xref: /freebsd/sys/dev/dc/if_dc.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Abocom FE2500
52  * Conexant LANfinity (www.conexant.com)
53  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54  *
55  * Datasheets for the 21143 are available at developer.intel.com.
56  * Datasheets for the clone parts can be found at their respective sites.
57  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58  * The PNIC II is essentially a Macronix 98715A chip; the only difference
59  * worth noting is that its multicast hash table is only 128 bits wide
60  * instead of 512.
61  *
62  * Written by Bill Paul <wpaul@ee.columbia.edu>
63  * Electrical Engineering Department
64  * Columbia University, New York City
65  */
66 /*
67  * The Intel 21143 is the successor to the DEC 21140. It is basically
68  * the same as the 21140 but with a few new features. The 21143 supports
69  * three kinds of media attachments:
70  *
71  * o MII port, for 10Mbps and 100Mbps support and NWAY
72  *   autonegotiation provided by an external PHY.
73  * o SYM port, for symbol mode 100Mbps support.
74  * o 10baseT port.
75  * o AUI/BNC port.
76  *
77  * The 100Mbps SYM port and 10baseT port can be used together in
78  * combination with the internal NWAY support to create a 10/100
79  * autosensing configuration.
80  *
81  * Note that not all tulip workalikes are handled in this driver: we only
82  * deal with those which are relatively well behaved. The Winbond is
83  * handled separately due to its different register offsets and the
84  * special handling needed for its various bugs. The PNIC is handled
85  * here, but I'm not thrilled about it.
86  *
87  * All of the workalike chips use some form of MII transceiver support
88  * with the exception of the Macronix chips, which also have a SYM port.
89  * The ASIX AX88140A is also documented to have a SYM port, but all
90  * the cards I've seen use an MII transceiver, probably because the
91  * AX88140A doesn't support internal NWAY.
92  */
93 
94 #ifdef HAVE_KERNEL_OPTION_HEADERS
95 #include "opt_device_polling.h"
96 #endif
97 
98 #include <sys/param.h>
99 #include <sys/endian.h>
100 #include <sys/systm.h>
101 #include <sys/sockio.h>
102 #include <sys/mbuf.h>
103 #include <sys/malloc.h>
104 #include <sys/kernel.h>
105 #include <sys/module.h>
106 #include <sys/socket.h>
107 
108 #include <net/if.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_types.h>
114 #include <net/if_vlan_var.h>
115 
116 #include <net/bpf.h>
117 
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include <dev/mii/mii.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include <dev/dc/if_dcreg.h>
132 
133 #ifdef __sparc64__
134 #include <dev/ofw/openfirm.h>
135 #include <machine/ofw_machdep.h>
136 #endif
137 
138 MODULE_DEPEND(dc, pci, 1, 1, 1);
139 MODULE_DEPEND(dc, ether, 1, 1, 1);
140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
141 
142 /*
143  * "device miibus" is required in kernel config.  See GENERIC if you get
144  * errors here.
145  */
146 #include "miibus_if.h"
147 
148 /*
149  * Various supported device vendors/types and their names.
150  */
151 static struct dc_type dc_devs[] = {
152 	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
153 		"Intel 21143 10/100BaseTX" },
154 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
155 		"Davicom DM9009 10/100BaseTX" },
156 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
157 		"Davicom DM9100 10/100BaseTX" },
158 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
159 		"Davicom DM9102A 10/100BaseTX" },
160 	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
161 		"Davicom DM9102 10/100BaseTX" },
162 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
163 		"ADMtek AL981 10/100BaseTX" },
164 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
165 		"ADMtek AN985 10/100BaseTX" },
166 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
167 		"ADMtek ADM9511 10/100BaseTX" },
168 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
169 		"ADMtek ADM9513 10/100BaseTX" },
170 	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511), 0,
171 		"Netgear FA511 10/100BaseTX" },
172 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
173 		"ASIX AX88141 10/100BaseTX" },
174 	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
175 		"ASIX AX88140A 10/100BaseTX" },
176 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
177 		"Macronix 98713A 10/100BaseTX" },
178 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
179 		"Macronix 98713 10/100BaseTX" },
180 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
181 		"Compex RL100-TX 10/100BaseTX" },
182 	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
183 		"Compex RL100-TX 10/100BaseTX" },
184 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
185 		"Macronix 98725 10/100BaseTX" },
186 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
187 		"Macronix 98715AEC-C 10/100BaseTX" },
188 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
189 		"Macronix 98715/98715A 10/100BaseTX" },
190 	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
191 		"Macronix 98727/98732 10/100BaseTX" },
192 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
193 		"LC82C115 PNIC II 10/100BaseTX" },
194 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
195 		"82c169 PNIC 10/100BaseTX" },
196 	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
197 		"82c168 PNIC 10/100BaseTX" },
198 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
199 		"Accton EN1217 10/100BaseTX" },
200 	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
201 		"Accton EN2242 MiniPCI 10/100BaseTX" },
202 	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
203 	  	"Xircom X3201 10/100BaseTX" },
204 	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
205 		"Neteasy DRP-32TXD Cardbus 10/100" },
206 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
207 		"Abocom FE2500 10/100BaseTX" },
208 	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
209 		"Abocom FE2500MX 10/100BaseTX" },
210 	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
211 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
212 	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
213 		"Hawking CB102 CardBus 10/100" },
214 	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
215 		"PlaneX FNW-3602-T CardBus 10/100" },
216 	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
217 		"3Com OfficeConnect 10/100B" },
218 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
219 		"Microsoft MN-120 CardBus 10/100" },
220 	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
221 		"Microsoft MN-130 10/100" },
222 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
223 		"Linksys PCMPC200 CardBus 10/100" },
224 	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
225 		"Linksys PCMPC200 CardBus 10/100" },
226 	{ 0, 0, NULL }
227 };
228 
229 static int dc_probe(device_t);
230 static int dc_attach(device_t);
231 static int dc_detach(device_t);
232 static int dc_suspend(device_t);
233 static int dc_resume(device_t);
234 static struct dc_type *dc_devtype(device_t);
235 static int dc_newbuf(struct dc_softc *, int, int);
236 static int dc_encap(struct dc_softc *, struct mbuf **);
237 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
238 static int dc_rx_resync(struct dc_softc *);
239 static void dc_rxeof(struct dc_softc *);
240 static void dc_txeof(struct dc_softc *);
241 static void dc_tick(void *);
242 static void dc_tx_underrun(struct dc_softc *);
243 static void dc_intr(void *);
244 static void dc_start(struct ifnet *);
245 static void dc_start_locked(struct ifnet *);
246 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
247 static void dc_init(void *);
248 static void dc_init_locked(struct dc_softc *);
249 static void dc_stop(struct dc_softc *);
250 static void dc_watchdog(void *);
251 static void dc_shutdown(device_t);
252 static int dc_ifmedia_upd(struct ifnet *);
253 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
254 
255 static void dc_delay(struct dc_softc *);
256 static void dc_eeprom_idle(struct dc_softc *);
257 static void dc_eeprom_putbyte(struct dc_softc *, int);
258 static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
259 static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
260 static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
261 static void dc_eeprom_width(struct dc_softc *);
262 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
263 
264 static void dc_mii_writebit(struct dc_softc *, int);
265 static int dc_mii_readbit(struct dc_softc *);
266 static void dc_mii_sync(struct dc_softc *);
267 static void dc_mii_send(struct dc_softc *, u_int32_t, int);
268 static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
269 static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
270 static int dc_miibus_readreg(device_t, int, int);
271 static int dc_miibus_writereg(device_t, int, int, int);
272 static void dc_miibus_statchg(device_t);
273 static void dc_miibus_mediainit(device_t);
274 
275 static void dc_setcfg(struct dc_softc *, int);
276 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
277 static uint32_t dc_mchash_be(const uint8_t *);
278 static void dc_setfilt_21143(struct dc_softc *);
279 static void dc_setfilt_asix(struct dc_softc *);
280 static void dc_setfilt_admtek(struct dc_softc *);
281 static void dc_setfilt_xircom(struct dc_softc *);
282 
283 static void dc_setfilt(struct dc_softc *);
284 
285 static void dc_reset(struct dc_softc *);
286 static int dc_list_rx_init(struct dc_softc *);
287 static int dc_list_tx_init(struct dc_softc *);
288 
289 static void dc_read_srom(struct dc_softc *, int);
290 static void dc_parse_21143_srom(struct dc_softc *);
291 static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
292 static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
293 static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
294 static void dc_apply_fixup(struct dc_softc *, int);
295 
296 static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
297 static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
298 
299 #ifdef DC_USEIOSPACE
300 #define DC_RES			SYS_RES_IOPORT
301 #define DC_RID			DC_PCI_CFBIO
302 #else
303 #define DC_RES			SYS_RES_MEMORY
304 #define DC_RID			DC_PCI_CFBMA
305 #endif
306 
307 static device_method_t dc_methods[] = {
308 	/* Device interface */
309 	DEVMETHOD(device_probe,		dc_probe),
310 	DEVMETHOD(device_attach,	dc_attach),
311 	DEVMETHOD(device_detach,	dc_detach),
312 	DEVMETHOD(device_suspend,	dc_suspend),
313 	DEVMETHOD(device_resume,	dc_resume),
314 	DEVMETHOD(device_shutdown,	dc_shutdown),
315 
316 	/* bus interface */
317 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
318 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
319 
320 	/* MII interface */
321 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
322 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
323 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
324 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
325 
326 	{ 0, 0 }
327 };
328 
329 static driver_t dc_driver = {
330 	"dc",
331 	dc_methods,
332 	sizeof(struct dc_softc)
333 };
334 
335 static devclass_t dc_devclass;
336 
337 DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
338 DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
339 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
340 
341 #define DC_SETBIT(sc, reg, x)				\
342 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
343 
344 #define DC_CLRBIT(sc, reg, x)				\
345 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
346 
347 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
348 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
349 
350 static void
351 dc_delay(struct dc_softc *sc)
352 {
353 	int idx;
354 
355 	for (idx = (300 / 33) + 1; idx > 0; idx--)
356 		CSR_READ_4(sc, DC_BUSCTL);
357 }
358 
359 static void
360 dc_eeprom_width(struct dc_softc *sc)
361 {
362 	int i;
363 
364 	/* Force EEPROM to idle state. */
365 	dc_eeprom_idle(sc);
366 
367 	/* Enter EEPROM access mode. */
368 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
369 	dc_delay(sc);
370 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
371 	dc_delay(sc);
372 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
373 	dc_delay(sc);
374 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
375 	dc_delay(sc);
376 
377 	for (i = 3; i--;) {
378 		if (6 & (1 << i))
379 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380 		else
381 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
382 		dc_delay(sc);
383 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
386 		dc_delay(sc);
387 	}
388 
389 	for (i = 1; i <= 12; i++) {
390 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 		dc_delay(sc);
392 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
393 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
394 			dc_delay(sc);
395 			break;
396 		}
397 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 		dc_delay(sc);
399 	}
400 
401 	/* Turn off EEPROM access mode. */
402 	dc_eeprom_idle(sc);
403 
404 	if (i < 4 || i > 12)
405 		sc->dc_romwidth = 6;
406 	else
407 		sc->dc_romwidth = i;
408 
409 	/* Enter EEPROM access mode. */
410 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
411 	dc_delay(sc);
412 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
413 	dc_delay(sc);
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 
419 	/* Turn off EEPROM access mode. */
420 	dc_eeprom_idle(sc);
421 }
422 
423 static void
424 dc_eeprom_idle(struct dc_softc *sc)
425 {
426 	int i;
427 
428 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
429 	dc_delay(sc);
430 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
431 	dc_delay(sc);
432 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
433 	dc_delay(sc);
434 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
435 	dc_delay(sc);
436 
437 	for (i = 0; i < 25; i++) {
438 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439 		dc_delay(sc);
440 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
441 		dc_delay(sc);
442 	}
443 
444 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 	dc_delay(sc);
446 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
447 	dc_delay(sc);
448 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
449 }
450 
451 /*
452  * Send a read command and address to the EEPROM, check for ACK.
453  */
454 static void
455 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
456 {
457 	int d, i;
458 
459 	d = DC_EECMD_READ >> 6;
460 	for (i = 3; i--; ) {
461 		if (d & (1 << i))
462 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463 		else
464 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
465 		dc_delay(sc);
466 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467 		dc_delay(sc);
468 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
469 		dc_delay(sc);
470 	}
471 
472 	/*
473 	 * Feed in each bit and strobe the clock.
474 	 */
475 	for (i = sc->dc_romwidth; i--;) {
476 		if (addr & (1 << i)) {
477 			SIO_SET(DC_SIO_EE_DATAIN);
478 		} else {
479 			SIO_CLR(DC_SIO_EE_DATAIN);
480 		}
481 		dc_delay(sc);
482 		SIO_SET(DC_SIO_EE_CLK);
483 		dc_delay(sc);
484 		SIO_CLR(DC_SIO_EE_CLK);
485 		dc_delay(sc);
486 	}
487 }
488 
489 /*
490  * Read a word of data stored in the EEPROM at address 'addr.'
491  * The PNIC 82c168/82c169 has its own non-standard way to read
492  * the EEPROM.
493  */
494 static void
495 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
496 {
497 	int i;
498 	u_int32_t r;
499 
500 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
501 
502 	for (i = 0; i < DC_TIMEOUT; i++) {
503 		DELAY(1);
504 		r = CSR_READ_4(sc, DC_SIO);
505 		if (!(r & DC_PN_SIOCTL_BUSY)) {
506 			*dest = (u_int16_t)(r & 0xFFFF);
507 			return;
508 		}
509 	}
510 }
511 
512 /*
513  * Read a word of data stored in the EEPROM at address 'addr.'
514  * The Xircom X3201 has its own non-standard way to read
515  * the EEPROM, too.
516  */
517 static void
518 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
519 {
520 
521 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
522 
523 	addr *= 2;
524 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
525 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
526 	addr += 1;
527 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
528 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
529 
530 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
531 }
532 
533 /*
534  * Read a word of data stored in the EEPROM at address 'addr.'
