xref: /freebsd/sys/dev/drm2/drm_modes.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*
2  * Copyright © 1997-2003 by The XFree86 Project, Inc.
3  * Copyright © 2007 Dave Airlie
4  * Copyright © 2007-2008 Intel Corporation
5  *   Jesse Barnes <jesse.barnes@intel.com>
6  * Copyright 2005-2006 Luc Verhaegen
7  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a
10  * copy of this software and associated documentation files (the "Software"),
11  * to deal in the Software without restriction, including without limitation
12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13  * and/or sell copies of the Software, and to permit persons to whom the
14  * Software is furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25  * OTHER DEALINGS IN THE SOFTWARE.
26  *
27  * Except as contained in this notice, the name of the copyright holder(s)
28  * and author(s) shall not be used in advertising or otherwise to promote
29  * the sale, use or other dealings in this Software without prior written
30  * authorization from the copyright holder(s) and author(s).
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <dev/drm2/drmP.h>
37 #include <dev/drm2/drm_crtc.h>
38 
39 /**
40  * drm_mode_debug_printmodeline - debug print a mode
41  * @dev: DRM device
42  * @mode: mode to print
43  *
44  * LOCKING:
45  * None.
46  *
47  * Describe @mode using DRM_DEBUG.
48  */
49 void drm_mode_debug_printmodeline(const struct drm_display_mode *mode)
50 {
51 	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
52 			"0x%x 0x%x\n",
53 		mode->base.id, mode->name, mode->vrefresh, mode->clock,
54 		mode->hdisplay, mode->hsync_start,
55 		mode->hsync_end, mode->htotal,
56 		mode->vdisplay, mode->vsync_start,
57 		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
58 }
59 EXPORT_SYMBOL(drm_mode_debug_printmodeline);
60 
61 /**
62  * drm_cvt_mode -create a modeline based on CVT algorithm
63  * @dev: DRM device
64  * @hdisplay: hdisplay size
65  * @vdisplay: vdisplay size
66  * @vrefresh  : vrefresh rate
67  * @reduced : Whether the GTF calculation is simplified
68  * @interlaced:Whether the interlace is supported
69  *
70  * LOCKING:
71  * none.
72  *
73  * return the modeline based on CVT algorithm
74  *
75  * This function is called to generate the modeline based on CVT algorithm
76  * according to the hdisplay, vdisplay, vrefresh.
77  * It is based from the VESA(TM) Coordinated Video Timing Generator by
78  * Graham Loveridge April 9, 2003 available at
79  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
80  *
81  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
82  * What I have done is to translate it by using integer calculation.
83  */
84 #define HV_FACTOR			1000
85 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
86 				      int vdisplay, int vrefresh,
87 				      bool reduced, bool interlaced, bool margins)
88 {
89 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
90 #define	CVT_MARGIN_PERCENTAGE		18
91 	/* 2) character cell horizontal granularity (pixels) - default 8 */
92 #define	CVT_H_GRANULARITY		8
93 	/* 3) Minimum vertical porch (lines) - default 3 */
94 #define	CVT_MIN_V_PORCH			3
95 	/* 4) Minimum number of vertical back porch lines - default 6 */
96 #define	CVT_MIN_V_BPORCH		6
97 	/* Pixel Clock step (kHz) */
98 #define CVT_CLOCK_STEP			250
99 	struct drm_display_mode *drm_mode;
100 	unsigned int vfieldrate, hperiod;
101 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
102 	int interlace;
103 
104 	/* allocate the drm_display_mode structure. If failure, we will
105 	 * return directly
106 	 */
107 	drm_mode = drm_mode_create(dev);
108 	if (!drm_mode)
109 		return NULL;
110 
111 	/* the CVT default refresh rate is 60Hz */
112 	if (!vrefresh)
113 		vrefresh = 60;
114 
115 	/* the required field fresh rate */
116 	if (interlaced)
117 		vfieldrate = vrefresh * 2;
118 	else
119 		vfieldrate = vrefresh;
120 
121 	/* horizontal pixels */
122 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
123 
124 	/* determine the left&right borders */
125 	hmargin = 0;
126 	if (margins) {
127 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
128 		hmargin -= hmargin % CVT_H_GRANULARITY;
129 	}
130 	/* find the total active pixels */
131 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
132 
133 	/* find the number of lines per field */
134 	if (interlaced)
135 		vdisplay_rnd = vdisplay / 2;
136 	else
137 		vdisplay_rnd = vdisplay;
138 
139 	/* find the top & bottom borders */
140 	vmargin = 0;
141 	if (margins)
142 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
143 
144 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
145 
146 	/* Interlaced */
147 	if (interlaced)
148 		interlace = 1;
149 	else
150 		interlace = 0;
151 
152 	/* Determine VSync Width from aspect ratio */
153 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
154 		vsync = 4;
155 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
156 		vsync = 5;
157 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
158 		vsync = 6;
159 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
160 		vsync = 7;
161 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
162 		vsync = 7;
163 	else /* custom */
