xref: /freebsd/sys/dev/drm2/ttm/ttm_bo.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <dev/drm2/drmP.h>
35 #include <dev/drm2/ttm/ttm_module.h>
36 #include <dev/drm2/ttm/ttm_bo_driver.h>
37 #include <dev/drm2/ttm/ttm_placement.h>
38 
39 #define TTM_ASSERT_LOCKED(param)
40 #define TTM_DEBUG(fmt, arg...)
41 #define TTM_BO_HASH_ORDER 13
42 
43 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
44 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
45 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
46 
47 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
48 
49 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
50 {
51 	int i;
52 
53 	for (i = 0; i <= TTM_PL_PRIV5; i++)
54 		if (flags & (1 << i)) {
55 			*mem_type = i;
56 			return 0;
57 		}
58 	return -EINVAL;
59 }
60 
61 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
62 {
63 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
64 
65 	printf("    has_type: %d\n", man->has_type);
66 	printf("    use_type: %d\n", man->use_type);
67 	printf("    flags: 0x%08X\n", man->flags);
68 	printf("    gpu_offset: 0x%08lX\n", man->gpu_offset);
69 	printf("    size: %ju\n", (uintmax_t)man->size);
70 	printf("    available_caching: 0x%08X\n", man->available_caching);
71 	printf("    default_caching: 0x%08X\n", man->default_caching);
72 	if (mem_type != TTM_PL_SYSTEM)
73 		(*man->func->debug)(man, TTM_PFX);
74 }
75 
76 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
77 					struct ttm_placement *placement)
78 {
79 	int i, ret, mem_type;
80 
81 	printf("No space for %p (%lu pages, %luK, %luM)\n",
82 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
83 	       bo->mem.size >> 20);
84 	for (i = 0; i < placement->num_placement; i++) {
85 		ret = ttm_mem_type_from_flags(placement->placement[i],
86 						&mem_type);
87 		if (ret)
88 			return;
89 		printf("  placement[%d]=0x%08X (%d)\n",
90 		       i, placement->placement[i], mem_type);
91 		ttm_mem_type_debug(bo->bdev, mem_type);
92 	}
93 }
94 
95 #if 0
96 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
97     char *buffer)
98 {
99 
100 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
101 			(unsigned long) atomic_read(&glob->bo_count));
102 }
103 #endif
104 
105 static inline uint32_t ttm_bo_type_flags(unsigned type)
106 {
107 	return 1 << (type);
108 }
109 
110 static void ttm_bo_release_list(struct ttm_buffer_object *bo)
111 {
112 	struct ttm_bo_device *bdev = bo->bdev;
113 	size_t acc_size = bo->acc_size;
114 
115 	MPASS(atomic_read(&bo->list_kref) == 0);
116 	MPASS(atomic_read(&bo->kref) == 0);
117 	MPASS(atomic_read(&bo->cpu_writers) == 0);
118 	MPASS(bo->sync_obj == NULL);
119 	MPASS(bo->mem.mm_node == NULL);
120 	MPASS(list_empty(&bo->lru));
121 	MPASS(list_empty(&bo->ddestroy));
122 
123 	if (bo->ttm)
124 		ttm_tt_destroy(bo->ttm);
125 	atomic_dec(&bo->glob->bo_count);
126 	if (bo->destroy)
127 		bo->destroy(bo);
128 	else {
129 		free(bo, M_TTM_BO);
130 	}
131 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
132 }
133 
134 static int
135 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
136 {
137 	const char *wmsg;
138 	int flags, ret;
139 
140 	ret = 0;
141 	if (interruptible) {
142 		flags = PCATCH;
143 		wmsg = "ttbowi";
144 	} else {
145 		flags = 0;
146 		wmsg = "ttbowu";
147 	}
148 	while (ttm_bo_is_reserved(bo)) {
149 		ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0);
150 		if (ret == -EINTR)
151 			ret = -ERESTARTSYS;
152 		if (ret != 0)
153 			break;
154 	}
155 	return (ret);
156 }
157 
158 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
159 {
160 	struct ttm_bo_device *bdev = bo->bdev;
161 	struct ttm_mem_type_manager *man;
162 
163 	MPASS(ttm_bo_is_reserved(bo));
164 
165 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
166 
167 		MPASS(list_empty(&bo->lru));
168 
169 		man = &bdev->man[bo->mem.mem_type];
170 		list_add_tail(&bo->lru, &man->lru);
171 		refcount_acquire(&bo->list_kref);
172 
173 		if (bo->ttm != NULL) {
174 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
175 			refcount_acquire(&bo->list_kref);
176 		}
177 	}
178 }
179 
180 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
181 {
182 	int put_count = 0;
183 
184 	if (!list_empty(&bo->swap)) {
185 		list_del_init(&bo->swap);
186 		++put_count;
187 	}
188 	if (!list_empty(&bo->lru)) {
189 		list_del_init(&bo->lru);
190 		++put_count;
191 	}
192 
193 	/*
194 	 * TODO: Add a driver hook to delete from
195 	 * driver-specific LRU's here.
196 	 */
197 
198 	return put_count;
199 }
200 
201 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
202 			  bool interruptible,
203 			  bool no_wait, bool use_sequence, uint32_t sequence)
204 {
205 	int ret;
206 
207 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
208 		/**
209 		 * Deadlock avoidance for multi-bo reserving.
210 		 */
211 		if (use_sequence && bo->seq_valid) {
212 			/**
213 			 * We've already reserved this one.
214 			 */
215 			if (unlikely(sequence == bo->val_seq))
216 				return -EDEADLK;
217 			/**
218 			 * Already reserved by a thread that will not back
219 			 * off for us. We need to back off.
220 			 */
221 			if (unlikely(sequence - bo->val_seq < (1U << 31)))
222 				return -EAGAIN;
223 		}
224 
225 		if (no_wait)
226 			return -EBUSY;
227 
228 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
229 
230 		if (unlikely(ret))
231 			return ret;
232 	}
233 
234 	if (use_sequence) {
235 		bool wake_up = false;
236 		/**
237 		 * Wake up waiters that may need to recheck for deadlock,
238 		 * if we decreased the sequence number.