535  */
536 static void
537 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
538 {
539 	int i;
540 	u_int16_t word = 0;
541 
542 	/* Force EEPROM to idle state. */
543 	dc_eeprom_idle(sc);
544 
545 	/* Enter EEPROM access mode. */
546 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
547 	dc_delay(sc);
548 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
549 	dc_delay(sc);
550 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
551 	dc_delay(sc);
552 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
553 	dc_delay(sc);
554 
555 	/*
556 	 * Send address of word we want to read.
557 	 */
558 	dc_eeprom_putbyte(sc, addr);
559 
560 	/*
561 	 * Start reading bits from EEPROM.
562 	 */
563 	for (i = 0x8000; i; i >>= 1) {
564 		SIO_SET(DC_SIO_EE_CLK);
565 		dc_delay(sc);
566 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
567 			word |= i;
568 		dc_delay(sc);
569 		SIO_CLR(DC_SIO_EE_CLK);
570 		dc_delay(sc);
571 	}
572 
573 	/* Turn off EEPROM access mode. */
574 	dc_eeprom_idle(sc);
575 
576 	*dest = word;
577 }
578 
579 /*
580  * Read a sequence of words from the EEPROM.
581  */
582 static void
583 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
584 {
585 	int i;
586 	u_int16_t word = 0, *ptr;
587 
588 	for (i = 0; i < cnt; i++) {
589 		if (DC_IS_PNIC(sc))
590 			dc_eeprom_getword_pnic(sc, off + i, &word);
591 		else if (DC_IS_XIRCOM(sc))
592 			dc_eeprom_getword_xircom(sc, off + i, &word);
593 		else
594 			dc_eeprom_getword(sc, off + i, &word);
595 		ptr = (u_int16_t *)(dest + (i * 2));
596 		if (be)
597 			*ptr = be16toh(word);
598 		else
599 			*ptr = le16toh(word);
600 	}
601 }
602 
603 /*
604  * The following two routines are taken from the Macronix 98713
605  * Application Notes pp.19-21.
606  */
607 /*
608  * Write a bit to the MII bus.
609  */
610 static void
611 dc_mii_writebit(struct dc_softc *sc, int bit)
612 {
613 
614 	if (bit)
615 		CSR_WRITE_4(sc, DC_SIO,
616 		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
617 	else
618 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
619 
620 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
621 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
622 }
623 
624 /*
625  * Read a bit from the MII bus.
626  */
627 static int
628 dc_mii_readbit(struct dc_softc *sc)
629 {
630 
631 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
632 	CSR_READ_4(sc, DC_SIO);
633 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
634 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
635 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
636 		return (1);
637 
638 	return (0);
639 }
640 
641 /*
642  * Sync the PHYs by setting data bit and strobing the clock 32 times.
643  */
644 static void
645 dc_mii_sync(struct dc_softc *sc)
646 {
647 	int i;
648 
649 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
650 
651 	for (i = 0; i < 32; i++)
652 		dc_mii_writebit(sc, 1);
653 }
654 
655 /*
656  * Clock a series of bits through the MII.
657  */
658 static void
659 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
660 {
661 	int i;
662 
663 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
664 		dc_mii_writebit(sc, bits & i);
665 }
666 
667 /*
668  * Read an PHY register through the MII.
669  */
670 static int
671 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
672 {
673 	int i, ack;
674 
675 	/*
676 	 * Set up frame for RX.
677 	 */
678 	frame->mii_stdelim = DC_MII_STARTDELIM;
679 	frame->mii_opcode = DC_MII_READOP;
680 	frame->mii_turnaround = 0;
681 	frame->mii_data = 0;
682 
683 	/*
684 	 * Sync the PHYs.
685 	 */
686 	dc_mii_sync(sc);
687 
688 	/*
689 	 * Send command/address info.
690 	 */
691 	dc_mii_send(sc, frame->mii_stdelim, 2);
692 	dc_mii_send(sc, frame->mii_opcode, 2);
693 	dc_mii_send(sc, frame->mii_phyaddr, 5);
694 	dc_mii_send(sc, frame->mii_regaddr, 5);
695 
696 #ifdef notdef
697 	/* Idle bit */
698 	dc_mii_writebit(sc, 1);
699 	dc_mii_writebit(sc, 0);
700 #endif
701 
702 	/* Check for ack. */
703 	ack = dc_mii_readbit(sc);
704 
705 	/*
706 	 * Now try reading data bits. If the ack failed, we still
707 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
708 	 */
709 	if (ack) {
710 		for (i = 0; i < 16; i++)
711 			dc_mii_readbit(sc);
712 		goto fail;
713 	}
714 
715 	for (i = 0x8000; i; i >>= 1) {
716 		if (!ack) {
717 			if (dc_mii_readbit(sc))
718 				frame->mii_data |= i;
719 		}
720 	}
721 
722 fail:
723 
724 	dc_mii_writebit(sc, 0);
725 	dc_mii_writebit(sc, 0);
726 
727 	if (ack)
728 		return (1);
729 	return (0);
730 }
731 
732 /*
733  * Write to a PHY register through the MII.
734  */
735 static int
736 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
737 {
738 
739 	/*
740 	 * Set up frame for TX.
741 	 */
742 
743 	frame->mii_stdelim = DC_MII_STARTDELIM;
744 	frame->mii_opcode = DC_MII_WRITEOP;
745 	frame->mii_turnaround = DC_MII_TURNAROUND;
746 
747 	/*
748 	 * Sync the PHYs.
749 	 */
750 	dc_mii_sync(sc);
751 
752 	dc_mii_send(sc, frame->mii_stdelim, 2);
753 	dc_mii_send(sc, frame->mii_opcode, 2);
754 	dc_mii_send(sc, frame->mii_phyaddr, 5);
755 	dc_mii_send(sc, frame->mii_regaddr, 5);
756 	dc_mii_send(sc, frame->mii_turnaround, 2);
757 	dc_mii_send(sc, frame->mii_data, 16);
758 
759 	/* Idle bit. */
760 	dc_mii_writebit(sc, 0);
761 	dc_mii_writebit(sc, 0);
762 
763 	return (0);
764 }
765 
766 static int
767 dc_miibus_readreg(device_t dev, int phy, int reg)
768 {
769 	struct dc_mii_frame frame;
770 	struct dc_softc	 *sc;
771 	int i, rval, phy_reg = 0;
772 
773 	sc = device_get_softc(dev);
774 	bzero(&frame, sizeof(frame));
775 
776 	/*
777 	 * Note: both the AL981 and AN985 have internal PHYs,
778 	 * however the AL981 provides direct access to the PHY
779 	 * registers while the AN985 uses a serial MII interface.
780 	 * The AN985's MII interface is also buggy in that you
781 	 * can read from any MII address (0 to 31), but only address 1
782 	 * behaves normally. To deal with both cases, we pretend
783 	 * that the PHY is at MII address 1.
784 	 */
785 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
786 		return (0);
787 
788 	/*
789 	 * Note: the ukphy probes of the RS7112 report a PHY at
790 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
791 	 * so we only respond to correct one.
792 	 */
793 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
794 		return (0);
795 
796 	if (sc->dc_pmode != DC_PMODE_MII) {
797 		if (phy == (MII_NPHY - 1)) {
798 			switch (reg) {
799 			case MII_BMSR:
800 			/*
801 			 * Fake something to make the probe
802 			 * code think there's a PHY here.
803 			 */
804 				return (BMSR_MEDIAMASK);
805 				break;
806 			case MII_PHYIDR1:
807 				if (DC_IS_PNIC(sc))
808 					return (DC_VENDORID_LO);
809 				return (DC_VENDORID_DEC);
810 				break;
811 			case MII_PHYIDR2:
812 				if (DC_IS_PNIC(sc))
813 					return (DC_DEVICEID_82C168);
814 				return (DC_DEVICEID_21143);
815 				break;
816 			default:
817 				return (0);
818 				break;
819 			}
820 		} else
821 			return (0);
822 	}
823 
824 	if (DC_IS_PNIC(sc)) {
825 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
826 		    (phy << 23) | (reg << 18));
827 		for (i = 0; i < DC_TIMEOUT; i++) {
828 			DELAY(1);
829 			rval = CSR_READ_4(sc, DC_PN_MII);
830 			if (!(rval & DC_PN_MII_BUSY)) {
831 				rval &= 0xFFFF;
832 				return (rval == 0xFFFF ? 0 : rval);
833 			}
834 		}
835 		return (0);
836 	}
837 
838 	if (DC_IS_COMET(sc)) {
839 		switch (reg) {
840 		case MII_BMCR:
841 			phy_reg = DC_AL_BMCR;
842 			break;
843 		case MII_BMSR:
844 			phy_reg = DC_AL_BMSR;
845 			break;
846 		case MII_PHYIDR1:
847 			phy_reg = DC_AL_VENID;
848 			break;
849 		case MII_PHYIDR2:
850 			phy_reg = DC_AL_DEVID;
851 			break;
852 		case MII_ANAR:
853 			phy_reg = DC_AL_ANAR;
854 			break;
855 		case MII_ANLPAR:
856 			phy_reg = DC_AL_LPAR;
857 			break;
858 		case MII_ANER:
859 			phy_reg = DC_AL_ANER;
860 			break;
861 		default:
862 			device_printf(dev, "phy_read: bad phy register %x\n",
863 			    reg);
864 			return (0);
865 			break;
866 		}
867 
868 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
869 
870 		if (rval == 0xFFFF)
871 			return (0);
872 		return (rval);
873 	}
874 
875 	frame.mii_phyaddr = phy;
876 	frame.mii_regaddr = reg;
877 	if (sc->dc_type == DC_TYPE_98713) {
878 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
879 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
880 	}
881 	dc_mii_readreg(sc, &frame);
882 	if (sc->dc_type == DC_TYPE_98713)
883 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
884 
885 	return (frame.mii_data);
886 }
887 
888 static int
889 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
890 {
891 	struct dc_softc *sc;
892 	struct dc_mii_frame frame;
893 	int i, phy_reg = 0;
894 
895 	sc = device_get_softc(dev);
896 	bzero(&frame, sizeof(frame));
897 
898 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
899 		return (0);
900 
901 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
902 		return (0);
903 
904 	if (DC_IS_PNIC(sc)) {
905 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
906 		    (phy << 23) | (reg << 10) | data);
907 		for (i = 0; i < DC_TIMEOUT; i++) {
908 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
909 				break;
910 		}
911 		return (0);
912 	}
913 
914 	if (DC_IS_COMET(sc)) {
915 		switch (reg) {
916 		case MII_BMCR:
917 			phy_reg = DC_AL_BMCR;
918 			break;
919 		case MII_BMSR:
920 			phy_reg = DC_AL_BMSR;
921 			break;
922 		case MII_PHYIDR1:
923 			phy_reg = DC_AL_VENID;
924 			break;
925 		case MII_PHYIDR2:
926 			phy_reg = DC_AL_DEVID;
927 			break;
928 		case MII_ANAR:
929 			phy_reg = DC_AL_ANAR;
930 			break;
931 		case MII_ANLPAR:
932 			phy_reg = DC_AL_LPAR;
933 			break;
934 		case MII_ANER:
935 			phy_reg = DC_AL_ANER;
936 			break;
937 		default:
938 			device_printf(dev, "phy_write: bad phy register %x\n",
939 			    reg);
940 			return (0);
941 			break;
942 		}
943 
944 		CSR_WRITE_4(sc, phy_reg, data);
945 		return (0);
946 	}
947 
948 	frame.mii_phyaddr = phy;
949 	frame.mii_regaddr = reg;
950 	frame.mii_data = data;
951 
952 	if (sc->dc_type == DC_TYPE_98713) {
953 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
954 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
955 	}
956 	dc_mii_writereg(sc, &frame);
957 	if (sc->dc_type == DC_TYPE_98713)
958 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
959 
960 	return (0);
961 }
962 
963 static void
964 dc_miibus_statchg(device_t dev)
965 {
966 	struct dc_softc *sc;
967 	struct mii_data *mii;
968 	struct ifmedia *ifm;
969 
970 	sc = device_get_softc(dev);
971 	if (DC_IS_ADMTEK(sc))
972 		return;
973 
974 	mii = device_get_softc(sc->dc_miibus);
975 	ifm = &mii->mii_media;
976 	if (DC_IS_DAVICOM(sc) &&
977 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
978 		dc_setcfg(sc, ifm->ifm_media);
979 		sc->dc_if_media = ifm->ifm_media;
980 	} else {
981 		dc_setcfg(sc, mii->mii_media_active);
982 		sc->dc_if_media = mii->mii_media_active;
983 	}
984 }
985 
986 /*
987  * Special support for DM9102A cards with HomePNA PHYs. Note:
988  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
989  * to be impossible to talk to the management interface of the DM9801
990  * PHY (its MDIO pin is not connected to anything). Consequently,
991  * the driver has to just 'know' about the additional mode and deal
992  * with it itself. *sigh*
993  */
994 static void
995 dc_miibus_mediainit(device_t dev)
996 {
997 	struct dc_softc *sc;
998 	struct mii_data *mii;
999 	struct ifmedia *ifm;
1000 	int rev;
1001 
1002 	rev = pci_get_revid(dev);
1003 
1004 	sc = device_get_softc(dev);
1005 	mii = device_get_softc(sc->dc_miibus);
1006 	ifm = &mii->mii_media;
1007 
1008 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1009 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1010 }
1011 
1012 #define DC_BITS_512	9
1013 #define DC_BITS_128	7
1014 #define DC_BITS_64	6
1015 
1016 static uint32_t
1017 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1018 {
1019 	uint32_t crc;
1020 
1021 	/* Compute CRC for the address value. */
1022 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1023 
1024 	/*
1025 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1026 	 * chips is only 128 bits wide.
1027 	 */
1028 	if (sc->dc_flags & DC_128BIT_HASH)
1029 		return (crc & ((1 << DC_BITS_128) - 1));
1030 
1031 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1032 	if (sc->dc_flags & DC_64BIT_HASH)
1033 		return (crc & ((1 << DC_BITS_64) - 1));
1034 
1035 	/* Xircom's hash filtering table is different (read: weird) */
1036 	/* Xircom uses the LEAST significant bits */
1037 	if (DC_IS_XIRCOM(sc)) {
1038 		if ((crc & 0x180) == 0x180)
1039 			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1040 		else
1041 			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1042 			    (12 << 4));
1043 	}
1044 
1045 	return (crc & ((1 << DC_BITS_512) - 1));
1046 }
1047 
1048 /*
1049  * Calculate CRC of a multicast group address, return the lower 6 bits.