164 		vsync = 10;
165 
166 	if (!reduced) {
167 		/* simplify the GTF calculation */
168 		/* 4) Minimum time of vertical sync + back porch interval (µs)
169 		 * default 550.0
170 		 */
171 		int tmp1, tmp2;
172 #define CVT_MIN_VSYNC_BP	550
173 		/* 3) Nominal HSync width (% of line period) - default 8 */
174 #define CVT_HSYNC_PERCENTAGE	8
175 		unsigned int hblank_percentage;
176 		int vsyncandback_porch, hblank;
177 
178 		/* estimated the horizontal period */
179 		tmp1 = HV_FACTOR * 1000000  -
180 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
181 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
182 				interlace;
183 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
184 
185 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
186 		/* 9. Find number of lines in sync + backporch */
187 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
188 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
189 		else
190 			vsyncandback_porch = tmp1;
191 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
192 				vsyncandback_porch + CVT_MIN_V_PORCH;
193 		/* 5) Definition of Horizontal blanking time limitation */
194 		/* Gradient (%/kHz) - default 600 */
195 #define CVT_M_FACTOR	600
196 		/* Offset (%) - default 40 */
197 #define CVT_C_FACTOR	40
198 		/* Blanking time scaling factor - default 128 */
199 #define CVT_K_FACTOR	128
200 		/* Scaling factor weighting - default 20 */
201 #define CVT_J_FACTOR	20
202 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
203 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
204 			 CVT_J_FACTOR)
205 		/* 12. Find ideal blanking duty cycle from formula */
206 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
207 					hperiod / 1000;
208 		/* 13. Blanking time */
209 		if (hblank_percentage < 20 * HV_FACTOR)
210 			hblank_percentage = 20 * HV_FACTOR;
211 		hblank = drm_mode->hdisplay * hblank_percentage /
212 			 (100 * HV_FACTOR - hblank_percentage);
213 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
214 		/* 14. find the total pixes per line */
215 		drm_mode->htotal = drm_mode->hdisplay + hblank;
216 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
217 		drm_mode->hsync_start = drm_mode->hsync_end -
218 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
219 		drm_mode->hsync_start += CVT_H_GRANULARITY -
220 			drm_mode->hsync_start % CVT_H_GRANULARITY;
221 		/* fill the Vsync values */
222 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
223 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
224 	} else {
225 		/* Reduced blanking */
226 		/* Minimum vertical blanking interval time (µs)- default 460 */
227 #define CVT_RB_MIN_VBLANK	460
228 		/* Fixed number of clocks for horizontal sync */
229 #define CVT_RB_H_SYNC		32
230 		/* Fixed number of clocks for horizontal blanking */
231 #define CVT_RB_H_BLANK		160
232 		/* Fixed number of lines for vertical front porch - default 3*/
233 #define CVT_RB_VFPORCH		3
234 		int vbilines;
235 		int tmp1, tmp2;
236 		/* 8. Estimate Horizontal period. */
237 		tmp1 = HV_FACTOR * 1000000 -
238 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
239 		tmp2 = vdisplay_rnd + 2 * vmargin;
240 		hperiod = tmp1 / (tmp2 * vfieldrate);
241 		/* 9. Find number of lines in vertical blanking */
242 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
243 		/* 10. Check if vertical blanking is sufficient */
244 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
245 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
246 		/* 11. Find total number of lines in vertical field */
247 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
248 		/* 12. Find total number of pixels in a line */
249 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
250 		/* Fill in HSync values */
251 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
252 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
253 		/* Fill in VSync values */
254 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
255 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
256 	}
257 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
258 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
259 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
260 	/* 18/16. Find actual vertical frame frequency */
261 	/* ignore - just set the mode flag for interlaced */
262 	if (interlaced) {
263 		drm_mode->vtotal *= 2;
264 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
265 	}
266 	/* Fill the mode line name */
267 	drm_mode_set_name(drm_mode);
268 	if (reduced)
269 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
270 					DRM_MODE_FLAG_NVSYNC);
271 	else
272 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
273 					DRM_MODE_FLAG_NHSYNC);
274 
275 	return drm_mode;
276 }
277 EXPORT_SYMBOL(drm_cvt_mode);
278 
279 /**
280  * drm_gtf_mode_complex - create the modeline based on full GTF algorithm
281  *
282  * @dev		:drm device
283  * @hdisplay	:hdisplay size
284  * @vdisplay	:vdisplay size
285  * @vrefresh	:vrefresh rate.
286  * @interlaced	:whether the interlace is supported
287  * @margins	:desired margin size
288  * @GTF_[MCKJ]  :extended GTF formula parameters
289  *
290  * LOCKING.
291  * none.
