xref: /freebsd/sys/dev/dc/if_dc.c (revision f95c930e6701aa675377bc5871ea490dd565eeba)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN983 (www.admtek.com.tw)
47  * ADMtek CardBus AN985 (www.admtek.com.tw)
48  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Xircom X3201 (www.xircom.com)
52  * Abocom FE2500
53  * Conexant LANfinity (www.conexant.com)
54  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
55  *
56  * Datasheets for the 21143 are available at developer.intel.com.
57  * Datasheets for the clone parts can be found at their respective sites.
58  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
59  * The PNIC II is essentially a Macronix 98715A chip; the only difference
60  * worth noting is that its multicast hash table is only 128 bits wide
61  * instead of 512.
62  *
63  * Written by Bill Paul <wpaul@ee.columbia.edu>
64  * Electrical Engineering Department
65  * Columbia University, New York City
66  */
67 /*
68  * The Intel 21143 is the successor to the DEC 21140. It is basically
69  * the same as the 21140 but with a few new features. The 21143 supports
70  * three kinds of media attachments:
71  *
72  * o MII port, for 10Mbps and 100Mbps support and NWAY
73  *   autonegotiation provided by an external PHY.
74  * o SYM port, for symbol mode 100Mbps support.
75  * o 10baseT port.
76  * o AUI/BNC port.
77  *
78  * The 100Mbps SYM port and 10baseT port can be used together in
79  * combination with the internal NWAY support to create a 10/100
80  * autosensing configuration.
81  *
82  * Note that not all tulip workalikes are handled in this driver: we only
83  * deal with those which are relatively well behaved. The Winbond is
84  * handled separately due to its different register offsets and the
85  * special handling needed for its various bugs. The PNIC is handled
86  * here, but I'm not thrilled about it.
87  *
88  * All of the workalike chips use some form of MII transceiver support
89  * with the exception of the Macronix chips, which also have a SYM port.
90  * The ASIX AX88140A is also documented to have a SYM port, but all
91  * the cards I've seen use an MII transceiver, probably because the
92  * AX88140A doesn't support internal NWAY.
93  */
94 
95 #ifdef HAVE_KERNEL_OPTION_HEADERS
96 #include "opt_device_polling.h"
97 #endif
98 
99 #include <sys/param.h>
100 #include <sys/endian.h>
101 #include <sys/systm.h>
102 #include <sys/sockio.h>
103 #include <sys/mbuf.h>
104 #include <sys/malloc.h>
105 #include <sys/kernel.h>
106 #include <sys/module.h>
107 #include <sys/socket.h>
108 
109 #include <net/if.h>
110 #include <net/if_var.h>
111 #include <net/if_arp.h>
112 #include <net/ethernet.h>
113 #include <net/if_dl.h>
114 #include <net/if_media.h>
115 #include <net/if_types.h>
116 #include <net/if_vlan_var.h>
117 
118 #include <net/bpf.h>
119 
120 #include <machine/bus.h>
121 #include <machine/resource.h>
122 #include <sys/bus.h>
123 #include <sys/rman.h>
124 
125 #include <dev/mii/mii.h>
126 #include <dev/mii/mii_bitbang.h>
127 #include <dev/mii/miivar.h>
128 
129 #include <dev/pci/pcireg.h>
130 #include <dev/pci/pcivar.h>
131 
132 #define	DC_USEIOSPACE
133 
134 #include <dev/dc/if_dcreg.h>
135 
136 #ifdef __sparc64__
137 #include <dev/ofw/openfirm.h>
138 #include <machine/ofw_machdep.h>
139 #endif
140 
141 MODULE_DEPEND(dc, pci, 1, 1, 1);
142 MODULE_DEPEND(dc, ether, 1, 1, 1);
143 MODULE_DEPEND(dc, miibus, 1, 1, 1);
144 
145 /*
146  * "device miibus" is required in kernel config.  See GENERIC if you get
147  * errors here.
148  */
149 #include "miibus_if.h"
150 
151 /*
152  * Various supported device vendors/types and their names.
153  */
154 static const struct dc_type dc_devs[] = {
155 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
156 		"Intel 21143 10/100BaseTX" },
157 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
158 		"Davicom DM9009 10/100BaseTX" },
159 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
160 		"Davicom DM9100 10/100BaseTX" },
161 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
162 		"Davicom DM9102A 10/100BaseTX" },
163 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
164 		"Davicom DM9102 10/100BaseTX" },
165 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
166 		"ADMtek AL981 10/100BaseTX" },
167 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
168 		"ADMtek AN983 10/100BaseTX" },
169 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
170 		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
171 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
172 		"ADMtek ADM9511 10/100BaseTX" },
173 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
174 		"ADMtek ADM9513 10/100BaseTX" },
175 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
176 		"ASIX AX88141 10/100BaseTX" },
177 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
178 		"ASIX AX88140A 10/100BaseTX" },
179 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
180 		"Macronix 98713A 10/100BaseTX" },
181 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
182 		"Macronix 98713 10/100BaseTX" },
183 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
184 		"Compex RL100-TX 10/100BaseTX" },
185 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
186 		"Compex RL100-TX 10/100BaseTX" },
187 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
188 		"Macronix 98725 10/100BaseTX" },
189 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
190 		"Macronix 98715AEC-C 10/100BaseTX" },
191 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
192 		"Macronix 98715/98715A 10/100BaseTX" },
193 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
194 		"Macronix 98727/98732 10/100BaseTX" },
195 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
196 		"LC82C115 PNIC II 10/100BaseTX" },
197 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
198 		"82c169 PNIC 10/100BaseTX" },
199 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
200 		"82c168 PNIC 10/100BaseTX" },
201 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
202 		"Accton EN1217 10/100BaseTX" },
203 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
204 		"Accton EN2242 MiniPCI 10/100BaseTX" },
205 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
206 		"Xircom X3201 10/100BaseTX" },
207 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
208 		"Neteasy DRP-32TXD Cardbus 10/100" },
209 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
210 		"Abocom FE2500 10/100BaseTX" },
211 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
212 		"Abocom FE2500MX 10/100BaseTX" },
213 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
214 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
215 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
216 		"Hawking CB102 CardBus 10/100" },
217 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
218 		"PlaneX FNW-3602-T CardBus 10/100" },
219 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
220 		"3Com OfficeConnect 10/100B" },
221 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
222 		"Microsoft MN-120 CardBus 10/100" },
223 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
224 		"Microsoft MN-130 10/100" },
225 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
226 		"Linksys PCMPC200 CardBus 10/100" },
227 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
228 		"Linksys PCMPC200 CardBus 10/100" },
229 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
230 		"ULi M5261 FastEthernet" },
231 	{ DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
232 		"ULi M5263 FastEthernet" },
233 	{ 0, 0, NULL }
234 };
235 
236 static int dc_probe(device_t);
237 static int dc_attach(device_t);
238 static int dc_detach(device_t);
239 static int dc_suspend(device_t);
240 static int dc_resume(device_t);
241 static const struct dc_type *dc_devtype(device_t);
242 static void dc_discard_rxbuf(struct dc_softc *, int);
243 static int dc_newbuf(struct dc_softc *, int);
244 static int dc_encap(struct dc_softc *, struct mbuf **);
245 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
246 static int dc_rx_resync(struct dc_softc *);
247 static int dc_rxeof(struct dc_softc *);
248 static void dc_txeof(struct dc_softc *);
249 static void dc_tick(void *);
250 static void dc_tx_underrun(struct dc_softc *);
251 static void dc_intr(void *);
252 static void dc_start(struct ifnet *);
253 static void dc_start_locked(struct ifnet *);
254 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
255 static void dc_init(void *);
256 static void dc_init_locked(struct dc_softc *);
257 static void dc_stop(struct dc_softc *);
258 static void dc_watchdog(void *);
259 static int dc_shutdown(device_t);
260 static int dc_ifmedia_upd(struct ifnet *);
261 static int dc_ifmedia_upd_locked(struct dc_softc *);
262 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
263 
264 static int dc_dma_alloc(struct dc_softc *);
265 static void dc_dma_free(struct dc_softc *);
266 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
267 
268 static void dc_delay(struct dc_softc *);
269 static void dc_eeprom_idle(struct dc_softc *);
270 static void dc_eeprom_putbyte(struct dc_softc *, int);
271 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
272 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
273 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
274 static void dc_eeprom_width(struct dc_softc *);
275 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
276 
277 static int dc_miibus_readreg(device_t, int, int);
278 static int dc_miibus_writereg(device_t, int, int, int);
279 static void dc_miibus_statchg(device_t);
280 static void dc_miibus_mediainit(device_t);
281 
282 static void dc_setcfg(struct dc_softc *, int);
283 static void dc_netcfg_wait(struct dc_softc *);
284 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
285 static uint32_t dc_mchash_be(const uint8_t *);
286 static void dc_setfilt_21143(struct dc_softc *);
287 static void dc_setfilt_asix(struct dc_softc *);
288 static void dc_setfilt_admtek(struct dc_softc *);
289 static void dc_setfilt_uli(struct dc_softc *);
290 static void dc_setfilt_xircom(struct dc_softc *);
291 
292 static void dc_setfilt(struct dc_softc *);
293 
294 static void dc_reset(struct dc_softc *);
295 static int dc_list_rx_init(struct dc_softc *);
296 static int dc_list_tx_init(struct dc_softc *);
297 
298 static int dc_read_srom(struct dc_softc *, int);
299 static int dc_parse_21143_srom(struct dc_softc *);
300 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
301 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
302 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
303 static void dc_apply_fixup(struct dc_softc *, int);
304 static int dc_check_multiport(struct dc_softc *);
305 
306 /*
307  * MII bit-bang glue
308  */
309 static uint32_t dc_mii_bitbang_read(device_t);
310 static void dc_mii_bitbang_write(device_t, uint32_t);
311 
312 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
313 	dc_mii_bitbang_read,
314 	dc_mii_bitbang_write,
315 	{
316 		DC_SIO_MII_DATAOUT,	/* MII_BIT_MDO */
317 		DC_SIO_MII_DATAIN,	/* MII_BIT_MDI */
318 		DC_SIO_MII_CLK,		/* MII_BIT_MDC */
319 		0,			/* MII_BIT_DIR_HOST_PHY */
320 		DC_SIO_MII_DIR,		/* MII_BIT_DIR_PHY_HOST */
321 	}
322 };
323 
324 #ifdef DC_USEIOSPACE
325 #define	DC_RES			SYS_RES_IOPORT
326 #define	DC_RID			DC_PCI_CFBIO
327 #else
328 #define	DC_RES			SYS_RES_MEMORY
329 #define	DC_RID			DC_PCI_CFBMA
330 #endif
331 
332 static device_method_t dc_methods[] = {
333 	/* Device interface */
334 	DEVMETHOD(device_probe,		dc_probe),
335 	DEVMETHOD(device_attach,	dc_attach),
336 	DEVMETHOD(device_detach,	dc_detach),
337 	DEVMETHOD(device_suspend,	dc_suspend),
338 	DEVMETHOD(device_resume,	dc_resume),
339 	DEVMETHOD(device_shutdown,	dc_shutdown),
340 
341 	/* MII interface */
342 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
343 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
344 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
345 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
346 
347 	DEVMETHOD_END
348 };
349 
350 static driver_t dc_driver = {
351 	"dc",
352 	dc_methods,
353 	sizeof(struct dc_softc)
354 };
355 
356 static devclass_t dc_devclass;
357 
358 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, dc_devclass, NULL, NULL,
359     SI_ORDER_ANY);
360 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
361 
362 #define	DC_SETBIT(sc, reg, x)				\
363 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
364 
365 #define	DC_CLRBIT(sc, reg, x)				\
366 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
367 
368 #define	SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
369 #define	SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
370 
371 static void
372 dc_delay(struct dc_softc *sc)
373 {
374 	int idx;
375 
376 	for (idx = (300 / 33) + 1; idx > 0; idx--)
377 		CSR_READ_4(sc, DC_BUSCTL);
378 }
379 
380 static void
381 dc_eeprom_width(struct dc_softc *sc)
382 {
383 	int i;
384 
385 	/* Force EEPROM to idle state. */
386 	dc_eeprom_idle(sc);
387 
388 	/* Enter EEPROM access mode. */
389 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
390 	dc_delay(sc);
391 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
392 	dc_delay(sc);
393 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
394 	dc_delay(sc);
395 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
396 	dc_delay(sc);
397 
398 	for (i = 3; i--;) {
399 		if (6 & (1 << i))
400 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
401 		else
402 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
403 		dc_delay(sc);
404 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 		dc_delay(sc);
406 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
407 		dc_delay(sc);
408 	}
409 
410 	for (i = 1; i <= 12; i++) {
411 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
412 		dc_delay(sc);
413 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
414 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 			dc_delay(sc);
416 			break;
417 		}
418 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 		dc_delay(sc);
420 	}
421 
422 	/* Turn off EEPROM access mode. */
423 	dc_eeprom_idle(sc);
424 
425 	if (i < 4 || i > 12)
426 		sc->dc_romwidth = 6;
427 	else
428 		sc->dc_romwidth = i;
429 
430 	/* Enter EEPROM access mode. */
431 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
432 	dc_delay(sc);
433 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
434 	dc_delay(sc);
435 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
436 	dc_delay(sc);
437 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
438 	dc_delay(sc);
439 
440 	/* Turn off EEPROM access mode. */
441 	dc_eeprom_idle(sc);
442 }
443 
444 static void
445 dc_eeprom_idle(struct dc_softc *sc)
446 {
447 	int i;
448 
449 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
450 	dc_delay(sc);
451 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
452 	dc_delay(sc);
453 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
454 	dc_delay(sc);
455 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
456 	dc_delay(sc);
457 
458 	for (i = 0; i < 25; i++) {
459 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
460 		dc_delay(sc);
461 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
462 		dc_delay(sc);
463 	}
464 
465 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
466 	dc_delay(sc);
467 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
468 	dc_delay(sc);
469 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
470 }
471 
472 /*
473  * Send a read command and address to the EEPROM, check for ACK.
474  */
475 static void
476 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
477 {
478 	int d, i;
479 
480 	d = DC_EECMD_READ >> 6;
481 	for (i = 3; i--; ) {
482 		if (d & (1 << i))
483 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
484 		else
485 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
486 		dc_delay(sc);
487 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
488 		dc_delay(sc);
489 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
490 		dc_delay(sc);
491 	}
492 
493 	/*
494 	 * Feed in each bit and strobe the clock.
495 	 */
496 	for (i = sc->dc_romwidth; i--;) {
497 		if (addr & (1 << i)) {
498 			SIO_SET(DC_SIO_EE_DATAIN);
499 		} else {
500 			SIO_CLR(DC_SIO_EE_DATAIN);
501 		}
502 		dc_delay(sc);
503 		SIO_SET(DC_SIO_EE_CLK);
504 		dc_delay(sc);
505 		SIO_CLR(DC_SIO_EE_CLK);
506 		dc_delay(sc);
507 	}
508 }
509 
510 /*
511  * Read a word of data stored in the EEPROM at address 'addr.'
512  * The PNIC 82c168/82c169 has its own non-standard way to read
513  * the EEPROM.
514  */
515 static void
516 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
517 {
518 	int i;
519 	uint32_t r;
520 
521 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
522 
523 	for (i = 0; i < DC_TIMEOUT; i++) {
524 		DELAY(1);
525 		r = CSR_READ_4(sc, DC_SIO);
526 		if (!(r & DC_PN_SIOCTL_BUSY)) {
527 			*dest = (uint16_t)(r & 0xFFFF);
528 			return;
529 		}
530 	}
531 }
532 
533 /*
534  * Read a word of data stored in the EEPROM at address 'addr.'