1050  */
1051 static uint32_t
1052 dc_mchash_be(const uint8_t *addr)
1053 {
1054 	uint32_t crc;
1055 
1056 	/* Compute CRC for the address value. */
1057 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1058 
1059 	/* Return the filter bit position. */
1060 	return ((crc >> 26) & 0x0000003F);
1061 }
1062 
1063 /*
1064  * 21143-style RX filter setup routine. Filter programming is done by
1065  * downloading a special setup frame into the TX engine. 21143, Macronix,
1066  * PNIC, PNIC II and Davicom chips are programmed this way.
1067  *
1068  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1069  * address (our node address) and a 512-bit hash filter for multicast
1070  * frames. We also sneak the broadcast address into the hash filter since
1071  * we need that too.
1072  */
1073 static void
1074 dc_setfilt_21143(struct dc_softc *sc)
1075 {
1076 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1077 	struct dc_desc *sframe;
1078 	u_int32_t h, *sp;
1079 	struct ifmultiaddr *ifma;
1080 	struct ifnet *ifp;
1081 	int i;
1082 
1083 	ifp = sc->dc_ifp;
1084 
1085 	i = sc->dc_cdata.dc_tx_prod;
1086 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1087 	sc->dc_cdata.dc_tx_cnt++;
1088 	sframe = &sc->dc_ldata->dc_tx_list[i];
1089 	sp = sc->dc_cdata.dc_sbuf;
1090 	bzero(sp, DC_SFRAME_LEN);
1091 
1092 	sframe->dc_data = htole32(sc->dc_saddr);
1093 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1094 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1095 
1096 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1097 
1098 	/* If we want promiscuous mode, set the allframes bit. */
1099 	if (ifp->if_flags & IFF_PROMISC)
1100 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1101 	else
1102 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1103 
1104 	if (ifp->if_flags & IFF_ALLMULTI)
1105 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1106 	else
1107 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1108 
1109 	IF_ADDR_LOCK(ifp);
1110 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1111 		if (ifma->ifma_addr->sa_family != AF_LINK)
1112 			continue;
1113 		h = dc_mchash_le(sc,
1114 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1115 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1116 	}
1117 	IF_ADDR_UNLOCK(ifp);
1118 
1119 	if (ifp->if_flags & IFF_BROADCAST) {
1120 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1121 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1122 	}
1123 
1124 	/* Set our MAC address. */
1125 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1126 	sp[39] = DC_SP_MAC(eaddr[0]);
1127 	sp[40] = DC_SP_MAC(eaddr[1]);
1128 	sp[41] = DC_SP_MAC(eaddr[2]);
1129 
1130 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1131 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1132 
1133 	/*
1134 	 * The PNIC takes an exceedingly long time to process its
1135 	 * setup frame; wait 10ms after posting the setup frame
1136 	 * before proceeding, just so it has time to swallow its
1137 	 * medicine.
1138 	 */
1139 	DELAY(10000);
1140 
1141 	sc->dc_wdog_timer = 5;
1142 }
1143 
1144 static void
1145 dc_setfilt_admtek(struct dc_softc *sc)
1146 {
1147 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1148 	struct ifnet *ifp;
1149 	struct ifmultiaddr *ifma;
1150 	int h = 0;
1151 	u_int32_t hashes[2] = { 0, 0 };
1152 
1153 	ifp = sc->dc_ifp;
1154 
1155 	/* Init our MAC address. */
1156 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1157 	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[0]);
1158 	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[1]);
1159 
1160 	/* If we want promiscuous mode, set the allframes bit. */
1161 	if (ifp->if_flags & IFF_PROMISC)
1162 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1163 	else
1164 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1165 
1166 	if (ifp->if_flags & IFF_ALLMULTI)
1167 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1168 	else
1169 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1170 
1171 	/* First, zot all the existing hash bits. */
1172 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1173 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1174 
1175 	/*
1176 	 * If we're already in promisc or allmulti mode, we
1177 	 * don't have to bother programming the multicast filter.
1178 	 */
1179 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1180 		return;
1181 
1182 	/* Now program new ones. */
1183 	IF_ADDR_LOCK(ifp);
1184 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1185 		if (ifma->ifma_addr->sa_family != AF_LINK)
1186 			continue;
1187 		if (DC_IS_CENTAUR(sc))
1188 			h = dc_mchash_le(sc,
1189 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1190 		else
1191 			h = dc_mchash_be(
1192 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1193 		if (h < 32)
1194 			hashes[0] |= (1 << h);
1195 		else
1196 			hashes[1] |= (1 << (h - 32));
1197 	}
1198 	IF_ADDR_UNLOCK(ifp);
1199 
1200 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1201 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1202 }
1203 
1204 static void
1205 dc_setfilt_asix(struct dc_softc *sc)
1206 {
1207 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1208 	struct ifnet *ifp;
1209 	struct ifmultiaddr *ifma;
1210 	int h = 0;
1211 	u_int32_t hashes[2] = { 0, 0 };
1212 
1213 	ifp = sc->dc_ifp;
1214 
1215 	/* Init our MAC address. */
1216 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1217 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1218 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1219 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1220 	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1221 
1222 	/* If we want promiscuous mode, set the allframes bit. */
1223 	if (ifp->if_flags & IFF_PROMISC)
1224 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1225 	else
1226 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1227 
1228 	if (ifp->if_flags & IFF_ALLMULTI)
1229 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1230 	else
1231 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1232 
1233 	/*
1234 	 * The ASIX chip has a special bit to enable reception
1235 	 * of broadcast frames.
1236 	 */
1237 	if (ifp->if_flags & IFF_BROADCAST)
1238 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1239 	else
1240 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1241 
1242 	/* first, zot all the existing hash bits */
1243 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1244 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1245 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1246 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1247 
1248 	/*
1249 	 * If we're already in promisc or allmulti mode, we
1250 	 * don't have to bother programming the multicast filter.
1251 	 */
1252 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1253 		return;
1254 
1255 	/* now program new ones */
1256 	IF_ADDR_LOCK(ifp);
1257 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1258 		if (ifma->ifma_addr->sa_family != AF_LINK)
1259 			continue;
1260 		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1261 		if (h < 32)
1262 			hashes[0] |= (1 << h);
1263 		else
1264 			hashes[1] |= (1 << (h - 32));
1265 	}
1266 	IF_ADDR_UNLOCK(ifp);
1267 
1268 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1269 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1270 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1271 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1272 }
1273 
1274 static void
1275 dc_setfilt_xircom(struct dc_softc *sc)
1276 {
1277 	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1278 	struct ifnet *ifp;
1279 	struct ifmultiaddr *ifma;
1280 	struct dc_desc *sframe;
1281 	u_int32_t h, *sp;
1282 	int i;
1283 
1284 	ifp = sc->dc_ifp;
1285 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1286 
1287 	i = sc->dc_cdata.dc_tx_prod;
1288 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1289 	sc->dc_cdata.dc_tx_cnt++;
1290 	sframe = &sc->dc_ldata->dc_tx_list[i];
1291 	sp = sc->dc_cdata.dc_sbuf;
1292 	bzero(sp, DC_SFRAME_LEN);
1293 
1294 	sframe->dc_data = htole32(sc->dc_saddr);
1295 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1296 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1297 
1298 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1299 
1300 	/* If we want promiscuous mode, set the allframes bit. */
1301 	if (ifp->if_flags & IFF_PROMISC)
1302 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1303 	else
1304 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1305 
1306 	if (ifp->if_flags & IFF_ALLMULTI)
1307 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1308 	else
1309 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1310 
1311 	IF_ADDR_LOCK(ifp);
1312 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1313 		if (ifma->ifma_addr->sa_family != AF_LINK)
1314 			continue;
1315 		h = dc_mchash_le(sc,
1316 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1317 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1318 	}
1319 	IF_ADDR_UNLOCK(ifp);
1320 
1321 	if (ifp->if_flags & IFF_BROADCAST) {
1322 		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1323 		sp[h >> 4] |= htole32(1 << (h & 0xF));
1324 	}
1325 
1326 	/* Set our MAC address. */
1327 	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1328 	sp[0] = DC_SP_MAC(eaddr[0]);
1329 	sp[1] = DC_SP_MAC(eaddr[1]);
1330 	sp[2] = DC_SP_MAC(eaddr[2]);
1331 
1332 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1333 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1334 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1335 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1336 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1337 
1338 	/*
1339 	 * Wait some time...
1340 	 */
1341 	DELAY(1000);
1342 
1343 	sc->dc_wdog_timer = 5;
1344 }
1345 
1346 static void
1347 dc_setfilt(struct dc_softc *sc)
1348 {
1349 
1350 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1351 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1352 		dc_setfilt_21143(sc);
1353 
1354 	if (DC_IS_ASIX(sc))
1355 		dc_setfilt_asix(sc);
1356 
1357 	if (DC_IS_ADMTEK(sc))
1358 		dc_setfilt_admtek(sc);
1359 
1360 	if (DC_IS_XIRCOM(sc))
1361 		dc_setfilt_xircom(sc);
1362 }
1363 
1364 /*
1365  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1366  * the netconfig register, we first have to put the transmit and/or
1367  * receive logic in the idle state.
1368  */
1369 static void
1370 dc_setcfg(struct dc_softc *sc, int media)
1371 {
1372 	int i, restart = 0, watchdogreg;
1373 	u_int32_t isr;
1374 
1375 	if (IFM_SUBTYPE(media) == IFM_NONE)
1376 		return;
1377 
1378 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1379 		restart = 1;
1380 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1381 
1382 		for (i = 0; i < DC_TIMEOUT; i++) {
1383 			isr = CSR_READ_4(sc, DC_ISR);
1384 			if (isr & DC_ISR_TX_IDLE &&
1385 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1386 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1387 				break;
1388 			DELAY(10);
1389 		}
1390 
1391 		if (i == DC_TIMEOUT) {
1392 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1393 				device_printf(sc->dc_dev,
1394 				    "%s: failed to force tx to idle state\n",
1395 				    __func__);
1396 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1397 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1398 			    !(DC_IS_CENTAUR(sc) || DC_IS_CONEXANT(sc) ||
1399 			    (DC_IS_DAVICOM(sc) && pci_get_revid(sc->dc_dev) >=
1400 			    DC_REVISION_DM9102A)))
1401 				device_printf(sc->dc_dev,
1402 				    "%s: failed to force rx to idle state\n",
1403 				    __func__);
1404 		}
1405 	}
1406 
1407 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1408 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1409 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1410 		if (sc->dc_pmode == DC_PMODE_MII) {
1411 			if (DC_IS_INTEL(sc)) {
1412 			/* There's a write enable bit here that reads as 1. */
1413 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1414 				watchdogreg &= ~DC_WDOG_CTLWREN;
1415 				watchdogreg |= DC_WDOG_JABBERDIS;
1416 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1417 			} else {
1418 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1419 			}
1420 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1421 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1422 			if (sc->dc_type == DC_TYPE_98713)
1423 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1424 				    DC_NETCFG_SCRAMBLER));
1425 			if (!DC_IS_DAVICOM(sc))
1426 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1427 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1428 			if (DC_IS_INTEL(sc))
1429 				dc_apply_fixup(sc, IFM_AUTO);
1430 		} else {
1431 			if (DC_IS_PNIC(sc)) {
1432 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1433 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1434 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1435 			}
1436 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1437 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1438 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1439 			if (DC_IS_INTEL(sc))
1440 				dc_apply_fixup(sc,
1441 				    (media & IFM_GMASK) == IFM_FDX ?
1442 				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1443 		}
1444 	}
1445 
1446 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1447 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1448 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1449 		if (sc->dc_pmode == DC_PMODE_MII) {
1450 			/* There's a write enable bit here that reads as 1. */
1451 			if (DC_IS_INTEL(sc)) {
1452 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1453 				watchdogreg &= ~DC_WDOG_CTLWREN;
1454 				watchdogreg |= DC_WDOG_JABBERDIS;
1455 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1456 			} else {
1457 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1458 			}
1459 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1460 			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1461 			if (sc->dc_type == DC_TYPE_98713)
1462 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1463 			if (!DC_IS_DAVICOM(sc))
1464 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1465 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1466 			if (DC_IS_INTEL(sc))
1467 				dc_apply_fixup(sc, IFM_AUTO);
1468 		} else {
1469 			if (DC_IS_PNIC(sc)) {
1470 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1471 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1472 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1473 			}
1474 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1475 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1476 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1477 			if (DC_IS_INTEL(sc)) {
1478 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1479 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1480 				if ((media & IFM_GMASK) == IFM_FDX)
1481 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1482 				else
1483 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1484 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1485 				DC_CLRBIT(sc, DC_10BTCTRL,
1486 				    DC_TCTL_AUTONEGENBL);
1487 				dc_apply_fixup(sc,
1488 				    (media & IFM_GMASK) == IFM_FDX ?
1489 				    IFM_10_T | IFM_FDX : IFM_10_T);
1490 				DELAY(20000);
1491 			}
1492 		}
1493 	}
1494 
1495 	/*
1496 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1497 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1498 	 * on the external MII port.
1499 	 */
1500 	if (DC_IS_DAVICOM(sc)) {
1501 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1502 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1503 			sc->dc_link = 1;
1504 		} else {
1505 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1506 		}
1507 	}
1508 
1509 	if ((media & IFM_GMASK) == IFM_FDX) {
1510 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1511 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1512 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1513 	} else {
1514 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1515 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1516 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1517 	}
1518 
1519 	if (restart)
1520 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1521 }
1522 
1523 static void
1524 dc_reset(struct dc_softc *sc)
1525 {
1526 	int i;
1527 
1528 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1529 
1530 	for (i = 0; i < DC_TIMEOUT; i++) {
1531 		DELAY(10);
1532 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1533 			break;
1534 	}
1535 
1536 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1537 	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1538 		DELAY(10000);
1539 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1540 		i = 0;
1541 	}
1542 
1543 	if (i == DC_TIMEOUT)
1544 		device_printf(sc->dc_dev, "reset never completed!\n");
1545 
1546 	/* Wait a little while for the chip to get its brains in order. */
1547 	DELAY(1000);
1548 
1549 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1550 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1551 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1552 
1553 	/*
1554 	 * Bring the SIA out of reset. In some cases, it looks
1555 	 * like failing to unreset the SIA soon enough gets it
1556 	 * into a state where it will never come out of reset
1557 	 * until we reset the whole chip again.