292  *
293  * return the modeline based on full GTF algorithm.
294  *
295  * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
296  * in here multiplied by two.  For a C of 40, pass in 80.
297  */
298 struct drm_display_mode *
299 drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
300 		     int vrefresh, bool interlaced, int margins,
301 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
302 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
303 #define	GTF_MARGIN_PERCENTAGE		18
304 	/* 2) character cell horizontal granularity (pixels) - default 8 */
305 #define	GTF_CELL_GRAN			8
306 	/* 3) Minimum vertical porch (lines) - default 3 */
307 #define	GTF_MIN_V_PORCH			1
308 	/* width of vsync in lines */
309 #define V_SYNC_RQD			3
310 	/* width of hsync as % of total line */
311 #define H_SYNC_PERCENT			8
312 	/* min time of vsync + back porch (microsec) */
313 #define MIN_VSYNC_PLUS_BP		550
314 	/* C' and M' are part of the Blanking Duty Cycle computation */
315 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
316 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
317 	struct drm_display_mode *drm_mode;
318 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
319 	int top_margin, bottom_margin;
320 	int interlace;
321 	unsigned int hfreq_est;
322 	int vsync_plus_bp;
323 	unsigned int vtotal_lines;
324 	int left_margin, right_margin;
325 	unsigned int total_active_pixels, ideal_duty_cycle;
326 	unsigned int hblank, total_pixels, pixel_freq;
327 	int hsync, hfront_porch, vodd_front_porch_lines;
328 	unsigned int tmp1, tmp2;
329 
330 	drm_mode = drm_mode_create(dev);
331 	if (!drm_mode)
332 		return NULL;
333 
334 	/* 1. In order to give correct results, the number of horizontal
335 	 * pixels requested is first processed to ensure that it is divisible
336 	 * by the character size, by rounding it to the nearest character
337 	 * cell boundary:
338 	 */
339 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
340 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
341 
342 	/* 2. If interlace is requested, the number of vertical lines assumed
343 	 * by the calculation must be halved, as the computation calculates
344 	 * the number of vertical lines per field.
345 	 */
346 	if (interlaced)
347 		vdisplay_rnd = vdisplay / 2;
348 	else
349 		vdisplay_rnd = vdisplay;
350 
351 	/* 3. Find the frame rate required: */
352 	if (interlaced)
353 		vfieldrate_rqd = vrefresh * 2;
354 	else
355 		vfieldrate_rqd = vrefresh;
356 
357 	/* 4. Find number of lines in Top margin: */
358 	top_margin = 0;
359 	if (margins)
360 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
361 				1000;
362 	/* 5. Find number of lines in bottom margin: */
363 	bottom_margin = top_margin;
364 
365 	/* 6. If interlace is required, then set variable interlace: */
366 	if (interlaced)
367 		interlace = 1;
368 	else
369 		interlace = 0;
370 
371 	/* 7. Estimate the Horizontal frequency */
372 	{
373 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
374 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
375 				2 + interlace;
376 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
377 	}
378 
379 	/* 8. Find the number of lines in V sync + back porch */
380 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
381 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
382 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
383 	/*  10. Find the total number of lines in Vertical field period: */
384 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
385 			vsync_plus_bp + GTF_MIN_V_PORCH;
386 
387 	/*  15. Find number of pixels in left margin: */
388 	if (margins)
389 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
390 				1000;
391 	else
392 		left_margin = 0;
393 
394 	/* 16.Find number of pixels in right margin: */
395 	right_margin = left_margin;
396 	/* 17.Find total number of active pixels in image and left and right */
397 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
398 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
399 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
400 				(GTF_M_PRIME * 1000000 / hfreq_est);
401 	/* 19.Find the number of pixels in the blanking time to the nearest
402 	 * double character cell: */
403 	hblank = total_active_pixels * ideal_duty_cycle /
404 			(100000 - ideal_duty_cycle);
405 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
406 	hblank = hblank * 2 * GTF_CELL_GRAN;
407 	/* 20.Find total number of pixels: */
408 	total_pixels = total_active_pixels + hblank;
409 	/* 21.Find pixel clock frequency: */
410 	pixel_freq = total_pixels * hfreq_est / 1000;
411 	/* Stage 1 computations are now complete; I should really pass
412 	 * the results to another function and do the Stage 2 computations,
413 	 * but I only need a few more values so I'll just append the
414 	 * computations here for now */
415 	/* 17. Find the number of pixels in the horizontal sync period: */
416 	hsync = H_SYNC_PERCENT * total_pixels / 100;
417 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
418 	hsync = hsync * GTF_CELL_GRAN;
419 	/* 18. Find the number of pixels in horizontal front porch period */
420 	hfront_porch = hblank / 2 - hsync;
421 	/*  36. Find the number of lines in the odd front porch period: */
422 	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
423 
424 	/* finally, pack the results in the mode struct */
425 	drm_mode->hdisplay = hdisplay_rnd;
426 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
427 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
428 	drm_mode->htotal = total_pixels;
429 	drm_mode->vdisplay = vdisplay_rnd;
430 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
431 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
432 	drm_mode->vtotal = vtotal_lines;
433 
434 	drm_mode->clock = pixel_freq;
435 
436 	if (interlaced) {
437 		drm_mode->vtotal *= 2;
438 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
439 	}
440 
441 	drm_mode_set_name(drm_mode);
442 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
443 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
444 	else
445 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
446 
447 	return drm_mode;
448 }
449 EXPORT_SYMBOL(drm_gtf_mode_complex);
450 
451 /**
452  * drm_gtf_mode - create the modeline based on GTF algorithm
453  *
454  * @dev		:drm device
455  * @hdisplay	:hdisplay size
456  * @vdisplay	:vdisplay size
457  * @vrefresh	:vrefresh rate.