535  * The Xircom X3201 has its own non-standard way to read
536  * the EEPROM, too.
537  */
538 static void
539 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
540 {
541 
542 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
543 
544 	addr *= 2;
545 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
546 	*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
547 	addr += 1;
548 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
549 	*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
550 
551 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
552 }
553 
554 /*
555  * Read a word of data stored in the EEPROM at address 'addr.'
556  */
557 static void
558 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
559 {
560 	int i;
561 	uint16_t word = 0;
562 
563 	/* Force EEPROM to idle state. */
564 	dc_eeprom_idle(sc);
565 
566 	/* Enter EEPROM access mode. */
567 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
568 	dc_delay(sc);
569 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
570 	dc_delay(sc);
571 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
572 	dc_delay(sc);
573 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
574 	dc_delay(sc);
575 
576 	/*
577 	 * Send address of word we want to read.
578 	 */
579 	dc_eeprom_putbyte(sc, addr);
580 
581 	/*
582 	 * Start reading bits from EEPROM.
583 	 */
584 	for (i = 0x8000; i; i >>= 1) {
585 		SIO_SET(DC_SIO_EE_CLK);
586 		dc_delay(sc);
587 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
588 			word |= i;
589 		dc_delay(sc);
590 		SIO_CLR(DC_SIO_EE_CLK);
591 		dc_delay(sc);
592 	}
593 
594 	/* Turn off EEPROM access mode. */
595 	dc_eeprom_idle(sc);
596 
597 	*dest = word;
598 }
599 
600 /*
601  * Read a sequence of words from the EEPROM.
602  */
603 static void
604 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
605 {
606 	int i;
607 	uint16_t word = 0, *ptr;
608 
609 	for (i = 0; i < cnt; i++) {
610 		if (DC_IS_PNIC(sc))
611 			dc_eeprom_getword_pnic(sc, off + i, &word);
612 		else if (DC_IS_XIRCOM(sc))
613 			dc_eeprom_getword_xircom(sc, off + i, &word);
614 		else
615 			dc_eeprom_getword(sc, off + i, &word);
616 		ptr = (uint16_t *)(dest + (i * 2));
617 		if (be)
618 			*ptr = be16toh(word);
619 		else
620 			*ptr = le16toh(word);
621 	}
622 }
623 
624 /*
625  * Write the MII serial port for the MII bit-bang module.
626  */
627 static void
628 dc_mii_bitbang_write(device_t dev, uint32_t val)
629 {
630 	struct dc_softc *sc;
631 
632 	sc = device_get_softc(dev);
633 
634 	CSR_WRITE_4(sc, DC_SIO, val);
635 	CSR_BARRIER_4(sc, DC_SIO,
636 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
637 }
638 
639 /*
640  * Read the MII serial port for the MII bit-bang module.
641  */
642 static uint32_t
643 dc_mii_bitbang_read(device_t dev)
644 {
645 	struct dc_softc *sc;
646 	uint32_t val;
647 
648 	sc = device_get_softc(dev);
649 
650 	val = CSR_READ_4(sc, DC_SIO);
651 	CSR_BARRIER_4(sc, DC_SIO,
652 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
653 
654 	return (val);
655 }
656 
657 static int
658 dc_miibus_readreg(device_t dev, int phy, int reg)
659 {
660 	struct dc_softc *sc;
661 	int i, rval, phy_reg = 0;
662 
663 	sc = device_get_softc(dev);
664 
665 	if (sc->dc_pmode != DC_PMODE_MII) {
666 		if (phy == (MII_NPHY - 1)) {
667 			switch (reg) {
668 			case MII_BMSR:
669 			/*
670 			 * Fake something to make the probe
671 			 * code think there's a PHY here.
672 			 */
673 				return (BMSR_MEDIAMASK);
674 			case MII_PHYIDR1:
675 				if (DC_IS_PNIC(sc))
676 					return (DC_VENDORID_LO);
677 				return (DC_VENDORID_DEC);
678 			case MII_PHYIDR2:
679 				if (DC_IS_PNIC(sc))
680 					return (DC_DEVICEID_82C168);
681 				return (DC_DEVICEID_21143);
682 			default:
683 				return (0);
684 			}
685 		} else
686 			return (0);
687 	}
688 
689 	if (DC_IS_PNIC(sc)) {
690 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
691 		    (phy << 23) | (reg << 18));
692 		for (i = 0; i < DC_TIMEOUT; i++) {
693 			DELAY(1);
694 			rval = CSR_READ_4(sc, DC_PN_MII);
695 			if (!(rval & DC_PN_MII_BUSY)) {
696 				rval &= 0xFFFF;
697 				return (rval == 0xFFFF ? 0 : rval);
698 			}
699 		}
700 		return (0);
701 	}
702 
703 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
704 		CSR_WRITE_4(sc, DC_ROM,
705 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
706 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
707 		    DC_ULI_PHY_OP_READ);
708 		for (i = 0; i < DC_TIMEOUT; i++) {
709 			DELAY(1);
710 			rval = CSR_READ_4(sc, DC_ROM);
711 			if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
712 				return (rval & DC_ULI_PHY_DATA_MASK);
713 			}
714 		}
715 		if (i == DC_TIMEOUT)
716 			device_printf(dev, "phy read timed out\n");
717 		return (0);
718 	}
719 
720 	if (DC_IS_COMET(sc)) {
721 		switch (reg) {
722 		case MII_BMCR:
723 			phy_reg = DC_AL_BMCR;
724 			break;
725 		case MII_BMSR:
726 			phy_reg = DC_AL_BMSR;
727 			break;
728 		case MII_PHYIDR1:
729 			phy_reg = DC_AL_VENID;
730 			break;
731 		case MII_PHYIDR2:
732 			phy_reg = DC_AL_DEVID;
733 			break;
734 		case MII_ANAR:
735 			phy_reg = DC_AL_ANAR;
736 			break;
737 		case MII_ANLPAR:
738 			phy_reg = DC_AL_LPAR;
739 			break;
740 		case MII_ANER:
741 			phy_reg = DC_AL_ANER;
742 			break;
743 		default:
744 			device_printf(dev, "phy_read: bad phy register %x\n",
745 			    reg);
746 			return (0);
747 		}
748 
749 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
750 		if (rval == 0xFFFF)
751 			return (0);
752 		return (rval);
753 	}
754 
755 	if (sc->dc_type == DC_TYPE_98713) {
756 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
757 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
758 	}
759 	rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
760 	if (sc->dc_type == DC_TYPE_98713)
761 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
762 
763 	return (rval);
764 }
765 
766 static int
767 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
768 {
769 	struct dc_softc *sc;
770 	int i, phy_reg = 0;
771 
772 	sc = device_get_softc(dev);
773 
774 	if (DC_IS_PNIC(sc)) {
775 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
776 		    (phy << 23) | (reg << 10) | data);
777 		for (i = 0; i < DC_TIMEOUT; i++) {
778 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
779 				break;
780 		}
781 		return (0);
782 	}
783 
784 	if (sc->dc_type == DC_TYPE_ULI_M5263) {
785 		CSR_WRITE_4(sc, DC_ROM,
786 		    ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
787 		    ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
788 		    ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
789 		    DC_ULI_PHY_OP_WRITE);
790 		DELAY(1);
791 		return (0);
792 	}
793 
794 	if (DC_IS_COMET(sc)) {
795 		switch (reg) {
796 		case MII_BMCR:
797 			phy_reg = DC_AL_BMCR;
798 			break;
799 		case MII_BMSR:
800 			phy_reg = DC_AL_BMSR;
801 			break;
802 		case MII_PHYIDR1:
803 			phy_reg = DC_AL_VENID;
804 			break;
805 		case MII_PHYIDR2:
806 			phy_reg = DC_AL_DEVID;
807 			break;
808 		case MII_ANAR:
809 			phy_reg = DC_AL_ANAR;
810 			break;
811 		case MII_ANLPAR:
812 			phy_reg = DC_AL_LPAR;
813 			break;
814 		case MII_ANER:
815 			phy_reg = DC_AL_ANER;
816 			break;
817 		default:
818 			device_printf(dev, "phy_write: bad phy register %x\n",
819 			    reg);
820 			return (0);
821 			break;
822 		}
823 
824 		CSR_WRITE_4(sc, phy_reg, data);
825 		return (0);
826 	}
827 
828 	if (sc->dc_type == DC_TYPE_98713) {
829 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
830 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
831 	}
832 	mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
833 	if (sc->dc_type == DC_TYPE_98713)
834 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
835 
836 	return (0);
837 }
838 
839 static void
840 dc_miibus_statchg(device_t dev)
841 {
842 	struct dc_softc *sc;
843 	struct ifnet *ifp;
844 	struct mii_data *mii;
845 	struct ifmedia *ifm;
846 
847 	sc = device_get_softc(dev);
848 
849 	mii = device_get_softc(sc->dc_miibus);
850 	ifp = sc->dc_ifp;
851 	if (mii == NULL || ifp == NULL ||
852 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
853 		return;
854 
855 	ifm = &mii->mii_media;
856 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
857 		dc_setcfg(sc, ifm->ifm_media);
858 		return;
859 	} else if (!DC_IS_ADMTEK(sc))
860 		dc_setcfg(sc, mii->mii_media_active);
861 
862 	sc->dc_link = 0;
863 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
864 	    (IFM_ACTIVE | IFM_AVALID)) {
865 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
866 		case IFM_10_T:
867 		case IFM_100_TX:
868 			sc->dc_link = 1;
869 			break;
870 		}
871 	}
872 }
873 
874 /*
875  * Special support for DM9102A cards with HomePNA PHYs. Note:
876  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
877  * to be impossible to talk to the management interface of the DM9801
878  * PHY (its MDIO pin is not connected to anything). Consequently,
879  * the driver has to just 'know' about the additional mode and deal
880  * with it itself. *sigh*
881  */
882 static void
883 dc_miibus_mediainit(device_t dev)
884 {
885 	struct dc_softc *sc;
886 	struct mii_data *mii;
887 	struct ifmedia *ifm;
888 	int rev;
889 
890 	rev = pci_get_revid(dev);
891 
892 	sc = device_get_softc(dev);
893 	mii = device_get_softc(sc->dc_miibus);
894 	ifm = &mii->mii_media;
895 
896 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
897 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
898 }
899 
900 #define	DC_BITS_512	9
901 #define	DC_BITS_128	7
902 #define	DC_BITS_64	6
903 
904 static uint32_t
905 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
906 {
907 	uint32_t crc;
908 
909 	/* Compute CRC for the address value. */
910 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
911 
912 	/*
913 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
914 	 * chips is only 128 bits wide.
915 	 */
916 	if (sc->dc_flags & DC_128BIT_HASH)
917 		return (crc & ((1 << DC_BITS_128) - 1));
918 
919 	/* The hash table on the MX98715BEC is only 64 bits wide. */
920 	if (sc->dc_flags & DC_64BIT_HASH)
921 		return (crc & ((1 << DC_BITS_64) - 1));
922 
923 	/* Xircom's hash filtering table is different (read: weird) */
924 	/* Xircom uses the LEAST significant bits */
925 	if (DC_IS_XIRCOM(sc)) {
926 		if ((crc & 0x180) == 0x180)
927 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
928 		else
929 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
930 			    (12 << 4));
931 	}
932 
933 	return (crc & ((1 << DC_BITS_512) - 1));
934 }
935 
936 /*
937  * Calculate CRC of a multicast group address, return the lower 6 bits.
938  */
939 static uint32_t
940 dc_mchash_be(const uint8_t *addr)
941 {
942 	uint32_t crc;
943 
944 	/* Compute CRC for the address value. */
945 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
946 
947 	/* Return the filter bit position. */
948 	return ((crc >> 26) & 0x0000003F);
949 }
950 
951 /*
952  * 21143-style RX filter setup routine. Filter programming is done by
953  * downloading a special setup frame into the TX engine. 21143, Macronix,
954  * PNIC, PNIC II and Davicom chips are programmed this way.
955  *
956  * We always program the chip using 'hash perfect' mode, i.e. one perfect
957  * address (our node address) and a 512-bit hash filter for multicast
958  * frames. We also sneak the broadcast address into the hash filter since
959  * we need that too.
960  */
961 static void
962 dc_setfilt_21143(struct dc_softc *sc)
963 {
964 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
965 	struct dc_desc *sframe;
966 	uint32_t h, *sp;
967 	struct ifmultiaddr *ifma;
968 	struct ifnet *ifp;
969 	int i;
970 
971 	ifp = sc->dc_ifp;
972 
973 	i = sc->dc_cdata.dc_tx_prod;
974 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
975 	sc->dc_cdata.dc_tx_cnt++;
976 	sframe = &sc->dc_ldata.dc_tx_list[i];
977 	sp = sc->dc_cdata.dc_sbuf;
978 	bzero(sp, DC_SFRAME_LEN);
979 
980 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
981 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
982 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
983 
984 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
985 
986 	/* If we want promiscuous mode, set the allframes bit. */
987 	if (ifp->if_flags & IFF_PROMISC)
988 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
989 	else
990 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
991 
992 	if (ifp->if_flags & IFF_ALLMULTI)
993 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
994 	else
995 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
996 
997 	if_maddr_rlock(ifp);
998 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
999 		if (ifma->ifma_addr->sa_family != AF_LINK)
1000 			continue;
1001 		h = dc_mchash_le(sc,
1002 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1003 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1004 	}
1005 	if_maddr_runlock(ifp);
1006 
1007 	if (ifp->if_flags & IFF_BROADCAST) {
1008 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1009 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1010 	}
1011 
1012 	/* Set our MAC address. */
1013 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1014 	sp[39] = DC_SP_MAC(eaddr[0]);
1015 	sp[40] = DC_SP_MAC(eaddr[1]);
1016 	sp[41] = DC_SP_MAC(eaddr[2]);
1017 
1018 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1019 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1020 	    BUS_DMASYNC_PREWRITE);
1021 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1022 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1023 
1024 	/*
1025 	 * The PNIC takes an exceedingly long time to process its
1026 	 * setup frame; wait 10ms after posting the setup frame
1027 	 * before proceeding, just so it has time to swallow its
1028 	 * medicine.
1029 	 */
1030 	DELAY(10000);
1031 
1032 	sc->dc_wdog_timer = 5;
1033 }
1034 
1035 static void
1036 dc_setfilt_admtek(struct dc_softc *sc)
1037 {
1038 	uint8_t eaddr[ETHER_ADDR_LEN];
1039 	struct ifnet *ifp;
1040 	struct ifmultiaddr *ifma;
1041 	int h = 0;
1042 	uint32_t hashes[2] = { 0, 0 };
1043 
1044 	ifp = sc->dc_ifp;
1045 
1046 	/* Init our MAC address. */
1047 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1048 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1049 	    eaddr[1] << 8 | eaddr[0]);
1050 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1051 
1052 	/* If we want promiscuous mode, set the allframes bit. */
1053 	if (ifp->if_flags & IFF_PROMISC)
1054 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1055 	else
1056 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1057 
1058 	if (ifp->if_flags & IFF_ALLMULTI)
1059 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1060 	else
1061 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1062 
1063 	/* First, zot all the existing hash bits. */
1064 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1065 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1066 
1067 	/*
1068 	 * If we're already in promisc or allmulti mode, we
1069 	 * don't have to bother programming the multicast filter.