1558 	 */
1559 	if (DC_IS_INTEL(sc)) {
1560 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1561 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1562 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1563 	}
1564 }
1565 
1566 static struct dc_type *
1567 dc_devtype(device_t dev)
1568 {
1569 	struct dc_type *t;
1570 	u_int32_t devid;
1571 	u_int8_t rev;
1572 
1573 	t = dc_devs;
1574 	devid = pci_get_devid(dev);
1575 	rev = pci_get_revid(dev);
1576 
1577 	while (t->dc_name != NULL) {
1578 		if (devid == t->dc_devid && rev >= t->dc_minrev)
1579 			return (t);
1580 		t++;
1581 	}
1582 
1583 	return (NULL);
1584 }
1585 
1586 /*
1587  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1588  * IDs against our list and return a device name if we find a match.
1589  * We do a little bit of extra work to identify the exact type of
1590  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1591  * but different revision IDs. The same is true for 98715/98715A
1592  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1593  * cases, the exact chip revision affects driver behavior.
1594  */
1595 static int
1596 dc_probe(device_t dev)
1597 {
1598 	struct dc_type *t;
1599 
1600 	t = dc_devtype(dev);
1601 
1602 	if (t != NULL) {
1603 		device_set_desc(dev, t->dc_name);
1604 		return (BUS_PROBE_DEFAULT);
1605 	}
1606 
1607 	return (ENXIO);
1608 }
1609 
1610 static void
1611 dc_apply_fixup(struct dc_softc *sc, int media)
1612 {
1613 	struct dc_mediainfo *m;
1614 	u_int8_t *p;
1615 	int i;
1616 	u_int32_t reg;
1617 
1618 	m = sc->dc_mi;
1619 
1620 	while (m != NULL) {
1621 		if (m->dc_media == media)
1622 			break;
1623 		m = m->dc_next;
1624 	}
1625 
1626 	if (m == NULL)
1627 		return;
1628 
1629 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1630 		reg = (p[0] | (p[1] << 8)) << 16;
1631 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1632 	}
1633 
1634 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1635 		reg = (p[0] | (p[1] << 8)) << 16;
1636 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1637 	}
1638 }
1639 
1640 static void
1641 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1642 {
1643 	struct dc_mediainfo *m;
1644 
1645 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1646 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1647 	case DC_SIA_CODE_10BT:
1648 		m->dc_media = IFM_10_T;
1649 		break;
1650 	case DC_SIA_CODE_10BT_FDX:
1651 		m->dc_media = IFM_10_T | IFM_FDX;
1652 		break;
1653 	case DC_SIA_CODE_10B2:
1654 		m->dc_media = IFM_10_2;
1655 		break;
1656 	case DC_SIA_CODE_10B5:
1657 		m->dc_media = IFM_10_5;
1658 		break;
1659 	default:
1660 		break;
1661 	}
1662 
1663 	/*
1664 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1665 	 * Things apparently already work for cards that do
1666 	 * supply Media Specific Data.
1667 	 */
1668 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1669 		m->dc_gp_len = 2;
1670 		m->dc_gp_ptr =
1671 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1672 	} else {
1673 		m->dc_gp_len = 2;
1674 		m->dc_gp_ptr =
1675 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1676 	}
1677 
1678 	m->dc_next = sc->dc_mi;
1679 	sc->dc_mi = m;
1680 
1681 	sc->dc_pmode = DC_PMODE_SIA;
1682 }
1683 
1684 static void
1685 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1686 {
1687 	struct dc_mediainfo *m;
1688 
1689 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1690 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1691 		m->dc_media = IFM_100_TX;
1692 
1693 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1694 		m->dc_media = IFM_100_TX | IFM_FDX;
1695 
1696 	m->dc_gp_len = 2;
1697 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1698 
1699 	m->dc_next = sc->dc_mi;
1700 	sc->dc_mi = m;
1701 
1702 	sc->dc_pmode = DC_PMODE_SYM;
1703 }
1704 
1705 static void
1706 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1707 {
1708 	struct dc_mediainfo *m;
1709 	u_int8_t *p;
1710 
1711 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1712 	/* We abuse IFM_AUTO to represent MII. */
1713 	m->dc_media = IFM_AUTO;
1714 	m->dc_gp_len = l->dc_gpr_len;
1715 
1716 	p = (u_int8_t *)l;
1717 	p += sizeof(struct dc_eblock_mii);
1718 	m->dc_gp_ptr = p;
1719 	p += 2 * l->dc_gpr_len;
1720 	m->dc_reset_len = *p;
1721 	p++;
1722 	m->dc_reset_ptr = p;
1723 
1724 	m->dc_next = sc->dc_mi;
1725 	sc->dc_mi = m;
1726 }
1727 
1728 static void
1729 dc_read_srom(struct dc_softc *sc, int bits)
1730 {
1731 	int size;
1732 
1733 	size = 2 << bits;
1734 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1735 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1736 }
1737 
1738 static void
1739 dc_parse_21143_srom(struct dc_softc *sc)
1740 {
1741 	struct dc_leaf_hdr *lhdr;
1742 	struct dc_eblock_hdr *hdr;
1743 	int have_mii, i, loff;
1744 	char *ptr;
1745 
1746 	have_mii = 0;
1747 	loff = sc->dc_srom[27];
1748 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1749 
1750 	ptr = (char *)lhdr;
1751 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1752 	/*
1753 	 * Look if we got a MII media block.
1754 	 */
1755 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1756 		hdr = (struct dc_eblock_hdr *)ptr;
1757 		if (hdr->dc_type == DC_EBLOCK_MII)
1758 		    have_mii++;
1759 
1760 		ptr += (hdr->dc_len & 0x7F);
1761 		ptr++;
1762 	}
1763 
1764 	/*
1765 	 * Do the same thing again. Only use SIA and SYM media
1766 	 * blocks if no MII media block is available.
1767 	 */
1768 	ptr = (char *)lhdr;
1769 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1770 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1771 		hdr = (struct dc_eblock_hdr *)ptr;
1772 		switch (hdr->dc_type) {
1773 		case DC_EBLOCK_MII:
1774 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1775 			break;
1776 		case DC_EBLOCK_SIA:
1777 			if (! have_mii)
1778 				dc_decode_leaf_sia(sc,
1779 				    (struct dc_eblock_sia *)hdr);
1780 			break;
1781 		case DC_EBLOCK_SYM:
1782 			if (! have_mii)
1783 				dc_decode_leaf_sym(sc,
1784 				    (struct dc_eblock_sym *)hdr);
1785 			break;
1786 		default:
1787 			/* Don't care. Yet. */
1788 			break;
1789 		}
1790 		ptr += (hdr->dc_len & 0x7F);
1791 		ptr++;
1792 	}
1793 }
1794 
1795 static void
1796 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1797 {
1798 	u_int32_t *paddr;
1799 
1800 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1801 	paddr = arg;
1802 	*paddr = segs->ds_addr;
1803 }
1804 
1805 /*
1806  * Attach the interface. Allocate softc structures, do ifmedia
1807  * setup and ethernet/BPF attach.
1808  */
1809 static int
1810 dc_attach(device_t dev)
1811 {
1812 	int tmp = 0;
1813 	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1814 	u_int32_t command;
1815 	struct dc_softc *sc;
1816 	struct ifnet *ifp;
1817 	u_int32_t revision;
1818 	int error = 0, rid, mac_offset;
1819 	int i;
1820 	u_int8_t *mac;
1821 
1822 	sc = device_get_softc(dev);
1823 	sc->dc_dev = dev;
1824 
1825 	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1826 	    MTX_DEF);
1827 
1828 	/*
1829 	 * Map control/status registers.
1830 	 */
1831 	pci_enable_busmaster(dev);
1832 
1833 	rid = DC_RID;
1834 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1835 
1836 	if (sc->dc_res == NULL) {
1837 		device_printf(dev, "couldn't map ports/memory\n");
1838 		error = ENXIO;
1839 		goto fail;
1840 	}
1841 
1842 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1843 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1844 
1845 	/* Allocate interrupt. */
1846 	rid = 0;
1847 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1848 	    RF_SHAREABLE | RF_ACTIVE);
1849 
1850 	if (sc->dc_irq == NULL) {
1851 		device_printf(dev, "couldn't map interrupt\n");
1852 		error = ENXIO;
1853 		goto fail;
1854 	}
1855 
1856 	/* Need this info to decide on a chip type. */
1857 	sc->dc_info = dc_devtype(dev);
1858 	revision = pci_get_revid(dev);
1859 
1860 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1861 	if (sc->dc_info->dc_devid !=
1862 	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1863 	    sc->dc_info->dc_devid !=
1864 	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1865 		dc_eeprom_width(sc);
1866 
1867 	switch (sc->dc_info->dc_devid) {
1868 	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1869 		sc->dc_type = DC_TYPE_21143;
1870 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1871 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1872 		/* Save EEPROM contents so we can parse them later. */
1873 		dc_read_srom(sc, sc->dc_romwidth);
1874 		break;
1875 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1876 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1877 	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1878 		sc->dc_type = DC_TYPE_DM9102;
1879 		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1880 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1881 		sc->dc_flags |= DC_TX_ALIGN;
1882 		sc->dc_pmode = DC_PMODE_MII;
1883 
1884 		/* Increase the latency timer value. */
1885 		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1886 		break;
1887 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1888 		sc->dc_type = DC_TYPE_AL981;
1889 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1890 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1891 		sc->dc_pmode = DC_PMODE_MII;
1892 		dc_read_srom(sc, sc->dc_romwidth);
1893 		break;
1894 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1895 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1896 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1897 	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1898 	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_FA511):
1899 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1900 	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1901 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1902 	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1903 	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1904 	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1905 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1906 	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1907 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1908 	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1909 		sc->dc_type = DC_TYPE_AN985;
1910 		sc->dc_flags |= DC_64BIT_HASH;
1911 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1912 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1913 		sc->dc_pmode = DC_PMODE_MII;
1914 		/* Don't read SROM for - auto-loaded on reset */
1915 		break;
1916 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1917 	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1918 		if (revision < DC_REVISION_98713A) {
1919 			sc->dc_type = DC_TYPE_98713;
1920 		}
1921 		if (revision >= DC_REVISION_98713A) {
1922 			sc->dc_type = DC_TYPE_98713A;
1923 			sc->dc_flags |= DC_21143_NWAY;
1924 		}
1925 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1926 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1927 		break;
1928 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1929 	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1930 		/*
1931 		 * Macronix MX98715AEC-C/D/E parts have only a
1932 		 * 128-bit hash table. We need to deal with these
1933 		 * in the same manner as the PNIC II so that we
1934 		 * get the right number of bits out of the
1935 		 * CRC routine.
1936 		 */
1937 		if (revision >= DC_REVISION_98715AEC_C &&
1938 		    revision < DC_REVISION_98725)
1939 			sc->dc_flags |= DC_128BIT_HASH;
1940 		sc->dc_type = DC_TYPE_987x5;
1941 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1942 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1943 		break;
1944 	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1945 		sc->dc_type = DC_TYPE_987x5;
1946 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1947 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1948 		break;
1949 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1950 		sc->dc_type = DC_TYPE_PNICII;
1951 		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1952 		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1953 		break;
1954 	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1955 		sc->dc_type = DC_TYPE_PNIC;
1956 		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1957 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1958 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1959 		if (revision < DC_REVISION_82C169)
1960 			sc->dc_pmode = DC_PMODE_SYM;
1961 		break;
1962 	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1963 		sc->dc_type = DC_TYPE_ASIX;
1964 		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1965 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1966 		sc->dc_pmode = DC_PMODE_MII;
1967 		break;
1968 	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1969 		sc->dc_type = DC_TYPE_XIRCOM;
1970 		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1971 				DC_TX_ALIGN;
1972 		/*
1973 		 * We don't actually need to coalesce, but we're doing
1974 		 * it to obtain a double word aligned buffer.
1975 		 * The DC_TX_COALESCE flag is required.
1976 		 */
1977 		sc->dc_pmode = DC_PMODE_MII;
1978 		break;
1979 	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1980 		sc->dc_type = DC_TYPE_CONEXANT;
1981 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1982 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1983 		sc->dc_pmode = DC_PMODE_MII;
1984 		dc_read_srom(sc, sc->dc_romwidth);
1985 		break;
1986 	default:
1987 		device_printf(dev, "unknown device: %x\n",
1988 		    sc->dc_info->dc_devid);
1989 		break;
1990 	}
1991 
1992 	/* Save the cache line size. */
1993 	if (DC_IS_DAVICOM(sc))
1994 		sc->dc_cachesize = 0;
1995 	else
1996 		sc->dc_cachesize = pci_get_cachelnsz(dev);
1997 
1998 	/* Reset the adapter. */
1999 	dc_reset(sc);
2000 
2001 	/* Take 21143 out of snooze mode */
2002 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2003 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2004 		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2005 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2006 	}
2007 
2008 	/*
2009 	 * Try to learn something about the supported media.
2010 	 * We know that ASIX and ADMtek and Davicom devices
2011 	 * will *always* be using MII media, so that's a no-brainer.
2012 	 * The tricky ones are the Macronix/PNIC II and the
2013 	 * Intel 21143.
2014 	 */
2015 	if (DC_IS_INTEL(sc))
2016 		dc_parse_21143_srom(sc);
2017 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2018 		if (sc->dc_type == DC_TYPE_98713)
2019 			sc->dc_pmode = DC_PMODE_MII;
2020 		else
2021 			sc->dc_pmode = DC_PMODE_SYM;
2022 	} else if (!sc->dc_pmode)
2023 		sc->dc_pmode = DC_PMODE_MII;
2024 
2025 	/*
2026 	 * Get station address from the EEPROM.