458  * @interlaced	:whether the interlace is supported
459  * @margins	:whether the margin is supported
460  *
461  * LOCKING.
462  * none.
463  *
464  * return the modeline based on GTF algorithm
465  *
466  * This function is to create the modeline based on the GTF algorithm.
467  * Generalized Timing Formula is derived from:
468  *	GTF Spreadsheet by Andy Morrish (1/5/97)
469  *	available at http://www.vesa.org
470  *
471  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
472  * What I have done is to translate it by using integer calculation.
473  * I also refer to the function of fb_get_mode in the file of
474  * drivers/video/fbmon.c
475  *
476  * Standard GTF parameters:
477  * M = 600
478  * C = 40
479  * K = 128
480  * J = 20
481  */
482 struct drm_display_mode *
483 drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
484 	     bool lace, int margins)
485 {
486 	return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
487 				    margins, 600, 40 * 2, 128, 20 * 2);
488 }
489 EXPORT_SYMBOL(drm_gtf_mode);
490 
491 /**
492  * drm_mode_set_name - set the name on a mode
493  * @mode: name will be set in this mode
494  *
495  * LOCKING:
496  * None.
497  *
498  * Set the name of @mode to a standard format.
499  */
500 void drm_mode_set_name(struct drm_display_mode *mode)
501 {
502 	bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
503 
504 	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
505 		 mode->hdisplay, mode->vdisplay,
506 		 interlaced ? "i" : "");
507 }
508 EXPORT_SYMBOL(drm_mode_set_name);
509 
510 /**
511  * drm_mode_list_concat - move modes from one list to another
512  * @head: source list
513  * @new: dst list
514  *
515  * LOCKING:
516  * Caller must ensure both lists are locked.
517  *
518  * Move all the modes from @head to @new.
519  */
520 void drm_mode_list_concat(struct list_head *head, struct list_head *new)
521 {
522 
523 	struct list_head *entry, *tmp;
524 
525 	list_for_each_safe(entry, tmp, head) {
526 		list_move_tail(entry, new);
527 	}
528 }
529 EXPORT_SYMBOL(drm_mode_list_concat);
530 
531 /**
532  * drm_mode_width - get the width of a mode
533  * @mode: mode
534  *
535  * LOCKING:
536  * None.
537  *
538  * Return @mode's width (hdisplay) value.
539  *
540  * FIXME: is this needed?
541  *
542  * RETURNS:
543  * @mode->hdisplay
544  */
545 int drm_mode_width(const struct drm_display_mode *mode)
546 {
547 	return mode->hdisplay;
548 
549 }
550 EXPORT_SYMBOL(drm_mode_width);
551 
552 /**
553  * drm_mode_height - get the height of a mode
554  * @mode: mode
555  *
556  * LOCKING:
557  * None.
558  *
559  * Return @mode's height (vdisplay) value.
560  *
561  * FIXME: is this needed?
562  *
563  * RETURNS:
564  * @mode->vdisplay
565  */
566 int drm_mode_height(const struct drm_display_mode *mode)
567 {
568 	return mode->vdisplay;
569 }
570 EXPORT_SYMBOL(drm_mode_height);
571 
572 /** drm_mode_hsync - get the hsync of a mode
573  * @mode: mode
574  *
575  * LOCKING:
576  * None.
577  *
578  * Return @modes's hsync rate in kHz, rounded to the nearest int.
579  */
580 int drm_mode_hsync(const struct drm_display_mode *mode)
581 {
582 	unsigned int calc_val;
583 
584 	if (mode->hsync)
585 		return mode->hsync;
586 
587 	if (mode->htotal < 0)
588 		return 0;
589 
590 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
591 	calc_val += 500;				/* round to 1000Hz */
592 	calc_val /= 1000;				/* truncate to kHz */
593 
594 	return calc_val;
595 }
596 EXPORT_SYMBOL(drm_mode_hsync);
597 
598 /**
599  * drm_mode_vrefresh - get the vrefresh of a mode
600  * @mode: mode
601  *
602  * LOCKING:
603  * None.