239 		 */
240 		if (unlikely((bo->val_seq - sequence < (1U << 31))
241 			     || !bo->seq_valid))
242 			wake_up = true;
243 
244 		/*
245 		 * In the worst case with memory ordering these values can be
246 		 * seen in the wrong order. However since we call wake_up_all
247 		 * in that case, this will hopefully not pose a problem,
248 		 * and the worst case would only cause someone to accidentally
249 		 * hit -EAGAIN in ttm_bo_reserve when they see old value of
250 		 * val_seq. However this would only happen if seq_valid was
251 		 * written before val_seq was, and just means some slightly
252 		 * increased cpu usage
253 		 */
254 		bo->val_seq = sequence;
255 		bo->seq_valid = true;
256 		if (wake_up)
257 			wakeup(bo);
258 	} else {
259 		bo->seq_valid = false;
260 	}
261 
262 	return 0;
263 }
264 
265 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
266 			 bool never_free)
267 {
268 	u_int old;
269 
270 	old = atomic_fetchadd_int(&bo->list_kref, -count);
271 	if (old <= count) {
272 		if (never_free)
273 			panic("ttm_bo_ref_buf");
274 		ttm_bo_release_list(bo);
275 	}
276 }
277 
278 int ttm_bo_reserve(struct ttm_buffer_object *bo,
279 		   bool interruptible,
280 		   bool no_wait, bool use_sequence, uint32_t sequence)
281 {
282 	struct ttm_bo_global *glob = bo->glob;
283 	int put_count = 0;
284 	int ret;
285 
286 	mtx_lock(&bo->glob->lru_lock);
287 	ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
288 				   sequence);
289 	if (likely(ret == 0)) {
290 		put_count = ttm_bo_del_from_lru(bo);
291 		mtx_unlock(&glob->lru_lock);
292 		ttm_bo_list_ref_sub(bo, put_count, true);
293 	} else
294 		mtx_unlock(&bo->glob->lru_lock);
295 
296 	return ret;
297 }
298 
299 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
300 				  bool interruptible, uint32_t sequence)
301 {
302 	bool wake_up = false;
303 	int ret;
304 
305 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
306 		if (bo->seq_valid && sequence == bo->val_seq) {
307 			DRM_ERROR(
308 			    "%s: bo->seq_valid && sequence == bo->val_seq",
309 			    __func__);
310 		}
311 
312 		ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
313 
314 		if (unlikely(ret))
315 			return ret;
316 	}
317 
318 	if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
319 		wake_up = true;
320 
321 	/**
322 	 * Wake up waiters that may need to recheck for deadlock,
323 	 * if we decreased the sequence number.
324 	 */
325 	bo->val_seq = sequence;
326 	bo->seq_valid = true;
327 	if (wake_up)
328 		wakeup(bo);
329 
330 	return 0;
331 }
332 
333 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
334 			    bool interruptible, uint32_t sequence)
335 {
336 	struct ttm_bo_global *glob = bo->glob;
337 	int put_count, ret;
338 
339 	mtx_lock(&glob->lru_lock);
340 	ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
341 	if (likely(!ret)) {
342 		put_count = ttm_bo_del_from_lru(bo);
343 		mtx_unlock(&glob->lru_lock);
344 		ttm_bo_list_ref_sub(bo, put_count, true);
345 	} else
346 		mtx_unlock(&glob->lru_lock);
347 	return ret;
348 }
349 
350 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
351 {
352 	ttm_bo_add_to_lru(bo);
353 	atomic_set(&bo->reserved, 0);
354 	wakeup(bo);
355 }
356 
357 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
358 {
359 	struct ttm_bo_global *glob = bo->glob;
360 
361 	mtx_lock(&glob->lru_lock);
362 	ttm_bo_unreserve_locked(bo);
363 	mtx_unlock(&glob->lru_lock);
364 }
365 
366 /*
367  * Call bo->mutex locked.
368  */
369 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
370 {
371 	struct ttm_bo_device *bdev = bo->bdev;
372 	struct ttm_bo_global *glob = bo->glob;
373 	int ret = 0;
374 	uint32_t page_flags = 0;
375 
376 	TTM_ASSERT_LOCKED(&bo->mutex);
377 	bo->ttm = NULL;
378 
379 	if (bdev->need_dma32)
380 		page_flags |= TTM_PAGE_FLAG_DMA32;
381 
382 	switch (bo->type) {
383 	case ttm_bo_type_device:
384 		if (zero_alloc)
385 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
386 	case ttm_bo_type_kernel:
387 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
388 						      page_flags, glob->dummy_read_page);
389 		if (unlikely(bo->ttm == NULL))
390 			ret = -ENOMEM;
391 		break;
392 	case ttm_bo_type_sg:
393 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
394 						      page_flags | TTM_PAGE_FLAG_SG,
395 						      glob->dummy_read_page);
396 		if (unlikely(bo->ttm == NULL)) {
397 			ret = -ENOMEM;
398 			break;
399 		}
400 		bo->ttm->sg = bo->sg;
401 		break;
402 	default:
403 		printf("[TTM] Illegal buffer object type\n");
404 		ret = -EINVAL;
405 		break;
406 	}
407 
408 	return ret;
409 }
410 
411 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
412 				  struct ttm_mem_reg *mem,
413 				  bool evict, bool interruptible,
414 				  bool no_wait_gpu)
415 {
416 	struct ttm_bo_device *bdev = bo->bdev;
417 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
418 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
419 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
420 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
421 	int ret = 0;
422 
423 	if (old_is_pci || new_is_pci ||
424 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
425 		ret = ttm_mem_io_lock(old_man, true);
426 		if (unlikely(ret != 0))
427 			goto out_err;
428 		ttm_bo_unmap_virtual_locked(bo);
429 		ttm_mem_io_unlock(old_man);
430 	}
431 
432 	/*
433 	 * Create and bind a ttm if required.
434 	 */
435 
436 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
437 		if (bo->ttm == NULL) {
438 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
439 			ret = ttm_bo_add_ttm(bo, zero);
440 			if (ret)
441 				goto out_err;
442 		}
443 
444 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
445 		if (ret)
446 			goto out_err;
447 
448 		if (mem->mem_type != TTM_PL_SYSTEM) {
449 			ret = ttm_tt_bind(bo->ttm, mem);
450 			if (ret)
451 				goto out_err;
452 		}
453 
454 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
455 			if (bdev->driver->move_notify)
456 				bdev->driver->move_notify(bo, mem);
457 			bo->mem = *mem;
458 			mem->mm_node = NULL;
459 			goto moved;
460 		}
461 	}
462 
463 	if (bdev->driver->move_notify)
464 		bdev->driver->move_notify(bo, mem);
465 
466 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
467 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
468 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
469 	else if (bdev->driver->move)
470 		ret = bdev->driver->move(bo, evict, interruptible,
471 					 no_wait_gpu, mem);
472 	else
473 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
474 
475 	if (ret) {
476 		if (bdev->driver->move_notify) {
477 			struct ttm_mem_reg tmp_mem = *mem;
478 			*mem = bo->mem;
479 			bo->mem = tmp_mem;
480 			bdev->driver->move_notify(bo, mem);
481 			bo->mem = *mem;
482 			*mem = tmp_mem;
483 		}
484 
485 		goto out_err;
486 	}
487 
488 moved:
489 	if (bo->evicted) {
490 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
491 		if (ret)
492 			printf("[TTM] Can not flush read caches\n");
493 		bo->evicted = false;
494 	}
495 
496 	if (bo->mem.mm_node) {
497 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
498 		    bdev->man[bo->mem.mem_type].gpu_offset;
499 		bo->cur_placement = bo->mem.placement;
500 	} else
501 		bo->offset = 0;
502 
503 	return 0;
504 
505 out_err:
506 	new_man = &bdev->man[bo->mem.mem_type];
507 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
508 		ttm_tt_unbind(bo->ttm);
509 		ttm_tt_destroy(bo->ttm);
510 		bo->ttm = NULL;
511 	}
512 
513 	return ret;
514 }
515 
516 /**
517  * Call bo::reserved.
518  * Will release GPU memory type usage on destruction.
519  * This is the place to put in driver specific hooks to release
520  * driver private resources.