2027 	 */
2028 	switch(sc->dc_type) {
2029 	case DC_TYPE_98713:
2030 	case DC_TYPE_98713A:
2031 	case DC_TYPE_987x5:
2032 	case DC_TYPE_PNICII:
2033 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2034 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2035 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2036 		break;
2037 	case DC_TYPE_PNIC:
2038 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2039 		break;
2040 	case DC_TYPE_DM9102:
2041 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2042 #ifdef __sparc64__
2043 		/*
2044 		 * If this is an onboard dc(4) the station address read from
2045 		 * the EEPROM is all zero and we have to get it from the FCode.
2046 		 */
2047 		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2048 			OF_getetheraddr(dev, (caddr_t)&eaddr);
2049 #endif
2050 		break;
2051 	case DC_TYPE_21143:
2052 	case DC_TYPE_ASIX:
2053 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2054 		break;
2055 	case DC_TYPE_AL981:
2056 	case DC_TYPE_AN985:
2057 		eaddr[0] = CSR_READ_4(sc, DC_AL_PAR0);
2058 		eaddr[1] = CSR_READ_4(sc, DC_AL_PAR1);
2059 		break;
2060 	case DC_TYPE_CONEXANT:
2061 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2062 		    ETHER_ADDR_LEN);
2063 		break;
2064 	case DC_TYPE_XIRCOM:
2065 		/* The MAC comes from the CIS. */
2066 		mac = pci_get_ether(dev);
2067 		if (!mac) {
2068 			device_printf(dev, "No station address in CIS!\n");
2069 			error = ENXIO;
2070 			goto fail;
2071 		}
2072 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2073 		break;
2074 	default:
2075 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2076 		break;
2077 	}
2078 
2079 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2080 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2081 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2082 	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2083 	    0, NULL, NULL, &sc->dc_ltag);
2084 	if (error) {
2085 		device_printf(dev, "failed to allocate busdma tag\n");
2086 		error = ENXIO;
2087 		goto fail;
2088 	}
2089 	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2090 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2091 	if (error) {
2092 		device_printf(dev, "failed to allocate DMA safe memory\n");
2093 		error = ENXIO;
2094 		goto fail;
2095 	}
2096 	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2097 	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2098 	    BUS_DMA_NOWAIT);
2099 	if (error) {
2100 		device_printf(dev, "cannot get address of the descriptors\n");
2101 		error = ENXIO;
2102 		goto fail;
2103 	}
2104 
2105 	/*
2106 	 * Allocate a busdma tag and DMA safe memory for the multicast
2107 	 * setup frame.
2108 	 */
2109 	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2110 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2111 	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2112 	    0, NULL, NULL, &sc->dc_stag);
2113 	if (error) {
2114 		device_printf(dev, "failed to allocate busdma tag\n");
2115 		error = ENXIO;
2116 		goto fail;
2117 	}
2118 	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2119 	    BUS_DMA_NOWAIT, &sc->dc_smap);
2120 	if (error) {
2121 		device_printf(dev, "failed to allocate DMA safe memory\n");
2122 		error = ENXIO;
2123 		goto fail;
2124 	}
2125 	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2126 	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2127 	if (error) {
2128 		device_printf(dev, "cannot get address of the descriptors\n");
2129 		error = ENXIO;
2130 		goto fail;
2131 	}
2132 
2133 	/* Allocate a busdma tag for mbufs. */
2134 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2135 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2136 	    MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2137 	    0, NULL, NULL, &sc->dc_mtag);
2138 	if (error) {
2139 		device_printf(dev, "failed to allocate busdma tag\n");
2140 		error = ENXIO;
2141 		goto fail;
2142 	}
2143 
2144 	/* Create the TX/RX busdma maps. */
2145 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2146 		error = bus_dmamap_create(sc->dc_mtag, 0,
2147 		    &sc->dc_cdata.dc_tx_map[i]);
2148 		if (error) {
2149 			device_printf(dev, "failed to init TX ring\n");
2150 			error = ENXIO;
2151 			goto fail;
2152 		}
2153 	}
2154 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2155 		error = bus_dmamap_create(sc->dc_mtag, 0,
2156 		    &sc->dc_cdata.dc_rx_map[i]);
2157 		if (error) {
2158 			device_printf(dev, "failed to init RX ring\n");
2159 			error = ENXIO;
2160 			goto fail;
2161 		}
2162 	}
2163 	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2164 	if (error) {
2165 		device_printf(dev, "failed to init RX ring\n");
2166 		error = ENXIO;
2167 		goto fail;
2168 	}
2169 
2170 	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2171 	if (ifp == NULL) {
2172 		device_printf(dev, "can not if_alloc()\n");
2173 		error = ENOSPC;
2174 		goto fail;
2175 	}
2176 	ifp->if_softc = sc;
2177 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2178 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2179 	ifp->if_ioctl = dc_ioctl;
2180 	ifp->if_start = dc_start;
2181 	ifp->if_init = dc_init;
2182 	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2183 	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2184 	IFQ_SET_READY(&ifp->if_snd);
2185 
2186 	/*
2187 	 * Do MII setup. If this is a 21143, check for a PHY on the
2188 	 * MII bus after applying any necessary fixups to twiddle the
2189 	 * GPIO bits. If we don't end up finding a PHY, restore the
2190 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2191 	 * driver instead.
2192 	 */
2193 	if (DC_IS_INTEL(sc)) {
2194 		dc_apply_fixup(sc, IFM_AUTO);
2195 		tmp = sc->dc_pmode;
2196 		sc->dc_pmode = DC_PMODE_MII;
2197 	}
2198 
2199 	/*
2200 	 * Setup General Purpose port mode and data so the tulip can talk
2201 	 * to the MII.  This needs to be done before mii_phy_probe so that
2202 	 * we can actually see them.
2203 	 */
2204 	if (DC_IS_XIRCOM(sc)) {
2205 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2206 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2207 		DELAY(10);
2208 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2209 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2210 		DELAY(10);
2211 	}
2212 
2213 	error = mii_phy_probe(dev, &sc->dc_miibus,
2214 	    dc_ifmedia_upd, dc_ifmedia_sts);
2215 
2216 	if (error && DC_IS_INTEL(sc)) {
2217 		sc->dc_pmode = tmp;
2218 		if (sc->dc_pmode != DC_PMODE_SIA)
2219 			sc->dc_pmode = DC_PMODE_SYM;
2220 		sc->dc_flags |= DC_21143_NWAY;
2221 		mii_phy_probe(dev, &sc->dc_miibus,
2222 		    dc_ifmedia_upd, dc_ifmedia_sts);
2223 		/*
2224 		 * For non-MII cards, we need to have the 21143
2225 		 * drive the LEDs. Except there are some systems
2226 		 * like the NEC VersaPro NoteBook PC which have no
2227 		 * LEDs, and twiddling these bits has adverse effects
2228 		 * on them. (I.e. you suddenly can't get a link.)
2229 		 */
2230 		if (!(pci_get_subvendor(dev) == 0x1033 &&
2231 		    pci_get_subdevice(dev) == 0x8028))
2232 			sc->dc_flags |= DC_TULIP_LEDS;
2233 		error = 0;
2234 	}
2235 
2236 	if (error) {
2237 		device_printf(dev, "MII without any PHY!\n");
2238 		goto fail;
2239 	}
2240 
2241 	if (DC_IS_ADMTEK(sc)) {
2242 		/*
2243 		 * Set automatic TX underrun recovery for the ADMtek chips
2244 		 */
2245 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2246 	}
2247 
2248 	/*
2249 	 * Tell the upper layer(s) we support long frames.
2250 	 */
2251 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2252 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2253 	ifp->if_capenable = ifp->if_capabilities;
2254 #ifdef DEVICE_POLLING
2255 	ifp->if_capabilities |= IFCAP_POLLING;
2256 #endif
2257 
2258 	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2259 	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2260 
2261 	/*
2262 	 * Call MI attach routine.
2263 	 */
2264 	ether_ifattach(ifp, (caddr_t)eaddr);
2265 
2266 	/* Hook interrupt last to avoid having to lock softc */
2267 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2268 	    dc_intr, sc, &sc->dc_intrhand);
2269 
2270 	if (error) {
2271 		device_printf(dev, "couldn't set up irq\n");
2272 		ether_ifdetach(ifp);
2273 		goto fail;
2274 	}
2275 
2276 fail:
2277 	if (error)
2278 		dc_detach(dev);
2279 	return (error);
2280 }
2281 
2282 /*
2283  * Shutdown hardware and free up resources. This can be called any
2284  * time after the mutex has been initialized. It is called in both
2285  * the error case in attach and the normal detach case so it needs
2286  * to be careful about only freeing resources that have actually been
2287  * allocated.
2288  */
2289 static int
2290 dc_detach(device_t dev)
2291 {
2292 	struct dc_softc *sc;
2293 	struct ifnet *ifp;
2294 	struct dc_mediainfo *m;
2295 	int i;
2296 
2297 	sc = device_get_softc(dev);
2298 	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2299 
2300 	ifp = sc->dc_ifp;
2301 
2302 #ifdef DEVICE_POLLING
2303 	if (ifp->if_capenable & IFCAP_POLLING)
2304 		ether_poll_deregister(ifp);
2305 #endif
2306 
2307 	/* These should only be active if attach succeeded */
2308 	if (device_is_attached(dev)) {
2309 		DC_LOCK(sc);
2310 		dc_stop(sc);
2311 		DC_UNLOCK(sc);
2312 		callout_drain(&sc->dc_stat_ch);
2313 		callout_drain(&sc->dc_wdog_ch);
2314 		ether_ifdetach(ifp);
2315 	}
2316 	if (sc->dc_miibus)
2317 		device_delete_child(dev, sc->dc_miibus);
2318 	bus_generic_detach(dev);
2319 
2320 	if (sc->dc_intrhand)
2321 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2322 	if (sc->dc_irq)
2323 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2324 	if (sc->dc_res)
2325 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2326 
2327 	if (ifp)
2328 		if_free(ifp);
2329 
2330 	if (sc->dc_cdata.dc_sbuf != NULL)
2331 		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2332 	if (sc->dc_ldata != NULL)
2333 		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2334 	if (sc->dc_mtag) {
2335 		for (i = 0; i < DC_TX_LIST_CNT; i++)
2336 			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2337 				bus_dmamap_destroy(sc->dc_mtag,
2338 				    sc->dc_cdata.dc_tx_map[i]);
2339 		for (i = 0; i < DC_RX_LIST_CNT; i++)
2340 			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2341 				bus_dmamap_destroy(sc->dc_mtag,
2342 				    sc->dc_cdata.dc_rx_map[i]);
2343 		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2344 	}
2345 	if (sc->dc_stag)
2346 		bus_dma_tag_destroy(sc->dc_stag);
2347 	if (sc->dc_mtag)
2348 		bus_dma_tag_destroy(sc->dc_mtag);
2349 	if (sc->dc_ltag)
2350 		bus_dma_tag_destroy(sc->dc_ltag);
2351 
2352 	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2353 
2354 	while (sc->dc_mi != NULL) {
2355 		m = sc->dc_mi->dc_next;
2356 		free(sc->dc_mi, M_DEVBUF);
2357 		sc->dc_mi = m;
2358 	}
2359 	free(sc->dc_srom, M_DEVBUF);
2360 
2361 	mtx_destroy(&sc->dc_mtx);
2362 
2363 	return (0);
2364 }
2365 
2366 /*
2367  * Initialize the transmit descriptors.
2368  */
2369 static int
2370 dc_list_tx_init(struct dc_softc *sc)
2371 {
2372 	struct dc_chain_data *cd;
2373 	struct dc_list_data *ld;
2374 	int i, nexti;
2375 
2376 	cd = &sc->dc_cdata;
2377 	ld = sc->dc_ldata;
2378 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2379 		if (i == DC_TX_LIST_CNT - 1)
2380 			nexti = 0;
2381 		else
2382 			nexti = i + 1;
2383 		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2384 		cd->dc_tx_chain[i] = NULL;
2385 		ld->dc_tx_list[i].dc_data = 0;
2386 		ld->dc_tx_list[i].dc_ctl = 0;
2387 	}
2388 
2389 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2390 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2391 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2392 	return (0);
2393 }
2394 
2395 
2396 /*
2397  * Initialize the RX descriptors and allocate mbufs for them. Note that
2398  * we arrange the descriptors in a closed ring, so that the last descriptor
2399  * points back to the first.
2400  */
2401 static int
2402 dc_list_rx_init(struct dc_softc *sc)
2403 {
2404 	struct dc_chain_data *cd;
2405 	struct dc_list_data *ld;
2406 	int i, nexti;
2407 
2408 	cd = &sc->dc_cdata;
2409 	ld = sc->dc_ldata;
2410 
2411 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2412 		if (dc_newbuf(sc, i, 1) != 0)
2413 			return (ENOBUFS);
2414 		if (i == DC_RX_LIST_CNT - 1)
2415 			nexti = 0;
2416 		else
2417 			nexti = i + 1;
2418 		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2419 	}
2420 
2421 	cd->dc_rx_prod = 0;
2422 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2423 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2424 	return (0);
2425 }
2426 
2427 static void
2428 dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2429 	void *arg;
2430 	bus_dma_segment_t *segs;
2431 	int nseg;
2432 	bus_size_t mapsize;
2433 	int error;
2434 {
2435 	struct dc_softc *sc;
2436 	struct dc_desc *c;
2437 
2438 	sc = arg;
2439 	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2440 	if (error) {
2441 		sc->dc_cdata.dc_rx_err = error;
2442 		return;
2443 	}
2444 
2445 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2446 	sc->dc_cdata.dc_rx_err = 0;
2447 	c->dc_data = htole32(segs->ds_addr);
2448 }
2449 
2450 /*
2451  * Initialize an RX descriptor and attach an MBUF cluster.