604  *
605  * Return @mode's vrefresh rate in Hz or calculate it if necessary.
606  *
607  * FIXME: why is this needed?  shouldn't vrefresh be set already?
608  *
609  * RETURNS:
610  * Vertical refresh rate. It will be the result of actual value plus 0.5.
611  * If it is 70.288, it will return 70Hz.
612  * If it is 59.6, it will return 60Hz.
613  */
614 int drm_mode_vrefresh(const struct drm_display_mode *mode)
615 {
616 	int refresh = 0;
617 	unsigned int calc_val;
618 
619 	if (mode->vrefresh > 0)
620 		refresh = mode->vrefresh;
621 	else if (mode->htotal > 0 && mode->vtotal > 0) {
622 		int vtotal;
623 		vtotal = mode->vtotal;
624 		/* work out vrefresh the value will be x1000 */
625 		calc_val = (mode->clock * 1000);
626 		calc_val /= mode->htotal;
627 		refresh = (calc_val + vtotal / 2) / vtotal;
628 
629 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
630 			refresh *= 2;
631 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
632 			refresh /= 2;
633 		if (mode->vscan > 1)
634 			refresh /= mode->vscan;
635 	}
636 	return refresh;
637 }
638 EXPORT_SYMBOL(drm_mode_vrefresh);
639 
640 /**
641  * drm_mode_set_crtcinfo - set CRTC modesetting parameters
642  * @p: mode
643  * @adjust_flags: unused? (FIXME)
644  *
645  * LOCKING:
646  * None.
647  *
648  * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
649  */
650 void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
651 {
652 	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
653 		return;
654 
655 	p->crtc_hdisplay = p->hdisplay;
656 	p->crtc_hsync_start = p->hsync_start;
657 	p->crtc_hsync_end = p->hsync_end;
658 	p->crtc_htotal = p->htotal;
659 	p->crtc_hskew = p->hskew;
660 	p->crtc_vdisplay = p->vdisplay;
661 	p->crtc_vsync_start = p->vsync_start;
662 	p->crtc_vsync_end = p->vsync_end;
663 	p->crtc_vtotal = p->vtotal;
664 
665 	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
666 		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
667 			p->crtc_vdisplay /= 2;
668 			p->crtc_vsync_start /= 2;
669 			p->crtc_vsync_end /= 2;
670 			p->crtc_vtotal /= 2;
671 		}
672 	}
673 
674 	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
675 		p->crtc_vdisplay *= 2;
676 		p->crtc_vsync_start *= 2;
677 		p->crtc_vsync_end *= 2;
678 		p->crtc_vtotal *= 2;
679 	}
680 
681 	if (p->vscan > 1) {
682 		p->crtc_vdisplay *= p->vscan;
683 		p->crtc_vsync_start *= p->vscan;
684 		p->crtc_vsync_end *= p->vscan;
685 		p->crtc_vtotal *= p->vscan;
686 	}
687 
688 	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
689 	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
690 	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
691 	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
692 }
693 EXPORT_SYMBOL(drm_mode_set_crtcinfo);
694 
695 
696 /**
697  * drm_mode_copy - copy the mode
698  * @dst: mode to overwrite
699  * @src: mode to copy
700  *
701  * LOCKING:
702  * None.
703  *
704  * Copy an existing mode into another mode, preserving the object id
705  * of the destination mode.
706  */
707 void drm_mode_copy(struct drm_display_mode *dst, const struct drm_display_mode *src)
708 {
709 	int id = dst->base.id;
710 
711 	*dst = *src;
712 	dst->base.id = id;
713 	INIT_LIST_HEAD(&dst->head);
714 }
715 EXPORT_SYMBOL(drm_mode_copy);
716 
717 /**
718  * drm_mode_duplicate - allocate and duplicate an existing mode
719  * @m: mode to duplicate
720  *
721  * LOCKING:
722  * None.
723  *
724  * Just allocate a new mode, copy the existing mode into it, and return
725  * a pointer to it.  Used to create new instances of established modes.
726  */
727 struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
728 					    const struct drm_display_mode *mode)
729 {
730 	struct drm_display_mode *nmode;
731 
732 	nmode = drm_mode_create(dev);
733 	if (!nmode)
734 		return NULL;
735 
736 	drm_mode_copy(nmode, mode);
737 
738 	return nmode;
739 }
740 EXPORT_SYMBOL(drm_mode_duplicate);
741 
742 /**
743  * drm_mode_equal - test modes for equality
744  * @mode1: first mode
745  * @mode2: second mode
746  *
747  * LOCKING:
748  * None.
749  *
750  * Check to see if @mode1 and @mode2 are equivalent.