521  * Will release the bo::reserved lock.
522  */
523 
524 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
525 {
526 	if (bo->bdev->driver->move_notify)
527 		bo->bdev->driver->move_notify(bo, NULL);
528 
529 	if (bo->ttm) {
530 		ttm_tt_unbind(bo->ttm);
531 		ttm_tt_destroy(bo->ttm);
532 		bo->ttm = NULL;
533 	}
534 	ttm_bo_mem_put(bo, &bo->mem);
535 
536 	atomic_set(&bo->reserved, 0);
537 	wakeup(&bo);
538 
539 	/*
540 	 * Since the final reference to this bo may not be dropped by
541 	 * the current task we have to put a memory barrier here to make
542 	 * sure the changes done in this function are always visible.
543 	 *
544 	 * This function only needs protection against the final kref_put.
545 	 */
546 	mb();
547 }
548 
549 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
550 {
551 	struct ttm_bo_device *bdev = bo->bdev;
552 	struct ttm_bo_global *glob = bo->glob;
553 	struct ttm_bo_driver *driver = bdev->driver;
554 	void *sync_obj = NULL;
555 	int put_count;
556 	int ret;
557 
558 	mtx_lock(&glob->lru_lock);
559 	ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
560 
561 	mtx_lock(&bdev->fence_lock);
562 	(void) ttm_bo_wait(bo, false, false, true);
563 	if (!ret && !bo->sync_obj) {
564 		mtx_unlock(&bdev->fence_lock);
565 		put_count = ttm_bo_del_from_lru(bo);
566 
567 		mtx_unlock(&glob->lru_lock);
568 		ttm_bo_cleanup_memtype_use(bo);
569 
570 		ttm_bo_list_ref_sub(bo, put_count, true);
571 
572 		return;
573 	}
574 	if (bo->sync_obj)
575 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
576 	mtx_unlock(&bdev->fence_lock);
577 
578 	if (!ret) {
579 		atomic_set(&bo->reserved, 0);
580 		wakeup(bo);
581 	}
582 
583 	refcount_acquire(&bo->list_kref);
584 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
585 	mtx_unlock(&glob->lru_lock);
586 
587 	if (sync_obj) {
588 		driver->sync_obj_flush(sync_obj);
589 		driver->sync_obj_unref(&sync_obj);
590 	}
591 	taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
592 	    ((hz / 100) < 1) ? 1 : hz / 100);
593 }
594 
595 /**
596  * function ttm_bo_cleanup_refs_and_unlock
597  * If bo idle, remove from delayed- and lru lists, and unref.
598  * If not idle, do nothing.
599  *
600  * Must be called with lru_lock and reservation held, this function
601  * will drop both before returning.
602  *
603  * @interruptible         Any sleeps should occur interruptibly.
604  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
605  */
606 
607 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
608 					  bool interruptible,
609 					  bool no_wait_gpu)
610 {
611 	struct ttm_bo_device *bdev = bo->bdev;
612 	struct ttm_bo_driver *driver = bdev->driver;
613 	struct ttm_bo_global *glob = bo->glob;
614 	int put_count;
615 	int ret;
616 
617 	mtx_lock(&bdev->fence_lock);
618 	ret = ttm_bo_wait(bo, false, false, true);
619 
620 	if (ret && !no_wait_gpu) {
621 		void *sync_obj;
622 
623 		/*
624 		 * Take a reference to the fence and unreserve,
625 		 * at this point the buffer should be dead, so
626 		 * no new sync objects can be attached.
627 		 */
628 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
629 		mtx_unlock(&bdev->fence_lock);
630 
631 		atomic_set(&bo->reserved, 0);
632 		wakeup(bo);
633 		mtx_unlock(&glob->lru_lock);
634 
635 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
636 		driver->sync_obj_unref(&sync_obj);
637 		if (ret)
638 			return ret;
639 
640 		/*
641 		 * remove sync_obj with ttm_bo_wait, the wait should be
642 		 * finished, and no new wait object should have been added.
643 		 */
644 		mtx_lock(&bdev->fence_lock);
645 		ret = ttm_bo_wait(bo, false, false, true);
646 		mtx_unlock(&bdev->fence_lock);
647 		if (ret)
648 			return ret;
649 
650 		mtx_lock(&glob->lru_lock);
651 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
652 
653 		/*
654 		 * We raced, and lost, someone else holds the reservation now,
655 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
656 		 *
657 		 * Even if it's not the case, because we finished waiting any
658 		 * delayed destruction would succeed, so just return success
659 		 * here.
660 		 */
661 		if (ret) {
662 			mtx_unlock(&glob->lru_lock);
663 			return 0;
664 		}
665 	} else
666 		mtx_unlock(&bdev->fence_lock);
667 
668 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
669 		atomic_set(&bo->reserved, 0);
670 		wakeup(bo);
671 		mtx_unlock(&glob->lru_lock);
672 		return ret;
673 	}
674 
675 	put_count = ttm_bo_del_from_lru(bo);
676 	list_del_init(&bo->ddestroy);
677 	++put_count;
678 
679 	mtx_unlock(&glob->lru_lock);
680 	ttm_bo_cleanup_memtype_use(bo);
681 
682 	ttm_bo_list_ref_sub(bo, put_count, true);
683 
684 	return 0;
685 }
686 
687 /**
688  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
689  * encountered buffers.