2452  */
2453 static int
2454 dc_newbuf(struct dc_softc *sc, int i, int alloc)
2455 {
2456 	struct mbuf *m_new;
2457 	bus_dmamap_t tmp;
2458 	int error;
2459 
2460 	if (alloc) {
2461 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2462 		if (m_new == NULL)
2463 			return (ENOBUFS);
2464 	} else {
2465 		m_new = sc->dc_cdata.dc_rx_chain[i];
2466 		m_new->m_data = m_new->m_ext.ext_buf;
2467 	}
2468 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2469 	m_adj(m_new, sizeof(u_int64_t));
2470 
2471 	/*
2472 	 * If this is a PNIC chip, zero the buffer. This is part
2473 	 * of the workaround for the receive bug in the 82c168 and
2474 	 * 82c169 chips.
2475 	 */
2476 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2477 		bzero(mtod(m_new, char *), m_new->m_len);
2478 
2479 	/* No need to remap the mbuf if we're reusing it. */
2480 	if (alloc) {
2481 		sc->dc_cdata.dc_rx_cur = i;
2482 		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2483 		    m_new, dc_dma_map_rxbuf, sc, 0);
2484 		if (error) {
2485 			m_freem(m_new);
2486 			return (error);
2487 		}
2488 		if (sc->dc_cdata.dc_rx_err != 0) {
2489 			m_freem(m_new);
2490 			return (sc->dc_cdata.dc_rx_err);
2491 		}
2492 		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2493 		tmp = sc->dc_cdata.dc_rx_map[i];
2494 		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2495 		sc->dc_sparemap = tmp;
2496 		sc->dc_cdata.dc_rx_chain[i] = m_new;
2497 	}
2498 
2499 	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2500 	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2501 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2502 	    BUS_DMASYNC_PREREAD);
2503 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2504 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2505 	return (0);
2506 }
2507 
2508 /*
2509  * Grrrrr.
2510  * The PNIC chip has a terrible bug in it that manifests itself during
2511  * periods of heavy activity. The exact mode of failure if difficult to
2512  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2513  * will happen on slow machines. The bug is that sometimes instead of
2514  * uploading one complete frame during reception, it uploads what looks
2515  * like the entire contents of its FIFO memory. The frame we want is at
2516  * the end of the whole mess, but we never know exactly how much data has
2517  * been uploaded, so salvaging the frame is hard.
2518  *
2519  * There is only one way to do it reliably, and it's disgusting.
2520  * Here's what we know:
2521  *
2522  * - We know there will always be somewhere between one and three extra
2523  *   descriptors uploaded.
2524  *
2525  * - We know the desired received frame will always be at the end of the
2526  *   total data upload.
2527  *
2528  * - We know the size of the desired received frame because it will be
2529  *   provided in the length field of the status word in the last descriptor.
2530  *
2531  * Here's what we do:
2532  *
2533  * - When we allocate buffers for the receive ring, we bzero() them.
2534  *   This means that we know that the buffer contents should be all
2535  *   zeros, except for data uploaded by the chip.
2536  *
2537  * - We also force the PNIC chip to upload frames that include the
2538  *   ethernet CRC at the end.
2539  *
2540  * - We gather all of the bogus frame data into a single buffer.
2541  *
2542  * - We then position a pointer at the end of this buffer and scan
2543  *   backwards until we encounter the first non-zero byte of data.
2544  *   This is the end of the received frame. We know we will encounter
2545  *   some data at the end of the frame because the CRC will always be
2546  *   there, so even if the sender transmits a packet of all zeros,
2547  *   we won't be fooled.
2548  *
2549  * - We know the size of the actual received frame, so we subtract
2550  *   that value from the current pointer location. This brings us
2551  *   to the start of the actual received packet.
2552  *
2553  * - We copy this into an mbuf and pass it on, along with the actual
2554  *   frame length.
2555  *
2556  * The performance hit is tremendous, but it beats dropping frames all
2557  * the time.
2558  */
2559 
2560 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2561 static void
2562 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2563 {
2564 	struct dc_desc *cur_rx;
2565 	struct dc_desc *c = NULL;
2566 	struct mbuf *m = NULL;
2567 	unsigned char *ptr;
2568 	int i, total_len;
2569 	u_int32_t rxstat = 0;
2570 
2571 	i = sc->dc_pnic_rx_bug_save;
2572 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2573 	ptr = sc->dc_pnic_rx_buf;
2574 	bzero(ptr, DC_RXLEN * 5);
2575 
2576 	/* Copy all the bytes from the bogus buffers. */
2577 	while (1) {
2578 		c = &sc->dc_ldata->dc_rx_list[i];
2579 		rxstat = le32toh(c->dc_status);
2580 		m = sc->dc_cdata.dc_rx_chain[i];
2581 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2582 		ptr += DC_RXLEN;
2583 		/* If this is the last buffer, break out. */
2584 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2585 			break;
2586 		dc_newbuf(sc, i, 0);
2587 		DC_INC(i, DC_RX_LIST_CNT);
2588 	}
2589 
2590 	/* Find the length of the actual receive frame. */
2591 	total_len = DC_RXBYTES(rxstat);
2592 
2593 	/* Scan backwards until we hit a non-zero byte. */
2594 	while (*ptr == 0x00)
2595 		ptr--;
2596 
2597 	/* Round off. */
2598 	if ((uintptr_t)(ptr) & 0x3)
2599 		ptr -= 1;
2600 
2601 	/* Now find the start of the frame. */
2602 	ptr -= total_len;
2603 	if (ptr < sc->dc_pnic_rx_buf)
2604 		ptr = sc->dc_pnic_rx_buf;
2605 
2606 	/*
2607 	 * Now copy the salvaged frame to the last mbuf and fake up
2608 	 * the status word to make it look like a successful
2609 	 * frame reception.
2610 	 */
2611 	dc_newbuf(sc, i, 0);
2612 	bcopy(ptr, mtod(m, char *), total_len);
2613 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2614 }
2615 
2616 /*
2617  * This routine searches the RX ring for dirty descriptors in the
2618  * event that the rxeof routine falls out of sync with the chip's
2619  * current descriptor pointer. This may happen sometimes as a result
2620  * of a "no RX buffer available" condition that happens when the chip
2621  * consumes all of the RX buffers before the driver has a chance to
2622  * process the RX ring. This routine may need to be called more than
2623  * once to bring the driver back in sync with the chip, however we
2624  * should still be getting RX DONE interrupts to drive the search
2625  * for new packets in the RX ring, so we should catch up eventually.
2626  */
2627 static int
2628 dc_rx_resync(struct dc_softc *sc)
2629 {
2630 	struct dc_desc *cur_rx;
2631 	int i, pos;
2632 
2633 	pos = sc->dc_cdata.dc_rx_prod;
2634 
2635 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2636 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2637 		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2638 			break;
2639 		DC_INC(pos, DC_RX_LIST_CNT);
2640 	}
2641 
2642 	/* If the ring really is empty, then just return. */
2643 	if (i == DC_RX_LIST_CNT)
2644 		return (0);
2645 
2646 	/* We've fallen behing the chip: catch it. */
2647 	sc->dc_cdata.dc_rx_prod = pos;
2648 
2649 	return (EAGAIN);
2650 }
2651 
2652 /*
2653  * A frame has been uploaded: pass the resulting mbuf chain up to
2654  * the higher level protocols.
2655  */
2656 static void
2657 dc_rxeof(struct dc_softc *sc)
2658 {
2659 	struct mbuf *m, *m0;
2660 	struct ifnet *ifp;
2661 	struct dc_desc *cur_rx;
2662 	int i, total_len = 0;
2663 	u_int32_t rxstat;
2664 
2665 	DC_LOCK_ASSERT(sc);
2666 
2667 	ifp = sc->dc_ifp;
2668 	i = sc->dc_cdata.dc_rx_prod;
2669 
2670 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2671 	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2672 	    DC_RXSTAT_OWN)) {
2673 #ifdef DEVICE_POLLING
2674 		if (ifp->if_capenable & IFCAP_POLLING) {
2675 			if (sc->rxcycles <= 0)
2676 				break;
2677 			sc->rxcycles--;
2678 		}
2679 #endif
2680 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2681 		rxstat = le32toh(cur_rx->dc_status);
2682 		m = sc->dc_cdata.dc_rx_chain[i];
2683 		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2684 		    BUS_DMASYNC_POSTREAD);
2685 		total_len = DC_RXBYTES(rxstat);
2686 
2687 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2688 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2689 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2690 					sc->dc_pnic_rx_bug_save = i;
2691 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2692 					DC_INC(i, DC_RX_LIST_CNT);
2693 					continue;
2694 				}
2695 				dc_pnic_rx_bug_war(sc, i);
2696 				rxstat = le32toh(cur_rx->dc_status);
2697 				total_len = DC_RXBYTES(rxstat);
2698 			}
2699 		}
2700 
2701 		/*
2702 		 * If an error occurs, update stats, clear the
2703 		 * status word and leave the mbuf cluster in place:
2704 		 * it should simply get re-used next time this descriptor
2705 		 * comes up in the ring.  However, don't report long
2706 		 * frames as errors since they could be vlans.
2707 		 */
2708 		if ((rxstat & DC_RXSTAT_RXERR)) {
2709 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2710 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2711 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2712 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2713 				ifp->if_ierrors++;
2714 				if (rxstat & DC_RXSTAT_COLLSEEN)
2715 					ifp->if_collisions++;
2716 				dc_newbuf(sc, i, 0);
2717 				if (rxstat & DC_RXSTAT_CRCERR) {
2718 					DC_INC(i, DC_RX_LIST_CNT);
2719 					continue;
2720 				} else {
2721 					dc_init_locked(sc);
2722 					return;
2723 				}
2724 			}
2725 		}
2726 
2727 		/* No errors; receive the packet. */
2728 		total_len -= ETHER_CRC_LEN;
2729 #ifdef __NO_STRICT_ALIGNMENT
2730 		/*
2731 		 * On architectures without alignment problems we try to
2732 		 * allocate a new buffer for the receive ring, and pass up
2733 		 * the one where the packet is already, saving the expensive
2734 		 * copy done in m_devget().
2735 		 * If we are on an architecture with alignment problems, or
2736 		 * if the allocation fails, then use m_devget and leave the
2737 		 * existing buffer in the receive ring.
2738 		 */
2739 		if (dc_newbuf(sc, i, 1) == 0) {
2740 			m->m_pkthdr.rcvif = ifp;
2741 			m->m_pkthdr.len = m->m_len = total_len;
2742 			DC_INC(i, DC_RX_LIST_CNT);
2743 		} else
2744 #endif
2745 		{
2746 			m0 = m_devget(mtod(m, char *), total_len,
2747 				ETHER_ALIGN, ifp, NULL);
2748 			dc_newbuf(sc, i, 0);
2749 			DC_INC(i, DC_RX_LIST_CNT);
2750 			if (m0 == NULL) {
2751 				ifp->if_ierrors++;
2752 				continue;
2753 			}
2754 			m = m0;
2755 		}
2756 
2757 		ifp->if_ipackets++;
2758 		DC_UNLOCK(sc);
2759 		(*ifp->if_input)(ifp, m);
2760 		DC_LOCK(sc);
2761 	}
2762 
2763 	sc->dc_cdata.dc_rx_prod = i;
2764 }
2765 
2766 /*
2767  * A frame was downloaded to the chip. It's safe for us to clean up
2768  * the list buffers.
2769  */
2770 
2771 static void
2772 dc_txeof(struct dc_softc *sc)
2773 {
2774 	struct dc_desc *cur_tx = NULL;
2775 	struct ifnet *ifp;
2776 	int idx;
2777 	u_int32_t ctl, txstat;
2778 
2779 	ifp = sc->dc_ifp;
2780 
2781 	/*
2782 	 * Go through our tx list and free mbufs for those
2783 	 * frames that have been transmitted.
2784 	 */
2785 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2786 	idx = sc->dc_cdata.dc_tx_cons;
2787 	while (idx != sc->dc_cdata.dc_tx_prod) {
2788 
2789 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2790 		txstat = le32toh(cur_tx->dc_status);
2791 		ctl = le32toh(cur_tx->dc_ctl);
2792 
2793 		if (txstat & DC_TXSTAT_OWN)
2794 			break;
2795 
2796 		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2797 			if (ctl & DC_TXCTL_SETUP) {
2798 				/*
2799 				 * Yes, the PNIC is so brain damaged
2800 				 * that it will sometimes generate a TX
2801 				 * underrun error while DMAing the RX
2802 				 * filter setup frame. If we detect this,
2803 				 * we have to send the setup frame again,
2804 				 * or else the filter won't be programmed
2805 				 * correctly.
2806 				 */
2807 				if (DC_IS_PNIC(sc)) {
2808 					if (txstat & DC_TXSTAT_ERRSUM)
2809 						dc_setfilt(sc);
2810 				}
2811 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2812 			}
2813 			sc->dc_cdata.dc_tx_cnt--;
2814 			DC_INC(idx, DC_TX_LIST_CNT);
2815 			continue;
2816 		}
2817 
2818 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2819 			/*
2820 			 * XXX: Why does my Xircom taunt me so?
2821 			 * For some reason it likes setting the CARRLOST flag
2822 			 * even when the carrier is there. wtf?!?
2823 			 * Who knows, but Conexant chips have the
2824 			 * same problem. Maybe they took lessons
2825 			 * from Xircom.