751  *
752  * RETURNS:
753  * True if the modes are equal, false otherwise.
754  */
755 bool drm_mode_equal(const struct drm_display_mode *mode1, const struct drm_display_mode *mode2)
756 {
757 	/* do clock check convert to PICOS so fb modes get matched
758 	 * the same */
759 	if (mode1->clock && mode2->clock) {
760 		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
761 			return false;
762 	} else if (mode1->clock != mode2->clock)
763 		return false;
764 
765 	if (mode1->hdisplay == mode2->hdisplay &&
766 	    mode1->hsync_start == mode2->hsync_start &&
767 	    mode1->hsync_end == mode2->hsync_end &&
768 	    mode1->htotal == mode2->htotal &&
769 	    mode1->hskew == mode2->hskew &&
770 	    mode1->vdisplay == mode2->vdisplay &&
771 	    mode1->vsync_start == mode2->vsync_start &&
772 	    mode1->vsync_end == mode2->vsync_end &&
773 	    mode1->vtotal == mode2->vtotal &&
774 	    mode1->vscan == mode2->vscan &&
775 	    mode1->flags == mode2->flags)
776 		return true;
777 
778 	return false;
779 }
780 EXPORT_SYMBOL(drm_mode_equal);
781 
782 /**
783  * drm_mode_validate_size - make sure modes adhere to size constraints
784  * @dev: DRM device
785  * @mode_list: list of modes to check
786  * @maxX: maximum width
787  * @maxY: maximum height
788  * @maxPitch: max pitch
789  *
790  * LOCKING:
791  * Caller must hold a lock protecting @mode_list.
792  *
793  * The DRM device (@dev) has size and pitch limits.  Here we validate the
794  * modes we probed for @dev against those limits and set their status as
795  * necessary.
796  */
797 void drm_mode_validate_size(struct drm_device *dev,
798 			    struct list_head *mode_list,
799 			    int maxX, int maxY, int maxPitch)
800 {
801 	struct drm_display_mode *mode;
802 
803 	list_for_each_entry(mode, mode_list, head) {
804 		if (maxPitch > 0 && mode->hdisplay > maxPitch)
805 			mode->status = MODE_BAD_WIDTH;
806 
807 		if (maxX > 0 && mode->hdisplay > maxX)
808 			mode->status = MODE_VIRTUAL_X;
809 
810 		if (maxY > 0 && mode->vdisplay > maxY)
811 			mode->status = MODE_VIRTUAL_Y;
812 	}
813 }
814 EXPORT_SYMBOL(drm_mode_validate_size);
815 
816 /**
817  * drm_mode_validate_clocks - validate modes against clock limits
818  * @dev: DRM device
819  * @mode_list: list of modes to check
820  * @min: minimum clock rate array
821  * @max: maximum clock rate array
822  * @n_ranges: number of clock ranges (size of arrays)
823  *
824  * LOCKING:
825  * Caller must hold a lock protecting @mode_list.
826  *
827  * Some code may need to check a mode list against the clock limits of the
828  * device in question.  This function walks the mode list, testing to make
829  * sure each mode falls within a given range (defined by @min and @max
830  * arrays) and sets @mode->status as needed.
831  */
832 void drm_mode_validate_clocks(struct drm_device *dev,
833 			      struct list_head *mode_list,
834 			      int *min, int *max, int n_ranges)
835 {
836 	struct drm_display_mode *mode;
837 	int i;
838 
839 	list_for_each_entry(mode, mode_list, head) {
840 		bool good = false;
841 		for (i = 0; i < n_ranges; i++) {
842 			if (mode->clock >= min[i] && mode->clock <= max[i]) {
843 				good = true;
844 				break;
845 			}
846 		}
847 		if (!good)
848 			mode->status = MODE_CLOCK_RANGE;
849 	}
850 }
851 EXPORT_SYMBOL(drm_mode_validate_clocks);
852 
853 /**
854  * drm_mode_prune_invalid - remove invalid modes from mode list
855  * @dev: DRM device
856  * @mode_list: list of modes to check
857  * @verbose: be verbose about it
858  *
859  * LOCKING:
860  * Caller must hold a lock protecting @mode_list.
861  *
862  * Once mode list generation is complete, a caller can use this routine to
863  * remove invalid modes from a mode list.  If any of the modes have a
864  * status other than %MODE_OK, they are removed from @mode_list and freed.
865  */
866 void drm_mode_prune_invalid(struct drm_device *dev,
867 			    struct list_head *mode_list, bool verbose)
868 {
869 	struct drm_display_mode *mode, *t;
870 
871 	list_for_each_entry_safe(mode, t, mode_list, head) {
872 		if (mode->status != MODE_OK) {
873 			list_del(&mode->head);
874 			if (verbose) {
875 				drm_mode_debug_printmodeline(mode);
876 				DRM_DEBUG_KMS("Not using %s mode %d\n",
877 					mode->name, mode->status);
878 			}
879 			drm_mode_destroy(dev, mode);
880 		}
881 	}
882 }
883 EXPORT_SYMBOL(drm_mode_prune_invalid);
884 
885 /**
886  * drm_mode_compare - compare modes for favorability
887  * @priv: unused
888  * @lh_a: list_head for first mode
889  * @lh_b: list_head for second mode
890  *
891  * LOCKING:
892  * None.