690  */
691 
692 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
693 {
694 	struct ttm_bo_global *glob = bdev->glob;
695 	struct ttm_buffer_object *entry = NULL;
696 	int ret = 0;
697 
698 	mtx_lock(&glob->lru_lock);
699 	if (list_empty(&bdev->ddestroy))
700 		goto out_unlock;
701 
702 	entry = list_first_entry(&bdev->ddestroy,
703 		struct ttm_buffer_object, ddestroy);
704 	refcount_acquire(&entry->list_kref);
705 
706 	for (;;) {
707 		struct ttm_buffer_object *nentry = NULL;
708 
709 		if (entry->ddestroy.next != &bdev->ddestroy) {
710 			nentry = list_first_entry(&entry->ddestroy,
711 				struct ttm_buffer_object, ddestroy);
712 			refcount_acquire(&nentry->list_kref);
713 		}
714 
715 		ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
716 		if (remove_all && ret) {
717 			ret = ttm_bo_reserve_nolru(entry, false, false,
718 						   false, 0);
719 		}
720 
721 		if (!ret)
722 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
723 							     !remove_all);
724 		else
725 			mtx_unlock(&glob->lru_lock);
726 
727 		if (refcount_release(&entry->list_kref))
728 			ttm_bo_release_list(entry);
729 		entry = nentry;
730 
731 		if (ret || !entry)
732 			goto out;
733 
734 		mtx_lock(&glob->lru_lock);
735 		if (list_empty(&entry->ddestroy))
736 			break;
737 	}
738 
739 out_unlock:
740 	mtx_unlock(&glob->lru_lock);
741 out:
742 	if (entry && refcount_release(&entry->list_kref))
743 		ttm_bo_release_list(entry);
744 	return ret;
745 }
746 
747 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
748 {
749 	struct ttm_bo_device *bdev = arg;
750 
751 	if (ttm_bo_delayed_delete(bdev, false)) {
752 		taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
753 		    ((hz / 100) < 1) ? 1 : hz / 100);
754 	}
755 }
756 
757 static void ttm_bo_release(struct ttm_buffer_object *bo)
758 {
759 	struct ttm_bo_device *bdev = bo->bdev;
760 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
761 
762 	rw_wlock(&bdev->vm_lock);
763 	if (likely(bo->vm_node != NULL)) {
764 		RB_REMOVE(ttm_bo_device_buffer_objects,
765 		    &bdev->addr_space_rb, bo);
766 		drm_mm_put_block(bo->vm_node);
767 		bo->vm_node = NULL;
768 	}
769 	rw_wunlock(&bdev->vm_lock);
770 	ttm_mem_io_lock(man, false);
771 	ttm_mem_io_free_vm(bo);
772 	ttm_mem_io_unlock(man);
773 	ttm_bo_cleanup_refs_or_queue(bo);
774 	if (refcount_release(&bo->list_kref))
775 		ttm_bo_release_list(bo);
776 }
777 
778 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
779 {
780 	struct ttm_buffer_object *bo = *p_bo;
781 
782 	*p_bo = NULL;
783 	if (refcount_release(&bo->kref))
784 		ttm_bo_release(bo);
785 }
786 
787 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
788 {
789 	int pending;
790 
791 	taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending);
792 	if (pending)
793 		taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
794 	return (pending);
795 }
796 
797 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
798 {
799 	if (resched) {
800 		taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
801 		    ((hz / 100) < 1) ? 1 : hz / 100);
802 	}
803 }
804 
805 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
806 			bool no_wait_gpu)
807 {
808 	struct ttm_bo_device *bdev = bo->bdev;
809 	struct ttm_mem_reg evict_mem;
810 	struct ttm_placement placement;
811 	int ret = 0;
812 
813 	mtx_lock(&bdev->fence_lock);
814 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
815 	mtx_unlock(&bdev->fence_lock);
816 
817 	if (unlikely(ret != 0)) {
818 		if (ret != -ERESTART) {
819 			printf("[TTM] Failed to expire sync object before buffer eviction\n");
820 		}
821 		goto out;
822 	}
823 
824 	MPASS(ttm_bo_is_reserved(bo));
825 
826 	evict_mem = bo->mem;
827 	evict_mem.mm_node = NULL;
828 	evict_mem.bus.io_reserved_vm = false;
829 	evict_mem.bus.io_reserved_count = 0;
830 
831 	placement.fpfn = 0;
832 	placement.lpfn = 0;
833 	placement.num_placement = 0;
834 	placement.num_busy_placement = 0;
835 	bdev->driver->evict_flags(bo, &placement);
836 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
837 				no_wait_gpu);
838 	if (ret) {
839 		if (ret != -ERESTART) {
840 			printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
841 			       bo);
842 			ttm_bo_mem_space_debug(bo, &placement);
843 		}
844 		goto out;
845 	}
846 
847 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
848 				     no_wait_gpu);
849 	if (ret) {
850 		if (ret != -ERESTART)
851 			printf("[TTM] Buffer eviction failed\n");
852 		ttm_bo_mem_put(bo, &evict_mem);
853 		goto out;
854 	}
855 	bo->evicted = true;
856 out:
857 	return ret;
858 }
859 
860 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
861 				uint32_t mem_type,
862 				bool interruptible,
863 				bool no_wait_gpu)
864 {
865 	struct ttm_bo_global *glob = bdev->glob;
866 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
867 	struct ttm_buffer_object *bo;
868 	int ret = -EBUSY, put_count;
869 
870 	mtx_lock(&glob->lru_lock);
871 	list_for_each_entry(bo, &man->lru, lru) {
872 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
873 		if (!ret)
874 			break;
875 	}
876 
877 	if (ret) {
878 		mtx_unlock(&glob->lru_lock);
879 		return ret;
880 	}
881 
882 	refcount_acquire(&bo->list_kref);
883 
884 	if (!list_empty(&bo->ddestroy)) {
885 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
886 						     no_wait_gpu);
887 		if (refcount_release(&bo->list_kref))
888 			ttm_bo_release_list(bo);
889 		return ret;
890 	}
891 
892 	put_count = ttm_bo_del_from_lru(bo);
893 	mtx_unlock(&glob->lru_lock);
894 
895 	MPASS(ret == 0);
896 
897 	ttm_bo_list_ref_sub(bo, put_count, true);
898 
899 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
900 	ttm_bo_unreserve(bo);
901 
902 	if (refcount_release(&bo->list_kref))
903 		ttm_bo_release_list(bo);
904 	return ret;
905 }
906 
907 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
908 {
909 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
910 
911 	if (mem->mm_node)
912 		(*man->func->put_node)(man, mem);
913 }
914 
915 /**
916  * Repeatedly evict memory from the LRU for @mem_type until we create enough
917  * space, or we've evicted everything and there isn't enough space.
918  */
919 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
920 					uint32_t mem_type,
921 					struct ttm_placement *placement,
922 					struct ttm_mem_reg *mem,
923 					bool interruptible,
924 					bool no_wait_gpu)
925 {
926 	struct ttm_bo_device *bdev = bo->bdev;
927 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
928 	int ret;
929 
930 	do {
931 		ret = (*man->func->get_node)(man, bo, placement, mem);
932 		if (unlikely(ret != 0))
933 			return ret;
934 		if (mem->mm_node)
935 			break;
936 		ret = ttm_mem_evict_first(bdev, mem_type,
937 					  interruptible, no_wait_gpu);
938 		if (unlikely(ret != 0))
939 			return ret;
940 	} while (1);
941 	if (mem->mm_node == NULL)
942 		return -ENOMEM;
943 	mem->mem_type = mem_type;
944 	return 0;
945 }
946 
947 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
948 				      uint32_t cur_placement,
949 				      uint32_t proposed_placement)
950 {
951 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
952 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
953 
954 	/**
955 	 * Keep current caching if possible.
956 	 */
957 
958 	if ((cur_placement & caching) != 0)
959 		result |= (cur_placement & caching);
960 	else if ((man->default_caching & caching) != 0)
961 		result |= man->default_caching;
962 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
963 		result |= TTM_PL_FLAG_CACHED;
964 	else if ((TTM_PL_FLAG_WC & caching) != 0)
965 		result |= TTM_PL_FLAG_WC;
966 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
967 		result |= TTM_PL_FLAG_UNCACHED;
968 
969 	return result;
970 }
971 
972 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
973 				 uint32_t mem_type,
974 				 uint32_t proposed_placement,
975 				 uint32_t *masked_placement)
976 {
977 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
978 
979 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
980 		return false;
981 
982 	if ((proposed_placement & man->available_caching) == 0)
983 		return false;
984 
985 	cur_flags |= (proposed_placement & man->available_caching);
986 
987 	*masked_placement = cur_flags;
988 	return true;
989 }
990 
991 /**
992  * Creates space for memory region @mem according to its type.
993  *
994  * This function first searches for free space in compatible memory types in
995  * the priority order defined by the driver.  If free space isn't found, then
996  * ttm_bo_mem_force_space is attempted in priority order to evict and find
997  * space.