2826 			 */
2827 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2828 			    sc->dc_pmode == DC_PMODE_MII &&
2829 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2830 			    DC_TXSTAT_NOCARRIER)))
2831 				txstat &= ~DC_TXSTAT_ERRSUM;
2832 		} else {
2833 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2834 			    sc->dc_pmode == DC_PMODE_MII &&
2835 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2836 			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2837 				txstat &= ~DC_TXSTAT_ERRSUM;
2838 		}
2839 
2840 		if (txstat & DC_TXSTAT_ERRSUM) {
2841 			ifp->if_oerrors++;
2842 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2843 				ifp->if_collisions++;
2844 			if (txstat & DC_TXSTAT_LATECOLL)
2845 				ifp->if_collisions++;
2846 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2847 				dc_init_locked(sc);
2848 				return;
2849 			}
2850 		}
2851 
2852 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2853 
2854 		ifp->if_opackets++;
2855 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2856 			bus_dmamap_sync(sc->dc_mtag,
2857 			    sc->dc_cdata.dc_tx_map[idx],
2858 			    BUS_DMASYNC_POSTWRITE);
2859 			bus_dmamap_unload(sc->dc_mtag,
2860 			    sc->dc_cdata.dc_tx_map[idx]);
2861 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2862 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2863 		}
2864 
2865 		sc->dc_cdata.dc_tx_cnt--;
2866 		DC_INC(idx, DC_TX_LIST_CNT);
2867 	}
2868 
2869 	if (idx != sc->dc_cdata.dc_tx_cons) {
2870 	    	/* Some buffers have been freed. */
2871 		sc->dc_cdata.dc_tx_cons = idx;
2872 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2873 	}
2874 	if (sc->dc_cdata.dc_tx_cnt == 0)
2875 		sc->dc_wdog_timer = 0;
2876 }
2877 
2878 static void
2879 dc_tick(void *xsc)
2880 {
2881 	struct dc_softc *sc;
2882 	struct mii_data *mii;
2883 	struct ifnet *ifp;
2884 	u_int32_t r;
2885 
2886 	sc = xsc;
2887 	DC_LOCK_ASSERT(sc);
2888 	ifp = sc->dc_ifp;
2889 	mii = device_get_softc(sc->dc_miibus);
2890 
2891 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2892 		if (sc->dc_flags & DC_21143_NWAY) {
2893 			r = CSR_READ_4(sc, DC_10BTSTAT);
2894 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2895 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2896 				sc->dc_link = 0;
2897 				mii_mediachg(mii);
2898 			}
2899 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2900 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2901 				sc->dc_link = 0;
2902 				mii_mediachg(mii);
2903 			}
2904 			if (sc->dc_link == 0)
2905 				mii_tick(mii);
2906 		} else {
2907 			r = CSR_READ_4(sc, DC_ISR);
2908 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2909 			    sc->dc_cdata.dc_tx_cnt == 0) {
2910 				mii_tick(mii);
2911 				if (!(mii->mii_media_status & IFM_ACTIVE))
2912 					sc->dc_link = 0;
2913 			}
2914 		}
2915 	} else
2916 		mii_tick(mii);
2917 
2918 	/*
2919 	 * When the init routine completes, we expect to be able to send
2920 	 * packets right away, and in fact the network code will send a
2921 	 * gratuitous ARP the moment the init routine marks the interface
2922 	 * as running. However, even though the MAC may have been initialized,
2923 	 * there may be a delay of a few seconds before the PHY completes
2924 	 * autonegotiation and the link is brought up. Any transmissions
2925 	 * made during that delay will be lost. Dealing with this is tricky:
2926 	 * we can't just pause in the init routine while waiting for the
2927 	 * PHY to come ready since that would bring the whole system to
2928 	 * a screeching halt for several seconds.
2929 	 *
2930 	 * What we do here is prevent the TX start routine from sending
2931 	 * any packets until a link has been established. After the
2932 	 * interface has been initialized, the tick routine will poll
2933 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2934 	 * that time, packets will stay in the send queue, and once the
2935 	 * link comes up, they will be flushed out to the wire.
2936 	 */
2937 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2938 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2939 		sc->dc_link++;
2940 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2941 			dc_start_locked(ifp);
2942 	}
2943 
2944 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2945 		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2946 	else
2947 		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2948 }
2949 
2950 /*
2951  * A transmit underrun has occurred.  Back off the transmit threshold,
2952  * or switch to store and forward mode if we have to.
2953  */
2954 static void
2955 dc_tx_underrun(struct dc_softc *sc)
2956 {
2957 	u_int32_t isr;
2958 	int i;
2959 
2960 	if (DC_IS_DAVICOM(sc))
2961 		dc_init_locked(sc);
2962 
2963 	if (DC_IS_INTEL(sc)) {
2964 		/*
2965 		 * The real 21143 requires that the transmitter be idle
2966 		 * in order to change the transmit threshold or store
2967 		 * and forward state.
2968 		 */
2969 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2970 
2971 		for (i = 0; i < DC_TIMEOUT; i++) {
2972 			isr = CSR_READ_4(sc, DC_ISR);
2973 			if (isr & DC_ISR_TX_IDLE)
2974 				break;
2975 			DELAY(10);
2976 		}
2977 		if (i == DC_TIMEOUT) {
2978 			device_printf(sc->dc_dev,
2979 			    "%s: failed to force tx to idle state\n",
2980 			    __func__);
2981 			dc_init_locked(sc);
2982 		}
2983 	}
2984 
2985 	device_printf(sc->dc_dev, "TX underrun -- ");
2986 	sc->dc_txthresh += DC_TXTHRESH_INC;
2987 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2988 		printf("using store and forward mode\n");
2989 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2990 	} else {
2991 		printf("increasing TX threshold\n");
2992 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2993 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2994 	}
2995 
2996 	if (DC_IS_INTEL(sc))
2997 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2998 }
2999 
3000 #ifdef DEVICE_POLLING
3001 static poll_handler_t dc_poll;
3002 
3003 static void
3004 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3005 {
3006 	struct dc_softc *sc = ifp->if_softc;
3007 
3008 	DC_LOCK(sc);
3009 
3010 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3011 		DC_UNLOCK(sc);
3012 		return;
3013 	}
3014 
3015 	sc->rxcycles = count;
3016 	dc_rxeof(sc);
3017 	dc_txeof(sc);
3018 	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3019 	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3020 		dc_start_locked(ifp);
3021 
3022 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3023 		u_int32_t	status;
3024 
3025 		status = CSR_READ_4(sc, DC_ISR);
3026 		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3027 			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3028 			DC_ISR_BUS_ERR);
3029 		if (!status) {
3030 			DC_UNLOCK(sc);
3031 			return;
3032 		}
3033 		/* ack what we have */
3034 		CSR_WRITE_4(sc, DC_ISR, status);
3035 
3036 		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3037 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3038 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3039 
3040 			if (dc_rx_resync(sc))
3041 				dc_rxeof(sc);
3042 		}
3043 		/* restart transmit unit if necessary */
3044 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3045 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3046 
3047 		if (status & DC_ISR_TX_UNDERRUN)
3048 			dc_tx_underrun(sc);
3049 
3050 		if (status & DC_ISR_BUS_ERR) {
3051 			if_printf(ifp, "%s: bus error\n", __func__);
3052 			dc_reset(sc);
3053 			dc_init_locked(sc);
3054 		}
3055 	}
3056 	DC_UNLOCK(sc);
3057 }
3058 #endif /* DEVICE_POLLING */
3059 
3060 static void
3061 dc_intr(void *arg)
3062 {
3063 	struct dc_softc *sc;
3064 	struct ifnet *ifp;
3065 	u_int32_t status;
3066 
3067 	sc = arg;
3068 
3069 	if (sc->suspended)
3070 		return;
3071 
3072 	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3073 		return;
3074 
3075 	DC_LOCK(sc);
3076 	ifp = sc->dc_ifp;
3077 #ifdef DEVICE_POLLING
3078 	if (ifp->if_capenable & IFCAP_POLLING) {
3079 		DC_UNLOCK(sc);
3080 		return;
3081 	}
3082 #endif
3083 
3084 	/* Suppress unwanted interrupts */
3085 	if (!(ifp->if_flags & IFF_UP)) {
3086 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3087 			dc_stop(sc);
3088 		DC_UNLOCK(sc);
3089 		return;
3090 	}
3091 
3092 	/* Disable interrupts. */
3093 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3094 
3095 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3096 	    status != 0xFFFFFFFF &&
3097 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3098 
3099 		CSR_WRITE_4(sc, DC_ISR, status);
3100 
3101 		if (status & DC_ISR_RX_OK) {
3102 			int		curpkts;
3103 			curpkts = ifp->if_ipackets;
3104 			dc_rxeof(sc);
3105 			if (curpkts == ifp->if_ipackets) {
3106 				while (dc_rx_resync(sc))
3107 					dc_rxeof(sc);
3108 			}
3109 		}
3110 
3111 		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3112 			dc_txeof(sc);
3113 
3114 		if (status & DC_ISR_TX_IDLE) {
3115 			dc_txeof(sc);
3116 			if (sc->dc_cdata.dc_tx_cnt) {
3117 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3118 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3119 			}
3120 		}
3121 
3122 		if (status & DC_ISR_TX_UNDERRUN)
3123 			dc_tx_underrun(sc);
3124 
3125 		if ((status & DC_ISR_RX_WATDOGTIMEO)
3126 		    || (status & DC_ISR_RX_NOBUF)) {
3127 			int		curpkts;
3128 			curpkts = ifp->if_ipackets;
3129 			dc_rxeof(sc);
3130 			if (curpkts == ifp->if_ipackets) {
3131 				while (dc_rx_resync(sc))
3132 					dc_rxeof(sc);
3133 			}
3134 		}
3135 
3136 		if (status & DC_ISR_BUS_ERR) {
3137 			dc_reset(sc);
3138 			dc_init_locked(sc);
3139 		}
3140 	}
3141 
3142 	/* Re-enable interrupts. */
3143 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3144 
3145 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3146 		dc_start_locked(ifp);
3147 
3148 	DC_UNLOCK(sc);
3149 }
3150 
3151 static void
3152 dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3153 	void *arg;
3154 	bus_dma_segment_t *segs;
3155 	int nseg;
3156 	bus_size_t mapsize;
3157 	int error;
3158 {
3159 	struct dc_softc *sc;
3160 	struct dc_desc *f;
3161 	int cur, first, frag, i;
3162 
3163 	sc = arg;
3164 	if (error) {
3165 		sc->dc_cdata.dc_tx_err = error;
3166 		return;
3167 	}
3168 
3169 	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3170 	for (i = 0; i < nseg; i++) {
3171 		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3172 		    (frag == (DC_TX_LIST_CNT - 1)) &&
3173 		    (first != sc->dc_cdata.dc_tx_first)) {
3174 			bus_dmamap_unload(sc->dc_mtag,
3175 			    sc->dc_cdata.dc_tx_map[first]);
3176 			sc->dc_cdata.dc_tx_err = ENOBUFS;
3177 			return;
3178 		}
3179 
3180 		f = &sc->dc_ldata->dc_tx_list[frag];
3181 		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3182 		if (i == 0) {
3183 			f->dc_status = 0;
3184 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3185 		} else
3186 			f->dc_status = htole32(DC_TXSTAT_OWN);
3187 		f->dc_data = htole32(segs[i].ds_addr);
3188 		cur = frag;
3189 		DC_INC(frag, DC_TX_LIST_CNT);
3190 	}
3191 
3192 	sc->dc_cdata.dc_tx_err = 0;
3193 	sc->dc_cdata.dc_tx_prod = frag;
3194 	sc->dc_cdata.dc_tx_cnt += nseg;
3195 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3196 	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3197 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3198 		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3199 		    htole32(DC_TXCTL_FINT);
3200 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3201 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3202 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3203 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3204 	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3205 }
3206 
3207 /*
3208  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3209  * pointers to the fragment pointers.
3210  */
3211 static int
3212 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3213 {
3214 	struct mbuf *m;
3215 	int error, idx, chainlen = 0;
3216 
3217 	/*
3218 	 * If there's no way we can send any packets, return now.
3219 	 */
3220 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3221 		return (ENOBUFS);
3222 
3223 	/*
3224 	 * Count the number of frags in this chain to see if
3225 	 * we need to m_defrag.  Since the descriptor list is shared
3226 	 * by all packets, we'll m_defrag long chains so that they
3227 	 * do not use up the entire list, even if they would fit.
3228 	 */
3229 	for (m = *m_head; m != NULL; m = m->m_next)
3230 		chainlen++;
3231 
3232 	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3233 	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3234 		m = m_defrag(*m_head, M_DONTWAIT);
3235 		if (m == NULL)
3236 			return (ENOBUFS);
3237 		*m_head = m;
3238 	}
3239 
3240 	/*
3241 	 * Start packing the mbufs in this chain into
3242 	 * the fragment pointers. Stop when we run out
3243 	 * of fragments or hit the end of the mbuf chain.
3244 	 */
3245 	idx = sc->dc_cdata.dc_tx_prod;
3246 	sc->dc_cdata.dc_tx_mapping = *m_head;
3247 	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3248 	    *m_head, dc_dma_map_txbuf, sc, 0);
3249 	if (error)
3250 		return (error);
3251 	if (sc->dc_cdata.dc_tx_err != 0)
3252 		return (sc->dc_cdata.dc_tx_err);
3253 	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3254 	    BUS_DMASYNC_PREWRITE);
3255 	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3256 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3257 	return (0);
3258 }
3259 
3260 /*
3261  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3262  * to the mbuf data regions directly in the transmit lists. We also save a
3263  * copy of the pointers since the transmit list fragment pointers are
3264  * physical addresses.
3265  */
3266 
3267 static void
3268 dc_start(struct ifnet *ifp)
3269 {
3270 	struct dc_softc *sc;
3271 
3272 	sc = ifp->if_softc;
3273 	DC_LOCK(sc);
3274 	dc_start_locked(ifp);
3275 	DC_UNLOCK(sc);
3276 }
3277 
3278 static void
3279 dc_start_locked(struct ifnet *ifp)
3280 {
3281 	struct dc_softc *sc;
3282 	struct mbuf *m_head = NULL, *m;
3283 	unsigned int queued = 0;
3284 	int idx;
3285 
3286 	sc = ifp->if_softc;
3287 
3288 	DC_LOCK_ASSERT(sc);
3289 
3290 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3291 		return;
3292 
3293 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3294 		return;
3295 
3296 	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3297 
3298 	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3299 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3300 		if (m_head == NULL)
3301 			break;
3302 
3303 		if (sc->dc_flags & DC_TX_COALESCE &&
3304 		    (m_head->m_next != NULL ||
3305 		     sc->dc_flags & DC_TX_ALIGN)) {
3306 			m = m_defrag(m_head, M_DONTWAIT);
3307 			if (m == NULL) {
3308 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3309 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3310 				break;
3311 			} else {
3312 				m_head = m;
3313 			}
3314 		}
3315 
3316 		if (dc_encap(sc, &m_head)) {
3317 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3318 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3319 			break;
3320 		}
3321 		idx = sc->dc_cdata.dc_tx_prod;
3322 
3323 		queued++;
3324 		/*
3325 		 * If there's a BPF listener, bounce a copy of this frame
3326 		 * to him.