1070 	 */
1071 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1072 		return;
1073 
1074 	/* Now program new ones. */
1075 	if_maddr_rlock(ifp);
1076 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1077 		if (ifma->ifma_addr->sa_family != AF_LINK)
1078 			continue;
1079 		if (DC_IS_CENTAUR(sc))
1080 			h = dc_mchash_le(sc,
1081 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1082 		else
1083 			h = dc_mchash_be(
1084 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1085 		if (h < 32)
1086 			hashes[0] |= (1 << h);
1087 		else
1088 			hashes[1] |= (1 << (h - 32));
1089 	}
1090 	if_maddr_runlock(ifp);
1091 
1092 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1093 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1094 }
1095 
1096 static void
1097 dc_setfilt_asix(struct dc_softc *sc)
1098 {
1099 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1100 	struct ifnet *ifp;
1101 	struct ifmultiaddr *ifma;
1102 	int h = 0;
1103 	uint32_t hashes[2] = { 0, 0 };
1104 
1105 	ifp = sc->dc_ifp;
1106 
1107 	/* Init our MAC address. */
1108 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1109 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1110 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1111 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1112 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1113 
1114 	/* If we want promiscuous mode, set the allframes bit. */
1115 	if (ifp->if_flags & IFF_PROMISC)
1116 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1117 	else
1118 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1119 
1120 	if (ifp->if_flags & IFF_ALLMULTI)
1121 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1122 	else
1123 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1124 
1125 	/*
1126 	 * The ASIX chip has a special bit to enable reception
1127 	 * of broadcast frames.
1128 	 */
1129 	if (ifp->if_flags & IFF_BROADCAST)
1130 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1131 	else
1132 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1133 
1134 	/* first, zot all the existing hash bits */
1135 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1136 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1137 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1138 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1139 
1140 	/*
1141 	 * If we're already in promisc or allmulti mode, we
1142 	 * don't have to bother programming the multicast filter.
1143 	 */
1144 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1145 		return;
1146 
1147 	/* now program new ones */
1148 	if_maddr_rlock(ifp);
1149 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1150 		if (ifma->ifma_addr->sa_family != AF_LINK)
1151 			continue;
1152 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1153 		if (h < 32)
1154 			hashes[0] |= (1 << h);
1155 		else
1156 			hashes[1] |= (1 << (h - 32));
1157 	}
1158 	if_maddr_runlock(ifp);
1159 
1160 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1161 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1162 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1163 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1164 }
1165 
1166 static void
1167 dc_setfilt_uli(struct dc_softc *sc)
1168 {
1169 	uint8_t eaddr[ETHER_ADDR_LEN];
1170 	struct ifnet *ifp;
1171 	struct ifmultiaddr *ifma;
1172 	struct dc_desc *sframe;
1173 	uint32_t filter, *sp;
1174 	uint8_t *ma;
1175 	int i, mcnt;
1176 
1177 	ifp = sc->dc_ifp;
1178 
1179 	i = sc->dc_cdata.dc_tx_prod;
1180 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1181 	sc->dc_cdata.dc_tx_cnt++;
1182 	sframe = &sc->dc_ldata.dc_tx_list[i];
1183 	sp = sc->dc_cdata.dc_sbuf;
1184 	bzero(sp, DC_SFRAME_LEN);
1185 
1186 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1187 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1188 	    DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
1189 
1190 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1191 
1192 	/* Set station address. */
1193 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1194 	*sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
1195 	*sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
1196 	*sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
1197 
1198 	/* Set broadcast address. */
1199 	*sp++ = DC_SP_MAC(0xFFFF);
1200 	*sp++ = DC_SP_MAC(0xFFFF);
1201 	*sp++ = DC_SP_MAC(0xFFFF);
1202 
1203 	/* Extract current filter configuration. */
1204 	filter = CSR_READ_4(sc, DC_NETCFG);
1205 	filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
1206 
1207 	/* Now build perfect filters. */
1208 	mcnt = 0;
1209 	if_maddr_rlock(ifp);
1210 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1211 		if (ifma->ifma_addr->sa_family != AF_LINK)
1212 			continue;
1213 		if (mcnt >= DC_ULI_FILTER_NPERF) {
1214 			filter |= DC_NETCFG_RX_ALLMULTI;
1215 			break;
1216 		}
1217 		ma = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1218 		*sp++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
1219 		*sp++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
1220 		*sp++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
1221 		mcnt++;
1222 	}
1223 	if_maddr_runlock(ifp);
1224 
1225 	for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
1226 		*sp++ = DC_SP_MAC(0xFFFF);
1227 		*sp++ = DC_SP_MAC(0xFFFF);
1228 		*sp++ = DC_SP_MAC(0xFFFF);
1229 	}
1230 
1231 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1232 		CSR_WRITE_4(sc, DC_NETCFG,
1233 		    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1234 	if (ifp->if_flags & IFF_PROMISC)
1235 		filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
1236 	if (ifp->if_flags & IFF_ALLMULTI)
1237 		filter |= DC_NETCFG_RX_ALLMULTI;
1238 	CSR_WRITE_4(sc, DC_NETCFG,
1239 	    filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1240 	if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
1241 		CSR_WRITE_4(sc, DC_NETCFG, filter);
1242 
1243 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1244 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1245 	    BUS_DMASYNC_PREWRITE);
1246 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1247 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1248 
1249 	/*
1250 	 * Wait some time...
1251 	 */
1252 	DELAY(1000);
1253 
1254 	sc->dc_wdog_timer = 5;
1255 }
1256 
1257 static void
1258 dc_setfilt_xircom(struct dc_softc *sc)
1259 {
1260 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1261 	struct ifnet *ifp;
1262 	struct ifmultiaddr *ifma;
1263 	struct dc_desc *sframe;
1264 	uint32_t h, *sp;
1265 	int i;
1266 
1267 	ifp = sc->dc_ifp;
1268 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1269 
1270 	i = sc->dc_cdata.dc_tx_prod;
1271 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1272 	sc->dc_cdata.dc_tx_cnt++;
1273 	sframe = &sc->dc_ldata.dc_tx_list[i];
1274 	sp = sc->dc_cdata.dc_sbuf;
1275 	bzero(sp, DC_SFRAME_LEN);
1276 
1277 	sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
1278 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1279 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1280 
1281 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1282 
1283 	/* If we want promiscuous mode, set the allframes bit. */
1284 	if (ifp->if_flags & IFF_PROMISC)
1285 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1286 	else
1287 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1288 
1289 	if (ifp->if_flags & IFF_ALLMULTI)
1290 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1291 	else
1292 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1293 
1294 	if_maddr_rlock(ifp);
1295 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1296 		if (ifma->ifma_addr->sa_family != AF_LINK)
1297 			continue;
1298 		h = dc_mchash_le(sc,
1299 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1300 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1301 	}
1302 	if_maddr_runlock(ifp);
1303 
1304 	if (ifp->if_flags & IFF_BROADCAST) {
1305 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1306 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1307 	}
1308 
1309 	/* Set our MAC address. */
1310 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1311 	sp[0] = DC_SP_MAC(eaddr[0]);
1312 	sp[1] = DC_SP_MAC(eaddr[1]);
1313 	sp[2] = DC_SP_MAC(eaddr[2]);
1314 
1315 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1316 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1317 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1318 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
1319 	    BUS_DMASYNC_PREWRITE);
1320 	bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
1321 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1322 
1323 	/*
1324 	 * Wait some time...
1325 	 */
1326 	DELAY(1000);
1327 
1328 	sc->dc_wdog_timer = 5;
1329 }
1330 
1331 static void
1332 dc_setfilt(struct dc_softc *sc)
1333 {
1334 
1335 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1336 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1337 		dc_setfilt_21143(sc);
1338 
1339 	if (DC_IS_ASIX(sc))
1340 		dc_setfilt_asix(sc);
1341 
1342 	if (DC_IS_ADMTEK(sc))
1343 		dc_setfilt_admtek(sc);
1344 
1345 	if (DC_IS_ULI(sc))
1346 		dc_setfilt_uli(sc);
1347 
1348 	if (DC_IS_XIRCOM(sc))
1349 		dc_setfilt_xircom(sc);
1350 }
1351 
1352 static void
1353 dc_netcfg_wait(struct dc_softc *sc)
1354 {
1355 	uint32_t isr;
1356 	int i;
1357 
1358 	for (i = 0; i < DC_TIMEOUT; i++) {
1359 		isr = CSR_READ_4(sc, DC_ISR);
1360 		if (isr & DC_ISR_TX_IDLE &&
1361 		    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1362 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1363 			break;
1364 		DELAY(10);
1365 	}
1366 	if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
1367 		if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1368 			device_printf(sc->dc_dev,
1369 			    "%s: failed to force tx to idle state\n", __func__);
1370 		if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1371 		    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1372 		    !DC_HAS_BROKEN_RXSTATE(sc))
1373 			device_printf(sc->dc_dev,
1374 			    "%s: failed to force rx to idle state\n", __func__);
1375 	}
1376 }
1377 
1378 /*
1379  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1380  * the netconfig register, we first have to put the transmit and/or
1381  * receive logic in the idle state.
1382  */
1383 static void
1384 dc_setcfg(struct dc_softc *sc, int media)
1385 {
1386 	int restart = 0, watchdogreg;
1387 
1388 	if (IFM_SUBTYPE(media) == IFM_NONE)
1389 		return;
1390 
1391 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1392 		restart = 1;
1393 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1394 		dc_netcfg_wait(sc);
1395 	}
1396 
1397 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1398 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1399 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1400 		if (sc->dc_pmode == DC_PMODE_MII) {
1401 			if (DC_IS_INTEL(sc)) {
1402 			/* There's a write enable bit here that reads as 1. */
1403 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1404 				watchdogreg &= ~DC_WDOG_CTLWREN;
1405 				watchdogreg |= DC_WDOG_JABBERDIS;
1406 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1407 			} else {
1408 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1409 			}
1410 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1411 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1412 			if (sc->dc_type == DC_TYPE_98713)
1413 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1414 				    DC_NETCFG_SCRAMBLER));
1415 			if (!DC_IS_DAVICOM(sc))
1416 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1417 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1418 		} else {
1419 			if (DC_IS_PNIC(sc)) {
1420 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1421 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1422 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1423 			}
1424 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1425 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1426 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1427 		}
1428 	}
1429 
1430 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1431 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1432 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1433 		if (sc->dc_pmode == DC_PMODE_MII) {
1434 			/* There's a write enable bit here that reads as 1. */
1435 			if (DC_IS_INTEL(sc)) {
1436 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1437 				watchdogreg &= ~DC_WDOG_CTLWREN;
1438 				watchdogreg |= DC_WDOG_JABBERDIS;
1439 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1440 			} else {
1441 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1442 			}
1443 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1444 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1445 			if (sc->dc_type == DC_TYPE_98713)
1446 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1447 			if (!DC_IS_DAVICOM(sc))
1448 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1449 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1450 		} else {
1451 			if (DC_IS_PNIC(sc)) {
1452 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1453 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1454 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1455 			}
1456 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1457 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1458 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1459 			if (DC_IS_INTEL(sc)) {
1460 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1461 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1462 				if ((media & IFM_GMASK) == IFM_FDX)
1463 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1464 				else
1465 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1466 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1467 				DC_CLRBIT(sc, DC_10BTCTRL,
1468 				    DC_TCTL_AUTONEGENBL);
1469 				DELAY(20000);
1470 			}
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1476 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1477 	 * on the external MII port.
1478 	 */
1479 	if (DC_IS_DAVICOM(sc)) {
1480 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1481 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1482 			sc->dc_link = 1;
1483 		} else {
1484 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1485 		}
1486 	}
1487 
1488 	if ((media & IFM_GMASK) == IFM_FDX) {
1489 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1490 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1491 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1492 	} else {
1493 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1494 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1495 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1496 	}
1497 
1498 	if (restart)
1499 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1500 }
1501 
1502 static void
1503 dc_reset(struct dc_softc *sc)
1504 {
1505 	int i;
1506 
1507 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1508 
1509 	for (i = 0; i < DC_TIMEOUT; i++) {
1510 		DELAY(10);
1511 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1512 			break;
1513 	}
1514 
1515 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1516 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
1517 		DELAY(10000);
1518 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1519 		i = 0;
1520 	}
1521 
1522 	if (i == DC_TIMEOUT)
1523 		device_printf(sc->dc_dev, "reset never completed!\n");
1524 
1525 	/* Wait a little while for the chip to get its brains in order. */
1526 	DELAY(1000);
1527 
1528 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1529 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1530 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1531 
1532 	/*
1533 	 * Bring the SIA out of reset. In some cases, it looks
1534 	 * like failing to unreset the SIA soon enough gets it
1535 	 * into a state where it will never come out of reset
1536 	 * until we reset the whole chip again.
1537 	 */
1538 	if (DC_IS_INTEL(sc)) {
1539 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1540 		CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
1541 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1542 	}
1543 }
1544 
1545 static const struct dc_type *
1546 dc_devtype(device_t dev)
1547 {
1548 	const struct dc_type *t;
1549 	uint32_t devid;
1550 	uint8_t rev;
1551 
1552 	t = dc_devs;
1553 	devid = pci_get_devid(dev);
1554 	rev = pci_get_revid(dev);
1555 
1556 	while (t->dc_name != NULL) {
1557 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1558 			return (t);
1559 		t++;
1560 	}
1561 
1562 	return (NULL);
1563 }
1564 
1565 /*
1566  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1567  * IDs against our list and return a device name if we find a match.
1568  * We do a little bit of extra work to identify the exact type of
1569  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1570  * but different revision IDs. The same is true for 98715/98715A
1571  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1572  * cases, the exact chip revision affects driver behavior.
1573  */
1574 static int
1575 dc_probe(device_t dev)
1576 {
1577 	const struct dc_type *t;
1578 
1579 	t = dc_devtype(dev);
1580 
1581 	if (t != NULL) {
1582 		device_set_desc(dev, t->dc_name);
1583 		return (BUS_PROBE_DEFAULT);
1584 	}
1585 
1586 	return (ENXIO);
1587 }
1588 
1589 static void
1590 dc_apply_fixup(struct dc_softc *sc, int media)
1591 {
1592 	struct dc_mediainfo *m;
1593 	uint8_t *p;
1594 	int i;
1595 	uint32_t reg;
1596 
1597 	m = sc->dc_mi;
1598 
1599 	while (m != NULL) {
1600 		if (m->dc_media == media)
1601 			break;
1602 		m = m->dc_next;
1603 	}
1604 
1605 	if (m == NULL)
1606 		return;
1607 
1608 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1609 		reg = (p[0] | (p[1] << 8)) << 16;
1610 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1611 	}
1612 
1613 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1614 		reg = (p[0] | (p[1] << 8)) << 16;
1615 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1616 	}
1617 }
1618 
1619 static int
1620 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1621 {
1622 	struct dc_mediainfo *m;
1623 
1624 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1625 	if (m == NULL) {
1626 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1627 		return (ENOMEM);
1628 	}
1629 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1630 	case DC_SIA_CODE_10BT:
1631 		m->dc_media = IFM_10_T;
1632 		break;
1633 	case DC_SIA_CODE_10BT_FDX:
1634 		m->dc_media = IFM_10_T | IFM_FDX;
1635 		break;
1636 	case DC_SIA_CODE_10B2:
1637 		m->dc_media = IFM_10_2;
1638 		break;
1639 	case DC_SIA_CODE_10B5:
1640 		m->dc_media = IFM_10_5;
1641 		break;
1642 	default:
1643 		break;
1644 	}
1645 
1646 	/*
1647 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1648 	 * Things apparently already work for cards that do
1649 	 * supply Media Specific Data.