998  */
999 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1000 			struct ttm_placement *placement,
1001 			struct ttm_mem_reg *mem,
1002 			bool interruptible,
1003 			bool no_wait_gpu)
1004 {
1005 	struct ttm_bo_device *bdev = bo->bdev;
1006 	struct ttm_mem_type_manager *man;
1007 	uint32_t mem_type = TTM_PL_SYSTEM;
1008 	uint32_t cur_flags = 0;
1009 	bool type_found = false;
1010 	bool type_ok = false;
1011 	bool has_erestartsys = false;
1012 	int i, ret;
1013 
1014 	mem->mm_node = NULL;
1015 	for (i = 0; i < placement->num_placement; ++i) {
1016 		ret = ttm_mem_type_from_flags(placement->placement[i],
1017 						&mem_type);
1018 		if (ret)
1019 			return ret;
1020 		man = &bdev->man[mem_type];
1021 
1022 		type_ok = ttm_bo_mt_compatible(man,
1023 						mem_type,
1024 						placement->placement[i],
1025 						&cur_flags);
1026 
1027 		if (!type_ok)
1028 			continue;
1029 
1030 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1031 						  cur_flags);
1032 		/*
1033 		 * Use the access and other non-mapping-related flag bits from
1034 		 * the memory placement flags to the current flags
1035 		 */
1036 		ttm_flag_masked(&cur_flags, placement->placement[i],
1037 				~TTM_PL_MASK_MEMTYPE);
1038 
1039 		if (mem_type == TTM_PL_SYSTEM)
1040 			break;
1041 
1042 		if (man->has_type && man->use_type) {
1043 			type_found = true;
1044 			ret = (*man->func->get_node)(man, bo, placement, mem);
1045 			if (unlikely(ret))
1046 				return ret;
1047 		}
1048 		if (mem->mm_node)
1049 			break;
1050 	}
1051 
1052 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1053 		mem->mem_type = mem_type;
1054 		mem->placement = cur_flags;
1055 		return 0;
1056 	}
1057 
1058 	if (!type_found)
1059 		return -EINVAL;
1060 
1061 	for (i = 0; i < placement->num_busy_placement; ++i) {
1062 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1063 						&mem_type);
1064 		if (ret)
1065 			return ret;
1066 		man = &bdev->man[mem_type];
1067 		if (!man->has_type)
1068 			continue;
1069 		if (!ttm_bo_mt_compatible(man,
1070 						mem_type,
1071 						placement->busy_placement[i],
1072 						&cur_flags))
1073 			continue;
1074 
1075 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1076 						  cur_flags);
1077 		/*
1078 		 * Use the access and other non-mapping-related flag bits from
1079 		 * the memory placement flags to the current flags
1080 		 */
1081 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1082 				~TTM_PL_MASK_MEMTYPE);
1083 
1084 
1085 		if (mem_type == TTM_PL_SYSTEM) {
1086 			mem->mem_type = mem_type;
1087 			mem->placement = cur_flags;
1088 			mem->mm_node = NULL;
1089 			return 0;
1090 		}
1091 
1092 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1093 						interruptible, no_wait_gpu);
1094 		if (ret == 0 && mem->mm_node) {
1095 			mem->placement = cur_flags;
1096 			return 0;
1097 		}
1098 		if (ret == -ERESTART)
1099 			has_erestartsys = true;
1100 	}
1101 	ret = (has_erestartsys) ? -ERESTART : -ENOMEM;
1102 	return ret;
1103 }
1104 
1105 static
1106 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1107 			struct ttm_placement *placement,
1108 			bool interruptible,
1109 			bool no_wait_gpu)
1110 {
1111 	int ret = 0;
1112 	struct ttm_mem_reg mem;
1113 	struct ttm_bo_device *bdev = bo->bdev;
1114 
1115 	MPASS(ttm_bo_is_reserved(bo));
1116 
1117 	/*
1118 	 * FIXME: It's possible to pipeline buffer moves.
1119 	 * Have the driver move function wait for idle when necessary,
1120 	 * instead of doing it here.
1121 	 */
1122 	mtx_lock(&bdev->fence_lock);
1123 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1124 	mtx_unlock(&bdev->fence_lock);
1125 	if (ret)
1126 		return ret;
1127 	mem.num_pages = bo->num_pages;
1128 	mem.size = mem.num_pages << PAGE_SHIFT;
1129 	mem.page_alignment = bo->mem.page_alignment;
1130 	mem.bus.io_reserved_vm = false;
1131 	mem.bus.io_reserved_count = 0;
1132 	/*
1133 	 * Determine where to move the buffer.
1134 	 */
1135 	ret = ttm_bo_mem_space(bo, placement, &mem,
1136 			       interruptible, no_wait_gpu);
1137 	if (ret)
1138 		goto out_unlock;
1139 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1140 				     interruptible, no_wait_gpu);
1141 out_unlock:
1142 	if (ret && mem.mm_node)
1143 		ttm_bo_mem_put(bo, &mem);
1144 	return ret;
1145 }
1146 
1147 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1148 			     struct ttm_mem_reg *mem)
1149 {
1150 	int i;
1151 
1152 	if (mem->mm_node && placement->lpfn != 0 &&
1153 	    (mem->start < placement->fpfn ||
1154 	     mem->start + mem->num_pages > placement->lpfn))
1155 		return -1;
1156 
1157 	for (i = 0; i < placement->num_placement; i++) {
1158 		if ((placement->placement[i] & mem->placement &
1159 			TTM_PL_MASK_CACHING) &&
1160 			(placement->placement[i] & mem->placement &
1161 			TTM_PL_MASK_MEM))
1162 			return i;
1163 	}
1164 	return -1;
1165 }
1166 
1167 int ttm_bo_validate(struct ttm_buffer_object *bo,
1168 			struct ttm_placement *placement,
1169 			bool interruptible,
1170 			bool no_wait_gpu)
1171 {
1172 	int ret;
1173 
1174 	MPASS(ttm_bo_is_reserved(bo));
1175 	/* Check that range is valid */
1176 	if (placement->lpfn || placement->fpfn)
1177 		if (placement->fpfn > placement->lpfn ||
1178 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1179 			return -EINVAL;
1180 	/*
1181 	 * Check whether we need to move buffer.
1182 	 */
1183 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1184 	if (ret < 0) {
1185 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1186 					 no_wait_gpu);
1187 		if (ret)
1188 			return ret;
1189 	} else {
1190 		/*
1191 		 * Use the access and other non-mapping-related flag bits from
1192 		 * the compatible memory placement flags to the active flags
1193 		 */
1194 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1195 				~TTM_PL_MASK_MEMTYPE);
1196 	}
1197 	/*
1198 	 * We might need to add a TTM.