3327 		 */
3328 		BPF_MTAP(ifp, m_head);
3329 
3330 		if (sc->dc_flags & DC_TX_ONE) {
3331 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3332 			break;
3333 		}
3334 	}
3335 
3336 	if (queued > 0) {
3337 		/* Transmit */
3338 		if (!(sc->dc_flags & DC_TX_POLL))
3339 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3340 
3341 		/*
3342 		 * Set a timeout in case the chip goes out to lunch.
3343 		 */
3344 		sc->dc_wdog_timer = 5;
3345 	}
3346 }
3347 
3348 static void
3349 dc_init(void *xsc)
3350 {
3351 	struct dc_softc *sc = xsc;
3352 
3353 	DC_LOCK(sc);
3354 	dc_init_locked(sc);
3355 	DC_UNLOCK(sc);
3356 }
3357 
3358 static void
3359 dc_init_locked(struct dc_softc *sc)
3360 {
3361 	struct ifnet *ifp = sc->dc_ifp;
3362 	struct mii_data *mii;
3363 
3364 	DC_LOCK_ASSERT(sc);
3365 
3366 	mii = device_get_softc(sc->dc_miibus);
3367 
3368 	/*
3369 	 * Cancel pending I/O and free all RX/TX buffers.
3370 	 */
3371 	dc_stop(sc);
3372 	dc_reset(sc);
3373 
3374 	/*
3375 	 * Set cache alignment and burst length.
3376 	 */
3377 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3378 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3379 	else
3380 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3381 	/*
3382 	 * Evenly share the bus between receive and transmit process.
3383 	 */
3384 	if (DC_IS_INTEL(sc))
3385 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3386 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3387 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3388 	} else {
3389 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3390 	}
3391 	if (sc->dc_flags & DC_TX_POLL)
3392 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3393 	switch(sc->dc_cachesize) {
3394 	case 32:
3395 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3396 		break;
3397 	case 16:
3398 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3399 		break;
3400 	case 8:
3401 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3402 		break;
3403 	case 0:
3404 	default:
3405 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3406 		break;
3407 	}
3408 
3409 	if (sc->dc_flags & DC_TX_STORENFWD)
3410 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3411 	else {
3412 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3413 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3414 		} else {
3415 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3416 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3417 		}
3418 	}
3419 
3420 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3421 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3422 
3423 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3424 		/*
3425 		 * The app notes for the 98713 and 98715A say that
3426 		 * in order to have the chips operate properly, a magic
3427 		 * number must be written to CSR16. Macronix does not
3428 		 * document the meaning of these bits so there's no way
3429 		 * to know exactly what they do. The 98713 has a magic
3430 		 * number all its own; the rest all use a different one.
3431 		 */
3432 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3433 		if (sc->dc_type == DC_TYPE_98713)
3434 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3435 		else
3436 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3437 	}
3438 
3439 	if (DC_IS_XIRCOM(sc)) {
3440 		/*
3441 		 * setup General Purpose Port mode and data so the tulip
3442 		 * can talk to the MII.
3443 		 */
3444 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3445 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3446 		DELAY(10);
3447 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3448 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3449 		DELAY(10);
3450 	}
3451 
3452 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3453 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3454 
3455 	/* Init circular RX list. */
3456 	if (dc_list_rx_init(sc) == ENOBUFS) {
3457 		device_printf(sc->dc_dev,
3458 		    "initialization failed: no memory for rx buffers\n");
3459 		dc_stop(sc);
3460 		return;
3461 	}
3462 
3463 	/*
3464 	 * Init TX descriptors.
3465 	 */
3466 	dc_list_tx_init(sc);
3467 
3468 	/*
3469 	 * Load the address of the RX list.
3470 	 */
3471 	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3472 	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3473 
3474 	/*
3475 	 * Enable interrupts.
3476 	 */
3477 #ifdef DEVICE_POLLING
3478 	/*
3479 	 * ... but only if we are not polling, and make sure they are off in
3480 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3481 	 * after a reset.
3482 	 */
3483 	if (ifp->if_capenable & IFCAP_POLLING)
3484 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3485 	else
3486 #endif
3487 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3488 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3489 
3490 	/* Enable transmitter. */
3491 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3492 
3493 	/*
3494 	 * If this is an Intel 21143 and we're not using the
3495 	 * MII port, program the LED control pins so we get
3496 	 * link and activity indications.
3497 	 */
3498 	if (sc->dc_flags & DC_TULIP_LEDS) {
3499 		CSR_WRITE_4(sc, DC_WATCHDOG,
3500 		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3501 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3502 	}
3503 
3504 	/*
3505 	 * Load the RX/multicast filter. We do this sort of late
3506 	 * because the filter programming scheme on the 21143 and
3507 	 * some clones requires DMAing a setup frame via the TX
3508 	 * engine, and we need the transmitter enabled for that.
3509 	 */
3510 	dc_setfilt(sc);
3511 
3512 	/* Enable receiver. */
3513 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3514 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3515 
3516 	mii_mediachg(mii);
3517 	dc_setcfg(sc, sc->dc_if_media);
3518 
3519 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3520 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3521 
3522 	/* Don't start the ticker if this is a homePNA link. */
3523 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3524 		sc->dc_link = 1;
3525 	else {
3526 		if (sc->dc_flags & DC_21143_NWAY)
3527 			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3528 		else
3529 			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3530 	}
3531 
3532 	sc->dc_wdog_timer = 0;
3533 	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3534 }
3535 
3536 /*
3537  * Set media options.
3538  */
3539 static int
3540 dc_ifmedia_upd(struct ifnet *ifp)
3541 {
3542 	struct dc_softc *sc;
3543 	struct mii_data *mii;
3544 	struct ifmedia *ifm;
3545 
3546 	sc = ifp->if_softc;
3547 	mii = device_get_softc(sc->dc_miibus);
3548 	DC_LOCK(sc);
3549 	mii_mediachg(mii);
3550 	ifm = &mii->mii_media;
3551 
3552 	if (DC_IS_DAVICOM(sc) &&
3553 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3554 		dc_setcfg(sc, ifm->ifm_media);
3555 	else
3556 		sc->dc_link = 0;
3557 	DC_UNLOCK(sc);
3558 
3559 	return (0);
3560 }
3561 
3562 /*
3563  * Report current media status.
3564  */
3565 static void
3566 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3567 {
3568 	struct dc_softc *sc;
3569 	struct mii_data *mii;
3570 	struct ifmedia *ifm;
3571 
3572 	sc = ifp->if_softc;
3573 	mii = device_get_softc(sc->dc_miibus);
3574 	DC_LOCK(sc);
3575 	mii_pollstat(mii);
3576 	ifm = &mii->mii_media;
3577 	if (DC_IS_DAVICOM(sc)) {
3578 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3579 			ifmr->ifm_active = ifm->ifm_media;
3580 			ifmr->ifm_status = 0;
3581 			DC_UNLOCK(sc);
3582 			return;
3583 		}
3584 	}
3585 	ifmr->ifm_active = mii->mii_media_active;
3586 	ifmr->ifm_status = mii->mii_media_status;
3587 	DC_UNLOCK(sc);
3588 }
3589 
3590 static int
3591 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3592 {
3593 	struct dc_softc *sc = ifp->if_softc;
3594 	struct ifreq *ifr = (struct ifreq *)data;
3595 	struct mii_data *mii;
3596 	int error = 0;
3597 
3598 	switch (command) {
3599 	case SIOCSIFFLAGS:
3600 		DC_LOCK(sc);
3601 		if (ifp->if_flags & IFF_UP) {
3602 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3603 				(IFF_PROMISC | IFF_ALLMULTI);
3604 
3605 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3606 				if (need_setfilt)
3607 					dc_setfilt(sc);
3608 			} else {
3609 				sc->dc_txthresh = 0;
3610 				dc_init_locked(sc);
3611 			}
3612 		} else {
3613 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3614 				dc_stop(sc);
3615 		}
3616 		sc->dc_if_flags = ifp->if_flags;
3617 		DC_UNLOCK(sc);
3618 		error = 0;
3619 		break;
3620 	case SIOCADDMULTI:
3621 	case SIOCDELMULTI:
3622 		DC_LOCK(sc);
3623 		dc_setfilt(sc);
3624 		DC_UNLOCK(sc);
3625 		error = 0;
3626 		break;
3627 	case SIOCGIFMEDIA:
3628 	case SIOCSIFMEDIA:
3629 		mii = device_get_softc(sc->dc_miibus);
3630 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3631 		break;
3632 	case SIOCSIFCAP:
3633 #ifdef DEVICE_POLLING
3634 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3635 		    !(ifp->if_capenable & IFCAP_POLLING)) {
3636 			error = ether_poll_register(dc_poll, ifp);
3637 			if (error)
3638 				return(error);
3639 			DC_LOCK(sc);
3640 			/* Disable interrupts */
3641 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3642 			ifp->if_capenable |= IFCAP_POLLING;
3643 			DC_UNLOCK(sc);
3644 			return (error);
3645 
3646 		}
3647 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3648 		    ifp->if_capenable & IFCAP_POLLING) {
3649 			error = ether_poll_deregister(ifp);
3650 			/* Enable interrupts. */
3651 			DC_LOCK(sc);
3652 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3653 			ifp->if_capenable &= ~IFCAP_POLLING;
3654 			DC_UNLOCK(sc);
3655 			return (error);
3656 		}
3657 #endif /* DEVICE_POLLING */
3658 		break;
3659 	default:
3660 		error = ether_ioctl(ifp, command, data);
3661 		break;
3662 	}
3663 
3664 	return (error);
3665 }
3666 
3667 static void
3668 dc_watchdog(void *xsc)
3669 {
3670 	struct dc_softc *sc = xsc;
3671 	struct ifnet *ifp;
3672 
3673 	DC_LOCK_ASSERT(sc);
3674 
3675 	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3676 		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3677 		return;
3678 	}
3679 
3680 	ifp = sc->dc_ifp;
3681 	ifp->if_oerrors++;
3682 	device_printf(sc->dc_dev, "watchdog timeout\n");
3683 
3684 	dc_stop(sc);
3685 	dc_reset(sc);
3686 	dc_init_locked(sc);
3687 
3688 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3689 		dc_start_locked(ifp);
3690 }
3691 
3692 /*
3693  * Stop the adapter and free any mbufs allocated to the
3694  * RX and TX lists.
3695  */
3696 static void
3697 dc_stop(struct dc_softc *sc)
3698 {
3699 	struct ifnet *ifp;
3700 	struct dc_list_data *ld;
3701 	struct dc_chain_data *cd;
3702 	int i;
3703 	u_int32_t ctl;
3704 
3705 	DC_LOCK_ASSERT(sc);
3706 
3707 	ifp = sc->dc_ifp;
3708 	ld = sc->dc_ldata;
3709 	cd = &sc->dc_cdata;
3710 
3711 	callout_stop(&sc->dc_stat_ch);
3712 	callout_stop(&sc->dc_wdog_ch);
3713 	sc->dc_wdog_timer = 0;
3714 
3715 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3716 
3717 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3718 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3719 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3720 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3721 	sc->dc_link = 0;
3722 
3723 	/*
3724 	 * Free data in the RX lists.
3725 	 */
3726 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3727 		if (cd->dc_rx_chain[i] != NULL) {
3728 			m_freem(cd->dc_rx_chain[i]);
3729 			cd->dc_rx_chain[i] = NULL;
3730 		}
3731 	}
3732 	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3733 
3734 	/*
3735 	 * Free the TX list buffers.
3736 	 */
3737 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3738 		if (cd->dc_tx_chain[i] != NULL) {
3739 			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3740 			if ((ctl & DC_TXCTL_SETUP) ||
3741 			    !(ctl & DC_TXCTL_LASTFRAG)) {
3742 				cd->dc_tx_chain[i] = NULL;
3743 				continue;
3744 			}
3745 			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3746 			m_freem(cd->dc_tx_chain[i]);
3747 			cd->dc_tx_chain[i] = NULL;
3748 		}
3749 	}
3750 	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3751 }
3752 
3753 /*
3754  * Device suspend routine.  Stop the interface and save some PCI
3755  * settings in case the BIOS doesn't restore them properly on
3756  * resume.
3757  */
3758 static int
3759 dc_suspend(device_t dev)
3760 {
3761 	struct dc_softc *sc;
3762 
3763 	sc = device_get_softc(dev);
3764 	DC_LOCK(sc);
3765 	dc_stop(sc);
3766 	sc->suspended = 1;
3767 	DC_UNLOCK(sc);
3768 
3769 	return (0);
3770 }
3771 
3772 /*
3773  * Device resume routine.  Restore some PCI settings in case the BIOS
3774  * doesn't, re-enable busmastering, and restart the interface if
3775  * appropriate.
3776  */
3777 static int
3778 dc_resume(device_t dev)
3779 {
3780 	struct dc_softc *sc;
3781 	struct ifnet *ifp;
3782 
3783 	sc = device_get_softc(dev);
3784 	ifp = sc->dc_ifp;
3785 
3786 	/* reinitialize interface if necessary */
3787 	DC_LOCK(sc);
3788 	if (ifp->if_flags & IFF_UP)
3789 		dc_init_locked(sc);
3790 
3791 	sc->suspended = 0;
3792 	DC_UNLOCK(sc);
3793 
3794 	return (0);
3795 }
3796 
3797 /*
3798  * Stop all chip I/O so that the kernel's probe routines don't
3799  * get confused by errant DMAs when rebooting.
3800  */
3801 static void
3802 dc_shutdown(device_t dev)
3803 {
3804 	struct dc_softc *sc;
3805 
3806 	sc = device_get_softc(dev);
3807 
3808 	DC_LOCK(sc);
3809 	dc_stop(sc);
3810 	DC_UNLOCK(sc);
3811 }
3812