1650 	 */
1651 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1652 		m->dc_gp_len = 2;
1653 		m->dc_gp_ptr =
1654 		(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1655 	} else {
1656 		m->dc_gp_len = 2;
1657 		m->dc_gp_ptr =
1658 		(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1659 	}
1660 
1661 	m->dc_next = sc->dc_mi;
1662 	sc->dc_mi = m;
1663 
1664 	sc->dc_pmode = DC_PMODE_SIA;
1665 	return (0);
1666 }
1667 
1668 static int
1669 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1670 {
1671 	struct dc_mediainfo *m;
1672 
1673 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1674 	if (m == NULL) {
1675 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1676 		return (ENOMEM);
1677 	}
1678 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1679 		m->dc_media = IFM_100_TX;
1680 
1681 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1682 		m->dc_media = IFM_100_TX | IFM_FDX;
1683 
1684 	m->dc_gp_len = 2;
1685 	m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
1686 
1687 	m->dc_next = sc->dc_mi;
1688 	sc->dc_mi = m;
1689 
1690 	sc->dc_pmode = DC_PMODE_SYM;
1691 	return (0);
1692 }
1693 
1694 static int
1695 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1696 {
1697 	struct dc_mediainfo *m;
1698 	uint8_t *p;
1699 
1700 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1701 	if (m == NULL) {
1702 		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1703 		return (ENOMEM);
1704 	}
1705 	/* We abuse IFM_AUTO to represent MII. */
1706 	m->dc_media = IFM_AUTO;
1707 	m->dc_gp_len = l->dc_gpr_len;
1708 
1709 	p = (uint8_t *)l;
1710 	p += sizeof(struct dc_eblock_mii);
1711 	m->dc_gp_ptr = p;
1712 	p += 2 * l->dc_gpr_len;
1713 	m->dc_reset_len = *p;
1714 	p++;
1715 	m->dc_reset_ptr = p;
1716 
1717 	m->dc_next = sc->dc_mi;
1718 	sc->dc_mi = m;
1719 	return (0);
1720 }
1721 
1722 static int
1723 dc_read_srom(struct dc_softc *sc, int bits)
1724 {
1725 	int size;
1726 
1727 	size = DC_ROM_SIZE(bits);
1728 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
1729 	if (sc->dc_srom == NULL) {
1730 		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1731 		return (ENOMEM);
1732 	}
1733 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1734 	return (0);
1735 }
1736 
1737 static int
1738 dc_parse_21143_srom(struct dc_softc *sc)
1739 {
1740 	struct dc_leaf_hdr *lhdr;
1741 	struct dc_eblock_hdr *hdr;
1742 	int error, have_mii, i, loff;
1743 	char *ptr;
1744 
1745 	have_mii = 0;
1746 	loff = sc->dc_srom[27];
1747 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1748 
1749 	ptr = (char *)lhdr;
1750 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1751 	/*
1752 	 * Look if we got a MII media block.
1753 	 */
1754 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1755 		hdr = (struct dc_eblock_hdr *)ptr;
1756 		if (hdr->dc_type == DC_EBLOCK_MII)
1757 		    have_mii++;
1758 
1759 		ptr += (hdr->dc_len & 0x7F);
1760 		ptr++;
1761 	}
1762 
1763 	/*
1764 	 * Do the same thing again. Only use SIA and SYM media
1765 	 * blocks if no MII media block is available.
1766 	 */
1767 	ptr = (char *)lhdr;
1768 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1769 	error = 0;
1770 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1771 		hdr = (struct dc_eblock_hdr *)ptr;
1772 		switch (hdr->dc_type) {
1773 		case DC_EBLOCK_MII:
1774 			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1775 			break;
1776 		case DC_EBLOCK_SIA:
1777 			if (! have_mii)
1778 				error = dc_decode_leaf_sia(sc,
1779 				    (struct dc_eblock_sia *)hdr);
1780 			break;
1781 		case DC_EBLOCK_SYM:
1782 			if (! have_mii)
1783 				error = dc_decode_leaf_sym(sc,
1784 				    (struct dc_eblock_sym *)hdr);
1785 			break;
1786 		default:
1787 			/* Don't care. Yet. */
1788 			break;
1789 		}
1790 		ptr += (hdr->dc_len & 0x7F);
1791 		ptr++;
1792 	}
1793 	return (error);
1794 }
1795 
1796 static void
1797 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1798 {
1799 	bus_addr_t *paddr;
1800 
1801 	KASSERT(nseg == 1,
1802 	    ("%s: wrong number of segments (%d)", __func__, nseg));
1803 	paddr = arg;
1804 	*paddr = segs->ds_addr;
1805 }
1806 
1807 static int
1808 dc_dma_alloc(struct dc_softc *sc)
1809 {
1810 	int error, i;
1811 
1812 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
1813 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1814 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1815 	    NULL, NULL, &sc->dc_ptag);
1816 	if (error) {
1817 		device_printf(sc->dc_dev,
1818 		    "failed to allocate parent DMA tag\n");
1819 		goto fail;
1820 	}
1821 
1822 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1823 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1824 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
1825 	    DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
1826 	if (error) {
1827 		device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
1828 		goto fail;
1829 	}
1830 
1831 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1832 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
1833 	    DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
1834 	if (error) {
1835 		device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
1836 		goto fail;
1837 	}
1838 
1839 	/* RX descriptor list. */
1840 	error = bus_dmamem_alloc(sc->dc_rx_ltag,
1841 	    (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
1842 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
1843 	if (error) {
1844 		device_printf(sc->dc_dev,
1845 		    "failed to allocate DMA'able memory for RX list\n");
1846 		goto fail;
1847 	}
1848 	error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
1849 	    sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
1850 	    &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
1851 	if (error) {
1852 		device_printf(sc->dc_dev,
1853 		    "failed to load DMA'able memory for RX list\n");
1854 		goto fail;
1855 	}
1856 	/* TX descriptor list. */
1857 	error = bus_dmamem_alloc(sc->dc_tx_ltag,
1858 	    (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
1859 	    BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
1860 	if (error) {
1861 		device_printf(sc->dc_dev,
1862 		    "failed to allocate DMA'able memory for TX list\n");
1863 		goto fail;
1864 	}
1865 	error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
1866 	    sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
1867 	    &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
1868 	if (error) {
1869 		device_printf(sc->dc_dev,
1870 		    "cannot load DMA'able memory for TX list\n");
1871 		goto fail;
1872 	}
1873 
1874 	/*
1875 	 * Allocate a busdma tag and DMA safe memory for the multicast
1876 	 * setup frame.
1877 	 */
1878 	error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
1879 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1880 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
1881 	    0, NULL, NULL, &sc->dc_stag);
1882 	if (error) {
1883 		device_printf(sc->dc_dev,
1884 		    "failed to create DMA tag for setup frame\n");
1885 		goto fail;
1886 	}
1887 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
1888 	    BUS_DMA_NOWAIT, &sc->dc_smap);
1889 	if (error) {
1890 		device_printf(sc->dc_dev,
1891 		    "failed to allocate DMA'able memory for setup frame\n");
1892 		goto fail;
1893 	}
1894 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
1895 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
1896 	if (error) {
1897 		device_printf(sc->dc_dev,
1898 		    "cannot load DMA'able memory for setup frame\n");
1899 		goto fail;
1900 	}
1901 
1902 	/* Allocate a busdma tag for RX mbufs. */
1903 	error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
1904 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1905 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
1906 	if (error) {
1907 		device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
1908 		goto fail;
1909 	}
1910 
1911 	/* Allocate a busdma tag for TX mbufs. */
1912 	error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
1913 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1914 	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
1915 	    0, NULL, NULL, &sc->dc_tx_mtag);
1916 	if (error) {
1917 		device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
1918 		goto fail;
1919 	}
1920 
1921 	/* Create the TX/RX busdma maps. */
1922 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1923 		error = bus_dmamap_create(sc->dc_tx_mtag, 0,
1924 		    &sc->dc_cdata.dc_tx_map[i]);
1925 		if (error) {
1926 			device_printf(sc->dc_dev,
1927 			    "failed to create TX mbuf dmamap\n");
1928 			goto fail;
1929 		}
1930 	}
1931 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1932 		error = bus_dmamap_create(sc->dc_rx_mtag, 0,
1933 		    &sc->dc_cdata.dc_rx_map[i]);
1934 		if (error) {
1935 			device_printf(sc->dc_dev,
1936 			    "failed to create RX mbuf dmamap\n");
1937 			goto fail;
1938 		}
1939 	}
1940 	error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
1941 	if (error) {
1942 		device_printf(sc->dc_dev,
1943 		    "failed to create spare RX mbuf dmamap\n");
1944 		goto fail;
1945 	}
1946 
1947 fail:
1948 	return (error);
1949 }
1950 
1951 static void
1952 dc_dma_free(struct dc_softc *sc)
1953 {
1954 	int i;
1955 
1956 	/* RX buffers. */
1957 	if (sc->dc_rx_mtag != NULL) {
1958 		for (i = 0; i < DC_RX_LIST_CNT; i++) {
1959 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
1960 				bus_dmamap_destroy(sc->dc_rx_mtag,
1961 				    sc->dc_cdata.dc_rx_map[i]);
1962 		}
1963 		if (sc->dc_sparemap != NULL)
1964 			bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
1965 		bus_dma_tag_destroy(sc->dc_rx_mtag);
1966 	}
1967 
1968 	/* TX buffers. */
1969 	if (sc->dc_rx_mtag != NULL) {
1970 		for (i = 0; i < DC_TX_LIST_CNT; i++) {
1971 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
1972 				bus_dmamap_destroy(sc->dc_tx_mtag,
1973 				    sc->dc_cdata.dc_tx_map[i]);
1974 		}
1975 		bus_dma_tag_destroy(sc->dc_tx_mtag);
1976 	}
1977 
1978 	/* RX descriptor list. */
1979 	if (sc->dc_rx_ltag) {
1980 		if (sc->dc_ldata.dc_rx_list_paddr != 0)
1981 			bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
1982 		if (sc->dc_ldata.dc_rx_list != NULL)
1983 			bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
1984 			    sc->dc_rx_lmap);
1985 		bus_dma_tag_destroy(sc->dc_rx_ltag);
1986 	}
1987 
1988 	/* TX descriptor list. */
1989 	if (sc->dc_tx_ltag) {
1990 		if (sc->dc_ldata.dc_tx_list_paddr != 0)
1991 			bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
1992 		if (sc->dc_ldata.dc_tx_list != NULL)
1993 			bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
1994 			    sc->dc_tx_lmap);
1995 		bus_dma_tag_destroy(sc->dc_tx_ltag);
1996 	}
1997 
1998 	/* multicast setup frame. */
1999 	if (sc->dc_stag) {
2000 		if (sc->dc_saddr != 0)
2001 			bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
2002 		if (sc->dc_cdata.dc_sbuf != NULL)
2003 			bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
2004 			    sc->dc_smap);
2005 		bus_dma_tag_destroy(sc->dc_stag);
2006 	}
2007 }
2008 
2009 /*
2010  * Attach the interface. Allocate softc structures, do ifmedia
2011  * setup and ethernet/BPF attach.
2012  */
2013 static int
2014 dc_attach(device_t dev)
2015 {
2016 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
2017 	uint32_t command;
2018 	struct dc_softc *sc;
2019 	struct ifnet *ifp;
2020 	struct dc_mediainfo *m;
2021 	uint32_t reg, revision;
2022 	uint16_t *srom;
2023 	int error, mac_offset, n, phy, rid, tmp;
2024 	uint8_t *mac;
2025 
2026 	sc = device_get_softc(dev);
2027 	sc->dc_dev = dev;
2028 
2029 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2030 	    MTX_DEF);
2031 
2032 	/*
2033 	 * Map control/status registers.
2034 	 */
2035 	pci_enable_busmaster(dev);
2036 
2037 	rid = DC_RID;
2038 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
2039 
2040 	if (sc->dc_res == NULL) {
2041 		device_printf(dev, "couldn't map ports/memory\n");
2042 		error = ENXIO;
2043 		goto fail;
2044 	}
2045 
2046 	sc->dc_btag = rman_get_bustag(sc->dc_res);
2047 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
2048 
2049 	/* Allocate interrupt. */
2050 	rid = 0;
2051 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2052 	    RF_SHAREABLE | RF_ACTIVE);
2053 
2054 	if (sc->dc_irq == NULL) {
2055 		device_printf(dev, "couldn't map interrupt\n");
2056 		error = ENXIO;
2057 		goto fail;
2058 	}
2059 
2060 	/* Need this info to decide on a chip type. */
2061 	sc->dc_info = dc_devtype(dev);
2062 	revision = pci_get_revid(dev);
2063 
2064 	error = 0;
2065 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
2066 	if (sc->dc_info->dc_devid !=
2067 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
2068 	    sc->dc_info->dc_devid !=
2069 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
2070 		dc_eeprom_width(sc);
2071 
2072 	switch (sc->dc_info->dc_devid) {
2073 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
2074 		sc->dc_type = DC_TYPE_21143;
2075 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2076 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2077 		/* Save EEPROM contents so we can parse them later. */
2078 		error = dc_read_srom(sc, sc->dc_romwidth);
2079 		if (error != 0)
2080 			goto fail;
2081 		break;
2082 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
2083 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
2084 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
2085 		sc->dc_type = DC_TYPE_DM9102;
2086 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
2087 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
2088 		sc->dc_flags |= DC_TX_ALIGN;
2089 		sc->dc_pmode = DC_PMODE_MII;
2090 
2091 		/* Increase the latency timer value. */
2092 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
2093 		break;
2094 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
2095 		sc->dc_type = DC_TYPE_AL981;
2096 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2097 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2098 		sc->dc_pmode = DC_PMODE_MII;
2099 		error = dc_read_srom(sc, sc->dc_romwidth);
2100 		if (error != 0)
2101 			goto fail;
2102 		break;
2103 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
2104 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
2105 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
2106 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
2107 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
2108 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
2109 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
2110 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
2111 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
2112 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
2113 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
2114 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
2115 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
2116 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
2117 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
2118 		sc->dc_type = DC_TYPE_AN983;
2119 		sc->dc_flags |= DC_64BIT_HASH;
2120 		sc->dc_flags |= DC_TX_USE_TX_INTR;
2121 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
2122 		sc->dc_pmode = DC_PMODE_MII;
2123 		/* Don't read SROM for - auto-loaded on reset */
2124 		break;
2125 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
2126 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
2127 		if (revision < DC_REVISION_98713A) {
2128 			sc->dc_type = DC_TYPE_98713;
2129 		}
2130 		if (revision >= DC_REVISION_98713A) {
2131 			sc->dc_type = DC_TYPE_98713A;
2132 			sc->dc_flags |= DC_21143_NWAY;
2133 		}
2134 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2135 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2136 		break;
2137 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
2138 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
2139 		/*
2140 		 * Macronix MX98715AEC-C/D/E parts have only a
2141 		 * 128-bit hash table. We need to deal with these
2142 		 * in the same manner as the PNIC II so that we
2143 		 * get the right number of bits out of the
2144 		 * CRC routine.
2145 		 */
2146 		if (revision >= DC_REVISION_98715AEC_C &&
2147 		    revision < DC_REVISION_98725)
2148 			sc->dc_flags |= DC_128BIT_HASH;
2149 		sc->dc_type = DC_TYPE_987x5;
2150 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2151 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2152 		break;
2153 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
2154 		sc->dc_type = DC_TYPE_987x5;
2155 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2156 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2157 		break;
2158 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
2159 		sc->dc_type = DC_TYPE_PNICII;
2160 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2161 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2162 		break;
2163 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
2164 		sc->dc_type = DC_TYPE_PNIC;
2165 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2166 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2167 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2168 		if (sc->dc_pnic_rx_buf == NULL) {
2169 			device_printf(sc->dc_dev,
2170 			    "Could not allocate PNIC RX buffer\n");
2171 			error = ENOMEM;
2172 			goto fail;
2173 		}
2174 		if (revision < DC_REVISION_82C169)
2175 			sc->dc_pmode = DC_PMODE_SYM;
2176 		break;
2177 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
2178 		sc->dc_type = DC_TYPE_ASIX;
2179 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2180 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2181 		sc->dc_pmode = DC_PMODE_MII;
2182 		break;
2183 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
2184 		sc->dc_type = DC_TYPE_XIRCOM;
2185 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2186 				DC_TX_ALIGN;
2187 		/*
2188 		 * We don't actually need to coalesce, but we're doing
2189 		 * it to obtain a double word aligned buffer.