1199 	 */
1200 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1201 		ret = ttm_bo_add_ttm(bo, true);
1202 		if (ret)
1203 			return ret;
1204 	}
1205 	return 0;
1206 }
1207 
1208 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1209 				struct ttm_placement *placement)
1210 {
1211 	MPASS(!((placement->fpfn || placement->lpfn) &&
1212 	    (bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
1213 
1214 	return 0;
1215 }
1216 
1217 int ttm_bo_init(struct ttm_bo_device *bdev,
1218 		struct ttm_buffer_object *bo,
1219 		unsigned long size,
1220 		enum ttm_bo_type type,
1221 		struct ttm_placement *placement,
1222 		uint32_t page_alignment,
1223 		bool interruptible,
1224 		struct vm_object *persistent_swap_storage,
1225 		size_t acc_size,
1226 		struct sg_table *sg,
1227 		void (*destroy) (struct ttm_buffer_object *))
1228 {
1229 	int ret = 0;
1230 	unsigned long num_pages;
1231 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1232 
1233 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1234 	if (ret) {
1235 		printf("[TTM] Out of kernel memory\n");
1236 		if (destroy)
1237 			(*destroy)(bo);
1238 		else
1239 			free(bo, M_TTM_BO);
1240 		return -ENOMEM;
1241 	}
1242 
1243 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1244 	if (num_pages == 0) {
1245 		printf("[TTM] Illegal buffer object size\n");
1246 		if (destroy)
1247 			(*destroy)(bo);
1248 		else
1249 			free(bo, M_TTM_BO);
1250 		ttm_mem_global_free(mem_glob, acc_size);
1251 		return -EINVAL;
1252 	}
1253 	bo->destroy = destroy;
1254 
1255 	refcount_init(&bo->kref, 1);
1256 	refcount_init(&bo->list_kref, 1);
1257 	atomic_set(&bo->cpu_writers, 0);
1258 	atomic_set(&bo->reserved, 1);
1259 	INIT_LIST_HEAD(&bo->lru);
1260 	INIT_LIST_HEAD(&bo->ddestroy);
1261 	INIT_LIST_HEAD(&bo->swap);
1262 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1263 	bo->bdev = bdev;
1264 	bo->glob = bdev->glob;
1265 	bo->type = type;
1266 	bo->num_pages = num_pages;
1267 	bo->mem.size = num_pages << PAGE_SHIFT;
1268 	bo->mem.mem_type = TTM_PL_SYSTEM;
1269 	bo->mem.num_pages = bo->num_pages;
1270 	bo->mem.mm_node = NULL;
1271 	bo->mem.page_alignment = page_alignment;
1272 	bo->mem.bus.io_reserved_vm = false;
1273 	bo->mem.bus.io_reserved_count = 0;
1274 	bo->priv_flags = 0;
1275 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1276 	bo->seq_valid = false;
1277 	bo->persistent_swap_storage = persistent_swap_storage;
1278 	bo->acc_size = acc_size;
1279 	bo->sg = sg;
1280 	atomic_inc(&bo->glob->bo_count);
1281 
1282 	ret = ttm_bo_check_placement(bo, placement);
1283 	if (unlikely(ret != 0))
1284 		goto out_err;
1285 
1286 	/*
1287 	 * For ttm_bo_type_device buffers, allocate
1288 	 * address space from the device.
1289 	 */
1290 	if (bo->type == ttm_bo_type_device ||
1291 	    bo->type == ttm_bo_type_sg) {
1292 		ret = ttm_bo_setup_vm(bo);
1293 		if (ret)
1294 			goto out_err;
1295 	}
1296 
1297 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1298 	if (ret)
1299 		goto out_err;
1300 
1301 	ttm_bo_unreserve(bo);
1302 	return 0;
1303 
1304 out_err:
1305 	ttm_bo_unreserve(bo);
1306 	ttm_bo_unref(&bo);
1307 
1308 	return ret;
1309 }
1310 
1311 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1312 		       unsigned long bo_size,
1313 		       unsigned struct_size)
1314 {
1315 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1316 	size_t size = 0;
1317 
1318 	size += ttm_round_pot(struct_size);
1319 	size += PAGE_ALIGN(npages * sizeof(void *));
1320 	size += ttm_round_pot(sizeof(struct ttm_tt));
1321 	return size;
1322 }
1323 
1324 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1325 			   unsigned long bo_size,
1326 			   unsigned struct_size)
1327 {
1328 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1329 	size_t size = 0;
1330 
1331 	size += ttm_round_pot(struct_size);
1332 	size += PAGE_ALIGN(npages * sizeof(void *));
1333 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1334 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1335 	return size;
1336 }
1337 
1338 int ttm_bo_create(struct ttm_bo_device *bdev,
1339 			unsigned long size,
1340 			enum ttm_bo_type type,
1341 			struct ttm_placement *placement,
1342 			uint32_t page_alignment,
1343 			bool interruptible,
1344 			struct vm_object *persistent_swap_storage,
1345 			struct ttm_buffer_object **p_bo)
1346 {
1347 	struct ttm_buffer_object *bo;
1348 	size_t acc_size;
1349 	int ret;
1350 
1351 	bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
1352 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1353 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1354 			  interruptible, persistent_swap_storage, acc_size,
1355 			  NULL, NULL);
1356 	if (likely(ret == 0))
1357 		*p_bo = bo;
1358 
1359 	return ret;
1360 }
1361 
1362 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1363 					unsigned mem_type, bool allow_errors)
1364 {
1365 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1366 	struct ttm_bo_global *glob = bdev->glob;
1367 	int ret;
1368 
1369 	/*
1370 	 * Can't use standard list traversal since we're unlocking.