893  *
894  * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
895  * which is better.
896  *
897  * RETURNS:
898  * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
899  * positive if @lh_b is better than @lh_a.
900  */
901 static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
902 {
903 	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
904 	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
905 	int diff;
906 
907 	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
908 		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
909 	if (diff)
910 		return diff;
911 	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
912 	if (diff)
913 		return diff;
914 
915 	diff = b->vrefresh - a->vrefresh;
916 	if (diff)
917 		return diff;
918 
919 	diff = b->clock - a->clock;
920 	return diff;
921 }
922 
923 /**
924  * drm_mode_sort - sort mode list
925  * @mode_list: list to sort
926  *
927  * LOCKING:
928  * Caller must hold a lock protecting @mode_list.
929  *
930  * Sort @mode_list by favorability, putting good modes first.
931  */
932 void drm_mode_sort(struct list_head *mode_list)
933 {
934 	drm_list_sort(NULL, mode_list, drm_mode_compare);
935 }
936 EXPORT_SYMBOL(drm_mode_sort);
937 
938 /**
939  * drm_mode_connector_list_update - update the mode list for the connector
940  * @connector: the connector to update
941  *
942  * LOCKING:
943  * Caller must hold a lock protecting @mode_list.
944  *
945  * This moves the modes from the @connector probed_modes list
946  * to the actual mode list. It compares the probed mode against the current
947  * list and only adds different modes. All modes unverified after this point
948  * will be removed by the prune invalid modes.
949  */
950 void drm_mode_connector_list_update(struct drm_connector *connector)
951 {
952 	struct drm_display_mode *mode;
953 	struct drm_display_mode *pmode, *pt;
954 	int found_it;
955 
956 	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
957 				 head) {
958 		found_it = 0;
959 		/* go through current modes checking for the new probed mode */
960 		list_for_each_entry(mode, &connector->modes, head) {
961 			if (drm_mode_equal(pmode, mode)) {
962 				found_it = 1;
963 				/* if equal delete the probed mode */
964 				mode->status = pmode->status;
965 				/* Merge type bits together */
966 				mode->type |= pmode->type;
967 				list_del(&pmode->head);
968 				drm_mode_destroy(connector->dev, pmode);
969 				break;
970 			}
971 		}
972 
973 		if (!found_it) {
974 			list_move_tail(&pmode->head, &connector->modes);
975 		}
976 	}
977 }
978 EXPORT_SYMBOL(drm_mode_connector_list_update);
979 
980 /**
981  * drm_mode_parse_command_line_for_connector - parse command line for connector
982  * @mode_option - per connector mode option
983  * @connector - connector to parse line for
984  *
985  * This parses the connector specific then generic command lines for
986  * modes and options to configure the connector.
987  *
988  * This uses the same parameters as the fb modedb.c, except for extra
989  *	<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
990  *
991  * enable/enable Digital/disable bit at the end
992  */
993 bool drm_mode_parse_command_line_for_connector(const char *mode_option,
994 					       struct drm_connector *connector,
995 					       struct drm_cmdline_mode *mode)
996 {
997 	const char *name;
998 	unsigned int namelen;
999 	bool res_specified = false, bpp_specified = false, refresh_specified = false;
1000 	unsigned int xres = 0, yres = 0, bpp = 32, refresh = 0;
1001 	bool yres_specified = false, cvt = false, rb = false;
1002 	bool interlace = false, margins = false, was_digit = false;
1003 	int i;
1004 	enum drm_connector_force force = DRM_FORCE_UNSPECIFIED;
1005 
1006 #ifdef CONFIG_FB
1007 	if (!mode_option)
1008 		mode_option = fb_mode_option;
1009 #endif
1010 
1011 	if (!mode_option) {
1012 		mode->specified = false;
1013 		return false;
1014 	}
1015 
1016 	name = mode_option;
1017 	namelen = strlen(name);
1018 	for (i = namelen-1; i >= 0; i--) {
1019 		switch (name[i]) {
1020 		case '@':
