 1827 1828 ttm_bo_list_ref_sub(bo, put_count, true); 1829 1830 /** 1831 * Wait for GPU, then move to system cached. 1832 */ 1833 1834 mtx_lock(&bo->bdev->fence_lock); 1835 ret = ttm_bo_wait(bo, false, false, false); 1836 mtx_unlock(&bo->bdev->fence_lock); 1837 1838 if (unlikely(ret != 0)) 1839 goto out; 1840 1841 if ((bo->mem.placement & swap_placement) != swap_placement) { 1842 struct ttm_mem_reg evict_mem; 1843 1844 evict_mem = bo->mem; 1845 evict_mem.mm_node = NULL; 1846 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1847 evict_mem.mem_type = TTM_PL_SYSTEM; 1848 1849 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1850 false, false); 1851 if (unlikely(ret != 0)) 1852 goto out; 1853 } 1854 1855 ttm_bo_unmap_virtual(bo); 1856 1857 /** 1858 * Swap out. Buffer will be swapped in again as soon as 1859 * anyone tries to access a ttm page. 1860 */ 1861 1862 if (bo->bdev->driver->swap_notify) 1863 bo->bdev->driver->swap_notify(bo); 1864 1865 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1866 out: 1867 1868 /** 1869 * 1870 * Unreserve without putting on LRU to avoid swapping out an 1871 * already swapped buffer. 1872 */ 1873 1874 atomic_set(&bo->reserved, 0); 1875 wakeup(bo); 1876 if (refcount_release(&bo->list_kref)) 1877 ttm_bo_release_list(bo); 1878 return ret; 1879 } 1880 1881 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1882 { 1883 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1884 ; 1885 } 1886