2190 		 * The DC_TX_COALESCE flag is required.
2191 		 */
2192 		sc->dc_pmode = DC_PMODE_MII;
2193 		break;
2194 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
2195 		sc->dc_type = DC_TYPE_CONEXANT;
2196 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2197 		sc->dc_flags |= DC_REDUCED_MII_POLL;
2198 		sc->dc_pmode = DC_PMODE_MII;
2199 		error = dc_read_srom(sc, sc->dc_romwidth);
2200 		if (error != 0)
2201 			goto fail;
2202 		break;
2203 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
2204 	case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
2205 		if (sc->dc_info->dc_devid ==
2206 		    DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
2207 			sc->dc_type = DC_TYPE_ULI_M5261;
2208 		else
2209 			sc->dc_type = DC_TYPE_ULI_M5263;
2210 		/* TX buffers should be aligned on 4 byte boundary. */
2211 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2212 		    DC_TX_ALIGN;
2213 		sc->dc_pmode = DC_PMODE_MII;
2214 		error = dc_read_srom(sc, sc->dc_romwidth);
2215 		if (error != 0)
2216 			goto fail;
2217 		break;
2218 	default:
2219 		device_printf(dev, "unknown device: %x\n",
2220 		    sc->dc_info->dc_devid);
2221 		break;
2222 	}
2223 
2224 	/* Save the cache line size. */
2225 	if (DC_IS_DAVICOM(sc))
2226 		sc->dc_cachesize = 0;
2227 	else
2228 		sc->dc_cachesize = pci_get_cachelnsz(dev);
2229 
2230 	/* Reset the adapter. */
2231 	dc_reset(sc);
2232 
2233 	/* Take 21143 out of snooze mode */
2234 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2235 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2236 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2237 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2238 	}
2239 
2240 	/*
2241 	 * Try to learn something about the supported media.
2242 	 * We know that ASIX and ADMtek and Davicom devices
2243 	 * will *always* be using MII media, so that's a no-brainer.
2244 	 * The tricky ones are the Macronix/PNIC II and the
2245 	 * Intel 21143.
2246 	 */
2247 	if (DC_IS_INTEL(sc)) {
2248 		error = dc_parse_21143_srom(sc);
2249 		if (error != 0)
2250 			goto fail;
2251 	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2252 		if (sc->dc_type == DC_TYPE_98713)
2253 			sc->dc_pmode = DC_PMODE_MII;
2254 		else
2255 			sc->dc_pmode = DC_PMODE_SYM;
2256 	} else if (!sc->dc_pmode)
2257 		sc->dc_pmode = DC_PMODE_MII;
2258 
2259 	/*
2260 	 * Get station address from the EEPROM.
2261 	 */
2262 	switch(sc->dc_type) {
2263 	case DC_TYPE_98713:
2264 	case DC_TYPE_98713A:
2265 	case DC_TYPE_987x5:
2266 	case DC_TYPE_PNICII:
2267 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2268 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2269 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2270 		break;
2271 	case DC_TYPE_PNIC:
2272 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2273 		break;
2274 	case DC_TYPE_DM9102:
2275 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2276 #ifdef __sparc64__
2277 		/*
2278 		 * If this is an onboard dc(4) the station address read from
2279 		 * the EEPROM is all zero and we have to get it from the FCode.
2280 		 */
2281 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2282 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2283 #endif
2284 		break;
2285 	case DC_TYPE_21143:
2286 	case DC_TYPE_ASIX:
2287 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2288 		break;
2289 	case DC_TYPE_AL981:
2290 	case DC_TYPE_AN983:
2291 		reg = CSR_READ_4(sc, DC_AL_PAR0);
2292 		mac = (uint8_t *)&eaddr[0];
2293 		mac[0] = (reg >> 0) & 0xff;
2294 		mac[1] = (reg >> 8) & 0xff;
2295 		mac[2] = (reg >> 16) & 0xff;
2296 		mac[3] = (reg >> 24) & 0xff;
2297 		reg = CSR_READ_4(sc, DC_AL_PAR1);
2298 		mac[4] = (reg >> 0) & 0xff;
2299 		mac[5] = (reg >> 8) & 0xff;
2300 		break;
2301 	case DC_TYPE_CONEXANT:
2302 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2303 		    ETHER_ADDR_LEN);
2304 		break;
2305 	case DC_TYPE_XIRCOM:
2306 		/* The MAC comes from the CIS. */
2307 		mac = pci_get_ether(dev);
2308 		if (!mac) {
2309 			device_printf(dev, "No station address in CIS!\n");
2310 			error = ENXIO;
2311 			goto fail;
2312 		}
2313 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2314 		break;
2315 	case DC_TYPE_ULI_M5261:
2316 	case DC_TYPE_ULI_M5263:
2317 		srom = (uint16_t *)sc->dc_srom;
2318 		if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
2319 			/*
2320 			 * No valid SROM present, read station address
2321 			 * from ID Table.
2322 			 */
2323 			device_printf(dev,
2324 			    "Reading station address from ID Table.\n");
2325 			CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
2326 			CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
2327 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2328 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
2329 			CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
2330 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2331 			CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
2332 			mac = (uint8_t *)eaddr;
2333 			for (n = 0; n < ETHER_ADDR_LEN; n++)
2334 				mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
2335 			CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
2336 			CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
2337 			DELAY(10);
2338 		} else
2339 			dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
2340 			    0);
2341 		break;
2342 	default:
2343 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2344 		break;
2345 	}
2346 
2347 	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2348 	/*
2349 	 * If we still have invalid station address, see whether we can
2350 	 * find station address for chip 0.  Some multi-port controllers
2351 	 * just store station address for chip 0 if they have a shared
2352 	 * SROM.
2353 	 */
2354 	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2355 	    (sc->dc_eaddr[0] == 0xffffffff &&
2356 	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2357 		error = dc_check_multiport(sc);
2358 		if (error == 0) {
2359 			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2360 			/* Extract media information. */
2361 			if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
2362 				while (sc->dc_mi != NULL) {
2363 					m = sc->dc_mi->dc_next;
2364 					free(sc->dc_mi, M_DEVBUF);
2365 					sc->dc_mi = m;
2366 				}
2367 				error = dc_parse_21143_srom(sc);
2368 				if (error != 0)
2369 					goto fail;
2370 			}
2371 		} else if (error == ENOMEM)
2372 			goto fail;
2373 		else
2374 			error = 0;
2375 	}
2376 
2377 	if ((error = dc_dma_alloc(sc)) != 0)
2378 		goto fail;
2379 
2380 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2381 	if (ifp == NULL) {
2382 		device_printf(dev, "can not if_alloc()\n");
2383 		error = ENOSPC;
2384 		goto fail;
2385 	}
2386 	ifp->if_softc = sc;
2387 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2388 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2389 	ifp->if_ioctl = dc_ioctl;
2390 	ifp->if_start = dc_start;
2391 	ifp->if_init = dc_init;
2392 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2393 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2394 	IFQ_SET_READY(&ifp->if_snd);
2395 
2396 	/*
2397 	 * Do MII setup. If this is a 21143, check for a PHY on the
2398 	 * MII bus after applying any necessary fixups to twiddle the
2399 	 * GPIO bits. If we don't end up finding a PHY, restore the
2400 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2401 	 * driver instead.
2402 	 */
2403 	tmp = 0;
2404 	if (DC_IS_INTEL(sc)) {
2405 		dc_apply_fixup(sc, IFM_AUTO);
2406 		tmp = sc->dc_pmode;
2407 		sc->dc_pmode = DC_PMODE_MII;
2408 	}
2409 
2410 	/*
2411 	 * Setup General Purpose port mode and data so the tulip can talk
2412 	 * to the MII.  This needs to be done before mii_attach so that
2413 	 * we can actually see them.
2414 	 */
2415 	if (DC_IS_XIRCOM(sc)) {
2416 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2417 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2418 		DELAY(10);
2419 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2420 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2421 		DELAY(10);
2422 	}
2423 
2424 	phy = MII_PHY_ANY;
2425 	/*
2426 	 * Note: both the AL981 and AN983 have internal PHYs, however the
2427 	 * AL981 provides direct access to the PHY registers while the AN983
2428 	 * uses a serial MII interface. The AN983's MII interface is also
2429 	 * buggy in that you can read from any MII address (0 to 31), but
2430 	 * only address 1 behaves normally. To deal with both cases, we
2431 	 * pretend that the PHY is at MII address 1.
2432 	 */
2433 	if (DC_IS_ADMTEK(sc))
2434 		phy = DC_ADMTEK_PHYADDR;
2435 
2436 	/*
2437 	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2438 	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2439 	 * correct one.
2440 	 */
2441 	if (DC_IS_CONEXANT(sc))
2442 		phy = DC_CONEXANT_PHYADDR;
2443 
2444 	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2445 	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2446 
2447 	if (error && DC_IS_INTEL(sc)) {
2448 		sc->dc_pmode = tmp;
2449 		if (sc->dc_pmode != DC_PMODE_SIA)
2450 			sc->dc_pmode = DC_PMODE_SYM;
2451 		sc->dc_flags |= DC_21143_NWAY;
2452 		/*
2453 		 * For non-MII cards, we need to have the 21143
2454 		 * drive the LEDs. Except there are some systems
2455 		 * like the NEC VersaPro NoteBook PC which have no
2456 		 * LEDs, and twiddling these bits has adverse effects
2457 		 * on them. (I.e. you suddenly can't get a link.)
2458 		 */
2459 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2460 		    pci_get_subdevice(dev) == 0x8028))
2461 			sc->dc_flags |= DC_TULIP_LEDS;
2462 		error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2463 		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2464 		    MII_OFFSET_ANY, 0);
2465 	}
2466 
2467 	if (error) {
2468 		device_printf(dev, "attaching PHYs failed\n");
2469 		goto fail;
2470 	}
2471 
2472 	if (DC_IS_ADMTEK(sc)) {
2473 		/*
2474 		 * Set automatic TX underrun recovery for the ADMtek chips
2475 		 */
2476 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2477 	}
2478 
2479 	/*
2480 	 * Tell the upper layer(s) we support long frames.
2481 	 */
2482 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2483 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2484 	ifp->if_capenable = ifp->if_capabilities;
2485 #ifdef DEVICE_POLLING
2486 	ifp->if_capabilities |= IFCAP_POLLING;
2487 #endif
2488 
2489 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2490 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2491 
2492 	/*
2493 	 * Call MI attach routine.
2494 	 */
2495 	ether_ifattach(ifp, (caddr_t)eaddr);
2496 
2497 	/* Hook interrupt last to avoid having to lock softc */
2498 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2499 	    NULL, dc_intr, sc, &sc->dc_intrhand);
2500 
2501 	if (error) {
2502 		device_printf(dev, "couldn't set up irq\n");
2503 		ether_ifdetach(ifp);
2504 		goto fail;
2505 	}
2506 
2507 fail:
2508 	if (error)
2509 		dc_detach(dev);
2510 	return (error);
2511 }
2512 
2513 /*
2514  * Shutdown hardware and free up resources. This can be called any
2515  * time after the mutex has been initialized. It is called in both
2516  * the error case in attach and the normal detach case so it needs
2517  * to be careful about only freeing resources that have actually been
2518  * allocated.
2519  */
2520 static int
2521 dc_detach(device_t dev)
2522 {
2523 	struct dc_softc *sc;
2524 	struct ifnet *ifp;
2525 	struct dc_mediainfo *m;
2526 
2527 	sc = device_get_softc(dev);
2528 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2529 
2530 	ifp = sc->dc_ifp;
2531 
2532 #ifdef DEVICE_POLLING
2533 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
2534 		ether_poll_deregister(ifp);
2535 #endif
2536 
2537 	/* These should only be active if attach succeeded */
2538 	if (device_is_attached(dev)) {
2539 		DC_LOCK(sc);
2540 		dc_stop(sc);
2541 		DC_UNLOCK(sc);
2542 		callout_drain(&sc->dc_stat_ch);
2543 		callout_drain(&sc->dc_wdog_ch);
2544 		ether_ifdetach(ifp);
2545 	}
2546 	if (sc->dc_miibus)
2547 		device_delete_child(dev, sc->dc_miibus);
2548 	bus_generic_detach(dev);
2549 
2550 	if (sc->dc_intrhand)
2551 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2552 	if (sc->dc_irq)
2553 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2554 	if (sc->dc_res)
2555 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2556 
2557 	if (ifp != NULL)
2558 		if_free(ifp);
2559 
2560 	dc_dma_free(sc);
2561 
2562 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2563 
2564 	while (sc->dc_mi != NULL) {
2565 		m = sc->dc_mi->dc_next;
2566 		free(sc->dc_mi, M_DEVBUF);
2567 		sc->dc_mi = m;
2568 	}
2569 	free(sc->dc_srom, M_DEVBUF);
2570 
2571 	mtx_destroy(&sc->dc_mtx);
2572 
2573 	return (0);
2574 }
2575 
2576 /*
2577  * Initialize the transmit descriptors.
2578  */
2579 static int
2580 dc_list_tx_init(struct dc_softc *sc)
2581 {
2582 	struct dc_chain_data *cd;
2583 	struct dc_list_data *ld;
2584 	int i, nexti;
2585 
2586 	cd = &sc->dc_cdata;
2587 	ld = &sc->dc_ldata;
2588 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2589 		if (i == DC_TX_LIST_CNT - 1)
2590 			nexti = 0;
2591 		else
2592 			nexti = i + 1;
2593 		ld->dc_tx_list[i].dc_status = 0;
2594 		ld->dc_tx_list[i].dc_ctl = 0;
2595 		ld->dc_tx_list[i].dc_data = 0;
2596 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2597 		cd->dc_tx_chain[i] = NULL;
2598 	}
2599 
2600 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2601 	cd->dc_tx_pkts = 0;
2602 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
2603 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2604 	return (0);
2605 }
2606 
2607 /*
2608  * Initialize the RX descriptors and allocate mbufs for them. Note that
2609  * we arrange the descriptors in a closed ring, so that the last descriptor
2610  * points back to the first.
2611  */
2612 static int
2613 dc_list_rx_init(struct dc_softc *sc)
2614 {
2615 	struct dc_chain_data *cd;
2616 	struct dc_list_data *ld;
2617 	int i, nexti;
2618 
2619 	cd = &sc->dc_cdata;
2620 	ld = &sc->dc_ldata;
2621 
2622 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2623 		if (dc_newbuf(sc, i) != 0)
2624 			return (ENOBUFS);
2625 		if (i == DC_RX_LIST_CNT - 1)
2626 			nexti = 0;
2627 		else
2628 			nexti = i + 1;
2629 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2630 	}
2631 
2632 	cd->dc_rx_prod = 0;
2633 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2634 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2635 	return (0);
2636 }
2637 
2638 /*
2639  * Initialize an RX descriptor and attach an MBUF cluster.