1371 	 */
1372 
1373 	mtx_lock(&glob->lru_lock);
1374 	while (!list_empty(&man->lru)) {
1375 		mtx_unlock(&glob->lru_lock);
1376 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1377 		if (ret) {
1378 			if (allow_errors) {
1379 				return ret;
1380 			} else {
1381 				printf("[TTM] Cleanup eviction failed\n");
1382 			}
1383 		}
1384 		mtx_lock(&glob->lru_lock);
1385 	}
1386 	mtx_unlock(&glob->lru_lock);
1387 	return 0;
1388 }
1389 
1390 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1391 {
1392 	struct ttm_mem_type_manager *man;
1393 	int ret = -EINVAL;
1394 
1395 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1396 		printf("[TTM] Illegal memory type %d\n", mem_type);
1397 		return ret;
1398 	}
1399 	man = &bdev->man[mem_type];
1400 
1401 	if (!man->has_type) {
1402 		printf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1403 		       mem_type);
1404 		return ret;
1405 	}
1406 
1407 	man->use_type = false;
1408 	man->has_type = false;
1409 
1410 	ret = 0;
1411 	if (mem_type > 0) {
1412 		ttm_bo_force_list_clean(bdev, mem_type, false);
1413 
1414 		ret = (*man->func->takedown)(man);
1415 	}
1416 
1417 	return ret;
1418 }
1419 
1420 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1421 {
1422 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1423 
1424 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1425 		printf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1426 		return -EINVAL;
1427 	}
1428 
1429 	if (!man->has_type) {
1430 		printf("[TTM] Memory type %u has not been initialized\n", mem_type);
1431 		return 0;
1432 	}
1433 
1434 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1435 }
1436 
1437 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1438 			unsigned long p_size)
1439 {
1440 	int ret = -EINVAL;
1441 	struct ttm_mem_type_manager *man;
1442 
1443 	MPASS(type < TTM_NUM_MEM_TYPES);
1444 	man = &bdev->man[type];
1445 	MPASS(!man->has_type);
1446 	man->io_reserve_fastpath = true;
1447 	man->use_io_reserve_lru = false;
1448 	sx_init(&man->io_reserve_mutex, "ttmman");
1449 	INIT_LIST_HEAD(&man->io_reserve_lru);
1450 
1451 	ret = bdev->driver->init_mem_type(bdev, type, man);
1452 	if (ret)
1453 		return ret;
1454 	man->bdev = bdev;
1455 
1456 	ret = 0;
1457 	if (type != TTM_PL_SYSTEM) {
1458 		ret = (*man->func->init)(man, p_size);
1459 		if (ret)
1460 			return ret;
1461 	}
1462 	man->has_type = true;
1463 	man->use_type = true;
1464 	man->size = p_size;
1465 
1466 	INIT_LIST_HEAD(&man->lru);
1467 
1468 	return 0;
1469 }
1470 
1471 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1472 {
1473 
1474 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1475 	vm_page_free(glob->dummy_read_page);
1476 }
1477 
1478 void ttm_bo_global_release(struct drm_global_reference *ref)
1479 {
1480 	struct ttm_bo_global *glob = ref->object;
1481 
1482 	if (refcount_release(&glob->kobj_ref))
1483 		ttm_bo_global_kobj_release(glob);
1484 }
1485 
1486 int ttm_bo_global_init(struct drm_global_reference *ref)
1487 {
1488 	struct ttm_bo_global_ref *bo_ref =
1489 		container_of(ref, struct ttm_bo_global_ref, ref);
1490 	struct ttm_bo_global *glob = ref->object;
1491 	int ret;
1492 
1493 	sx_init(&glob->device_list_mutex, "ttmdlm");
1494 	mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
1495 	glob->mem_glob = bo_ref->mem_glob;
1496 	glob->dummy_read_page = vm_page_alloc_contig(NULL, 0,
1497 	    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ,
1498 	    1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
1499 
1500 	if (unlikely(glob->dummy_read_page == NULL)) {
1501 		ret = -ENOMEM;
1502 		goto out_no_drp;
1503 	}
1504 
1505 	INIT_LIST_HEAD(&glob->swap_lru);
1506 	INIT_LIST_HEAD(&glob->device_list);
1507 
1508 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1509 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1510 	if (unlikely(ret != 0)) {
1511 		printf("[TTM] Could not register buffer object swapout\n");
1512 		goto out_no_shrink;
1513 	}
1514 
1515 	atomic_set(&glob->bo_count, 0);
1516 
1517 	refcount_init(&glob->kobj_ref, 1);
1518 	return (0);
1519 
1520 out_no_shrink:
1521 	vm_page_free(glob->dummy_read_page);
1522 out_no_drp:
1523 	free(glob, M_DRM_GLOBAL);
1524 	return ret;
1525 }
1526 
1527 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1528 {
1529 	int ret = 0;
1530 	unsigned i = TTM_NUM_MEM_TYPES;
1531 	struct ttm_mem_type_manager *man;
1532 	struct ttm_bo_global *glob = bdev->glob;
1533 
1534 	while (i--) {
1535 		man = &bdev->man[i];
1536 		if (man->has_type) {
1537 			man->use_type = false;
1538 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1539 				ret = -EBUSY;
1540 				printf("[TTM] DRM memory manager type %d is not clean\n",
1541 				       i);
1542 			}
1543 			man->has_type = false;
1544 		}
1545 	}
1546 
1547 	sx_xlock(&glob->device_list_mutex);
1548 	list_del(&bdev->device_list);
1549 	sx_xunlock(&glob->device_list_mutex);
1550 
1551 	if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL))
1552 		taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
1553 
1554 	while (ttm_bo_delayed_delete(bdev, true))
1555 		;
1556 
1557 	mtx_lock(&glob->lru_lock);
1558 	if (list_empty(&bdev->ddestroy))
1559 		TTM_DEBUG("Delayed destroy list was clean\n");
1560 
1561 	if (list_empty(&bdev->man[0].lru))
1562 		TTM_DEBUG("Swap list was clean\n");
1563 	mtx_unlock(&glob->lru_lock);
1564 
1565 	MPASS(drm_mm_clean(&bdev->addr_space_mm));
1566 	rw_wlock(&bdev->vm_lock);
1567 	drm_mm_takedown(&bdev->addr_space_mm);
1568 	rw_wunlock(&bdev->vm_lock);
1569 
1570 	return ret;
1571 }
1572 
1573 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1574 		       struct ttm_bo_global *glob,
1575 		       struct ttm_bo_driver *driver,
1576 		       uint64_t file_page_offset,
1577 		       bool need_dma32)
1578 {
1579 	int ret = -EINVAL;
1580 
1581 	rw_init(&bdev->vm_lock, "ttmvml");
1582 	bdev->driver = driver;
1583 
1584 	memset(bdev->man, 0, sizeof(bdev->man));
1585 
1586 	/*
1587 	 * Initialize the system memory buffer type.
1588 	 * Other types need to be driver / IOCTL initialized.
1589 	 */
1590 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1591 	if (unlikely(ret != 0))
1592 		goto out_no_sys;
1593 
1594 	RB_INIT(&bdev->addr_space_rb);
1595 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1596 	if (unlikely(ret != 0))
1597 		goto out_no_addr_mm;
1598 
1599 	TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0,
1600 	    ttm_bo_delayed_workqueue, bdev);
1601 	INIT_LIST_HEAD(&bdev->ddestroy);
1602 	bdev->dev_mapping = NULL;
1603 	bdev->glob = glob;
1604 	bdev->need_dma32 = need_dma32;
1605 	bdev->val_seq = 0;
1606 	mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF);
1607 	sx_xlock(&glob->device_list_mutex);
1608 	list_add_tail(&bdev->device_list, &glob->device_list);
1609 	sx_xunlock(&glob->device_list_mutex);
1610 
1611 	return 0;
1612 out_no_addr_mm:
1613 	ttm_bo_clean_mm(bdev, 0);
1614 out_no_sys:
1615 	return ret;
1616 }
1617 
1618 /*
1619  * buffer object vm functions.
1620  */
1621 
1622 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1623 {
1624 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1625 
1626 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1627 		if (mem->mem_type == TTM_PL_SYSTEM)
1628 			return false;
1629 
1630 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1631 			return false;
1632 
1633 		if (mem->placement & TTM_PL_FLAG_CACHED)
1634 			return false;
1635 	}
1636 	return true;
1637 }
1638 
1639 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1640 {
1641 
1642 	ttm_bo_release_mmap(bo);
1643 	ttm_mem_io_free_vm(bo);
1644 }
1645 
1646 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1647 {
1648 	struct ttm_bo_device *bdev = bo->bdev;
1649 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1650 
1651 	ttm_mem_io_lock(man, false);
1652 	ttm_bo_unmap_virtual_locked(bo);
1653 	ttm_mem_io_unlock(man);
1654 }
1655 
1656 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1657 {
1658 	struct ttm_bo_device *bdev = bo->bdev;
1659 
1660 	/* The caller acquired bdev->vm_lock. */
1661 	RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1662 }
1663 
1664 /**
1665  * ttm_bo_setup_vm:
1666  *
1667  * @bo: the buffer to allocate address space for
1668  *
1669  * Allocate address space in the drm device so that applications
1670  * can mmap the buffer and access the contents. This only
1671  * applies to ttm_bo_type_device objects as others are not
1672  * placed in the drm device address space.