1021 			if (!refresh_specified && !bpp_specified &&
1022 			    !yres_specified && !cvt && !rb && was_digit) {
1023 				refresh = simple_strtol(&name[i+1], NULL, 10);
1024 				refresh_specified = true;
1025 				was_digit = false;
1026 			} else
1027 				goto done;
1028 			break;
1029 		case '-':
1030 			if (!bpp_specified && !yres_specified && !cvt &&
1031 			    !rb && was_digit) {
1032 				bpp = simple_strtol(&name[i+1], NULL, 10);
1033 				bpp_specified = true;
1034 				was_digit = false;
1035 			} else
1036 				goto done;
1037 			break;
1038 		case 'x':
1039 			if (!yres_specified && was_digit) {
1040 				yres = simple_strtol(&name[i+1], NULL, 10);
1041 				yres_specified = true;
1042 				was_digit = false;
1043 			} else
1044 				goto done;
1045 		case '0' ... '9':
1046 			was_digit = true;
1047 			break;
1048 		case 'M':
1049 			if (yres_specified || cvt || was_digit)
1050 				goto done;
1051 			cvt = true;
1052 			break;
1053 		case 'R':
1054 			if (yres_specified || cvt || rb || was_digit)
1055 				goto done;
1056 			rb = true;
1057 			break;
1058 		case 'm':
1059 			if (cvt || yres_specified || was_digit)
1060 				goto done;
1061 			margins = true;
1062 			break;
1063 		case 'i':
1064 			if (cvt || yres_specified || was_digit)
1065 				goto done;
1066 			interlace = true;
1067 			break;
1068 		case 'e':
1069 			if (yres_specified || bpp_specified || refresh_specified ||
1070 			    was_digit || (force != DRM_FORCE_UNSPECIFIED))
1071 				goto done;
1072 
1073 			force = DRM_FORCE_ON;
1074 			break;
1075 		case 'D':
1076 			if (yres_specified || bpp_specified || refresh_specified ||
1077 			    was_digit || (force != DRM_FORCE_UNSPECIFIED))
1078 				goto done;
1079 
1080 			if ((connector->connector_type != DRM_MODE_CONNECTOR_DVII) &&
1081 			    (connector->connector_type != DRM_MODE_CONNECTOR_HDMIB))
1082 				force = DRM_FORCE_ON;
1083 			else
1084 				force = DRM_FORCE_ON_DIGITAL;
1085 			break;
1086 		case 'd':
1087 			if (yres_specified || bpp_specified || refresh_specified ||
1088 			    was_digit || (force != DRM_FORCE_UNSPECIFIED))
1089 				goto done;
1090 
1091 			force = DRM_FORCE_OFF;
1092 			break;
1093 		default:
1094 			goto done;
1095 		}
1096 	}
1097 
1098 	if (i < 0 && yres_specified) {
1099 		char *ch;
1100 		xres = simple_strtol(name, &ch, 10);
1101 		if ((ch != NULL) && (*ch == 'x'))
1102 			res_specified = true;
1103 		else
1104 			i = ch - name;
1105 	} else if (!yres_specified && was_digit) {
1106 		/* catch mode that begins with digits but has no 'x' */
1107 		i = 0;
1108 	}
1109 done:
1110 	if (i >= 0) {
1111 		DRM_WARNING(
1112 			"parse error at position %i in video mode '%s'\n",
1113 			i, name);
1114 		mode->specified = false;
1115 		return false;
1116 	}
1117 
1118 	if (res_specified) {
1119 		mode->specified = true;
1120 		mode->xres = xres;
1121 		mode->yres = yres;
1122 	}
1123 
1124 	if (refresh_specified) {
1125 		mode->refresh_specified = true;
1126 		mode->refresh = refresh;
1127 	}
1128 
1129 	if (bpp_specified) {
1130 		mode->bpp_specified = true;
1131 		mode->bpp = bpp;
1132 	}
1133 	mode->rb = rb;
1134 	mode->cvt = cvt;
1135 	mode->interlace = interlace;
1136 	mode->margins = margins;
1137 	mode->force = force;
1138 
1139 	return true;
1140 }
1141 EXPORT_SYMBOL(drm_mode_parse_command_line_for_connector);
1142 
1143 struct drm_display_mode *
1144 drm_mode_create_from_cmdline_mode(struct drm_device *dev,
1145 				  struct drm_cmdline_mode *cmd)
1146 {
1147 	struct drm_display_mode *mode;
1148 
1149 	if (cmd->cvt)
1150 		mode = drm_cvt_mode(dev,
1151 				    cmd->xres, cmd->yres,
1152 				    cmd->refresh_specified ? cmd->refresh : 60,
1153 				    cmd->rb, cmd->interlace,
1154 				    cmd->margins);
1155 	else
1156 		mode = drm_gtf_mode(dev,
1157 				    cmd->xres, cmd->yres,
1158 				    cmd->refresh_specified ? cmd->refresh : 60,
1159 				    cmd->interlace,
1160 				    cmd->margins);
1161 	if (!mode)
1162 		return NULL;
1163 
1164 	drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V);
1165 	return mode;
1166 }
1167 EXPORT_SYMBOL(drm_mode_create_from_cmdline_mode);
1168