2640  */
2641 static int
2642 dc_newbuf(struct dc_softc *sc, int i)
2643 {
2644 	struct mbuf *m;
2645 	bus_dmamap_t map;
2646 	bus_dma_segment_t segs[1];
2647 	int error, nseg;
2648 
2649 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2650 	if (m == NULL)
2651 		return (ENOBUFS);
2652 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2653 	m_adj(m, sizeof(u_int64_t));
2654 
2655 	/*
2656 	 * If this is a PNIC chip, zero the buffer. This is part
2657 	 * of the workaround for the receive bug in the 82c168 and
2658 	 * 82c169 chips.
2659 	 */
2660 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2661 		bzero(mtod(m, char *), m->m_len);
2662 
2663 	error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
2664 	    m, segs, &nseg, 0);
2665 	if (error) {
2666 		m_freem(m);
2667 		return (error);
2668 	}
2669 	KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
2670 	    nseg));
2671 	if (sc->dc_cdata.dc_rx_chain[i] != NULL)
2672 		bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
2673 
2674 	map = sc->dc_cdata.dc_rx_map[i];
2675 	sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2676 	sc->dc_sparemap = map;
2677 	sc->dc_cdata.dc_rx_chain[i] = m;
2678 	bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2679 	    BUS_DMASYNC_PREREAD);
2680 
2681 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2682 	sc->dc_ldata.dc_rx_list[i].dc_data =
2683 	    htole32(DC_ADDR_LO(segs[0].ds_addr));
2684 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2685 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
2686 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2687 	return (0);
2688 }
2689 
2690 /*
2691  * Grrrrr.
2692  * The PNIC chip has a terrible bug in it that manifests itself during
2693  * periods of heavy activity. The exact mode of failure if difficult to
2694  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2695  * will happen on slow machines. The bug is that sometimes instead of
2696  * uploading one complete frame during reception, it uploads what looks
2697  * like the entire contents of its FIFO memory. The frame we want is at
2698  * the end of the whole mess, but we never know exactly how much data has
2699  * been uploaded, so salvaging the frame is hard.
2700  *
2701  * There is only one way to do it reliably, and it's disgusting.
2702  * Here's what we know:
2703  *
2704  * - We know there will always be somewhere between one and three extra
2705  *   descriptors uploaded.
2706  *
2707  * - We know the desired received frame will always be at the end of the
2708  *   total data upload.
2709  *
2710  * - We know the size of the desired received frame because it will be
2711  *   provided in the length field of the status word in the last descriptor.
2712  *
2713  * Here's what we do:
2714  *
2715  * - When we allocate buffers for the receive ring, we bzero() them.
2716  *   This means that we know that the buffer contents should be all
2717  *   zeros, except for data uploaded by the chip.
2718  *
2719  * - We also force the PNIC chip to upload frames that include the
2720  *   ethernet CRC at the end.
2721  *
2722  * - We gather all of the bogus frame data into a single buffer.
2723  *
2724  * - We then position a pointer at the end of this buffer and scan
2725  *   backwards until we encounter the first non-zero byte of data.
2726  *   This is the end of the received frame. We know we will encounter
2727  *   some data at the end of the frame because the CRC will always be
2728  *   there, so even if the sender transmits a packet of all zeros,
2729  *   we won't be fooled.
2730  *
2731  * - We know the size of the actual received frame, so we subtract
2732  *   that value from the current pointer location. This brings us
2733  *   to the start of the actual received packet.
2734  *
2735  * - We copy this into an mbuf and pass it on, along with the actual
2736  *   frame length.
2737  *
2738  * The performance hit is tremendous, but it beats dropping frames all
2739  * the time.
2740  */
2741 
2742 #define	DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2743 static void
2744 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2745 {
2746 	struct dc_desc *cur_rx;
2747 	struct dc_desc *c = NULL;
2748 	struct mbuf *m = NULL;
2749 	unsigned char *ptr;
2750 	int i, total_len;
2751 	uint32_t rxstat = 0;
2752 
2753 	i = sc->dc_pnic_rx_bug_save;
2754 	cur_rx = &sc->dc_ldata.dc_rx_list[idx];
2755 	ptr = sc->dc_pnic_rx_buf;
2756 	bzero(ptr, DC_RXLEN * 5);
2757 
2758 	/* Copy all the bytes from the bogus buffers. */
2759 	while (1) {
2760 		c = &sc->dc_ldata.dc_rx_list[i];
2761 		rxstat = le32toh(c->dc_status);
2762 		m = sc->dc_cdata.dc_rx_chain[i];
2763 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2764 		ptr += DC_RXLEN;
2765 		/* If this is the last buffer, break out. */
2766 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2767 			break;
2768 		dc_discard_rxbuf(sc, i);
2769 		DC_INC(i, DC_RX_LIST_CNT);
2770 	}
2771 
2772 	/* Find the length of the actual receive frame. */
2773 	total_len = DC_RXBYTES(rxstat);
2774 
2775 	/* Scan backwards until we hit a non-zero byte. */
2776 	while (*ptr == 0x00)
2777 		ptr--;
2778 
2779 	/* Round off. */
2780 	if ((uintptr_t)(ptr) & 0x3)
2781 		ptr -= 1;
2782 
2783 	/* Now find the start of the frame. */
2784 	ptr -= total_len;
2785 	if (ptr < sc->dc_pnic_rx_buf)
2786 		ptr = sc->dc_pnic_rx_buf;
2787 
2788 	/*
2789 	 * Now copy the salvaged frame to the last mbuf and fake up
2790 	 * the status word to make it look like a successful
2791 	 * frame reception.
2792 	 */
2793 	bcopy(ptr, mtod(m, char *), total_len);
2794 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2795 }
2796 
2797 /*
2798  * This routine searches the RX ring for dirty descriptors in the
2799  * event that the rxeof routine falls out of sync with the chip's
2800  * current descriptor pointer. This may happen sometimes as a result
2801  * of a "no RX buffer available" condition that happens when the chip
2802  * consumes all of the RX buffers before the driver has a chance to
2803  * process the RX ring. This routine may need to be called more than
2804  * once to bring the driver back in sync with the chip, however we
2805  * should still be getting RX DONE interrupts to drive the search
2806  * for new packets in the RX ring, so we should catch up eventually.
2807  */
2808 static int
2809 dc_rx_resync(struct dc_softc *sc)
2810 {
2811 	struct dc_desc *cur_rx;
2812 	int i, pos;
2813 
2814 	pos = sc->dc_cdata.dc_rx_prod;
2815 
2816 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2817 		cur_rx = &sc->dc_ldata.dc_rx_list[pos];
2818 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2819 			break;
2820 		DC_INC(pos, DC_RX_LIST_CNT);
2821 	}
2822 
2823 	/* If the ring really is empty, then just return. */
2824 	if (i == DC_RX_LIST_CNT)
2825 		return (0);
2826 
2827 	/* We've fallen behing the chip: catch it. */
2828 	sc->dc_cdata.dc_rx_prod = pos;
2829 
2830 	return (EAGAIN);
2831 }
2832 
2833 static void
2834 dc_discard_rxbuf(struct dc_softc *sc, int i)
2835 {
2836 	struct mbuf *m;
2837 
2838 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2839 		m = sc->dc_cdata.dc_rx_chain[i];
2840 		bzero(mtod(m, char *), m->m_len);
2841 	}
2842 
2843 	sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2844 	sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2845 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
2846 	    BUS_DMASYNC_PREWRITE);
2847 }
2848 
2849 /*
2850  * A frame has been uploaded: pass the resulting mbuf chain up to
2851  * the higher level protocols.
2852  */
2853 static int
2854 dc_rxeof(struct dc_softc *sc)
2855 {
2856 	struct mbuf *m;
2857 	struct ifnet *ifp;
2858 	struct dc_desc *cur_rx;
2859 	int i, total_len, rx_npkts;
2860 	uint32_t rxstat;
2861 
2862 	DC_LOCK_ASSERT(sc);
2863 
2864 	ifp = sc->dc_ifp;
2865 	rx_npkts = 0;
2866 
2867 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
2868 	    BUS_DMASYNC_POSTWRITE);
2869 	for (i = sc->dc_cdata.dc_rx_prod;
2870 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
2871 	    DC_INC(i, DC_RX_LIST_CNT)) {
2872 #ifdef DEVICE_POLLING
2873 		if (ifp->if_capenable & IFCAP_POLLING) {
2874 			if (sc->rxcycles <= 0)
2875 				break;
2876 			sc->rxcycles--;
2877 		}
2878 #endif
2879 		cur_rx = &sc->dc_ldata.dc_rx_list[i];
2880 		rxstat = le32toh(cur_rx->dc_status);
2881 		if ((rxstat & DC_RXSTAT_OWN) != 0)
2882 			break;
2883 		m = sc->dc_cdata.dc_rx_chain[i];
2884 		bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
2885 		    BUS_DMASYNC_POSTREAD);
2886 		total_len = DC_RXBYTES(rxstat);
2887 		rx_npkts++;
2888 
2889 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2890 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2891 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2892 					sc->dc_pnic_rx_bug_save = i;
2893 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
2894 					continue;
2895 				dc_pnic_rx_bug_war(sc, i);
2896 				rxstat = le32toh(cur_rx->dc_status);
2897 				total_len = DC_RXBYTES(rxstat);
2898 			}
2899 		}
2900 
2901 		/*
2902 		 * If an error occurs, update stats, clear the
2903 		 * status word and leave the mbuf cluster in place:
2904 		 * it should simply get re-used next time this descriptor
2905 		 * comes up in the ring.  However, don't report long
2906 		 * frames as errors since they could be vlans.
2907 		 */
2908 		if ((rxstat & DC_RXSTAT_RXERR)) {
2909 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2910 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2911 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2912 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2913 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2914 				if (rxstat & DC_RXSTAT_COLLSEEN)
2915 					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2916 				dc_discard_rxbuf(sc, i);
2917 				if (rxstat & DC_RXSTAT_CRCERR)
2918 					continue;
2919 				else {
2920 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2921 					dc_init_locked(sc);
2922 					return (rx_npkts);
2923 				}
2924 			}
2925 		}
2926 
2927 		/* No errors; receive the packet. */
2928 		total_len -= ETHER_CRC_LEN;
2929 #ifdef __NO_STRICT_ALIGNMENT
2930 		/*
2931 		 * On architectures without alignment problems we try to
2932 		 * allocate a new buffer for the receive ring, and pass up
2933 		 * the one where the packet is already, saving the expensive
2934 		 * copy done in m_devget().
2935 		 * If we are on an architecture with alignment problems, or
2936 		 * if the allocation fails, then use m_devget and leave the
2937 		 * existing buffer in the receive ring.
2938 		 */
2939 		if (dc_newbuf(sc, i) != 0) {
2940 			dc_discard_rxbuf(sc, i);
2941 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2942 			continue;
2943 		}
2944 		m->m_pkthdr.rcvif = ifp;
2945 		m->m_pkthdr.len = m->m_len = total_len;
2946 #else
2947 		{
2948 			struct mbuf *m0;
2949 
2950 			m0 = m_devget(mtod(m, char *), total_len,
2951 				ETHER_ALIGN, ifp, NULL);
2952 			dc_discard_rxbuf(sc, i);
2953 			if (m0 == NULL) {
2954 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2955 				continue;
2956 			}
2957 			m = m0;
2958 		}
2959 #endif
2960 
2961 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2962 		DC_UNLOCK(sc);
2963 		(*ifp->if_input)(ifp, m);
2964 		DC_LOCK(sc);
2965 	}
2966 
2967 	sc->dc_cdata.dc_rx_prod = i;
2968 	return (rx_npkts);
2969 }
2970 
2971 /*
2972  * A frame was downloaded to the chip. It's safe for us to clean up
2973  * the list buffers.
2974  */
2975 static void
2976 dc_txeof(struct dc_softc *sc)
2977 {
2978 	struct dc_desc *cur_tx;
2979 	struct ifnet *ifp;
2980 	int idx, setup;
2981 	uint32_t ctl, txstat;
2982 
2983 	if (sc->dc_cdata.dc_tx_cnt == 0)
2984 		return;
2985 
2986 	ifp = sc->dc_ifp;
2987 
2988 	/*
2989 	 * Go through our tx list and free mbufs for those
2990 	 * frames that have been transmitted.
2991 	 */
2992 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
2993 	    BUS_DMASYNC_POSTWRITE);
2994 	setup = 0;
2995 	for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
2996 	    DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
2997 		cur_tx = &sc->dc_ldata.dc_tx_list[idx];
2998 		txstat = le32toh(cur_tx->dc_status);
2999 		ctl = le32toh(cur_tx->dc_ctl);
3000 
3001 		if (txstat & DC_TXSTAT_OWN)
3002 			break;
3003 
3004 		if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
3005 			continue;
3006 
3007 		if (ctl & DC_TXCTL_SETUP) {
3008 			cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
3009 			setup++;
3010 			bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
3011 			    BUS_DMASYNC_POSTWRITE);
3012 			/*
3013 			 * Yes, the PNIC is so brain damaged
3014 			 * that it will sometimes generate a TX
3015 			 * underrun error while DMAing the RX
3016 			 * filter setup frame. If we detect this,
3017 			 * we have to send the setup frame again,
3018 			 * or else the filter won't be programmed
3019 			 * correctly.
3020 			 */
3021 			if (DC_IS_PNIC(sc)) {
3022 				if (txstat & DC_TXSTAT_ERRSUM)
3023 					dc_setfilt(sc);
3024 			}
3025 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
3026 			continue;
3027 		}
3028 
3029 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
3030 			/*
3031 			 * XXX: Why does my Xircom taunt me so?
3032 			 * For some reason it likes setting the CARRLOST flag
3033 			 * even when the carrier is there. wtf?!?
3034 			 * Who knows, but Conexant chips have the
3035 			 * same problem. Maybe they took lessons
3036 			 * from Xircom.
3037 			 */
3038 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3039 			    sc->dc_pmode == DC_PMODE_MII &&
3040 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3041 			    DC_TXSTAT_NOCARRIER)))
3042 				txstat &= ~DC_TXSTAT_ERRSUM;
3043 		} else {
3044 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
3045 			    sc->dc_pmode == DC_PMODE_MII &&
3046 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
3047 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
3048 				txstat &= ~DC_TXSTAT_ERRSUM;
3049 		}
3050 
3051 		if (txstat & DC_TXSTAT_ERRSUM) {
3052 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3053 			if (txstat & DC_TXSTAT_EXCESSCOLL)
3054 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3055 			if (txstat & DC_TXSTAT_LATECOLL)
3056 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
3057 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
3058 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3059 				dc_init_locked(sc);
3060 				return;
3061 			}
3062 		} else
3063 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3064 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
3065 
3066 		bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3067 		    BUS_DMASYNC_POSTWRITE);
3068 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3069 		m_freem(sc->dc_cdata.dc_tx_chain[idx]);
3070 		sc->dc_cdata.dc_tx_chain[idx] = NULL;
3071 	}
3072 	sc->dc_cdata.dc_tx_cons = idx;
3073 
3074 	if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3075 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3076 		if (sc->dc_cdata.dc_tx_cnt == 0)
3077 			sc->dc_wdog_timer = 0;
3078 	}
3079 	if (setup > 0)
3080 		bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3081 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3082 }
3083 
3084 static void
3085 dc_tick(void *xsc)
3086 {
3087 	struct dc_softc *sc;
3088 	struct mii_data *mii;
3089 	struct ifnet *ifp;
3090 	uint32_t r;
3091 
3092 	sc = xsc;
3093 	DC_LOCK_ASSERT(sc);
3094 	ifp = sc->dc_ifp;
3095 	mii = device_get_softc(sc->dc_miibus);
3096 
3097 	/*
3098 	 * Reclaim transmitted frames for controllers that do
3099 	 * not generate TX completion interrupt for every frame.