1673  */
1674 
1675 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1676 {
1677 	struct ttm_bo_device *bdev = bo->bdev;
1678 	int ret;
1679 
1680 retry_pre_get:
1681 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1682 	if (unlikely(ret != 0))
1683 		return ret;
1684 
1685 	rw_wlock(&bdev->vm_lock);
1686 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1687 					 bo->mem.num_pages, 0, 0);
1688 
1689 	if (unlikely(bo->vm_node == NULL)) {
1690 		ret = -ENOMEM;
1691 		goto out_unlock;
1692 	}
1693 
1694 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1695 					      bo->mem.num_pages, 0);
1696 
1697 	if (unlikely(bo->vm_node == NULL)) {
1698 		rw_wunlock(&bdev->vm_lock);
1699 		goto retry_pre_get;
1700 	}
1701 
1702 	ttm_bo_vm_insert_rb(bo);
1703 	rw_wunlock(&bdev->vm_lock);
1704 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1705 
1706 	return 0;
1707 out_unlock:
1708 	rw_wunlock(&bdev->vm_lock);
1709 	return ret;
1710 }
1711 
1712 int ttm_bo_wait(struct ttm_buffer_object *bo,
1713 		bool lazy, bool interruptible, bool no_wait)
1714 {
1715 	struct ttm_bo_driver *driver = bo->bdev->driver;
1716 	struct ttm_bo_device *bdev = bo->bdev;
1717 	void *sync_obj;
1718 	int ret = 0;
1719 
1720 	if (likely(bo->sync_obj == NULL))
1721 		return 0;
1722 
1723 	while (bo->sync_obj) {
1724 
1725 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1726 			void *tmp_obj = bo->sync_obj;
1727 			bo->sync_obj = NULL;
1728 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1729 			mtx_unlock(&bdev->fence_lock);
1730 			driver->sync_obj_unref(&tmp_obj);
1731 			mtx_lock(&bdev->fence_lock);
1732 			continue;
1733 		}
1734 
1735 		if (no_wait)
1736 			return -EBUSY;
1737 
1738 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1739 		mtx_unlock(&bdev->fence_lock);
1740 		ret = driver->sync_obj_wait(sync_obj,
1741 					    lazy, interruptible);
1742 		if (unlikely(ret != 0)) {
1743 			driver->sync_obj_unref(&sync_obj);
1744 			mtx_lock(&bdev->fence_lock);
1745 			return ret;
1746 		}
1747 		mtx_lock(&bdev->fence_lock);
1748 		if (likely(bo->sync_obj == sync_obj)) {
1749 			void *tmp_obj = bo->sync_obj;
1750 			bo->sync_obj = NULL;
1751 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1752 				  &bo->priv_flags);
1753 			mtx_unlock(&bdev->fence_lock);
1754 			driver->sync_obj_unref(&sync_obj);
1755 			driver->sync_obj_unref(&tmp_obj);
1756 			mtx_lock(&bdev->fence_lock);
1757 		} else {
1758 			mtx_unlock(&bdev->fence_lock);
1759 			driver->sync_obj_unref(&sync_obj);
1760 			mtx_lock(&bdev->fence_lock);
1761 		}
1762 	}
1763 	return 0;
1764 }
1765 
1766 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1767 {
1768 	struct ttm_bo_device *bdev = bo->bdev;
1769 	int ret = 0;
1770 
1771 	/*
1772 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1773 	 */
1774 
1775 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1776 	if (unlikely(ret != 0))
1777 		return ret;
1778 	mtx_lock(&bdev->fence_lock);
1779 	ret = ttm_bo_wait(bo, false, true, no_wait);
1780 	mtx_unlock(&bdev->fence_lock);
1781 	if (likely(ret == 0))
1782 		atomic_inc(&bo->cpu_writers);
1783 	ttm_bo_unreserve(bo);
1784 	return ret;
1785 }
1786 
1787 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1788 {
1789 	atomic_dec(&bo->cpu_writers);
1790 }
1791 
1792 /**
1793  * A buffer object shrink method that tries to swap out the first
1794  * buffer object on the bo_global::swap_lru list.
1795  */
1796 
1797 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1798 {
1799 	struct ttm_bo_global *glob =
1800 	    container_of(shrink, struct ttm_bo_global, shrink);
1801 	struct ttm_buffer_object *bo;
1802 	int ret = -EBUSY;
1803 	int put_count;
1804 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1805 
1806 	mtx_lock(&glob->lru_lock);
1807 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1808 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1809 		if (!ret)
1810 			break;
1811 	}
1812 
1813 	if (ret) {
1814 		mtx_unlock(&glob->lru_lock);
1815 		return ret;
1816 	}
1817 
1818 	refcount_acquire(&bo->list_kref);
1819 
1820 	if (!list_empty(&bo->ddestroy)) {
1821 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1822 		if (refcount_release(&bo->list_kref))
1823 			ttm_bo_release_list(bo);
1824 		return ret;
1825 	}
1826 
1827 	put_count = ttm_bo_del_from_lru(bo);
1828 	mtx_unlock(&glob->lru_lock);
1829 
1830 	ttm_bo_list_ref_sub(bo, put_count, true);
1831 
1832 	/**
1833 	 * Wait for GPU, then move to system cached.
1834 	 */
1835 
1836 	mtx_lock(&bo->bdev->fence_lock);
1837 	ret = ttm_bo_wait(bo, false, false, false);
1838 	mtx_unlock(&bo->bdev->fence_lock);
1839 
1840 	if (unlikely(ret != 0))
1841 		goto out;
1842 
1843 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1844 		struct ttm_mem_reg evict_mem;
1845 
1846 		evict_mem = bo->mem;
1847 		evict_mem.mm_node = NULL;
1848 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1849 		evict_mem.mem_type = TTM_PL_SYSTEM;
1850 
1851 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1852 					     false, false);
1853 		if (unlikely(ret != 0))
1854 			goto out;
1855 	}
1856 
1857 	ttm_bo_unmap_virtual(bo);
1858 
1859 	/**
1860 	 * Swap out. Buffer will be swapped in again as soon as
1861 	 * anyone tries to access a ttm page.
1862 	 */
1863 
1864 	if (bo->bdev->driver->swap_notify)
1865 		bo->bdev->driver->swap_notify(bo);
1866 
1867 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1868 out:
1869 
1870 	/**
1871 	 *
1872 	 * Unreserve without putting on LRU to avoid swapping out an
1873 	 * already swapped buffer.
1874 	 */
1875 
1876 	atomic_set(&bo->reserved, 0);
1877 	wakeup(bo);
1878 	if (refcount_release(&bo->list_kref))
1879 		ttm_bo_release_list(bo);
1880 	return ret;
1881 }
1882 
1883 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1884 {
1885 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1886 		;
1887 }
1888