3100 	 */
3101 	if (sc->dc_flags & DC_TX_USE_TX_INTR)
3102 		dc_txeof(sc);
3103 
3104 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
3105 		if (sc->dc_flags & DC_21143_NWAY) {
3106 			r = CSR_READ_4(sc, DC_10BTSTAT);
3107 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3108 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
3109 				sc->dc_link = 0;
3110 				mii_mediachg(mii);
3111 			}
3112 			if (IFM_SUBTYPE(mii->mii_media_active) ==
3113 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
3114 				sc->dc_link = 0;
3115 				mii_mediachg(mii);
3116 			}
3117 			if (sc->dc_link == 0)
3118 				mii_tick(mii);
3119 		} else {
3120 			/*
3121 			 * For NICs which never report DC_RXSTATE_WAIT, we
3122 			 * have to bite the bullet...
3123 			 */
3124 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
3125 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
3126 			    sc->dc_cdata.dc_tx_cnt == 0)
3127 				mii_tick(mii);
3128 		}
3129 	} else
3130 		mii_tick(mii);
3131 
3132 	/*
3133 	 * When the init routine completes, we expect to be able to send
3134 	 * packets right away, and in fact the network code will send a
3135 	 * gratuitous ARP the moment the init routine marks the interface
3136 	 * as running. However, even though the MAC may have been initialized,
3137 	 * there may be a delay of a few seconds before the PHY completes
3138 	 * autonegotiation and the link is brought up. Any transmissions
3139 	 * made during that delay will be lost. Dealing with this is tricky:
3140 	 * we can't just pause in the init routine while waiting for the
3141 	 * PHY to come ready since that would bring the whole system to
3142 	 * a screeching halt for several seconds.
3143 	 *
3144 	 * What we do here is prevent the TX start routine from sending
3145 	 * any packets until a link has been established. After the
3146 	 * interface has been initialized, the tick routine will poll
3147 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3148 	 * that time, packets will stay in the send queue, and once the
3149 	 * link comes up, they will be flushed out to the wire.
3150 	 */
3151 	if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3152 		dc_start_locked(ifp);
3153 
3154 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3155 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3156 	else
3157 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3158 }
3159 
3160 /*
3161  * A transmit underrun has occurred.  Back off the transmit threshold,
3162  * or switch to store and forward mode if we have to.
3163  */
3164 static void
3165 dc_tx_underrun(struct dc_softc *sc)
3166 {
3167 	uint32_t netcfg, isr;
3168 	int i, reinit;
3169 
3170 	reinit = 0;
3171 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3172 	device_printf(sc->dc_dev, "TX underrun -- ");
3173 	if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
3174 		if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
3175 			printf("using store and forward mode\n");
3176 			netcfg |= DC_NETCFG_STORENFWD;
3177 		} else {
3178 			printf("increasing TX threshold\n");
3179 			sc->dc_txthresh += DC_TXTHRESH_INC;
3180 			netcfg &= ~DC_NETCFG_TX_THRESH;
3181 			netcfg |= sc->dc_txthresh;
3182 		}
3183 
3184 		if (DC_IS_INTEL(sc)) {
3185 			/*
3186 			 * The real 21143 requires that the transmitter be idle
3187 			 * in order to change the transmit threshold or store
3188 			 * and forward state.
3189 			 */
3190 			CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
3191 
3192 			for (i = 0; i < DC_TIMEOUT; i++) {
3193 				isr = CSR_READ_4(sc, DC_ISR);
3194 				if (isr & DC_ISR_TX_IDLE)
3195 					break;
3196 				DELAY(10);
3197 			}
3198 			if (i == DC_TIMEOUT) {
3199 				device_printf(sc->dc_dev,
3200 				    "%s: failed to force tx to idle state\n",
3201 				    __func__);
3202 				reinit++;
3203 			}
3204 		}
3205 	} else {
3206 		printf("resetting\n");
3207 		reinit++;
3208 	}
3209 
3210 	if (reinit == 0) {
3211 		CSR_WRITE_4(sc, DC_NETCFG, netcfg);
3212 		if (DC_IS_INTEL(sc))
3213 			CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
3214 	} else {
3215 		sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3216 		dc_init_locked(sc);
3217 	}
3218 }
3219 
3220 #ifdef DEVICE_POLLING
3221 static poll_handler_t dc_poll;
3222 
3223 static int
3224 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3225 {
3226 	struct dc_softc *sc = ifp->if_softc;
3227 	int rx_npkts = 0;
3228 
3229 	DC_LOCK(sc);
3230 
3231 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3232 		DC_UNLOCK(sc);
3233 		return (rx_npkts);
3234 	}
3235 
3236 	sc->rxcycles = count;
3237 	rx_npkts = dc_rxeof(sc);
3238 	dc_txeof(sc);
3239 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3240 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3241 		dc_start_locked(ifp);
3242 
3243 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3244 		uint32_t	status;
3245 
3246 		status = CSR_READ_4(sc, DC_ISR);
3247 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3248 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3249 			DC_ISR_BUS_ERR);
3250 		if (!status) {
3251 			DC_UNLOCK(sc);
3252 			return (rx_npkts);
3253 		}
3254 		/* ack what we have */
3255 		CSR_WRITE_4(sc, DC_ISR, status);
3256 
3257 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3258 			uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3259 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3260 
3261 			if (dc_rx_resync(sc))
3262 				dc_rxeof(sc);
3263 		}
3264 		/* restart transmit unit if necessary */
3265 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3266 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3267 
3268 		if (status & DC_ISR_TX_UNDERRUN)
3269 			dc_tx_underrun(sc);
3270 
3271 		if (status & DC_ISR_BUS_ERR) {
3272 			if_printf(ifp, "%s: bus error\n", __func__);
3273 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3274 			dc_init_locked(sc);
3275 		}
3276 	}
3277 	DC_UNLOCK(sc);
3278 	return (rx_npkts);
3279 }
3280 #endif /* DEVICE_POLLING */
3281 
3282 static void
3283 dc_intr(void *arg)
3284 {
3285 	struct dc_softc *sc;
3286 	struct ifnet *ifp;
3287 	uint32_t r, status;
3288 	int n;
3289 
3290 	sc = arg;
3291 
3292 	if (sc->suspended)
3293 		return;
3294 
3295 	DC_LOCK(sc);
3296 	status = CSR_READ_4(sc, DC_ISR);
3297 	if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
3298 		DC_UNLOCK(sc);
3299 		return;
3300 	}
3301 	ifp = sc->dc_ifp;
3302 #ifdef DEVICE_POLLING
3303 	if (ifp->if_capenable & IFCAP_POLLING) {
3304 		DC_UNLOCK(sc);
3305 		return;
3306 	}
3307 #endif
3308 	/* Disable interrupts. */
3309 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3310 
3311 	for (n = 16; n > 0; n--) {
3312 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3313 			break;
3314 		/* Ack interrupts. */
3315 		CSR_WRITE_4(sc, DC_ISR, status);
3316 
3317 		if (status & DC_ISR_RX_OK) {
3318 			if (dc_rxeof(sc) == 0) {
3319 				while (dc_rx_resync(sc))
3320 					dc_rxeof(sc);
3321 			}
3322 		}
3323 
3324 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3325 			dc_txeof(sc);
3326 
3327 		if (status & DC_ISR_TX_IDLE) {
3328 			dc_txeof(sc);
3329 			if (sc->dc_cdata.dc_tx_cnt) {
3330 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3331 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3332 			}
3333 		}
3334 
3335 		if (status & DC_ISR_TX_UNDERRUN)
3336 			dc_tx_underrun(sc);
3337 
3338 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3339 		    || (status & DC_ISR_RX_NOBUF)) {
3340 			r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3341 			if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
3342 			if (dc_rxeof(sc) == 0) {
3343 				while (dc_rx_resync(sc))
3344 					dc_rxeof(sc);
3345 			}
3346 		}
3347 
3348 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3349 			dc_start_locked(ifp);
3350 
3351 		if (status & DC_ISR_BUS_ERR) {
3352 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3353 			dc_init_locked(sc);
3354 			DC_UNLOCK(sc);
3355 			return;
3356 		}
3357 		status = CSR_READ_4(sc, DC_ISR);
3358 		if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
3359 			break;
3360 	}
3361 
3362 	/* Re-enable interrupts. */
3363 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3364 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3365 
3366 	DC_UNLOCK(sc);
3367 }
3368 
3369 /*
3370  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3371  * pointers to the fragment pointers.
3372  */
3373 static int
3374 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3375 {
3376 	bus_dma_segment_t segs[DC_MAXFRAGS];
3377 	bus_dmamap_t map;
3378 	struct dc_desc *f;
3379 	struct mbuf *m;
3380 	int cur, defragged, error, first, frag, i, idx, nseg;
3381 
3382 	m = NULL;
3383 	defragged = 0;
3384 	if (sc->dc_flags & DC_TX_COALESCE &&
3385 	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3386 		m = m_defrag(*m_head, M_NOWAIT);
3387 		defragged = 1;
3388 	} else {
3389 		/*
3390 		 * Count the number of frags in this chain to see if we
3391 		 * need to m_collapse.  Since the descriptor list is shared
3392 		 * by all packets, we'll m_collapse long chains so that they
3393 		 * do not use up the entire list, even if they would fit.
3394 		 */
3395 		i = 0;
3396 		for (m = *m_head; m != NULL; m = m->m_next)
3397 			i++;
3398 		if (i > DC_TX_LIST_CNT / 4 ||
3399 		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3400 		    DC_TX_LIST_RSVD) {
3401 			m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
3402 			defragged = 1;
3403 		}
3404 	}
3405 	if (defragged != 0) {
3406 		if (m == NULL) {
3407 			m_freem(*m_head);
3408 			*m_head = NULL;
3409 			return (ENOBUFS);
3410 		}
3411 		*m_head = m;
3412 	}
3413 
3414 	idx = sc->dc_cdata.dc_tx_prod;
3415 	error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3416 	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3417 	if (error == EFBIG) {
3418 		if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
3419 		    DC_MAXFRAGS)) == NULL) {
3420 			m_freem(*m_head);
3421 			*m_head = NULL;
3422 			return (defragged != 0 ? error : ENOBUFS);
3423 		}
3424 		*m_head = m;
3425 		error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
3426 		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3427 		if (error != 0) {
3428 			m_freem(*m_head);
3429 			*m_head = NULL;
3430 			return (error);
3431 		}
3432 	} else if (error != 0)
3433 		return (error);
3434 	KASSERT(nseg <= DC_MAXFRAGS,
3435 	    ("%s: wrong number of segments (%d)", __func__, nseg));
3436 	if (nseg == 0) {
3437 		m_freem(*m_head);
3438 		*m_head = NULL;
3439 		return (EIO);
3440 	}
3441 
3442 	/* Check descriptor overruns. */
3443 	if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3444 		bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
3445 		return (ENOBUFS);
3446 	}
3447 	bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
3448 	    BUS_DMASYNC_PREWRITE);
3449 
3450 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3451 	for (i = 0; i < nseg; i++) {
3452 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3453 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3454 		    (first != sc->dc_cdata.dc_tx_first)) {
3455 			bus_dmamap_unload(sc->dc_tx_mtag,
3456 			    sc->dc_cdata.dc_tx_map[first]);
3457 			m_freem(*m_head);
3458 			*m_head = NULL;
3459 			return (ENOBUFS);
3460 		}
3461 
3462 		f = &sc->dc_ldata.dc_tx_list[frag];
3463 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3464 		if (i == 0) {
3465 			f->dc_status = 0;
3466 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3467 		} else
3468 			f->dc_status = htole32(DC_TXSTAT_OWN);
3469 		f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
3470 		cur = frag;
3471 		DC_INC(frag, DC_TX_LIST_CNT);
3472 	}
3473 
3474 	sc->dc_cdata.dc_tx_prod = frag;
3475 	sc->dc_cdata.dc_tx_cnt += nseg;
3476 	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3477 	sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3478 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3479 		sc->dc_ldata.dc_tx_list[first].dc_ctl |=
3480 		    htole32(DC_TXCTL_FINT);
3481 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3482 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3483 	if (sc->dc_flags & DC_TX_USE_TX_INTR &&
3484 	    ++sc->dc_cdata.dc_tx_pkts >= 8) {
3485 		sc->dc_cdata.dc_tx_pkts = 0;
3486 		sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3487 	}
3488 	sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3489 
3490 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
3491 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3492 
3493 	/*
3494 	 * Swap the last and the first dmamaps to ensure the map for
3495 	 * this transmission is placed at the last descriptor.
3496 	 */
3497 	map = sc->dc_cdata.dc_tx_map[cur];
3498 	sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
3499 	sc->dc_cdata.dc_tx_map[first] = map;
3500 
3501 	return (0);
3502 }
3503 
3504 static void
3505 dc_start(struct ifnet *ifp)
3506 {
3507 	struct dc_softc *sc;
3508 
3509 	sc = ifp->if_softc;
3510 	DC_LOCK(sc);
3511 	dc_start_locked(ifp);
3512 	DC_UNLOCK(sc);
3513 }
3514 
3515 /*
3516  * Main transmit routine
3517  * To avoid having to do mbuf copies, we put pointers to the mbuf data
3518  * regions directly in the transmit lists.  We also save a copy of the
3519  * pointers since the transmit list fragment pointers are physical
3520  * addresses.
3521  */
3522 static void
3523 dc_start_locked(struct ifnet *ifp)
3524 {
3525 	struct dc_softc *sc;
3526 	struct mbuf *m_head;
3527 	int queued;
3528 
3529 	sc = ifp->if_softc;
3530 
3531 	DC_LOCK_ASSERT(sc);
3532 
3533 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
3534 	    IFF_DRV_RUNNING || sc->dc_link == 0)
3535 		return;
3536 
3537 	sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3538 
3539 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
3540 		/*
3541 		 * If there's no way we can send any packets, return now.
3542 		 */
3543 		if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
3544 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3545 			break;
3546 		}
3547 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3548 		if (m_head == NULL)
3549 			break;
3550 
3551 		if (dc_encap(sc, &m_head)) {
3552 			if (m_head == NULL)
3553 				break;
3554 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3555 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3556 			break;
3557 		}
3558 
3559 		queued++;
3560 		/*
3561 		 * If there's a BPF listener, bounce a copy of this frame
3562 		 * to him.
3563 		 */
3564 		BPF_MTAP(ifp, m_head);
3565 	}
3566 
3567 	if (queued > 0) {
3568 		/* Transmit */
3569 		if (!(sc->dc_flags & DC_TX_POLL))
3570 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3571 
3572 		/*
3573 		 * Set a timeout in case the chip goes out to lunch.
3574 		 */
3575 		sc->dc_wdog_timer = 5;
3576 	}
3577 }
3578 
3579 static void
3580 dc_init(void *xsc)
3581 {
3582 	struct dc_softc *sc = xsc;
3583 
3584 	DC_LOCK(sc);
3585 	dc_init_locked(sc);
3586 	DC_UNLOCK(sc);
3587 }
3588 
3589 static void
3590 dc_init_locked(struct dc_softc *sc)
3591 {
3592 	struct ifnet *ifp = sc->dc_ifp;
3593 	struct mii_data *mii;
3594 	struct ifmedia *ifm;
3595 
3596 	DC_LOCK_ASSERT(sc);
3597 
3598 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3599 		return;
3600 
3601 	mii = device_get_softc(sc->dc_miibus);
3602 
3603 	/*
3604 	 * Cancel pending I/O and free all RX/TX buffers.
3605 	 */
3606 	dc_stop(sc);
3607 	dc_reset(sc);
3608 	if (DC_IS_INTEL(sc)) {
3609 		ifm = &mii->mii_media;
3610 		dc_apply_fixup(sc, ifm->ifm_media);
3611 	}
3612 
3613 	/*
3614 	 * Set cache alignment and burst length.
3615 	 */
3616 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
3617 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3618 	else
3619 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3620 	/*
3621 	 * Evenly share the bus between receive and transmit process.
3622 	 */
3623 	if (DC_IS_INTEL(sc))
3624 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3625 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3626 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3627 	} else {
3628 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3629 	}
3630 	if (sc->dc_flags & DC_TX_POLL)
3631 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3632 	switch(sc->dc_cachesize) {
3633 	case 32:
3634 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3635 		break;
3636 	case 16:
3637 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3638 		break;
3639 	case 8:
3640 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3641 		break;
3642 	case 0:
3643 	default:
3644 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3645 		break;
3646 	}
3647 
3648 	if (sc->dc_flags & DC_TX_STORENFWD)
3649 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3650 	else {
3651 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3652 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3653 		} else {
3654 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3655 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3656 		}
3657 	}
3658 
3659 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3660 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3661 
3662 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3663 		/*
3664 		 * The app notes for the 98713 and 98715A say that
3665 		 * in order to have the chips operate properly, a magic
3666 		 * number must be written to CSR16. Macronix does not
3667 		 * document the meaning of these bits so there's no way
3668 		 * to know exactly what they do. The 98713 has a magic
3669 		 * number all its own; the rest all use a different one.
3670 		 */
3671 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3672 		if (sc->dc_type == DC_TYPE_98713)
3673 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3674 		else
3675 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3676 	}
3677 
3678 	if (DC_IS_XIRCOM(sc)) {
3679 		/*
3680 		 * setup General Purpose Port mode and data so the tulip
3681 		 * can talk to the MII.
3682 		 */
3683 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3684 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3685 		DELAY(10);
3686 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3687 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3688 		DELAY(10);
3689 	}
3690 
3691 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3692 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3693 
3694 	/* Init circular RX list. */
3695 	if (dc_list_rx_init(sc) == ENOBUFS) {
3696 		device_printf(sc->dc_dev,
3697 		    "initialization failed: no memory for rx buffers\n");
3698 		dc_stop(sc);
3699 		return;
3700 	}
3701 
3702 	/*
3703 	 * Init TX descriptors.
3704 	 */
3705 	dc_list_tx_init(sc);
3706 
3707 	/*
3708 	 * Load the address of the RX list.
3709 	 */
3710 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3711 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3712 
3713 	/*
3714 	 * Enable interrupts.
3715 	 */
3716 #ifdef DEVICE_POLLING
3717 	/*
3718 	 * ... but only if we are not polling, and make sure they are off in
3719 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3720 	 * after a reset.
3721 	 */
3722 	if (ifp->if_capenable & IFCAP_POLLING)
3723 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3724 	else
3725 #endif
3726 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3727 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3728 
3729 	/* Initialize TX jabber and RX watchdog timer. */
3730 	if (DC_IS_ULI(sc))
3731 		CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
3732 		    DC_WDOG_HOSTUNJAB);
3733 
3734 	/* Enable transmitter. */
3735 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3736 
3737 	/*
3738 	 * If this is an Intel 21143 and we're not using the
3739 	 * MII port, program the LED control pins so we get
3740 	 * link and activity indications.
3741 	 */
3742 	if (sc->dc_flags & DC_TULIP_LEDS) {
3743 		CSR_WRITE_4(sc, DC_WATCHDOG,
3744 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3745 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3746 	}
3747 
3748 	/*
3749 	 * Load the RX/multicast filter. We do this sort of late
3750 	 * because the filter programming scheme on the 21143 and
3751 	 * some clones requires DMAing a setup frame via the TX
3752 	 * engine, and we need the transmitter enabled for that.
3753 	 */
3754 	dc_setfilt(sc);
3755 
3756 	/* Enable receiver. */
3757 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3758 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3759 
3760 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3761 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3762 
3763 	dc_ifmedia_upd_locked(sc);
3764 
3765 	/* Clear missed frames and overflow counter. */
3766 	CSR_READ_4(sc, DC_FRAMESDISCARDED);
3767 
3768 	/* Don't start the ticker if this is a homePNA link. */
3769 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3770 		sc->dc_link = 1;
3771 	else {
3772 		if (sc->dc_flags & DC_21143_NWAY)
3773 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3774 		else
3775 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3776 	}
3777 
3778 	sc->dc_wdog_timer = 0;
3779 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3780 }
3781 
3782 /*
3783  * Set media options.
3784  */
3785 static int
3786 dc_ifmedia_upd(struct ifnet *ifp)
3787 {
3788 	struct dc_softc *sc;
3789 	int error;
3790 
3791 	sc = ifp->if_softc;
3792 	DC_LOCK(sc);
3793 	error = dc_ifmedia_upd_locked(sc);
3794 	DC_UNLOCK(sc);
3795 	return (error);
3796 }
3797 
3798 static int
3799 dc_ifmedia_upd_locked(struct dc_softc *sc)
3800 {
3801 	struct mii_data *mii;
3802 	struct ifmedia *ifm;
3803 	int error;
3804 
3805 	DC_LOCK_ASSERT(sc);
3806 
3807 	sc->dc_link = 0;
3808 	mii = device_get_softc(sc->dc_miibus);
3809 	error = mii_mediachg(mii);
3810 	if (error == 0) {
3811 		ifm = &mii->mii_media;
3812 		if (DC_IS_INTEL(sc))
3813 			dc_setcfg(sc, ifm->ifm_media);
3814 		else if (DC_IS_DAVICOM(sc) &&
3815 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3816 			dc_setcfg(sc, ifm->ifm_media);
3817 	}
3818 
3819 	return (error);
3820 }
3821 
3822 /*
3823  * Report current media status.
3824  */
3825 static void
3826 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3827 {
3828 	struct dc_softc *sc;
3829 	struct mii_data *mii;
3830 	struct ifmedia *ifm;
3831 
3832 	sc = ifp->if_softc;
3833 	mii = device_get_softc(sc->dc_miibus);
3834 	DC_LOCK(sc);
3835 	mii_pollstat(mii);
3836 	ifm = &mii->mii_media;
3837 	if (DC_IS_DAVICOM(sc)) {
3838 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3839 			ifmr->ifm_active = ifm->ifm_media;
3840 			ifmr->ifm_status = 0;
3841 			DC_UNLOCK(sc);
3842 			return;
3843 		}
3844 	}
3845 	ifmr->ifm_active = mii->mii_media_active;
3846 	ifmr->ifm_status = mii->mii_media_status;
3847 	DC_UNLOCK(sc);
3848 }
3849 
3850 static int
3851 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3852 {
3853 	struct dc_softc *sc = ifp->if_softc;
3854 	struct ifreq *ifr = (struct ifreq *)data;
3855 	struct mii_data *mii;
3856 	int error = 0;
3857 
3858 	switch (command) {
3859 	case SIOCSIFFLAGS:
3860 		DC_LOCK(sc);
3861 		if (ifp->if_flags & IFF_UP) {
3862 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3863 				(IFF_PROMISC | IFF_ALLMULTI);
3864 
3865 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3866 				if (need_setfilt)
3867 					dc_setfilt(sc);
3868 			} else {
3869 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3870 				dc_init_locked(sc);
3871 			}
3872 		} else {
3873 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3874 				dc_stop(sc);
3875 		}
3876 		sc->dc_if_flags = ifp->if_flags;
3877 		DC_UNLOCK(sc);
3878 		break;
3879 	case SIOCADDMULTI:
3880 	case SIOCDELMULTI:
3881 		DC_LOCK(sc);
3882 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3883 			dc_setfilt(sc);
3884 		DC_UNLOCK(sc);
3885 		break;
3886 	case SIOCGIFMEDIA:
3887 	case SIOCSIFMEDIA:
3888 		mii = device_get_softc(sc->dc_miibus);
3889 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3890 		break;
3891 	case SIOCSIFCAP:
3892 #ifdef DEVICE_POLLING
3893 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3894 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3895 			error = ether_poll_register(dc_poll, ifp);
3896 			if (error)
3897 				return(error);
3898 			DC_LOCK(sc);
3899 			/* Disable interrupts */
3900 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3901 			ifp->if_capenable |= IFCAP_POLLING;
3902 			DC_UNLOCK(sc);
3903 			return (error);
3904 		}
3905 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3906 		    ifp->if_capenable & IFCAP_POLLING) {
3907 			error = ether_poll_deregister(ifp);
3908 			/* Enable interrupts. */
3909 			DC_LOCK(sc);
3910 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3911 			ifp->if_capenable &= ~IFCAP_POLLING;
3912 			DC_UNLOCK(sc);
3913 			return (error);
3914 		}
3915 #endif /* DEVICE_POLLING */
3916 		break;
3917 	default:
3918 		error = ether_ioctl(ifp, command, data);
3919 		break;
3920 	}
3921 
3922 	return (error);
3923 }
3924 
3925 static void
3926 dc_watchdog(void *xsc)
3927 {
3928 	struct dc_softc *sc = xsc;
3929 	struct ifnet *ifp;
3930 
3931 	DC_LOCK_ASSERT(sc);
3932 
3933 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3934 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3935 		return;
3936 	}
3937 
3938 	ifp = sc->dc_ifp;
3939 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3940 	device_printf(sc->dc_dev, "watchdog timeout\n");
3941 
3942 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3943 	dc_init_locked(sc);
3944 
3945 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3946 		dc_start_locked(ifp);
3947 }
3948 
3949 /*
3950  * Stop the adapter and free any mbufs allocated to the
3951  * RX and TX lists.
3952  */
3953 static void
3954 dc_stop(struct dc_softc *sc)
3955 {
3956 	struct ifnet *ifp;
3957 	struct dc_list_data *ld;
3958 	struct dc_chain_data *cd;
3959 	int i;
3960 	uint32_t ctl, netcfg;
3961 
3962 	DC_LOCK_ASSERT(sc);
3963 
3964 	ifp = sc->dc_ifp;
3965 	ld = &sc->dc_ldata;
3966 	cd = &sc->dc_cdata;
3967 
3968 	callout_stop(&sc->dc_stat_ch);
3969 	callout_stop(&sc->dc_wdog_ch);
3970 	sc->dc_wdog_timer = 0;
3971 	sc->dc_link = 0;
3972 
3973 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3974 
3975 	netcfg = CSR_READ_4(sc, DC_NETCFG);
3976 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3977 		CSR_WRITE_4(sc, DC_NETCFG,
3978 		   netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3979 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3980 	/* Wait the completion of TX/RX SM. */
3981 	if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
3982 		dc_netcfg_wait(sc);
3983 
3984 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3985 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3986 
3987 	/*
3988 	 * Free data in the RX lists.
3989 	 */
3990 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3991 		if (cd->dc_rx_chain[i] != NULL) {
3992 			bus_dmamap_sync(sc->dc_rx_mtag,
3993 			    cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
3994 			bus_dmamap_unload(sc->dc_rx_mtag,
3995 			    cd->dc_rx_map[i]);
3996 			m_freem(cd->dc_rx_chain[i]);
3997 			cd->dc_rx_chain[i] = NULL;
3998 		}
3999 	}
4000 	bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
4001 	bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
4002 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4003 
4004 	/*
4005 	 * Free the TX list buffers.
4006 	 */
4007 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
4008 		if (cd->dc_tx_chain[i] != NULL) {
4009 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
4010 			if (ctl & DC_TXCTL_SETUP) {
4011 				bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
4012 				    BUS_DMASYNC_POSTWRITE);
4013 			} else {
4014 				bus_dmamap_sync(sc->dc_tx_mtag,
4015 				    cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
4016 				bus_dmamap_unload(sc->dc_tx_mtag,
4017 				    cd->dc_tx_map[i]);
4018 				m_freem(cd->dc_tx_chain[i]);
4019 			}
4020 			cd->dc_tx_chain[i] = NULL;
4021 		}
4022 	}
4023 	bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
4024 	bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
4025 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4026 }
4027 
4028 /*
4029  * Device suspend routine.  Stop the interface and save some PCI
4030  * settings in case the BIOS doesn't restore them properly on
4031  * resume.
4032  */
4033 static int
4034 dc_suspend(device_t dev)
4035 {
4036 	struct dc_softc *sc;
4037 
4038 	sc = device_get_softc(dev);
4039 	DC_LOCK(sc);
4040 	dc_stop(sc);
4041 	sc->suspended = 1;
4042 	DC_UNLOCK(sc);
4043 
4044 	return (0);
4045 }
4046 
4047 /*
4048  * Device resume routine.  Restore some PCI settings in case the BIOS
4049  * doesn't, re-enable busmastering, and restart the interface if
4050  * appropriate.
4051  */
4052 static int
4053 dc_resume(device_t dev)
4054 {
4055 	struct dc_softc *sc;
4056 	struct ifnet *ifp;
4057 
4058 	sc = device_get_softc(dev);
4059 	ifp = sc->dc_ifp;
4060 
4061 	/* reinitialize interface if necessary */
4062 	DC_LOCK(sc);
4063 	if (ifp->if_flags & IFF_UP)
4064 		dc_init_locked(sc);
4065 
4066 	sc->suspended = 0;
4067 	DC_UNLOCK(sc);
4068 
4069 	return (0);
4070 }
4071 
4072 /*
4073  * Stop all chip I/O so that the kernel's probe routines don't
4074  * get confused by errant DMAs when rebooting.
4075  */
4076 static int
4077 dc_shutdown(device_t dev)
4078 {
4079 	struct dc_softc *sc;
4080 
4081 	sc = device_get_softc(dev);
4082 
4083 	DC_LOCK(sc);
4084 	dc_stop(sc);
4085 	DC_UNLOCK(sc);
4086 
4087 	return (0);
4088 }
4089 
4090 static int
4091 dc_check_multiport(struct dc_softc *sc)
4092 {
4093 	struct dc_softc *dsc;
4094 	devclass_t dc;
4095 	device_t child;
4096 	uint8_t *eaddr;
4097 	int unit;
4098 
4099 	dc = devclass_find("dc");
4100 	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
4101 		child = devclass_get_device(dc, unit);
4102 		if (child == NULL)
4103 			continue;
4104 		if (child == sc->dc_dev)
4105 			continue;
4106 		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
4107 			continue;
4108 		if (unit > device_get_unit(sc->dc_dev))
4109 			continue;
4110 		if (device_is_attached(child) == 0)
4111 			continue;
4112 		dsc = device_get_softc(child);
4113 		device_printf(sc->dc_dev,
4114 		    "Using station address of %s as base\n",
4115 		    device_get_nameunit(child));
4116 		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
4117 		eaddr = (uint8_t *)sc->dc_eaddr;
4118 		eaddr[5]++;
4119 		/* Prepare SROM to parse again. */
4120 		if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
4121 		    sc->dc_romwidth != 0) {
4122 			free(sc->dc_srom, M_DEVBUF);
4123 			sc->dc_romwidth = dsc->dc_romwidth;
4124 			sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
4125 			    M_DEVBUF, M_NOWAIT);
4126 			if (sc->dc_srom == NULL) {
4127 				device_printf(sc->dc_dev,
4128 				    "Could not allocate SROM buffer\n");
4129 				return (ENOMEM);
4130 			}
4131 			bcopy(dsc->dc_srom, sc->dc_srom,
4132 			    DC_ROM_SIZE(sc->dc_romwidth));
4133 		}
4134 		return (0);
4135 	}
4136 	return (ENOENT);
4137 }
4138